
Automatic Generation of Peephole Superoptimizers

Sorav Bansal and Alex Aiken
Computer Systems Lab

Stanford University
{sbansal, aiken}@cs.stanford.edu

Abstract
Peephole optimizers are typically constructed using human-written
pattern matching rules, an approach that requires expertise and
time, as well as being less than systematic at exploiting all oppor-
tunities for optimization. We explore fully automatic construction
of peephole optimizers using brute force superoptimization. While
the optimizations discovered by our automatic system may be less
general than human-written counterparts, our approach has the po-
tential to automatically learn a database of thousands to millions
of optimizations, in contrast to the hundreds found in current peep-
hole optimizers. We show experimentally that our optimizer is able
to exploit performance opportunities not found by existing com-
pilers; in particular, we show speedups from 1.7 to a factor of 10
on some compute intensive kernels over a conventional optimizing
compiler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Algorithms, Performance, Design, Reliability

Keywords Superoptimization, Peephole Optimization, Code Se-
lection

1. Introduction
Peephole optimizers are pattern matching systems that replace one
sequence of instructions by another equivalent, but faster, sequence
of instructions. The optimizations are usually expressed as param-
eterized replacement rules, so that, for example,

mov r1, r2; mov r2, r1 => mov r1, r2

expresses that if the value of register r1 is copied to register r2,
then the following instruction mov r2,r1 is useless and can be
deleted. Today, peephole optimization rules are hand-written, rely-
ing on the experience and insight of experts in the machine archi-
tecture to recognize and codify the important rules.

In this paper we explore a different approach to building peep-
hole optimizers that is both completely automatic and more sys-
tematic. The basic idea is to use superoptimization techniques (de-
scribed further below) to automatically discover replacement rules
that are optimizations; this computation is done off-line. The opti-
mizations are then organized into a lookup table, mapping original

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21–25,2006, San Jose, California, USA
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00

sequences to their optimized counterparts. Optimization of a com-
piler’s generated code can then be done as efficiently as a normal
peephole optimizer, simply using the precomputed rules.

This architecture, where optimizations are computed off-line
and then presented as an indexed structure for efficient lookup, is
much closer to a search engine database than to a traditional op-
timizer. Unlike standard compilers where every user has a copy
of the entire system, search engines have so much data that it is
more efficient to keep the data at a central site and provide access
to users over a network. We believe it is possible to build a peep-
hole optimizer using our approach with many millions of learned
optimizations, and at that scale the most efficient deployment may
also be as a network-based search engine. Our goals in this paper
are considerably more modest, focusing on showing that an auto-
matically constructed peephole optimizer is possible and, even with
limited resources (i.e., a single machine) and learning hundreds to
thousands of useful optimizations, such an optimizer can find sig-
nificant speedups that standard optimizers miss.

The classical meaning of superoptimization [10] is to find the
optimal code sequence for a single, loop-free assembly sequence
of instructions, which we call the target sequence. As noted in
later work [8], the term superoptimization is an oxymoron: If a
program has been optimized—meaning it is optimal—then what
can it mean to be superoptimized? The terminology problem lies
in the need to distinguish superoptimization from garden variety
optimization as that term is normally used; compiler optimizations
are really just code improvers and it is an accident if a conventional
optimizer produces an optimal program. However, for brevity, we
will often refer to our own system as an optimizer rather than as a
superoptimizer.

There have been two approaches to superoptimization explored
in the past. The first, used in Massalin’s original paper [10], sim-
ply enumerates sequences of instructions of increasing length or
cost, testing each for equality with the target sequence; the low-
est cost equivalent sequence found is the optimal one. The sec-
ond approach, pursued in Denali, constrains the search space to
a set of equality-preserving transformations expressed by the sys-
tem designer. For a given target sequence, a structure representing
all possible equivalent sequences under the transformation rules is
searched for the lowest cost equivalent sequence [8]. A common
point of view in both approaches is that superoptimization is some-
thing that is expensive, potentially requiring many hours of com-
putation to optimize a single target instruction sequence, and that
the main application is as an aid to human performance experts in
speeding up the occasional critical inner loop.

Our work differs from this previous work in a number of ways,
beginning with the goal. Our main interest is in creating a peep-
hole superoptimizer that is fast enough and systematic enough to
be worth using in every compilation. To this end, we make the fol-
lowing contributions:

• We superoptimize many target sequences (potentially millions)
simultaneously in a first, off-line phase. The target sequences
are extracted, or harvested, from a training set of programs. The
idea is that the important sequences to optimize are the ones
emitted by compilers; we simply take all instruction sequences
up to a given length from a representative collection of existing
binaries as our training set.

• Because we aim to be applicable to general binaries, our proto-
type implementation handles nearly all of the 300+ opcodes of
the x86 architecture; previous efforts have focused on a much
smaller set of register-to-register operations. In particular, we
present the first techniques for correctly inferring superopti-
mizations involving memory accesses and branches, as well as
the first approach that takes the context (e.g., the set of live vari-
ables) of an instruction sequence into account.

• A key problem in superoptimization is spending as little time as
possible considering instruction sequences that cannot be op-
timal versions of target sequences. We introduce a new tech-
nique, canonicalization, based on the observation that having
once considered a sequence, we need never consider a sequence
that is equal up to consistent renaming of registers and symbolic
constants. We show that canonicalization dramatically reduces
the search space for our system.

• The output of our system is a set of replacement rules. Each
rule gives a source (canonical) instruction sequence and the re-
sulting optimized (canonical) instruction sequence. Thus, these
rules can be indexed and used as efficiently as the rules in a
standard peephole optimizer. The rules we discover may be less
general than rules written by humans—i.e., it may require mul-
tiple rules discovered by the superoptimizer to cover the same
functionality as a single rule written in a more general form.
However, a peephole superoptimizer can compensate for less
general rules by automatically discovering many more rules
than are written for normal peephole optimizers.

• We report experimental results on a number of kernels where
our system achieves speedups of between 1.7 and a factor of
10 over code already optimized by a standard compiler. The
improvements show that even mature compilers do not come
close to the best possible code in at least some relatively simple
situations.

We begin with an overview of our system’s design (Section 2)
followed by a detailed discussion of each of the major components
(Sections 3-5). We then present experimental results (Sections 6-7),
discuss related work (Section 8), and conclude (Section 9).

2. Design of the Optimizer
We begin by defining a few terms that we use throughout the paper.
An instruction is an opcode together with some valid operands.
For example, on a machine with eight registers r0 through r7, the
increment opcode (inc) generates eight unique instructions, each
operating on a different register. A potential problem arises with
opcodes that take immediate operands, as they generate a huge
number of instructions. We restrict immediate operands to a small
set of constants and symbolic constants; in this way, we ensure
opcodes with immediate operands generate only a small number
of distinct instructions.

A cost function captures the approximate cost of an instruction
sequence on a particular processor. We use different cost functions
for different purposes; e.g., running time to optimize speed, instruc-
tion byte count to optimize the size of a binary. An instruction se-
quence is optimal if no equivalent sequence of lower cost exists.
Equivalence of two instruction sequences is defined under a con-

text, which is a subset of the machine state that is live beyond the
instruction sequences themselves. Since we ignore I/O instructions,
the machine state for our purposes consists of registers, stack and
memory. The context of a target instruction sequence can poten-
tially include registers, memory locations and stack locations live
at the program point where the instruction sequence ends. However,
for implementation simplicity, we currently conservatively assume
memory and stack locations are always live. The context of an in-
struction sequence is thus reduced to the set of registers live on exit
from the sequence.

An equivalence test ∼=L tests two instruction sequences for
equivalence under the context (set of live registers) L. For a target
sequence T and a cost function c, we are interested in finding a
minimum cost instruction sequence O such that

(O ∼=L T)

Unlike previous efforts, our superoptimizer computes the optimal
instruction sequences for several different target sequences simul-
taneously. Moreover, once an optimization is found, it is saved in an
indexed optimization database so that the expensive work done to
compute the optimizations need never be repeated again. Thus, the
database represents all the optimizations acquired by running the
superoptimizer. Once computed, these optimizations can be used
to optimize any number of programs.

Our optimizer is structured in three parts:

• The harvester extracts target instruction sequences from the
training applications. The target instruction sequences are the
ones we seek to optimize.

• The enumerator exhaustively enumerates all possible candidate
instruction sequences up to a certain length, checking if each
candidate sequence is an optimal replacement for any of the
target instruction sequences.

• The optimizer applies the optimization database, an index of all
discovered optimizations, to applications.

There are two key challenges for our approach. First, we must
reduce the search space of the enumerator as much as possible
(Section 4.2). Second, we need a very efficient test for equivalence
of two instruction sequences (Section 5.1).

A flowchart of the superoptimizer is shown in Figure 1. We
discuss the components shown in the flowchart in the following
sections.

3. Harvesting Target Instruction Sequences
The first step in creating a superoptimizer using our approach is
to obtain target instruction sequences from a representative set of
applications. These harvested instruction sequences form the cor-
pus used to train the optimizer. Not all instruction sequences are
harvestable in our current implementation. A harvestable instruc-
tion sequence I must have a single entry point—no instruction in
I (except the first instruction) should be a jump target of any in-
struction outside of I . To enforce this constraint, we identify all
jump targets of direct-jump instructions in the binary executable.
Also, we identify all instructions starting at addresses pointed to by
symbol names since these instructions are possible targets of indi-
rect jump instructions. Any such instructions should not be a part
of a harvested instruction sequence I (except possibly being the
first instruction in I). Notice that a harvested instruction sequence
can have multiple exits since we allow jump instructions in the se-
quence.

When the harvester extracts instruction sequences from a bi-
nary, it also records the set of registers live at the end of the se-
quence; this context is used in determining equivalence as dis-
cussed in Section 2.

Harvester Canonicalizer Fingerprinter

Training
Programs

Fingerprinter

Check for match

match?
Boolean
Equivalence
Test

Optimization
Database

yes

Enumerator

pass

Fingerprint
Hashtable

Figure 1. Flowchart of the superoptimizer.

3.1 Canonicalization

All well-formed instruction sequences are valid candidates for opti-
mization, but many sequences are just transformations of each other
under renamings of registers and immediate operands. For exam-
ple, on a machine with eight registers, an instruction mov r1, r0
has 8 ∗ 7 = 56 equivalent versions with different register names.
To reduce wasted effort, one would like to eliminate all unnecessary
instruction sequences that are mere renamings of others—a process
we call canonicalization.

An instruction sequence is canonical if its registers and con-
stants are named in the order of their appearance in the instruction
sequence i.e., the first register used is always r0, the second distinct
register used is always r1, and so on. Similarly, the first constant
used in a canonical instruction sequence is (the symbolic constant)
c0, the second distinct constant c1, and so on.

An instruction sequence is canonicalized by renaming registers
and constants. An optimization that applies to a sequence is also
valid for its canonicalization (with registers and constants suitably
renamed). Hence, we store only canonical forms of instruction
sequences in our optimization database. Optimizing an instruction
sequence I requires first canonicalizing I to θ(I), where θ is the
canonical renaming of registers and symbolic constants of I . We
then search the database for a sequence R equivalent to θ(I),
and then “uncanonicalize” R to θ−1(R) so that the registers and
constants have their original names as in I . The sequence θ−1(R)
then replaces I in the application.

Dealing with only canonical instruction sequences dramatically
reduces the size of the corpus of target instruction sequences. Fig-
ure 2 plots the number of unique harvested instruction sequences
before and after canonicalization. At short instruction sequence
lengths, there are many fewer unique canonical instruction se-
quences than the number of unique harvested sequences. At longer
lengths, the number of harvested instruction sequences decreases
because fewer sequences meet the harvester’s constraints.

3.2 Fingerprinting

The most common operation in our off-line computation of op-
timizations is determining whether an instruction sequence I is
equivalent to any target instruction sequence. We execute I on test

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5

N
um

be
r

of
 U

ni
qu

e
S

eq
ue

nc
es

Instruction Sequence Length (N)

Harvested
Canonical

Figure 2. The number of unique harvested instruction sequences
in SPEC CINT2000 benchmarks, before and after canonicalization.

machine states and then compute a hash of the result, which we call
I’s fingerprint. The fingerprint is the index into a hashtable; each
bucket holds the target instruction sequences, if any, with that fin-
gerprint. The most important properties of the fingerprint are that it
is very fast to compute and results in at most a small set of target
sequences that might be equivalent to I .

We have found it sufficient to use two pseudo-random machine
states called testvectors to compute fingerprints.1 The instruction
sequence is first converted into an executable binary form. The ma-
chine is loaded with a testvector and control is transferred to the
instruction sequence. The machine state (the contents of registers,
status bits, and memory—see below) is recorded after the instruc-
tion sequence finishes execution. This process is repeated for both
testvectors and a hash is then computed on the machine states that
were obtained.

1 Each bit in the two testvectors is set randomly, but the same testvectors are
used for fingerprinting every instruction sequence.

Original Instruction Sequence
inc r1
xchg (r2), r1

With Memory Sandboxing Instructions
inc r1

mov r1, r7
and $0xff, r7
add $membase, r7

xchg (r7), r1

Figure 3. The memory array M starts at address membase and is
28 = 256 bytes long. Every memory access is prepended with
three instructions ensuring the memory access is contained within
M . In this example, a temporary register r7 was used to perform
this function.

Executing the instruction sequence on the bare machine has
three advantages. First, it is extremely fast. Second, it eliminates
sources of error due to incorrect simulation of instructions. And
third, machine counters can be used to estimate the time spent in
executing the instruction sequence on hardware, providing hints for
shaping the time-based cost function.

While executing the instruction sequence directly on hardware
is good, it presents its own set of challenges. In particular, we must
isolate the state of our system from any side-effects of the instruc-
tion sequence. We save all registers before executing the instruction
sequence and restore them after the execution is finished. We sand-
box all memory and stack references by adding extra instructions to
the executed code. Both memory and stack accesses are constrained
to small regions of memory in the address space of the superopti-
mizer. The memory is approximated by a small array M of size 2s

starting at a memory address membase. Each instruction performing
a memory access is then prepended with instructions ensuring that
the memory access does not fall outside M . A similar approach is
taken for stack references. Figure 3 shows the sandboxing instruc-
tions used for the x86 instruction set. Note that this strategy for
handling memory references preserves the property that if two in-
structions sequences are equivalent they result in the same machine
state on any testvector and therefore have the same fingerprint. We
have found that a sandboxed memory of size M = 256 bytes is
sufficient for minimizing fingerprint collisions between inequiva-
lent instruction sequences.

The function used to hash the machine states obtained after
the execution of the instruction sequences on the testvectors must
have some special properties to ensure minimal collisions. First, it
should be asymmetric with respect to different memory locations
and registers, which is necessary to distinguish between instruc-
tion sequences performing identical operations at two different lo-
cations. Second, it should not be based on a single operator (like
xor); otherwise, there are likely to be many collisions on instruc-
tion sequences using that particular operator. We employ a combi-
nation of xor and weighted-add operations to compute the hash of
the machine state. To handle context correctly, when fingerprinting
a target sequence the hash function includes only the live registers;
the values of the dead registers are discarded.

Finally, the full structure of the fingerprint hashtable is more
elaborate than we have described so far. For each target instruction
sequence I , the hashtable records I and the fingerprint not only for
the canonicalization of I , but also for all of I’s different register and
symbolic constant renamings. This, as we describe in Section 4.2,
helps us in reducing the search space of the enumerator. Hence,
an instruction sequence using r distinct registers and c distinct
constants can generate at most r! ∗ c! fingerprints. Typically r ≤ 5
and c ≤ 2, so the blow-up is upper-bounded by 240. In practice,
we find that the blow-up is around 18. The fingerprint hashtable

is indexed by an instruction sequence’s fingerprint and set of live
registers.

In summary, the fingerprint hashtable maps a fingerprint and
set of live registers to a set of instruction sequences with the same
fingerprint under that context. This table forms the corpus of in-
struction sequences that we wish to superoptimize.

4. Enumerator
The enumerator simply enumerates all possible, unique instruction
sequences. We discuss the enumerable instruction set, techniques
to reduce the search space, and the search for useful optimizations
in the following subsections.

4.1 Enumerable Instruction Set

Instruction sequences are enumerated from a subset of all instruc-
tions. At most one branch instruction is allowed in an instruction
sequence. For the branch instruction, a canonical target is defined
which represents an exit point outside of I . Hence, an enumerated
instruction sequence is allowed to have at most two different exits:
the straight-line exit point in the code, and the exit defined by the
branch instruction. Notice that while an enumerated instruction se-
quence can have at most one branch instruction, a target instruction
sequence could have more branches; many optimizations eliminate
or reduce the number of branches in the target sequence.

To bound the search space, we restrict the maximum number of
distinct registers and constants that can appear in an enumerable
instruction sequence. For instructions using a restricted subset of
registers, only that subset is considered during enumeration. For
constants we allow the numbers 0 and 1, the symbolic constants
c0 and c1, and addition or subtraction where the first argument is
a symbolic constant and the second argument is a symbolic con-
stant or 1. Allowing addition and subtraction of constants enables
discovery of local constant-folding optimizations. Constant-folding
optimizations involving more than two constants are captured by
repeated application of optimizations to a code sequence.

We also restrict the number of distinct registers used in an enu-
merated instruction sequence. The number of registers used by in-
struction sequences varies greatly. We profiled some CPU-intensive
applications to gauge this distribution (see Figure 4) and observed
that more than 50% of harvested instruction sequences of length
8 use fewer than 4 machine registers. Thus, we decided to allow
at most 4 distinct registers in an enumerated instruction sequence.
Again, notice that a target instruction sequence can use more reg-
isters than the corresponding optimal instruction sequence. In fact,
many optimizations produced by the superoptimizer eliminate re-
dundant registers.

The number of indirect memory accesses in an instruction se-
quence is constrained by the number of registers allowed, since an
indirect memory access dereferences a register. For direct memory
accesses, we allow at most two distinct direct memory addresses
(c0 and c1). Because we use the symbolic constants c0 and c1 as
both values of immediate operands and memory addresses, we cap-
ture optimizations involving the transformation of indirect memory
accesses to direct memory accesses.

Figure 5 shows examples of opcodes of different types and the
instructions generated by them.

4.2 Reducing the Search Space

Once the enumerable instruction set is fixed, the enumerator’s
search space is exponential in the length of the instruction se-
quence. We use two techniques to reduce the size of the search
space.

• We enumerate only canonical instruction sequences. While this
decision reduces the size of the enumerated set of sequences,

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8F
ra

ct
io

n
U

si
ng

 le
ss

 th
an

 4
 r

eg
is

te
rs

 (
%

)

Instruction Sequence Length

Figure 4. Pattern of register usage of harvested instruction se-
quences in SPEC CINT2000 benchmarks.

not <register>

not r0
not r1
not r2
not r3

dec <memory location>

dec (r0)
dec (r1)
dec (r2)
dec (r3)
dec (c0)
dec (c1)

add <mem-indirect>, <immediate>

add (r0), 0
add (r0), 1
add (r0), c0
add (r0), c1
add (r0), c0+1
add (r0), c0-1
add (r0), c0+c1
add (r0), c0-c1
and repetition of the above for r1, r2, . . .

Figure 5. Examples of instructions generated by opcodes taking
different operand-types in the x86 instruction set.

it does cause a blow-up in the size of the fingerprint hashtable
(recall Section 3.2).

• We prune the search space by identifying and eliminating in-
structions that are functionally equivalent to other cheaper in-
structions.

For simple cost functions, it is possible to further prune the
search space by observing that all subsequences of a length n
instruction sequence must be optimal—if any subsequence is
not optimal, then it can be replaced by a cheaper sequence and
hence the sequence is not optimal. This is always true when
we are optimizing for codesize, since the cost function is sim-
ply the sum of individual instruction lengths. For runtime op-
timizations, this is not true in general. In our experiments, we
employed this aggressive pruning strategy only when optimiz-
ing for codesize. Pruning the search space at smaller instruc-
tion sequence lengths provides a significant benefit for longer
instruction sequences. This idea was first proposed by Massalin
[10]. We currently check that all subsequences of length 2 are
optimal using a table that lists all length 2 optimal sequences,
when optimizing for codesize.

Table 1 lists the size of the set of enumerated instruction sequences
with and without canonicalization and pruning. While canonical-

ization provides the biggest reduction, the effect is cumulative and
using both techniques we achieve over 50x improvement in the size
of the search space for instruction sequences of length 3 on the x86
architecture. In Table 1, the reduction due to pruning is only due to
elimination of single instructions that are equivalent to other single
instructions. For the codesize cost function, where we can employ
the more aggressive pruning strategy, we get a total improvement
of 60x (20% more) in the size of the search space at length 3.

Length Original
Search
Space

After
Canonical-
ization

After
Pruning

Reduction
Factor

1 5,453 997 644 8.5
2 29 m 2.49 m 1.2 m 24.7
3 162.1 b 8.6 b 3.11 b 52.1

Table 1. The size of the search space for x86 instruction sequences
of length 1 to 3. The last column shows the reduction in search
space achieved through pruning and canonicalization.

Many of the enumerated sequences are redundant and it is
tempting to avoid enumerating them by placing checks in the
enumerator. For example, it is possible to check for instruction
sequences of the form {mov r0, r1; mov r0, r1} and avoid
fingerprinting them. However, such checks in the inner loop of
the enumerator result in an overall slowdown. In the interest of
speed, we let the system weed out such special cases automatically
through fingerprinting and equivalence checks.

The enumerator stores enumerable instructions in a table with
information about the registers and constants used to help the enu-
merator generate only canonical instruction sequences. The table is
sorted in an order to make enumeration fast. Using the fast finger-
print technique, about 500, 000 instruction sequences per second
can be enumerated and fingerprinted on a single processor.

4.3 Searching the Fingerprint Hashtable

Each enumerated instruction sequence is fingerprinted as described
in Section 3.2. The fingerprint is computed for all possible sets of
live registers. The fingerprint value and the corresponding set of
live registers is then used to look up any matching target instruction
sequence in the fingerprint hashtable. If there is a match, we have
found a candidate optimization and proceed with the equivalence
test described in Section 5.1. If there is no match in the fingerprint
hashtable, the enumerated instruction sequence is simply discarded.

Recall that while we enumerate only canonical instruction se-
quences, the fingerprint hashtable contains instruction sequences
in both canonical and non-canonical forms. This is important,
because it is possible to optimize a canonical instruction se-
quence with an non-canonical instruction sequence and vice-
versa. For example, a canonical length 2 instruction sequence
T {mov r0, r1; mov r1, r2} can be optimized using a non-
canonical length 1 instruction sequence O {mov r0, r2} (assum-
ing r1 is not live). To catch this optimization, we keep all renam-
ings of T in the fingerprint hashtable and enumerate only the canon-
ical version of O. In this example, the non-canonical renaming of
T {mov r0, r2; mov r2, r1} in the fingerprint hashtable is
optimized by the canonical enumerated sequence {mov r0, r1}.

5. Learning an Optimization
Once a match is found in the fingerprint hashtable for an enumer-
ated instruction sequence, an equivalence test is performed. If the
target instruction sequence and the candidate instruction sequence
are found to be equivalent, and the cost of the candidate instruc-
tion sequence is lower than the target (or a previously discovered

optimization for that target), the optimization is stored in the opti-
mization database. Each of these steps is described in the following
subsections.

5.1 Equivalence Test

The equivalence test proceeds in two steps—a fast but incomplete
execution test and a slower but exact boolean test.

5.1.1 Execution Test

Our fast execution test is similar to fingerprinting. We run the two
sequences over a set of testvectors and observe if they yield the
same output on each test. In our experiments, we use a total of 18
testvectors: one is all zeros, one is all ones and in the remaining 16,
each bit is set randomly.

Contrary to Massalin’s experience [10], we found a number of
pairs of instruction sequences that passed the execution test and
failed the boolean test.2 This situation arises due to a variety of rea-
sons, almost all involving loss of bits during the computation. For
example, an equality comparison of two computed registers on the
testvectors is likely to always return false. Similarly, memory ad-
dresses are almost never aliased by execution tests, while a boolean
deterministic test catches all inconsistencies due to the possibility
of memory aliasing.

5.1.2 Boolean Test

The boolean verification test represents an instruction sequence
by a boolean formula and expresses the equivalence relation as a
satisfiability constraint. The satisfiability constraint is tested using
a SAT solver.

A machine state is represented by a finite set of registers and a
model of the full memory and stack. Registers are represented as
bitvectors. Memory is modeled by a map from address expressions
to data bits. The first use of a memory location is encoded by fresh
boolean variables representing the data bits at that address. Boolean
clauses are used to encode the relationship between the data bits
and address bits. e.g., for a sequence performing two memory reads
at addresses addr1 and addr2, and returning data bytes data1

and data2 respectively, the following clause captures their aliasing
relationship:

(addr1 = addr2)⇒ (data1 = data2)

All memory writes are stored in a table in order of their occurrence.
For a memory read occurring after memory writes, the read-address
needs to be compared with the address expressions of the writes.
Each read-access R is checked for address-equivalence with each
of the preceding write accesses Wi in decreasing order of i, where
Wi is the i’th write access by the instruction sequence. The follow-
ing clause encodes this relationship between the data of the read
access dataR and the data of one of the preceding write accesses
dataWi

.
_

j≥i

(addrR 6= addrWj
)∧addrR = addrWi

⇒ dataR = dataWi

For each pair of memory accesses, a boolean clause is generated
to capture the possibility of their address expressions aliasing with
each other. Where information is not available, we conservatively
assume that two memory addresses may alias. The equivalence of
two memory states is checked by reading the bits at each address lo-
cation for both states and checking them for boolean equivalence.
The model of the stack is identical to that of memory, with addi-
tional bits representing the stack and frame pointers.

2 Massalin did not implement a complete test, relying on humans to confirm
that candidate optimizations that passed an execution test were correct in all
circumstances.

Instructions are encoded as boolean circuits transforming an in-
put machine state to an output machine state. Branch instructions
are handled by predicating the execution of instructions on the true
and false paths with the branch condition or its negation. The pro-
gram counter is modeled to indicate if a branch to a target outside
the instruction sequence was taken. The input state is shared be-
tween the two the instruction sequences being checked for equiv-
alence. Two instruction sequences are equivalent iff the registers,
memory and stack expressions obtained in the final state are equiv-
alent. The equivalence relation of the output machine states is ex-
pressed as a satisfiability constraint before giving it to the SAT
solver.

5.2 Optimization Database

The optimization database records all optimizations discovered by
the superoptimizer. The database is indexed by the original instruc-
tion sequence (in its canonical form) and the set of live registers,
and returns the corresponding optimal sequence if one exists. Be-
cause instruction sequences stored in the fingerprint hashtable need
not be canonical, they must be canonicalized (and their optimal ver-
sions renamed) before storing them in the optimization database.

The operation of optimizing a binary executable is fast: it in-
volves only harvesting a target sequence, canonicalizing it, and
searching the indexed optimization database. Multiple optimization
passes are performed on the executable until no further optimiza-
tions are found.

6. Experimental Results
Our implementation of the optimizer is written in C++ and O’Caml
[9]. We use the Diablo link-time rewriting framework [3, 12] to
compute liveness information for an x86 executable binary. We use
zChaff [11, 13] as our backend SAT solver because of its perfor-
mance and incremental SAT solving capabilities. It took around
two weeks to write formulas modeling the opcodes of the Intel
Pentium instruction set for the boolean test. We compared our opti-
mizer on executables compiled using gcc version 3.2.3. The default
optimization level used was -O2.

Our experiments were done using a Linux machine with a single
Intel Pentium 3.0GHz processor and 100 Gigabytes local storage.
We limited the peephole size to instruction sequences of length
3, which were not too time consuming to enumerate. Given more
resources, we can easily scale the system to length 4 instruction
sequences, which we believe, would produce even better results.
Going beyond length 4 instruction sequences requires additional
techniques to further reduce the search space of the enumerator.
Although, we enumerate only up to length 3 instruction sequences,
we optimized windows of up to length 6 instruction sequences in
our experiments.

We use two different cost functions, one capturing runtime and
the other codesize. The codesize cost function simply considers the
size of the executable binary code of a sequence as its cost. The
runtime cost function is more involved. It first takes into account
the number of memory accesses and branch instructions in the
sequence. Then, the approximate cycle costs of the instruction
are considered, as obtained from the technical manuals on Intel
architectures. In case of a tie, the number of registers used and the
code length are used as tie-breakers. 3

In our first set of experiments, we took some kernels oper-
ating on arrays of integer elements. All the kernels were writ-
ten in C. A description of each of the kernels is given in Ta-

3 We tried using Pentium performance counters to estimate the runtime of
an instruction sequence. In our experience, that was not useful for short
sequences due to the large variance in the numbers obtained across different
runs.

ble 2. These kernels were compiled using architecture specific
(-march=pentium4, -mmmx and -msse) optimization options in
gcc, with the loops unrolled 8 times.

Figure 6 plots the runtime improvements our superoptimizer ob-
tained in the different kernels over gcc. We achieved improvements
of between 1.7 and 10 times over already-optimized code. Some
(but not all) of the large improvements in running time are because
the superoptimizer finds clever ways to use the SIMD (single in-
struction multiple data) instructions available in the Intel architec-
ture. The problem of emitting efficient SIMD code has confounded
compiler-authors for many years; gcc at least does not appear to
attempt to use SIMD instructions. Most code involving the use of
complex instructions is currently hand-coded by expert assembly
programmers. Our results show that an automatically generated op-
timizer is at least a partial solution to this problem.

 0

 2

 4

 6

 8

 10

 12

sum image-diff compare min xor sprite-copy

F
ac

to
r

of
 Im

pr
ov

em
en

t

Kernel Name

Figure 6. Speedups for the kernels in Table 2.

Next, we applied the superoptimizer to applications from the
SPEC CINT2000 benchmarks [7]. The number of optimizations
performed and the corresponding improvements over gcc are
shown in Table 3. As one would expect, the improvements are
much less dramatic for full applications than for compute-intensive
kernels. We found speedups of 1-5% with these improvements,
though we found that speedup varied across different runs and ma-
chine configurations. We saw improvements in code size of 1-6%
over executables already optimized for size using -Os.

We also ran our optimizer on SPEC executables compiled using
the architecture specific Intel C++ compiler icc [1]. For the SPEC
benchmarks, the speedups obtained on icc optimized executables
were less than 1%, but we found that the codesize of these exe-
cutables reduced by 2.5-4% with no performance penalty. On the
kernels our optimizer achieved speedups over icc comparable to
the results with gcc.

A sample of some interesting optimizations performed on bi-
naries that had been already optimized using gcc are given in
Table 4. The system found a range of optimizations, from ones
that are well-known (constant folding, redundant load elimination,
strength-reduction) to very architecture specific optimizations (the
use of the xchg instruction to swap registers, and various uses of
the SIMD instructions). We discuss two discovered optimizations
in detail. In Example 1 of Table 4, the superoptimizer finds a three-
instruction sequence to compute the sum of eight unsigned byte
integers using the 64 bit registers available on the x86 platform. It
first zeros out one of the 64 bit registers (mm0) by subtracting it from
itself. It then uses the psadbw instruction, which computes the sum
of absolute differences of two 64-bit values. Since one of the regis-
ters in this sequence is zero, this amounts to the computation of the
sum of the eight bytes in the other operand. The third instruction
then stores the computed sum to the memory location sum. In Ex-
ample 5, the destination (register esi) is intended to be zeroed out
only if the comparison flag in the machine is set; here gcc produces
clever code to avoid a branch instruction. The target sequence emit-
ted by gcc reads the flag to a register eax, decrements it (causing
it to be either 0 or −1) and then computes the bitwise-and of eax
and esi. Since −1 is represented by all 1s in two’s complement,
this effectively sets esi to zero only if the comparison flag was set.

The superoptimizer proposes the use of a simple conditional-move
cmov instruction to achieve the same result.

A total of around 3000 codesize optimizations and 2100 runtime
optimizations were learnt after training the optimizer on a diverse
set of integer programs. One metric of importance is the frequency
of use of these optimizations. We found a tremendous amount of re-
use. Table 5 presents a profile of the optimizations that were applied
to the SPEC integer benchmarks. Five optimizations were used
more than 1,000 times each; in total over 600 distinct optimizations
were used at least once each on these benchmarks. To further study
the re-use of optimizations, we trained the optimizer on one set of
executables and optimized another set of executables. We found
that most optimizations are captured even though the executable
being optimized was not a part of the training set. For example,
97% of the optimizations were captured when we ran the optimizer
on the popular internet browser firefox after training it only on
the SPEC benchmarks.

Frequency Of
Use

Number of
Optimizations

Number of
Applications

> 1000 8 18679
201 − 1000 7 4098
51 − 200 33 2823
11 − 50 82 1737
1− 10 474 1256

Table 5. Profile of the number of optimizations and the number of
times they were applied on SPEC CINT2000 benchmarks.

The process of optimizing a full binary using the optimization
database is very fast, completing in less than two seconds on these
benchmarks. A prototype of our system is available online at [2].

7. Discussion
In this section we show in detail how our system optimizes a sim-
ple loop; the purpose is to illustrate what our techniques can, and
cannot, do using a small but fairly realistic example. Consider the
following C program to traverse a linked list of integers, multiply-
ing each element by 2:

struct node
{

int val;
struct node *next;

};

void traverse (struct node *head)
{

while (head)
{
head->val *= 2;
head = head->next;

}
}

The following assembly code is generated by gcc without optimiza-
tions for the loop body of traverse() (eax, edx are machine reg-
isters, ebp is the register holding the frame pointer).

1 : movl 8(%ebp), %edx #edx := head
2 : movl 8(%ebp), %eax #eax := head
3 : movl (%eax), %eax #eax := head->val
4 : sall %eax #left-shift eax by 1
5 : movl %eax, (%edx) #head->val := eax
6 : movl 8(%ebp), %eax #eax := head
7 : movl 4(%eax), %eax #eax := head->next

Kernel Name Description Pseudo-code
sum Calculate the sum of unsigned byte-integers in an array sum += a[i]
image-diff Calculate the sum of absolute differences of image pixels sum += ABS (a[i] - b[i])
comparison Compare each element of two arrays c[i] = (a[i] < b[i]) ? c0 : c1
min Find the minimum of each element of two arrays c[i] = (a[i] < b[i]) ? a[i] : b[i]
xor Computes exclusive-OR over two arrays c[i] = b[i] ⊕ a[i]
sprite-copy Rendering sprite graphics (Game Programming) c[i] = (a[i] == 0) ? b[i] : a[i]

Table 2. Superoptimized kernels, operating on arrays of 4 million elements.

Runtime Codesize
Program Description Number of

Optimizations
Instructions
Eliminated

Number of
Optimizations

Codesize
Improvement

gzip Data Compression Utility 621 4.16% 402 3.95%
mcf Minimum Cost Network Flow Solver 381 3.73% 335 5.86%
crafty Chess Program 1074 2.19% 758 1.71%
bzip2 Data Compression Utility 396 4.11% 301 4.58%
gcc C compiler 10326 2.44% 2996 1.12%
parser Natural Language Processing 1123 3.84% 582 3.06%
twolf Place and Route Simulator 1125 2.17% 619 1.47%

Table 3. Results of running the optimizer on SPEC CINT2000 benchmark applications. The runtime improvements are shown over ‘gcc
-O2’ optimization. The codesize improvements are shown over ‘gcc -Os’

Description Target Sequence Optimal Sequence Live Registers
1. Sum of byte-integers in an array sum += a[i] psubb %mm0, %mm0 sum

sum += a[i+1] psadbw &a[i], %mm0
. . . movd %mm0, sum
sum += a[i+7]

2. eax← ecx - eax - 1 sub %eax, %ecx notl %eax eax
mov %ecx, %eax add %ecx, %eax
dec %eax

3. Elimination of Branch Instructions sub %eax, %ecx sub %eax, %ecx eax, ecx,
test %ecx, %ecx cmovne %edx, %ebx edx, ebx
je .END
mov %edx, %ebx

.END:
4. Swap two Registers mov %eax, %ecx xchg %eax, %edx eax, edx

mov %edx, %eax
mov %ecx, %edx

5. Use of Conditional Move Instruction setg %al mov $0, %eax esi
movzbl %al, %eax cmovg %eax, %esi
dec %eax
and %eax, %esi

6. Constant Folding mov $8, %eax mov $7, %eax eax, ecx
sub %ecx, %eax sub %ecx, %eax
dec %eax

7. Elimination of Redundant Loads mov %eax, -20(%ebp) mov %eax, -20(%ebp) ecx
mov -20(%ebp), %ecx mov %eax, %ecx

Table 4. Examples of runtime optimizations performed by the superoptimizer on gcc-optimized executables.

8 : movl %eax, 8(%ebp) #head := eax
9 : cmpl $0, 8(%ebp) #head == null?

The superoptimizer first replaces instruction 2 with

2′:movl %edx, %eax

and instruction 9 with

9′:cmpl $0, %eax

eliminating two redundant loads. Then, the instruction sequence
2′, 3, 4, 5 is replaced with a single instruction

3′:sall (%edx)

taking advantage of the fact that eax is not live at the end of
instruction 5. It is inferred that locations 8(%ebp) and (%edx) in
instructions 1 and 3′ cannot alias with each other by comparing
the types of instruction operands. Hence, in the third step, the
instruction sequence 1, 3′, 6 is replaced by the sequence 1, 3′, 6′

with
6′:movl %edx, %eax

eliminating another redundant load. Instructions 6′ and 7 are re-
placed by

7′:movl 4(%edx), %eax

eliminating a register copy and finally the use of register eax is
eliminated in instructions 7′, 8 and 9′ by replacing it with edx in
all three instructions. After these optimizations, the assembly code
is:

1 : movl 8(%ebp), %edx #edx := head
3’: sall (%edx) #left-shift head->val by 1
7’: movl 4(%edx), %edx #edx := head->next
8’: movl %edx, 8(%ebp) #head := edx
9’: cmpl $0x0, %edx #edx == null?

A standard optimizing compiler produces the following code (eax
holds the value of head before entering the loop body):

1 : sall (%eax) #left-shift head->val by 1
2 : movl 4(%eax), %eax #eax := head->next
3 : testl %eax, %eax #eax == null?

In this example, our automatically generated optimizer per-
forms all but one of the optimizations performed by a standard opti-
mizing compiler. The optimization that is missed involves the itera-
tion variable (instructions 1 and 8). Because dataflow analysis gives
the standard compiler a global view of the loop’s behavior across
all iterations, the standard compiler can cache the iteration variable
(head) in a register avoiding loads and stores at loop boundaries.
Our rule-based system cannot currently find this optimization be-
cause it does not understand loop-carried dependencies. Unrolling
the loop a few times would mitigate this limitation since the inter-
mediate loads can still be eliminated by pattern-matching on short
sequences of instructions.

8. Related Work
Superoptimization of code sequences was first proposed nearly 20
years ago, but we are aware of just three efforts that have devel-
oped the idea. Massalin first described an exhaustive-search based
approach to discover short optimal programs [10]. We have adopted
the same basic approach to searching (enumerating) instruction se-
quences, with the addition of simultaneously optimizing many tar-
get sequences and reducing the search space using canonicalized
instruction sequences. While Massalin was interested in comput-
ing optimal programs for mathematical functions (e.g. signum),
we compute optimal versions of any instruction sequence (up to a
certain length) found in commonly executed code.

Massalin’s work reported on the optimization of relatively long
sequences (12 instructions), at least compared to ours. To achieve
such lengths it was necessary to restrict the enumerable instructions
to a very small set of 10-15 hand-chosen opcodes. We deal with
roughly 300 opcodes, and so the number of instruction sequences
for us grows much more rapidly with length.

The GNU Superoptimizer (GSO) [6] learns optimizations in-
volving elimination of branch instructions for the RS/6000 proces-
sor, for later use with the GNU C Compiler (GCC). They use ex-
haustive search to find the fastest straight-line code computing a
goal function. In particular, they find optimal versions of the com-
putation of comparison operators (A rel-op B). This work is perhaps
the closest to ours in its goals; we are both interested in learning
peephole optimizations. GSO has a large manual component, as a
user is required to specify the goal function. Our approach is com-
pletely automatic. While GSO has been used to learn a few tens
of optimizations, our system has learned thousands and there is no
reason the algorithms should not scale to millions of optimizations.

GSO also only optimizes register-register operations where the out-
put and inputs of the goal functions are assumed to be in specific
registers; we optimize nearly arbitrary sequences.

Another interesting approach to superoptimization is proposed
in a system called Denali [8]. Denali requires a set of axioms ex-
pressed in first order logic, capturing mathematical operators and
the instruction set of the architecture. For example, an axiom could
express the fact that integer addition is associative, or that the
leftshift instruction multiplies its operand by 2. The system
then proceeds by matching the program constructs with the corre-
sponding axioms to find all possible ways to compute a goal func-
tion and formulates a satisfiability constraint, the solution to which
expresses the fastest among all possible equivalent instruction se-
quences. Unlike our approach, Denali uses goal-directed search,
allowing it to find much longer sequences than we can currently
generate using exhaustive search. However, Denali has two draw-
backs that led us to prefer exhaustive search. First, Denali is depen-
dent on having enough rules (axioms) to cover all interesting cases;
we didn’t want to rule out optimizations simply because we hadn’t
thought of them. Second, it is unclear how this approach can be
used to optimize several instruction sequences simultaneously; we
gain significant efficiency by amortizing the cost of a single exhaus-
tive enumeration of instruction sequences over the optimization of
many target sequences.

Peephole optimizers, apart from their typical use in the final
optimization pass, have also been used to perform code selection
at link time to generate highly portable compilers [5, 4]. In these
systems, peephole optimization through pattern-matching is a pri-
mary method to perform code optimization. For example, the “very
portable optimizer” (VPO) in [4] uses peephole optimization to re-
duce the volume of intermediate code by a factor of two to three.
These systems share our goal of automatically and systematically
discovering peephole optimizations. The primary differences with
our work are that our equivalence test based on SAT is more general
(able to detect more equivalent sequences) and works for longer
sequences than previous systems. Discovering each optimization is
also more expensive in our approach; however, by partitioning the
work into an off-line learning phase that computes a database of
optimizations and an actual optimization phase that simply looks
up transformations in the database, our optimization phase can be
as fast or faster than traditional peephole optimizers.

9. Conclusions
We have described the construction of a system to automatically
generate a peephole superoptimizer for a target architecture. The
system is currently capable of automatically learning thousands
of peephole optimization rules, each replacing the target sequence
with the corresponding optimal sequence. In the future, we are in-
terested in extending this approach to longer instruction sequences.

References
[1] Intel C++ Compiler 9.0. Software available at

http://www.intel.com/software/products/compilers/clin.

[2] Superoptimizer prototype. Available on the web at
http://cs.stanford.edu/∼sbansal/superoptimizer/.

[3] B. Anckaert, F. Vandeputte, B. D. Bus, B. D. Sutter, and K. D.
Bosschere. Link-time optimization of ia64 binaries. In Proceedings
of the 10th International Euro-par Conference, pages 211–220, 2004.

[4] M. E. Benitez and J. W. Davidson. A portable global optimizer
and linker. In Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation, pages 329–
338, 1988.

[5] J. Davidson and C. Fraser. Code selection through object code
optimization. ACM Transactions on Programming Languages and

Systems (TOPLAS), 6(4):505–526, 1984.

[6] T. Granlund and R. Kenner. Eliminating branches using a superopti-
mizer and the gnu C compiler. In Proceedings of the ACM SIGPLAN
’92 Conference on Programming Language Design and Implementa-
tion, volume 27, pages 341–352, San Francisco, CA, June 1992.

[7] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the
new millenium. IEEE Computer, 33(7):28–35, July 2000.

[8] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed
superoptimizer. In Proceedings of the ACM SIGPLAN ’02 Conference
on Programming Language Design and Implementation, pages 304–
314, Berlin, Germany, June 2002.

[9] X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon. The Ob-
jective Caml system. Software and documentation available at
http://caml.inria.fr.

[10] H. Massalin. Superoptimizer: A look at the smallest program.
In Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS II), pages
122–126, 1987.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the
38th Design Automation Conference (DAC’01), 2001.

[12] L. V. Put, D. Chanet, B. D. Bus, B. D. Sutter, and K. D. Bosschere.
Diablo: a reliable, retargetable and extensible link-time rewriting
framework. In Proceedings of the 2005 IEEE International
Symposium on Signal Processing and Information Technology, pages
7–12, 2005.

[13] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in boolean satisfiability solver. In ICCAD,
pages 279–285, 2001.

