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Abstract

This thesis presents novel static analysis techniques for improving the quality of real-

world software. The static analysis techniques we describe are immediately useful

for uncovering errors in real code bases, as they are fully automatic, report few false

alarms, and scale to large applications. The underlying machinery that allows us

to develop these analyses is comprised of a symbolic SAT and SMT-based encoding

of program states as well as modular, one function-at-a-time reasoning about the

program.

More specifically, the contributions of this thesis are four-fold: The first contribu-

tion is a static inconsistency detection algorithm that uncovers inconsistent assump-

tions made by the programmer in a semantic way. Second, we present a novel and

sound algorithm that performs an interprocedurally path-sensitive analysis that is

capable of giving exact answers to may and must queries about the program with re-

spect to a user-provided, finite abstraction. Third, we describe the first fully modular,

summary-based pointer analysis that can systematically perform strong updates to

abstract memory locations reachable through function arguments. Finally, this thesis

describes an on-line constraint simplification algorithm that significantly improves

the scalability of constraint-based program analysis techniques, such as the analyses

outlined above.
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Chapter 1

Introduction

Rough estimates currently put the number of software developers in the world at

about 10 million, producing billions of new lines of code every year. As an increasing

number of products and services come to rely on software, it becomes more and

more critical that programs behave as expected. Unfortunately, the current “best

practice”, which involves standard testing, performs by all measures very poorly: A

typical software project already spends over 50% of its development time in testing,

yet most software shipped today has so many known bugs and security vulnerabilities

that living with software errors has become an expensive and dangerous way of life.

One promising solution to this software quality crisis is static analysis. Unlike

testing, static analysis examines the program at compile-time, without actually run-

ning it. In static analysis, bug finding techniques can improve software quality by

uncovering problems before they appear in deployment and sound verification tech-

niques can deliver guarantees about the absence of certain classes of errors on all

inputs.

While automatic detection of bugs in software systems is a highly desirable goal,

any static analysis technique that hopes to be practical needs to overcome three

important challenges:

• Low false alarms: A useful static analysis should be precise enough not to

overwhelm the user with many spurious error reports, known as false alarms.

Since inspecting a single error report often takes substantial time and effort on

1



CHAPTER 1. INTRODUCTION 2

the user’s part, static analysis techniques that report a high number of false

alarms are considered to be ineffective.

• Automatibility: A practical static analysis should not require extensive help

from the user, for example, in the form of annotations. Since an analysis that

requires many annotations from programmers is too expensive as measured by

the amount of programmer time it consumes, static analysis techniques that are

fully automatic have a much higher chance of being adopted in practice.

• Scalability: A useful static analysis technique should be able to analyze

large, real-world software systems. A static analysis that does not scale beyong

small hundred-line benchmarks is unlikely to be adopted for improving software

quality in the real world.

This thesis describes novel and practical static analysis techniques that overcome

this apparent trade-off between precision, scalability, and automatibility. More specif-

ically, we consider precise and scalable approaches to static analysis that represent

program states symbolically as logical formulas and perform a modular, one-function-

at-a-time reasoning. By representing program states symbolically as SAT or SMT for-

mulas, we can both take advantage of recent advances in constraint solving techniques

and avoid the best-case exponential blow-up that arises from performing explicit case

splits. By focusing on modular, summary-based analyses, we can both reuse anal-

ysis results in different calling contexts and achieve locality of reasoning by hiding

irrelevant implementation details of a function from its callers.

1.1 Contributions

This thesis makes four main contributions in the area of static program analysis:

• Semantic inconsistency detection

• A new algorithm for interprocedurally path-sensitive analysis

• A modular, summary-based pointer analysis algorithm
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• A constraint simplification algorithm that significantly improves the scalability

of static analyses that symbolically represent program states as formulas, such

as all the static analyses described in this thesis

In the rest of this section, we give a brief overview of each of these four contribu-

tions.

1.1.1 Semantic Inconsistency Detection

The first static analysis we consider in this thesis is an inconsistency detector which

semantically identifies inconsistent assumptions made by the programmer, such as

contradictory beliefs that a given pointer may be null as well as the belief that it

is definitely non-null. Our inconsistency detection algorithm performs a form of

sophisticated type inference and is both scalable and fully automatic. Unlike pre-

vious approaches to inconsistency detection, our static analysis is semantic and does

not rely on syntactic clues at the source-code level. By encoding programmer as-

sumptions semantically as logical formulas, the algorithm we describe discovers all

inconsistent assumptions made by the programmer. Since inconsistent programmer

assumptions tend to be highly correlated with real bugs, the resulting static analysis

is able to uncover many bugs in real, multi-million line software applications without

overwhelming the user with lots of false alarms.

1.1.2 A Novel Path-Sensitive Analysis Algorithm

The second contribution of this thesis a novel algorithm for fully path-sensitive static

analysis. A static analysis is said to be path-sensitive if it differentiates between

distinct execution paths of the program. While path-sensitive analyses are often

much more precise than path-insensitive ones, they are also more expensive and less

scalable. Many path-sensitive techniques try to improve their scalability by either

using heuristics to select which predicates to track or by using counter-example guided

abstraction refinement to lazily discover relevant predicates. However, heuristic-based

techniques are not guaranteed to track all relevant predicates, while counterexample-

guided techniques can fail to terminate.
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In this thesis, we address the problem of performing an interprocedurally path-

sensitive analysis in a sound, complete (in the sense of not missing any relevant path

conditions), and scalable way. This technique differentiates between two classes of

program variables, observable variables, whose values may be determined in calling

contexts of a function, and unobservable variables, which represent either non- deter-

ministic choices made by the program’s execution environment or unknowns arising

from imprecision in the static analysis. The key idea underlying our technique is that

while unobservable variables add useful precision within the function invocation in

which they arise, the aggregate behavior of the function can be precisely summarized

in terms of only observable variables for answering may and must queries. Given a

finite abstraction of the program, our technique first generates a recursive system of

equations, describing path- sensitive conditions for some program property. While

this initial recursive system is not directly solvable, we show that the elimination of

unobservable variables leads to a pair of solvable recursive systems that are as precise

as the original system for answering may and must queries. This technique is the

first fully path- sensitive program analysis that has successfully scaled to a program

as large as the entire Linux kernel with over 6 million lines of code.

1.1.3 Modular Pointer Analysis

The third contribution is a flow- and context-sensitive pointer analysis that is fully

modular. The analysis we describe analyzes the program in a strictly bottom-up

fashion, computing polymorphic summaries for each function f and reusing this sum-

mary in every calling context of f . A modular pointer-analysis is advantageous over a

whole-program pointer analysis because (i) it does not need to re-analyze a function

for each of its call sites, (ii) localizes reasoning by hiding irrelevant internal imple-

mentation details, and (iii) allows the algorithm to be naturally parallelized, as any

pair of functions with no caller-callee relationship can be independently analyzed.

The main insight underlying our technique is to represent the unknown points-to

targets of locations using so-called location variables such that the sets of concrete
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locations represented by any two location variables are always disjoint. This repre-

sentation allows the algorithm to soundly apply strong updates to location variables

without knowing the calling context, which is crucial for the precision of a flow-

sensitive pointer analysis. To enforce that the sets of concrete locations represented

by a pair of location variables are disjoint, our algorithm constructs an efficient and

symbolic encoding of all possible aliasing patterns on function entry and conditions

points-to facts that arise in function f on aliasing relations at the call site of f . This

insight allows us to construct the first fully modular pointer-analysis that can perform

strong updates in a systematic way.

1.1.4 Constraint Simplification

Many program analysis techniques, such as all the analyses described above, use SAT

and SMT formulas to symbolically encode program states or to represent the condi-

tions under which a program property holds. However, since formulas are constructed

incrementally, e.g., by taking the conjunction or disjunction of existing constraints,

formulas become more and more redundant as the analysis progresses. Since solving

constraints and other operations, such as quantifier elimination and substitution, are

highly sensitive to formula size, redundancy in constraints substantially hinders the

scalability of static analysis techniques.

Another contribution of this thesis is a simplified form representation of con-

straints that guarantees non-redundancy, and an algorithm for converting SAT and

SMT formulas to their simplified form. Our experiments demonstrate that constraint

simplification based on this algorithm increases the scalability of static analysis tech-

niques by orders of magnitude.



Chapter 2

Semantic Inconsistency Inference

Much recent work in static analysis focuses on source-sink properties: For safety policy

S, if S is violated when a value constructed at location l1 is consumed at location l2,

then is there a feasible path from l1 to l2? If the answer is “yes”, then the program

has a bug (violates policy S). Some typical specifications are:

• Does a null value assigned to a pointer or reference reach a pointer dereference?

• Does any closed file reach a file read?

• Does a tainted input reach a security critical operation?

To be concrete, consider the following C-like code:

foo(...) {

if (Q) p = NULL; (1)

...

bar(p);

}

bar(x) {

if (R) *x; (2)

...

}

6



CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 7

The null value assigned at (1) reaches the dereference at (2) if predicates Q and R

can both be true, resulting in a program crash. Several model checkers incorporating

predicate abstraction and refinement [8, 10] and type-based systems [43] target such

specifications. These systems work by searching for a path from a source to a sink

violating the specification.

There is a complementary approach to these problems. Instead of trying to prove

that a source can reach a sink, we can look at a set of sinks that a value x reaches and

see if they express inconsistent beliefs about x [37]. In the example above, assume we

did not have the function foo available, but that the function bar is:

bar(x) {

if (x != NULL) *x; (2)

...

*x; (3)

...

}

Something is clearly not quite right with this function. At best bar is never called

with a null value, in which case the test at (2) is just unnecessary and might confuse

readers of the code about the actual possible values of x. At worst bar has a latent

crashing bug waiting to happen, as the unprotected dereference at line (3) must cause

an error if x is null.

Previous work on inconsistency checking is informal in nature, and it is not clear

how it relates to standard semantics-based approaches to software analysis [37], but

it is clear that relying only on the uses of a value for clues about program errors is

something different from what source-sink systems do. The purpose of this chapter is

to clarify what inconsistency checking is, how it is different from source-sink analysis,

and to illustrate by example its potential in practice.

We propose that inconsistency checking is best thought of as a form of an older

and better developed idea, type inference. Type inference systems already find type

errors based only on the use of values; for example, in any functional language with
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type inference (e.g., ML or Haskell) the following code

x + cons(y, x)

will be flagged as having a type error just because the two uses of x are type incon-

sistent (one as a number and the other as a list); note that the type declaration of x

(the source) is not needed to discover this error. From this starting point we make

the following contributions:

• The insight that checking consistency of uses is a type inference problem shows a

fundamental difference between type inference and source-sink systems, such as

most model checkers. Type inference systems find inconsistency errors in open

programs, such as libraries (e.g., the second instance of function bar above,

considered without a caller foo) that cannot be found by source-sink analyzers

simply because no source exists.

• Casting many inconsistency checking problems as type inference problems re-

quires non-standard types. The core issue is when the values at two usage sites

x and y are considered to be “the same”, so that x and y are checked for con-

sistency. A particularly problematic case is pointers; we propose that if two

pointers point to the same values under the same conditions then those two

pointers are really the same pointer (see Section 2.4.1).

• For path-sensitive analyses there is a difficulty of how to construct appropriate

predicates when there is no one source-sink path to use as a source of counterex-

amples for refinement. We present a method based on computing correlations

between program predicates and values of interest.

• We conduct an extensive experiment, analyzing over 8 million lines of C source

(including the entire Linux kernel) for null dereference errors. We have imple-

mented both source-sink checking and inconsistency checking, and we find over

600 previously unknown null dereferences, the overwhelming majority of which

are found by inconsistency checking. While there are limitations to our exper-

iment (in particular, our implemented analyzer is unsound, which may affect
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the ratio of source-sink to inconsistency errors detected), based on the results

it is our belief that inconsistency checking is valuable both because it works

for open programs and because the discovered bugs are often local whereas

understanding a source-sink path for the same bug appears daunting.

We begin our presentation with a small, paradigmatic language in which we de-

velop our formal results (Section 2.1). We present both (intraprocedural) source-sink

and inconsistency checking for this language (Section 2.2) and also extend our tech-

nique to an interprocedural analysis (Section 2.3). We then describe a null dereference

analysis and necessary extensions for C programs (Section 2.4) and present our ex-

perimental results (Section 2.5).

2.1 Language and Inference System

This section describes a simple first order, call-by-value language we use for the formal

development.

Program P ::= F+

Function F ::= deff(x1, . . . , xn) = s

Statement S ::= x←ρ Ci | x←ρ y | checkρ b |
f(x1, . . . , xn)ρ | s1;ρ s2 |
ifρ b then s1 else s2

Condition B ::= x = Ci

The language has standard function definitions, assignments, statement sequences,

and conditionals; the semantics is also standard and we omit a formal semantics

for brevity. The only values in the language are nullary constructors (constants)

C1, . . . , Cn. A condition x = Ci is true if x has the value Ci. A statement checkρ x =

Ci checks whether variable x is Ci. We use check statements to model requirements

that a variable must have a certain value at a particular program point. In examples

we sometimes need a no-op statement (e.g., to fill in a branch of an if); in such cases

we write skipρ to abbreviate the assignment y ←ρ y. We also assume for simplicity
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that all variables that are not function arguments are assigned to before they are

read, so we do not need to define how local variables are initialized.

The superscript ρ’s on statements are labels. We assume all labels in a program

are distinct, uniquely identifying statements. We often abuse our notation slightly by

writing sρ to refer to the top-level label ρ of statement s.

The only sources (constructors) in this language are constants Ci and the only

sinks (destructors) are the check statements. For example, the following program

has a source-sink error: the source assigned at ρ0 reaches the conflicting sink at ρ4.

Example 1

(x←ρ0 C1;
ρ1

ifρ2 (y = C2)

then y←ρ3 C3

else checkρ4 x = C2);
ρ5

ifρ6 (y = C1)

then skipρ7

else checkρ8 x = C1

The language syntax allows us to define algorithms via structural induction, but

it is also handy to be able to view a function definition as a control-flow graph.

For each statement label ρ there are two program points ρ− and ρ+ representing the

points immediately before and after the statement executes, respectively. Definition 1

defines the possible order of evaluation of statements within a function.
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Definition 1 (Partial Order on Program Points) For a function deff(x1, . . . , xn) =

s, let ≺f be the smallest relation on program points in f satisfying for each sub-

statement of s:

x←ρ . . . ⇒ ρ− ≺f ρ+

checkρ . . . ⇒ ρ− ≺f ρ+

sρ11 ;ρ0 sρ22 ⇒


ρ−0 ≺f ρ−1
ρ+

1 ≺f ρ−2
ρ+

2 ≺f ρ+
0

ifρ0 b then sρ11 else sρ22 ⇒ ∀i=1,2

{
ρ−0 ≺f ρ−i
ρ+
i ≺f ρ+

0

Let ≺∗f be the transitive closure of ≺f . A path from ρ0 to ρn is a sequence of labels

ρ0, . . . , ρn in f such that

(1) ρ−i ≺∗f ρ−i+1 for 0 ≤ i ≤ n− 1

(2) the sequence is maximal between the endpoints: inserting any additional label

after ρ0 and before ρn violates (1).

A path is complete if it cannot be extended either by adding new labels before the first

label or after the last label; a complete path is a path through the entire function

body. For instance, in Example 1, there is a path ρ0, ρ2, ρ4 because ρ−0 ≺ ρ+
0 ≺

ρ−2 ≺ ρ−4 . This path can be extended in both directions to form a complete path

ρ5, ρ1, ρ0, ρ2, ρ4, ρ6, ρ7.

2.1.1 Guards

To allow for path-sensitivity in our static analysis, we construct guards that express

program constraints. We use boolean satisfiability (SAT) as the underlying decision

procedure for solving constraints; hence guards are represented as boolean formulas.

In this section, we describe how to compute two kinds of guards:

• statement guards that describe the conditions under which a statement executes,
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• constructor guards that describe the condition under which a variable x at a

given program point evaluates to a constructor Ci. In addition, a constructor

guard also encodes the source of the value Ci.

Constructor guards are functions of type

CG = (Source× Int)→ Guard

The Int in the function signature corresponds to a constructor index, and the Source

in function def f(x1, . . . , xn) is either a label ρ of an assignment statement z ←ρ Ci in

f or one of the function arguments x1, . . . , xn. Sources used in constructor guards track

the origin of every value in a function in terms of function arguments or constructor

assignments within that function. We use r, r′, r1, . . . to range over sources.

Consider an assignment x←ρ Ci with statement guard γ. The constructor guard

gx for x after the assignment is gx(ρ, i) = γ, where γ is the statement guard for ρ,

and gx(r, j) = false for all r 6= ρ and j 6= i. Thus, the constructor guard encodes that

immediately after the assignment the value of x is Ci from source ρ if γ is satisfied,

and no other value/source combinations are possible.

We require that the formulas in the range of a constructor guard to be pairwise

disjoint: if g is a constructor guard and g(r, i) = γ1 and g(r′, j) = γ2, then γ1 ∧
γ2 = false if r 6= r′ or i 6= j. This condition captures the idea that a value cannot

simultaneously be two distinct constructors or come from two different sources. We

can always enforce this condition by adding new unconstrained boolean variables

to guards. For example, if there are only two constructors C1 and C2, then the

constructor guard g with g(r, 1) = α and g(r, 2) = ¬α enforces disjointness; for

more constructors we can use additional fresh variables. We write Dx for a fresh

constructor guard associated with function argument x. By fresh, we mean that the

formulas in the range of Dx share no variables with Dy for distinct variables x and y.

Furthermore, Dx(r, j) = false for all r 6= x; i.e., the only source of values in Dx is x.

Figure 2.1 gives inference rules for computing both statement guards and con-

structor guards resulting from executing a statement. An environment Γ : Var→ CG
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(1) Γ, γ ` x←ρ Ci : Γ[x← F ]
where F = λ(r, j).if (r, j) = (ρ, i) then γ else false

(2) Γ, γ ` x←ρ y : Γ[x← λ(r, j).Γ(y)(r, j) ∧ γ]

(3) Γ, γ ` checkρ x = Ci : Γ

(4) Γ, γ ` f(x1, . . . , xn)ρ : Γ

(5)

Γ0, γ ` s1 : Γ1

Γ1, γ ` s2 : Γ2

Γ0, γ ` s1;ρ s2 : Γ2

(6)

π =
∨
r Γ0(x)(r, i)

Γ0, γ ∧ π ` s1 : Γ1

Γ0, γ ∧ ¬π ` s2 : Γ2

Γ0, γ ` ifρ x = Ci then s1 else s2 : Γ1 t Γ2

(7)
λxi.Dxi , true ` s : Γ

` deff(x1, . . . , xn) = s

Figure 2.1: Computing guards.
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is a map from program variables to constructor guards. For a statement s and ini-

tial environment Γ and statement guard γ, the system proves sentences of the form

Γ, γ ` s : Γ′, where Γ′ is the final environment after execution of s. Note that the

inference system is purely structural; in any proof there is exactly one conclusion

associated with statement s, which we can rewrite as:

Γρ
−
, γρ ` sρ : Γρ

+

In this way we can refer to the environments for the program points before and after

ρ as well as the statement guard under which sρ is executed.

We briefly explain the rules in Figure 2.1. When a variable x is assigned a con-

structor Ci (rule (1)), x’s constructor guard shows that it cannot have any value

other than Ci from source ρ (guards for all other constructors and all other sources

are false). Furthermore, x only has value Ci if the assignment executes (the guard γ on

the assignment statement holds). The second form of assignment (rule (2)) says that

the possible sources/values of x after the assignment are the possible sources/values

of y before the assignment, but only if the assignment executes—the statement guard

γ is added to the guard of every possible source/value pair.

A checkρ x = Ci statement (rule (3)) tests the predicate (x = Ci) at run-time.

These are the sinks in our language. The purpose of our analyses is to characterize

when the run-time test can evaluate to false; this can model, for example, the implicit

assertion that a pointer is non-null before it is dereferenced, or more generally that

a value of a discriminated union type has the correct constructor (our choice of the

term “constructor” is meant to suggest discriminated unions), or that a value is in the

correct type-state before some operation is performed. As our interest is in when the

test is false and not what happens as a result of the test, we define check statements

to have no effect on the environment.

Function calls (rule (4)) also have no effect on the environment; because there are

no visible side-effects of a function and no return value, function calls have no effect on

the callee’s state. Of course, this rule also gives us no information about check state-

ments in the called function that may fail; thus, Figure 2.1 defines an intraprocedural
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analysis. We discuss extensions to interprocedural analysis in Section 2.3.

Rules (5) and (6) deal with compound statements. The rule for statement se-

quences (rule (5)) is standard. For an if statement (rule (6)) with statement guard

γ, the guard π combines all the conditions under which X = Ci from any source.

The true branch is analyzed with statement guard γ ∧ π and the false branch is an-

alyzed with statement guard γ ∧ ¬π. The final result is a join Γ1 t Γ2 of the final

environments of the two branches, defined as

(Γ1 t Γ2)(x)(r, i) = Γ1(x)(r, i) ∨ Γ2(x)(r, i)

Finally, a function body (rule (7)) is analyzed in an environment where nothing is

known about a function argument except that it evaluates to a single constructor

at a given call site (recall that for each argument x, the guards in the range of the

constructor guard for x are all disjoint).

Notice that statement guards and constructor guards are mutually dependent

(e.g., rules (1) and (6)) and thus are computed simultaneously. The reason for this de-

sign decision is that the computation of statement guards is affected by side-effects of

statements, which are in turn implicitly captured by constructor guards. Conversely,

the condition under which a statement causes a particular side-effect to happen de-

pends on the condition under which that statement executes; hence the computation

of constructor guards make use of statement guards. As an illustration of guard

computation, consider the example:

Example 2

ifρ0 (x = C1)

then (

x←ρ1 C2;
ρ6

ifρ2 (x = C2)

then checkρ3 x = C2

else skipρ4 )

else skipρ5
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Let α1 and α2 be formulas that represent the conditions under which the function

argument x evaluates to C1 and C2 respectively at function entry. Since the statement

guard at program point ρ1 is α1, the constructor guard Γ(x)(ρ1, 2) is also α1 by Rule

(1). By Rule (6), the statement guard at ρ3 is α1∧α2, which is false by our assumption

that the formulas in the range of a constructor guard are disjoint.

As this example illustrates, the computation of statement guards directly allows

the discovery of infeasible paths in a program.

Definition 2 (Feasibility) Let ρ0, . . . , ρn be a path. Then the path is feasible if

SAT(
∧

0≤i≤n γ
ρi).

Returning to Example 1, the path of the source-sink error ρ0, ρ2, ρ4 is feasible for an

appropriate initial environment, but the path ρ0, ρ2, ρ3, ρ6, ρ7 is not feasible in any

environment. The following lemma captures some simple but very useful facts about

feasible paths.

Lemma 1 Assume Γ, γ ` s : Γ′ and let σ be any assignment that satisfies γ. Then

there is a unique complete, feasible path including s such that σ satisfies all the

statement guards on the path.

Proof 1 The proof is by induction on the structure of s. The interesting case is when

s = (ifρ x = Ci then s1 else s2). From rule (6) of Figure 2.1, the final step of the

derivation must be:

π =
∨
r Γ(x)(r, i)

Γ, γ ∧ π ` s1 : Γ1

Γ, γ ∧ ¬π ` s2 : Γ2

Γ, γ ` ifρ x = Ci then s1 else s2 : Γ1 t Γ2

Now either σ(γ ∧π) is true or σ(γ ∧¬π) is true. Assume that σ(γ ∧π) is true. Then

Γ, γ ∧ π ` s1 : Γ1

satisfies the induction hypothesis with assignment σ, and so there is a unique complete
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feasible path ρ1, . . . , ρn for s1 such that σ(γρi) is true for all 1 ≤ i ≤ n. Then

ρ, ρ1, . . . , ρn is the desired path for s. The case where σ(γ ∧¬π) is true is symmetric.

2.2 Error Detection

In this section we present techniques for identifying source-sink and inconsistency

errors using the machinery developed in Section 2.1. Only intraprocedural techniques

are discussed here; Section 2.3 extends the approach across function boundaries.

2.2.1 Source-Sink Errors

Source-sink errors arise when a value constructed at one program point reaches an

unexpected destructor at a different program point. Most errors uncovered by model

checking tools, and particularly model checkers based on counter-example driven re-

finement, are source-sink errors. This class of errors includes, for example, type-state

properties, such as errors that arise from dereferencing a pointer that has been as-

signed to null, or using a tainted input in a security critical operation.

Definition 3 (Source-Sink Error) Consider the sub-derivation for a check state-

ment:

Γρ
−
, γρ ` checkρ x = Ci : Γρ

+

The check can fail because of a value from source ρ′ if the statement is reachable

when constructor Cj originating from ρ′ is in the constructor guard of x for some

j 6= i. More formally, a source-sink error arises if there is a label ρ′ of an assignment

statement y ←ρ′ Cj such that

SAT(γρ ∧
∨
j 6=i

Γρ
−

(x)(ρ′, j))

The following lemma shows that there is always at least one feasible path correspond-

ing to any source-sink error.

Lemma 2 Every source-sink error is included on at least one complete feasible path.
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Proof 2 Let ψρρ′ = γρ ∧
∨
j 6=i Γ

ρ−(x)(ρ′, j), and let σ be any assignment satisfying

ψρρ′. Since the formula ψρρ′ is satisfiable there is at least one such σ. By Lemma 1, σ

defines a unique, complete feasible path. By expanding the definition of ψρρ′ and using

the fact that rule (1) in Figure 2.1 includes the statement guard in the constructor

guard after the assignment, we can show that ψρρ′ satisfies both statement guards γρ
′

and γρ. Thus, both the assignment statement and the check are on the path.

Consider once more the program in Example 1. Assignment statement ρ0 gives x a

constructor guard where C1 from source ρ0 has guard true (just because x is assigned

C1 at ρ0). The constructor guard of x is unchanged where a check is performed at

ρ4. Since the check is whether x = C2, one of the tests for a source-sink error is:

SAT(γρ4 ∧
∨
j 6=2

Γρ
−
4 (x)(ρ0, j))

Because γρ4 is satisfiable and Γρ
−
4 (x)(ρ0, 1) is true, we have shown a source-sink error

in the program.

Note that Definition 3 requires that the source be the label of an assignment

statement—we do not consider function arguments as sources in computing source-

sink errors, because we do not know what actual values a function argument may have

while analyzing only the function body. Source-sink errors may arise if a function is

called with certain arguments that cause the check statement to fail. Interprocedural

analysis is required in this case to find the matching source, if any, that actually causes

the sink to fail; we address interprocedural source-sink errors in Section 2.3.

2.2.2 Inconsistency Errors

In this section, we define inconsistencies and describe a technique for semantically

detecting inconsistency errors.

Consider the following motivating example:

Example 3

def f(a) =
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(x←ρ0 a;ρ1

ifρ2 (x = C1)

then checkρ3 x = C1

else y←ρ4 x);ρ5

checkρ6 a = C1

In this example, a and x are aliases for the same value because of the assignment

at ρ0. At ρ3, x is asserted to have the value C1 and this statement is protected by

the conditional at ρ2. The variable a is also asserted to be C1 at ρ6, but without the

protecting test. Thus, if there actually is an environment in which this function can

be called where a 6= C1, an error is sure to be raised at ρ6. The presence of the test

at ρ2 protecting the check at ρ3 is evidence that some programmer believes there are

such environments. Thus, without knowing anything about the rest of the program,

it is likely that there is something wrong in this function because of the inconsistent

assumptions about a and x.

This example illustrates that inconsistency errors can involve aliasing if multiple

names for the same value are used inconsistently. Finding inconsistency errors means

identifying a set of uses of the same value that should be compared. If we are to

take aliasing into account, we cannot rely on uses of the same variable name or (more

generally) syntactically identical program expressions to identify the set of uses—a

semantic test for “sameness” is needed.

More formally, we define a congruence relation v1
∼= v2 that captures when two

quantities v1 and v2 should be checked for consistency. The exact definition of∼= varies

with the programming language. For our toy language, an appropriate definition is

that two variables at given program points are congruent if they have the same values

under the same guards at those points.

Definition 4 (Congruence) Let v1 and v2 be two variables in the same function f ,

and let ρ−1 and ρ−2 be program points in f . Then v
ρ−1
1
∼= v

ρ−2
2 , meaning variable v1 at

program point ρ1 is congruent to variable v2 at program point ρ2, if

∀i.
∨
r

Γρ
−
1 (v1)(r, i) ≡

∨
r

Γρ
−
2 (v2)(r, i)
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Notice that we do not require that the sources of congruent variables be the same.

Thus x and y can be congruent even if they are constructed completely independently;

we return to this point shortly.

Definition 5 (Inconsistency Error) Consider two check statements checkρ0 x =

Ci and checkρ1 y = Ci. There is an inconsistency error between the two statements if

the variables are congruent and one check can fail while the other cannot. Formally,

there is an inconsistency if the following three conditions are satisfied:

(1) xρ
−
0 ∼= yρ

−
1

(2) ¬SAT(γρ0 ∧
∨
r

∨
j 6=i Γ

ρ−0 (x)(r, j))

(3) SAT(γρ1 ∧
∨
r

∨
j 6=i(Γ

ρ−1 (x)(r, j))

Condition (2) says that it is not the case that the statement guard at ρ0 can hold and

x has some value other than Ci. Condition (3) says that there is at least one solution

where the statement guard at ρ1 holds and y has some value other than Ci.

Returning to Example 3 above, at point ρ−6 the variable a has constructor guard

Da (the original guards for a, as there are no assignments to a in the function) and

at point ρ−3 the variable x has the same guards because of the assignment at ρ0.

Thus aρ
−
6 ∼= xρ

−
3 , satisfying condition (1). Now the statement guard at ρ3 includes a

conjunct Γρ
−
3 (x)(a, 1), which is disjoint with any guard Γρ

−
3 (x)(r, j) for j 6= 1 (recall

Section 2.1.1). Hence, the check statement at ρ3 cannot fail, and condition (2) is

satisfied. Finally, the statement guard at ρ−6 is just true, and so condition (3) is also

satisfied.

As noted above, our definition of congruence does not require any dataflow re-

lationship between the two variables—variables with different sources may still be

congruent. Thus, unlike in Example 3, two congruent variables may not even have

a common source. At first look, this definition of congruence seems too permissive

in that it allows variables that apparently coincidentally share the same values to be

compared. We argue that even when two variables don’t share a common source, an

inconsistency still exists. Consider the following example:
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Example 4

def f(a) =

if(a=C1)

then x ← C1

else x ← C2;

if(a=C1)

then y ← C1

else y ← C2;

check(x=C2);

if(y=C2)

then check(y=C2)

else skip;

In this example, x and y have the same values under the same conditions, but

not from the same sources. The conditional check (y = C2) indicates that some

programmer believes there is some call site where a can be C1; otherwise, y would

always be C1. But if this is the case, then x can also be C1, and there is at least one

execution trace where check(x=C2) will fail. Hence, the above example should be

classified as an inconsistency, showing that our definition of congruence is not more

permissive than it should be.

Finally, note that while source-sink errors are characterized by a single feasible

path, inconsistency errors are characterized by a feasible path (condition (3)) and

the absence of any feasible path to a different program point (condition (2)). Thus,

inconsistency inherently requires reasoning about the relationships among multiple

paths, unlike source-sink error detection.

2.2.3 Intersection of Source-Sink and Inconsistency Errors

Our discussion so far highlights that source-sink and inconsistency error detection

techniques are fundamentally different: First, detection of source-sink errors involves

reasoning about a single program path, while the detection of inconsistencies can

require reasoning about multiple paths. Second, source-sink error detection requires
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the source to be explicit in the source code, while inconsistency detection infers errors

only from usage sites, i.e., sinks, and can therefore find errors even when the source

comes from the environment.

Despite these differences, some errors can be seen both as source-sink and incon-

sistency errors; the following example is prototypical:

Example 5

ifρ0(x = C1)

then checkρ1 x = C2

else skipρ2

This example has an obvious error since the conditional if(x = C1) ensures that

the check statement at program point ρ1 fails. Despite the fact that there is no

explicit source (i.e., a constructor assignment), the above example can be considered a

source-sink error. Since x is known to be C1 inside the true branch of the if statement,

adding an extra assignment of the form x←ρ C1 in the true branch preserves program

semantics and introduces a feasible path between the source x ←ρ C1 and the sink

checkρ1 x = C2.

On the other hand, we can also see this error as an inconsistency. Using the

intuition that inconsistency detection is a generalization of type inference, we can in-

troduce types POSSIBLY C1 and NOT C1. Informally, the example does not type-check

because the test ifρ1(x = C2) adds a type constraint that x has type POSSIBLY C1,

while the unprotected check statement assigns the NOT C1 type to x. More pre-

cisely, we can identify this error using Definition 5. Assuming that the language has

only the constructors C1 and C2, adding the check statements checkρ
′
x = C1 and

checkρ
′′
x = C2 in the true and false branches of the if statement respectively pre-

serves the semantics of the above program, yielding the semantically equivalent code:

ifρ0(x = C1)

then (

checkρ
′
x = C1;

ρ′′′

checkρ1 x = C2 )
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else checkρ
′′
x = C2

This directly exposes the inconsistency in the program according to Definition 5,

because the check statement at ρ1 can fail while the one at ρ′′ cannot.

2.3 Interprocedural Error Detection

In this section we discuss interprocedural extensions to our approach for detecting

both source-sink and inconsistency errors. Before presenting our interprocedural anal-

ysis we first revisit what we mean by inconsistency errors; unlike source-sink errors,

the definition of inconsistency must be reconsidered in the interprocedural case. Con-

sider the following example:

Example 6

def f(x) =

ifρ0(x = C1)

then checkρ1 x = C1

else skipρ2 ;ρ3

g(x)ρ4

def g(y) =

checkρ5 y = C1

This program clearly has an inconsistency error: the check at ρ1 is protected by a

test at ρ0, but the check in g on the same value is unprotected. Now consider the

following, slightly different, example:

Example 7

def f(x) =

g(x)ρ0 ;ρ1

checkρ2 x = C1
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def g(y) =

ifρ0(y = C1)

then checkρ1 y = C1

else skipρ2

This example simply interchanges the protected and unprotected check statements:

now the check in the caller is unprotected while the callee guards the check. Extend-

ing our intraprocedural definition of inconsistency errors in the obvious way leads us

to conclude that this example also has an inconsistency error, but this definition of

inconsistency results in large numbers of false positives on real programs. The issue

is that g may have other callers besides f. That is, while f may be safe in relying on

x = C1, other callers of g may pass arguments other than C1. Defensive programming

of this sort is very common in practice. A typical example is a library that does ex-

tensive checking of arguments, while client code may be written with the knowledge

that certain values cannot arise.1

In summary, Example 6 should be considered an inconsistency error, while Ex-

ample 7 should not. Thus, when comparing two uses of a value between a caller and

a callee, we only consider pairs of uses where the callee check can fail. This decision

implies that we do not need to track check statements that are guaranteed to succeed

outside of their containing function; the only interprocedural information we need is

knowledge of when a function can fail.

We use function summaries for interprocedural analysis: a summary is computed

of the conditions under which a function f can fail, and this summary is then used

at each call site of f to model f ’s behavior for the purpose of detecting source-sink

and inconsistency errors. This approach is context-sensitive, since the summaries are

applied separately at every call site. We begin by describing how function summaries

are defined and used in a basic form (Sections 2.3.1 and 2.3.3) and then describe a

significant improvement (Section 2.3.2).

1A similar problem arises with our definition of inconsistency in the presence of function macros.
Since macros are used in many different contexts, they are often written with defensive checks. In
our implementation, code resulting from a macro expansion is tagged in the parse tree as coming
from a macro and treated as an inlined function.
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2.3.1 Function Summaries

A function summary describes the preconditions on the execution of a function that,

if satisfied, may lead to errors. Computing sound and very precise preconditions is

easy in our framework; the disjunction of all the failure conditions for every check

statement in a function characterizes exactly the condition under which some check

will fail. Unfortunately, propagating such precise information interprocedurally is

prohibitively expensive; the formulas grow very rapidly as conditions are propagated

through a series of function calls.

We take a different approach to function summaries that is designed to scale while

still expressing all the possible conditions under which a check in a function may fail.

The price we pay is a loss of precision in the general case; one can construct examples

for which our summaries greatly overestimate the precondition for failure. However,

our summaries do precisely summarize the failure precondition of the vast majority

of functions we have observed in practice.

A function summary S has the same signature as a constructor guard, a map from

sources, in this case just function arguments, and constructor indices to guards. The

interpretation of summaries is different, however. The idea is that if S(a, k) = π, then

a call of f where formal parameter a is Ck can fail if the initial state of the call also

satisfies predicate π. For example, in Example 6, Sg(y, 1) = false and Sg(y, i) = true

for i 6= 1 captures that when the argument is Ci for any i 6= 1 function g may fail. In

Example 7, Sg(y, i) = false for all i expresses that the function can never fail.

Definition 6 (Function Summary) Consider a function f where

λxi.Dxi , true ` sρ0 : Γ

` deff(x1, . . . , xn) = sρ0
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Then
(Sf (xi, j) = π)⇒ Π(xi, j, π) where

Π(xi, j, π) ≡
(1) ∀(checkρ1 x = Ck) in f where k 6= j.

(2) if SAT(γρ1 ∧ Γρ
−
1 (x)(xi, j)) then

(3) (γρ1 ∧ Γρ
−
1 (x)(xi, j))⇒ π

In words, for each function argument xi and constructor Cj, on line (1) we consider

the set S of all statements checkρ1 x = Ck such that the check fails if x = Cj (i.e.,

the condition k 6= j). On line (2) we further restrict our focus to the subset S ′ of

statements in S where the check can fail because the source of constructor Cj is

argument xi. On line (3), for every check in this smaller set S ′, we are looking for a

necessary condition π that holds whenever one of the checks in S ′ fails. As a result,

π gives an over-approximation of the condition under which a check statement in

f will fail if argument xi is constructor Cj at some call site. In other words, if

SAT (π ∧ (xi = Cj)) for some call site, a check may fail in f.

It is easy to see that setting π to true always satisfies the conditions, so that

Sf (xi, j) = true for all xi and Cj is always a correct, if very imprecise, function

summary. If Sf (xi, j) = false then no check in f can fail when xi = Cj.

One simple strategy for computing function summaries is:

Sf (xi, j) =

{
false if Π(xi, j, false)

true otherwise

The reader may easily confirm that this algorithm yields Sg(y, 2) = true and

Sg(y, 1) = false for Example 6. In Section 2.3.2 we consider how to compute guards

π other than true and false. Now consider a more involved example:

Example 8

def foo(a1, a2) =

ifρ0(a2 = C2)

then x←ρ1 a2
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else x←ρ2 a1 ;ρ3

checkρ4 x = C2

Assume that the only constructors are C1 and C2. Applying the test given in

Definition 6 to Sfoo(a1, 1), we have:

• The single check statement satisfies line (1) of Definition 6 with k = 2.

• For line (2), γρ4 is true and Γρ
−
4 (x)(a1, 1) is satisfiable because of the assignment

at ρ2.

• For line (3), setting π = true satisfies the implication.

2.3.2 Correlation Analysis

The summary generation strategy described in Section 2.3.1 has two principal strengths.

First, it captures the common case where an error in the body of a function is trig-

gered by the value of a single function argument. Second, if the only possibilities for

π are true and false, then the size of summaries is guaranteed to be bounded by the

product of the number of function arguments and the number of distinct constructors.

However, there are many realistic examples where this approach is not expres-

sive enough, because there are times when programmers use two or more correlated

arguments to a function; consider, for example, when one argument serves as a flag

describing the state of another argument. The following example encodes such an

idiom in our toy language:

Example 9

def f(a1, a2) =

ifρ0(a2 = C1)

then checkρ1 a1 = C1

else skipρ2

If the predicates of Sf are limited to true and false, then the best we can do

in this example is Sf(a1, 2) = true, which is rather coarse as f’s check does not
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unconditionally fail when a1 6= C1. A better summary would record that Sf(a1, 2) ≡
(a2 = C1), precisely capturing the necessary condition for failure when a1 = C2. We

perform a correlation analysis to discover such additional predicates:

Definition 7 (Correlation Analysis) Consider a function definition def f(x1, . . . , xn) =

s. Let φk,h be a formula for the expression (xk = Ch).

Sf (xi, j) =
∧
{φk,h|Π(xi, j, φk,h)}

In Example 9, we have γρ1 ≡ (a2 = C1), and so Sf(a1, 2) ≡ (a2 = C1) using the

algorithm in Definition 7. Similarly, using the correlation analysis for computing a

more precise summary for Example 8, we obtain Sfoo(a1, 1) ≡ (a2 = C1).

It is instructive to compare our approach to interprocedural path sensitivity with

source-sink error detectors. While full interprocedural path sensitivity may be in-

tractable for large programs, model checking techniques have shown that computing

path sensitivity in a demand-driven fashion can avoid tracking unnecessary predicates

and allow analyses to scale [10, 8, 30]. However, such model checkers rely on having a

full path from source to sink to drive the process of discovering the needed predicates,

information we do not have available both in an inconsistency analysis and a com-

positional interprocedural source-sink analysis. Correlation analysis allows us to find

relevant predicates that play a role in interprocedural communication by computing

necessary conditions for errors to occur. The price we pay is that we restrict the

space of predicates considered to ensure scalability; for example, in our toy language

we only consider the predicates φk,h.

2.3.3 Summary Application

Consider a function definition

def f(a1, . . . , an) = s

and call site f(x1, . . . , xn) and a summary Sf. We use the summary of f to model f’s

behavior at the call site as follows. We define a new function fsummary(a1, . . . , an) = s′
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where s′ = . . . ; sij; . . . is a sequence of statements, one for every argument ai and

constructor Cj. From Definition 7, Sf(ai, j) must have the form

Sf(ai, j) = φk1,l1 ∧ . . . ∧ φkm,lm

Abusing our syntax slightly, we define sij to be:

ifρ
ij

(ai = Cj)

then check((ak1 6= cl1) ∨ . . . ∨ (akm 6= clm))

else skip;

At the call site we simply replace the statement f(x1, . . . , xn) by s′[x1/a1, . . . , xn/an].

This approach, which inlines a “stub” function that approximates the error behavior

of the original function, allows us to reuse the intraprocedural algorithms for detecting

source-sink and inconsistency errors from Section 2.2 unchanged.

2.4 A Null Dereference Analysis

In this section, we apply our approach to the problem of detecting null dereference

errors in C programs. We first present an encoding of the null dereference problem

in our framework and then discuss extensions needed to analyze C.

To apply the techniques in Sections 2.1-2.3 to the problem of detecting unsafe

null dereferences, we need only define the constructors and an appropriate congruence

relation. Null dereference analysis is about understanding what pointers can be null,

which in turn requires a reasonably precise model of all the possible values of all

pointers in a program. Our C implementation incorporates a sound context-, flow-

and partially path-sensitive points-to analysis for C [47]. Most points-to analyses

compute a graph where the nodes V are the set of abstract locations and there is

an edge (v, v′) ∈ E if location v may point to v′. The points-to analysis we use

labels each points-to edge with a guard (v, v′)g, where g is a formula specifying under

what conditions v points to v′. The value NULL is treated as a node in the graph, so

(v, NULL)g means that v may be a NULL pointer whenever guard g is satisfied.
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For the congruence relation, given a guarded points-to graph (V,E), we say that

v1, v2 ∈ V are congruent, v1
∼= v2, if

∀v3 ∈ V.(((v1, v3)g1 ∈ E ⇔ (v2, v3)g2 ∈ E ) ∧ g1 ≡ g2)

That is, two pointers are equivalent if they are aliases of one another: they point to

the same locations under the same conditions.

To model constructors, we classify all pointers as NULL or NOT-NULL (i.e., every-

thing except NULL). Before each pointer dereference ∗x we insert a check:

checkρ x = NOT-NULL

The check succeeds only if the NULL guard in x’s points-to graph is unsatisfiable at

point ρ−.

To illustrate how we detect null inconsistency errors in C, consider the following

example:

Example 10

void foo(int* p, int* q, bool flag)

{

P1. flag = (p!= NULL);

P2. q = p;

P3. if (flag)

P4. *p = 8;

P5. *q = 4;

}

The assignment at P2 ensures p and q have the same guarded points-to relation-

ships; thus p ∼= q. The dereference of p at P4 cannot fail because the statement guard

(the test on flag at P3) guarantees that p is non-null. However, the dereference of

q at P5 can fail because the statement guard is just true. Thus, we detect a null

inconsistency in foo.
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LOC Total Bugs U FP % FP IC SS Both % Interproc % Alias
OpenSSL
0.9.8b 339319 55 47 2 6 11.3% 40 6 1 38.3% 34.0%
Samba
3.0.23b 515689 68 46 3 19 29.2% 40 4 2 34.8% 17.4%
OpenSSH
4.3p2 154660 9 8 0 1 11.1% 6 2 0 37.4% 0.0%
Pine
4.64 372458 150 119 3 28 19.0% 105 10 4 42.0% 6.7%
MPlayer
1.0pre8 761708 119 89 2 28 23.9% 71 16 2 41.6% 30.3%
Sendmail
8.13.8 364569 9 8 0 1 11.1% 7 1 0 62.5% 12.5%
Linux
2.6.17.1 6275017 373 299 8 66 18.1% 249 38 12 27.8% 12.0%

Total 8783420 783 616 18 149 19.5% 518 77 21 34.1% 15.4 %

Figure 2.2: Experimental Results. Column labeled “Bugs” reports the number of bugs
uncovered, “U” corresponds to error reports that were unresolved, the abbreviation
“FP” stands for false positives, the abbreviation “IC” stands for inconsistent and the
abbreviation “‘SS” stands for source-sink.

2.4.1 Extensions for C

There are features in C that are not in the toy language we have used to present our

techniques. We briefly discuss the most significant extensions that are required to

support analysis of C programs.

The biggest technical difference between the toy language and C is that C functions

can have externally visible side-effects. In particular, for a null dereference analysis, it

is necessary to estimate the set of function side-effects making locations either null or

not null. We address this problem by using a separate side-effect analysis to compute

sources of null (both in the return value and as a result of function side-effects) as well

as to track modifications to function arguments. However, this side-effect analysis is

best effort and unsound; it tracks side-effects that must result in a location being

assigned null, but it does not capture all assignments that just might result in a

location being assigned null. In our opinion, this is the major source of unsoundness

in our implementation.

The difficulty in estimating function side-effect information lies in resolving the

tension between two competing goals. First, the quantity of side-effect information is

potentially enormous; computing even simple use/mod information for every function
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(i.e., just the set of abstract locations the function reads or writes) in a large program

is intractable if the result is represented naively, because the set of side-effects of a

function includes all the side-effects of functions it can call either directly or indirectly.

Thus, it is necessary to aggressively summarize interprocedural side-effect information

to avoid consuming space quadratic (or worse) in the size of the program. Second,

the resulting information must be precise enough to yield useful results, because

even small imprecisions can lead to overwhelming numbers of false positives. We are

not aware of any general results on efficiently computing interprocedural side-effect

information; the problem appears to be unsolved. Previous null dereference analyzers

have focused on intraprocedural checking (see Section 2.6).

Another separate issue is what predicates are used by the correlation analysis

to compute function summaries. In Definition 7, we considered only predicates φk,h

corresponding to conditions of the form (xk = Ch). Unfortunately, in a real program-

ming language, there are arbitrarily many predicates of this form. For example, if a

function argument x is an integer, it is obvious that we cannot test x = c for every

possible integer constant. Our approach is to consider only the predicates that occur

inside if statements in the computation of π.

An orthogonal issue is the modeling of loops and recursive functions. The system

defined in Sections 2.1-2.3 can be used to analyze recursive functions in a sound

manner by a standard iterative fixed point computation. In our implementation for

C we analyze each function only once and do not attempt to compute fixed points, in

part to limit the growth in interprocedural side-effect information.2 We have observed

that the function summary guards inferred by correlation analysis are almost always

very simple; in fact, conjunctions of more than two simple atomic predicates are

exceedingly rare, if in fact they ever occur (we have yet to notice one with more than

two clauses). Thus, we believe that very simple restrictions on the size and form of

function summary guards (along with conservative approximation if those limits are

exceeded) would be sufficient to ensure that a fixed point computation terminates

with useful (i.e., sufficiently precise) results.

Finally, as discussed above, our system builds upon a may-alias analysis for C.

2Cycles of mutually recursive functions are analyzed once in an arbitrary order.
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This underlying analysis is sound assuming the C program is memory safe (a standard

assumption in may-alias analysis), a condition that is not checked by the alias analysis

or our system.

2.5 Results

We have run our null dereference analysis on seven widely used open source projects

and identified 616 null dereference issues with 149 false positive reports (an overall

19.5% false positive rate). These projects receive regular source code checking from

multiple commercial bug-finding tools, and so we sought to learn whether these bugs

had been previously reported. Developers for the Samba project confirmed that none

of the Samba bugs had been previously found. For the other projects we did not

receive such an explicit acknowledgment that the bugs were new; however, we judge

from the fact that fixes were released quickly for many of the bugs shortly after our

reports were filed that at least the majority of the bugs we found were previously

unknown. The large majority of these bugs, 518, were found by our inconsistency

analysis.

We ran our null dereference analysis on a compute cluster. Analyzing the Linux

kernel with over 6 MLOC required about 4 hours using 30 CPU’s, which was by far

the longest time required for any of the projects. The smallest project we analyzed

was OpenSSH, which took 2 minutes and 33 seconds to analyze on the same clus-

ter. Our system makes many calls to a boolean SAT solver to test the satisfiability

of the various predicates used in our analyses, and for Linux the number of SAT

queries numbers in the millions. We impose a 60 second time limit for analyzing any

individual function; if the analysis of a function times out, its function summary is

incomplete.

Figure 2.2 summarizes our experimental results. The first column gives the num-

ber of lines of code for each project, the second column presents the total number of

reports, which is classified in the following three columns into correct reports, false

positives, and undecided reports (reports that we could not classify as either correct

reports or as false positives, because the interpretation of these reports required a
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more global understanding of the code base than we had). The sixth column gives

the false positive rate, which is calculated without including the undecided reports.

The second group of three columns breaks down the correct reports by kind: the

count of inconsistency errors excluding those also found by source-sink detection, the

number of source-sink errors found also as inconsistencies, and the number of errors

identified by both. The last group of two columns show the percentages of correct re-

ports that were interprocedural and that involved pointer aliasing, respectively. Many

current bug finders ignore pointer aliasing and interprocedural analysis; at least for

null dereference analysis, our results show that both features are important.

We used the following methodology in classifying the error reports. First, source-

sink errors resulting from dereferences of return values of functions which can po-

tentially return null were counted once per function, not once per call site. Return

values of malloc wrappers that can return null are often used unsafely at many call

sites, resulting in a misleadingly large number of correct reports if each such call site

is counted as a bug. Second, we classified inconsistency reports as correct reports

if there was actually an inconsistency, not if we could prove that the inconsistency

would lead to a run-time crash. Lacking a detailed global understanding of these

large projects, we could often not differentiate between redundant null checks and

potential crashing bugs. In our correspondence with project developers, we were told

that some of the inconsistency errors are due to redundant null checks. However, a

large majority of developers deemed every inconsistency, including those believed to

be redundant null checks, worth fixing. The majority view was that inconsistency er-

rors represented misunderstandings of the inconsistent function’s interface and should

be fixed. A large number of error reports we classified as correct were confirmed by

the developers; however not all project developers gave us feedback about the validity

of error reports. In such cases, the numbers in Figure 2.2 represent our best effort to

classify these errors.

Figure 2.2 shows that the large majority (87.5%) of the errors are inconsistency

errors (including conditional misuse errors). Since most of these inconsistency errors

were immediately fixed by developers, it is our belief that semantic inconsistency

detection is able to identify real errors and important interface violations in real
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code. Figure 2.2 also reveals that roughly a third of the overall correct reports involve

interprocedural dependencies, sometimes involving many function calls, especially in

the case of source-sink errors. Our initial experiments with the tool also highlight

the importance of selective path-sensitivity: A first version of the analysis without

path-sensitivity resulted in a high false positive rate, while experiments with full

path-sensitivity had unacceptably high time-out rates. However, using the correlation

analysis, the time-out rate in our experiments stayed between 0.71% and 6.4% of all

functions with an acceptable false positive rate.

Another interesting observation from Figure 2.2 is that a non-negligible number of

errors (roughly one-third in OpenSSL and MPlayer) involve pointer aliasing. Pointer

aliasing contributes to a significant source of null pointer errors, especially inconsis-

tency errors, in two common programming patterns. The first pattern we observed is

that generic void* pointers are often aliased by typed pointers and aliases with dif-

ferent types are used with inconsistent null pointer assumptions. The other pattern

is that array elements are often assigned to “convenience” pointers, which denote

current, head, or tail elements of a data structure. Programmers sometimes make

different null pointer assumptions when they alternate, for example, between using

array[0] and hd.

The main source of false positives is imprecision in the pointer analysis we used,

which collapses aggregate structures (e.g., arrays, lists) to a single abstract location.

If a null pointer is assigned to any element of an aggregate data structure, it contam-

inates other elements of the same data structure, causing the analysis to raise false

alarms whenever an element of such a contaminated data structure is dereferenced.

Other contributing factors to false positives are some unmodeled constructs, such as

inline assembly.

We conclude this section by presenting two sample errors reported by the analysis,

which we believe to be representative of many of the error reports generated by the

tool:
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/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) ?

237 (packet->transport->asoc->pathmtu) :

238 (packet->transport->pathmtu));

...

269 if (sctp chunk is data(chunk)) {
270 retval = sctp packet append data(packet, chunk);

...

286 }

538 sctp xmit t sctp packet append data

(struct sctp packet *packet,...)

540 {
...

543 struct sctp transport *transport = packet->transport;

...

545 struct sctp association *asoc = transport->asoc;

...

562 rwnd = asoc->peer.rwnd;

This example illustrates an interprocedural inconsistency error involving pointer

aliasing, which might potentially cause a null dereference at line 562. On line 236,

the pointer packet->

transport->asoc is compared against null and packet is later passed to a function

which first aliases packet->transport as transport and then aliases transport->asoc

as asoc, which is finally dereferenced at line 562. Despite these aliasing relationships,

the caller function assumes that packet->transport->asoc may be null, while the

called function dereferences the same pointer without ensuring it is non-null, causing

the analysis to generate an inconsistency warning.

The next error illustrates an inconsistency error involving two mutually exclusive
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paths:

/* OpenSSL, e_chil.c line 1040 */

static int hwcrhk_rsa_mod_exp(BIGNUM *r, const BIGNUM *I,

RSA *rsa, BN_CTX *ctx)

967 {

985 if ((hptr = RSA_get_ex_data(rsa, hndidx_rsa))!= NULL)

987 {

990 if(!rsa->n){

994 goto err;

995 }

997 /* Prepare the params */

998 bn_expand2(r, rsa->n->top); /* Check for error !! */

...

1027 }

1028 else

1029 {

...

1039 /* Prepare the params */

1040 bn_expand2(r, rsa->n->top); /* Check for error !! */

...

1080 }

In the true branch of the if statement, the pointer rsa->n is checked for being

null and subsequently dereferenced at line 998. On the other hand, the same pointer

is dereferenced without a null check in the false branch of the same if statement at

line 1040. The important point about this example is that detecting inconsistencies

requires reasoning about multiple paths simultaneously.

2.6 Related Work

The various program analysis traditions appear to have equivalent power; for example,

there is an equivalence between type systems and model checking [66]. However,
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these results are for closed programs. We observe that for open programs techniques

that search only for a single source-sink path cannot express inconsistency errors

requiring simultaneous reasoning about multiple distinct paths. We view semantic

inconsistency checking as complementary to source-sink error detection; inconsistency

checking can find bugs where there are multiple sinks but no sources, while source-sink

checking can detect bugs between a single source and a single sink.

Our choice of the terms constructor and destructor is inspired by work on detecting

uncaught exceptions in functional programs [81, 69] and soft typing [22, 2]. A core

issue in both bodies of work is tracking which datatype constructors a program value

may actually have at run-time. Null dereference analysis is a special case where there

are only two constructors NULL and NON-NULL; our techniques could be adapted to

give very precise analysis for these other applications as well.

FindBugs [50] is a widely used tool for Java that has paid particular attention to

finding null dereference errors [51]. FindBugs pattern-matches on constructs that are

common sources of certain error classes and performs some data-flow computation. As

our implementation is for C, it is not possible to do a direct comparison. Nevertheless,

it is clear that FindBugs would not find the many path-sensitive, interprocedural, and

alias-dependent bugs our more semantic analyses uncover. One can also interpret our

results as indicating that, at least for tools requiring no user annotations, one must

move to computationally intensive models (incorporating at least path sensitivity) to

do significantly better than tools like FindBugs without unusably high false positive

rates.

Some approaches attack null dereferences using user annotations on function pa-

rameters and local checking of each function body. LCLint [39] uses an unsound

procedure to check the safety of dereferences of parameters annotated as may-be-

null. More recent annotation-based systems are much closer to being sound [42, 41].

Current annotation languages, which mark a single parameter as possibly null or defi-

nitely not null, are not expressive enough to capture the more complex path-sensitive

and interprocedural relationships we observed in our experiments.

Another approach, exemplified by CCured [67], is to use a relatively inexpensive

static analysis to verify the safety of many pointer dereferences statically and then
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to introduce dynamic checks to enforce the remaining dereferences at run-time. The

unification-based type inference used in CCured would not find most of the bugs our

tool detected, and while the program would at least fail in a well-defined way if the

null dereference was triggered at run-time, it would still fail.

Engler et al. were the first to explicitly propose a method for finding null deref-

erence errors based on inconsistency checking [37]. They argue that inconsistencies

suggest programmer confusion and the presence of bugs, and they give some tech-

niques for discovering inconsistencies. We observe that their notion of inconsistency

is essentially the same as the idea underlying type inference systems, where incon-

sistent type constraints from multiple uses of a value result in a type error. Our

inconsistency analysis adopts this more semantic point of view and we give purely

semantic conditions for inconsistency checking, which allows our system to uncover

subtler bugs involving, e.g., pointer aliasing.

Our approach to selective inter-procedural path-sensitivity is reminiscent of some

selectively path-sensitive model-checking techniques. ESP, for example, only accu-

rately tracks branches that affect relevant properties within that branch [30]. Unlike

ESP, our approach is fully path-sensitive intraprocedurally, and more importantly,

our analysis infers correlated predicates by computing implication relations between

predicates and guards of relevant events. Model checking tools based on predicate

abstraction and refinement [8, 10, 54] also achieve selective path-sensitivity by discov-

ering relevant predicates. Such tools start with a coarse abstraction which is refined

by tracking additional relevant predicates until a path is shown to be feasible or infea-

sible or until no new useful predicates can be discovered. As discussed in Section 2.3,

our approach differs because inconsistency analysis does not have a source-sink path

to use as a source of counterexamples.



Chapter 3

A Novel Path-sensitive Analysis

Path-sensitivity is an important element of many program analysis applications, but

existing approaches exhibit one or both of two difficulties. First, so far as we know,

there are no prior scalable techniques that are also sound and complete for a language

with recursion. Second, even in implementations of incomplete methods, interpro-

cedural path-sensitive conditions can become unwieldy and expensive to compute.

Existing approaches deal with these problems by some combination of heuristics,

accepting limited scalability, and possible non-termination of the analysis.

In this chapter, we give a new approach that addresses both of these theoretical

as well as practical issues. One important insight underlying our approach is that

certain values in a program are simply unknown at static analysis time. For example,

if a program queries the user for an input, this input appears as a non-deterministic

environment choice to the static analysis. Similarly, the result of receiving arbitrary

data from the network or the result of reading operating system state are all unknowns

that need to be treated as non-deterministic environment choices by the analysis.

Even in the special case where all program inputs are known, static analyses still

need to deal with unknowns that arise from approximating program behavior. A

static analysis cannot simply carry out an exact program simulation; if nothing else,

we usually want to guarantee the analysis terminates even if the program does not.

Thus, static analysis always has some imprecision built in. For example, since lists,

sets, and trees may have an unbounded number of elements, many static techniques

40



CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 41

do not precisely model the data structure’s contents. Reading an element from a

data structure is modeled as a non-deterministic choice that returns any element of

the data structure. Similarly, if the chosen program abstraction cannot express non-

linear arithmetic, the value of a “complicated” expression, such as coef*a*b+size,

may also need to treated as an unknown by the static analysis.

The question of what, if any, useful information can be garnered from such un-

known values is not much discussed in the literature. It is our impression that if the

question is considered at all, it is left as an engineering detail in the implementation;

at least, this is the approach we have taken ourselves in the past. But two obser-

vations have changed our minds: First, unknown values are astonishingly pervasive

when statically analyzing programs; there are always calls to external functions not

modeled by the analysis as well as approximations that lose information. Second, in

our experience, analyses that do a poor job handling unknown values either end up

being unscalable or too imprecise. For these reasons, we now believe a systematic

approach for dealing with unknown values is a problem of the first order in the design

of an expressive static analysis.

We begin by informally sketching a very simple, but imprecise, approach to dealing

with unknown values in static analysis. Consider the following code snippet:

1: char input = get_user_input();

2: if(input == ’y’) f = fopen(FILE_NAME);

3: process_file_internal(f);

4: if(input == ’y’) fclose(f);

Suppose we want to prove that for every call to fopen, there is exactly one matching

call to fclose. For the matching property to be violated, it must be the case that

the value of input is ’y’ on line 2, but the value of input is not ’y’ on line 4. Since

the value of the input is unknown, one simple approach is to represent the unknown

value using a special abstract constant ?. Now, programs may have multiple sources

of unknown values, all of which are represented by ?. Thus, ? is not a particular

unknown but the set of all unknowns in the program. Hence, the predicates ? =′ y′

(which should be read as: ′y′ is equal to some element of values represented by ?)
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and ? 6=′ y′ (which should be read as: ′y′ is not equal to some element of values

represented by ?) are simultaneously satisfiable. As a result, program paths where

input is equal to ′y′ at line (2), but not equal to ′y′ at line (4) (or vice versa) cannot

be ruled out, and the analysis would erroneously report an error.

A more precise alternative for reasoning about unknown values is to name them

using variables (called choice variables) that stand for a single, but unknown, value.

Observe that this strategy of introducing choice variables is a refinement over the pre-

vious approach because two distinct environment choices are modeled by two distinct

choice variables, β and β′. Thus, while a choice variable β may represent any value,

it cannot represent two distinct values at the same time. For instance, if we introduce

the choice variable β for the unknown value of the result of the call to get user input

on line 1, the constraint characterizing the failure condition is β = y ∧ β 6= y, which

is unsatisfiable, establishing that the call to fopen is matched by a call to fclose.

The insight is that the use of choice variables allows the analysis to identify when two

values arise from the same environment choice without imposing any restrictions on

their values.

While this latter strategy allows for more precise reasoning, it leads to two diffi-

culties –one theoretical and one practical– that the simpler, but less precise, strategy

does not suffer from. Consider the following function:1

bool query_user(bool feature_enabled) {

A: if(!feature_enabled) return false;

B: char input = get_user_input();

C: if(input == ’y’) return true;

D: if(input == ’n’) return false;

E: printf("Input must be y or n!

F: Please try again.\n");

G: return query_user(true);

}

Suppose we want to know when query user returns true. The return value of

1While this function would typically be written using a loop, the same problem arises both for
loops and recursive functions, and we use a recursive function because it is easier to explain.
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get user input is statically unknown; hence it is identified by a choice variable β.

The variable feature enabled, however, is definitely not a non-deterministic choice,

as its value is determined by the function’s caller. We represent feature enabled

by an observable variable, α, provided by callers of this function. The condition, Π,

under which query user returns true (abbreviated T) in any calling context, is then

given by the constraint:

Π.β = (α = T) ∧ (β = ′y′ ∨ (¬(β = ′n′) ∧ Π[T/α] = T)) (∗)

This formula is read as follows. The term α = T captures that the function

returns true only if feature enabled is true (line A). Furthermore, the user input

must either be ′y′ (term β = ′y′ and line C) or it must not be ′n′ (term ¬(β = ′n′) and

line D) and the recursive call on line G must return true (term Π[T/α]). Observe

that because the function is recursive, so is the formula. In the term Π[T/α], the

substitution [T/α] models that on the recursive call, the formal parameter α is replaced

by actual parameter true. Finally, the binding Π.β reminds us that β is a choice

variable. When the equation is unfolded to perform the substitution [T/α] we must

also make the environment choice for β. The most general choice we can make is

to replace β with a fresh variable β′, indicating that we do not know what choice is

made, but it is potentially different from any other choice on subsequent recursive

calls. Thus, Π[T/α] unfolds to:

(T = T) ∧ (β′ = ′y′ ∨ (¬(β′ = ′n′) ∧ Π[T/α]

While the equation (*) expresses the condition under which query user returns

true, the recursive definition means it is not immediately useful. Furthermore, it

is easy to see that there is no finite non-recursive formula that is a solution of the

recursive equation (*) because repeated unfolding of Π[T/α] introduces an infinite

sequence of fresh choice variables β′, β′′, β′′′, . . .. Hence, it is not always possible to

give a finite closed-form formula describing the exact condition under which a program

property holds.

On the practical side, real programs have many sources of unknowns; for example,
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assuming we do not reason about the internal state of the memory management

system, every call to malloc in a C program appears as a non-deterministic choice

returning either NULL or newly allocated memory. In practice, the number of choice

variables grows rapidly with the size of the program, overwhelming the constraint

solver and resulting in poor analysis scalability. Therefore, it is important to avoid

tracking choice variables whenever they are unnecessary for proving a property.

Our solution to both the theoretical and the practical problems can be understood

only in the larger context of why we want to perform static analysis in the first

place. Choice variables allow us to create precise models of how programs interact

with their environment, which is good because we never know a priori which parts

of the program are important to analyze precisely and so introducing unnecessary

imprecision anywhere in the model is potentially disastrous. But the model has more

information than needed to answer most individual questions we care about; in fact,

we are usually interested in only two kinds of 1-bit decision problems, may and must

queries. If one is interested in proving that a program does not do something “bad”

(so-called safety properties), then the analysis needs to ask may questions, such as

“May this program dereference NULL?” or “May this program raise an exception?”.

On the other hand, if one is interested in proving that a program eventually does

something good (so called liveness properties), then the analysis needs to ask must

questions, such as “Must this memory be eventually freed?”.

May questions can be formulated as satisfiability queries; if a formula representing

the condition under which the bad event happens is satisfiable, then the program is

not guaranteed to be error-free. Conversely, must questions are naturally formulated

as validity queries: If a formula representing the condition under which something

good happens is not valid, then the program may violate the desired property. Hence,

to answer may and must questions about programs precisely, we do not necessarily

need to solve the exact formula characterizing a property, but only formulas that

preserve satisfiability (for may queries) or validity (for must queries).

The key idea underlying our technique is that while choice variables add useful

precision within the function invocation in which they arise, the aggregate behavior

of the function can be precisely summarized in terms of only observable variables
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for answering may and must queries. Given a finite abstraction of the program, our

technique first generates a recursive system of equations, which is precise with respect

to the initial abstraction but contains choice variables. We then eliminate choice

variables from this recursive system to obtain a pair of equisatisfiable and equivalid

systems over only observable variables. After ensuring that satisfiability and validity

are preserved under syntactic substitution, we then solve the two recursive systems

via standard fixed-point computation. The final result is a bracketing constraint

〈φNC, φSC〉 for each initial equation, corresponding to closed-form strongest necessary

and weakest sufficient conditions.

We demonstrate experimentally that the resulting bracketing constraints are small

in practice and, most surprisingly, do not grow in the size of the program, allowing

our technique to scale to analyzing programs as large as the entire Linux kernel. We

also apply this technique for finding null dereference errors in large open source C

applications and show that this technique is useful for reducing the number of false

positives by an order of magnitude.

3.1 From Programs to Constraints

As mentioned earlier, static analyses operate on a model or abstraction of the pro-

gram rather than the program itself. In this chapter, we consider a family of finite

abstractions where each variable has one of abstract values C1, . . . , Ck. These abstract

values can be any fixed set of predicates, typestates, dataflow values, or any chosen

finite domain. We consider a language with abstract values C1, . . . , Ck; while simple,

this language is sufficiently expressive to illustrate the main ideas of our techniques:

Program P ::= F+

Function F ::= define f(x) = E

Expression E ::= true | false | Ci | x | f(E)

| if E1 then E2 else E3

| let x = E1 in E2

| E1 = E2 |E1 ∧ E2 |E1 ∨ E2 | ¬E
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Expressions are true, false, abstract values Ci, variables x, function calls, condi-

tional expressions, let bindings and comparisons between two expressions. Boolean-

valued expressions can be composed using the standard boolean connectives, ∧, ∨,

and ¬. In this language, we model unknown values by references to unbound variables,

which are by convention taken to have a non-deterministic value chosen on function

invocation. Thus, any free variables occurring in a function body are choice variables.

Observe that this language has an expressive set of predicates used in conditionals,

so the condition under which some program property holds may be non-trivial.

To be specific, in the remainder of this chapter, we consider the program properties

“May a given function return constant (i.e., abstract value) Ci?” and “Must a given

function return constant Ci?”. Hence, our goal is to compute the constraint under

which each function returns constant Ci. These constraints are of the following form:

Definition 8 (Constraints)

Equation E ::= [ ~Πi].~β = [ ~Fi]
Constraint F ::= (s1 = s2) | Π[Ci/α]

| F1 ∧ F2 | F1 ∨ F2 | ¬F
Symbol s ::= α | β | Ci

Symbols s in the constraint language are abstract values Ci, choice variables β

whose corresponding abstract values are unknown, and observable variables α rep-

resenting function inputs provided by callers. Because the values of inputs to each

function f are represented by variables α, the constraints generated by the analysis

are polymorphic, i.e., can be used in any calling context of f . Constraints F are equal-

ities between symbols (s1 = s2), constraint variables with a substitution Π[Ci/α], or

boolean combinations of constraints. The substitutions [Ci/α] on constraint variables

are used for the substitution of formals by actuals, and recall that the vector of choice

variables ~β named with the Π variable is replaced by a vector of fresh choice variables

~β′ in each unfolding of the equation. More formally, if Π.~β = F , then:

Π[Ci/α] = F [Ci/α][~β′/~β] (~β′ fresh)
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This renaming is necessary both to avoid naming collisions and to model that a differ-

ent environment choice may be made on different recursive invocations. Constraints

express the condition under which a function f with input α returns a particular

abstract value Ci; we usually index the corresponding constraint variable Πf,α,C for

clarity. So, for example, if there are only two abstract values C1 and C2, the equation

[Πf,α,C1 , Πf,α,C2 ] = [true, false]

describes the function f that always returns C1, and

[Πf,α,C1 , Πf,α,C2 ] = [α = C2, α = C1]

describes the function f that returns C1 if its input has abstract value C2 and vice

versa. As a final example, the function

define f(x) = if (y = C2) then C1 else C2

where the unbound variable y models a non-deterministic choice is described by the

equation:

[Πf,α,C1 , Πf,α,C2 ].β = [β = C2, β = C1]

Note that β is shared by the two constraints; in particular, in any solution β must be

either C1 or C2, capturing that a function call returns only one value.

Our goal is to generate constraints characterizing the condition under which a

given function returns an abstract value Ci. Figure 3.1 presents most of the con-

straint inference rules for the language given above; the remaining rules are omitted

but are all straightforward analogs of the rules shown. In these inference rules, an

environment A maps program variables to variables α, β in the constraint language.

Rules 1-5 prove judgments A `b e : F where b ∈ {true, false}, describing the con-

straints F under which an expression e evaluates to true or false in environment A.

Rules 6-11 prove judgments A `Ci e : F that give the constraint under which expres-

sion e evaluates to Ci. Finally, rule 12 constructs systems of equations, giving the

(possibly) mutually recursive conditions under which a function returns each abstract
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(1)
A `true true : true

(2)
A `true false : false

(3)

A `Ci e1 : F1,i

A `Ci e2 : F2,i

A `true (e1 = e2) :
∨
i(F1,i ∧ F2,i)

(4)
A `true e : F
A `false e : ¬F

(5)

A `true e1 : F1

A `true e2 : F2

⊗ ∈ {∧,∨}
A `true e1 ⊗ e2 : F1 ⊗F2

(6)
A `Ci Ci : true

(7)
i 6= j

A `Ci Cj : false

(8)
A(v) = ϕ (ϕ ∈ {α, β})
A `Ci v : (ϕ = Ci)

(9)

A `true e1 : F1

A `Ci e2 : F2

A `Ci e3 : F3

A `Ci if e1 then e2 else e3 : (F1 ∧ F2) ∨ (¬F1 ∧ F3)

(10)

A `Cj e1 : F1j

A, x : α `Ci e2 : F2i (α fresh)

A `Ci let x = e1 in e2 :
∨
j(F1j ∧ F2i ∧ (α = Cj))

(11)
A `Ck e : Fk

A `Ci f(e) :
∨
k(Fk ∧ Πf,α,Ci [Ck/α])

(12)

α 6∈ {β1, . . . , βm}
x : α, y1 : β1, . . . , yn : βm `Ci e : Fi 1 ≤ i ≤ n

` define f(x) = e : [~Πf,α,Ci ].
~β = [ ~Fi]

Figure 3.1: Inference Rules
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value2.

We briefly explain a subset of the rules in more detail. In Rule 3, two expressions

e1 and e2 are equal whenever both have the same abstract value. Rule 8 says that

if under environment A, the abstract value of variable x is represented by constraint

variable α, then x has abstract value Ci only if α = Ci. Rule 11 presents the rule for

function calls: If the input to function f has the abstract value Ck under constraint

Fk, and the constraint under which f returns Ci is Πf,α,Ci , then f(e) evaluates to Ci

under the constraint Fk ∧ Πf,α,Ci [Ck/α].

Example 11 Suppose we analyze the following function:

define f(x) = if ((x = C1) ∨ (y = C2)) then C1 else f(C1)

where y models an environment choice and the only abstract values are C1 and C2.

Then  Πf,α,C1

. . .

 .β =

 (α = C1 ∨ β = C2)∨
¬(α = C1 ∨ β = C2) ∧Πf,α,C1 [C1/α]

. . .


is the equation computed by the inference rules. Note that the substitution [C1/α]

in the formula expresses that the argument of the recursive call to f is C1.

We briefly sketch the semantics of constraints. Constraints are interpreted over

the standard four-point lattice with ⊥≤ true, false,> and ⊥, true, false ≤ >, where

∧ is meet, ∨ is join, and ¬⊥=⊥, ¬> = >, ¬true = false, and ¬false = true. Given

an assignment θ for the choice variables β, the meaning of a system of equations

E is a standard limit of a series of approximations θ(E0), θ(E1), . . . generated by

repeatedly unfolding E. We are interested in both the least fixed point (where the

first approximation of all Π variables is ⊥) and greatest fixed point (where the first

approximation is >) semantics. The value ⊥ in the least fixed point semantics (resp.

> in the greatest fixed point) represents non-termination of the analyzed program.

2Note that rules 3, 10, 11, and 12 implicitly quantify over multiple hypotheses; we have omitted
explicit quantifiers to avoid cluttering the rules.
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3.1.1 Reduction to Boolean Constraints

Our main technical result is a sound and complete method for answering satisfiability

(may) and validity (must) queries for the constraints of Definition 8. As outlined in

the beginning, the algorithm has four major steps:

• eliminate choice variables by extracting strongest necessary and weakest suffi-

cient conditions;

• rewrite the equations to preserve satisfiability/validity under substitution;

• eliminate recursion by a fixed point computation;

• finally, apply a decision procedure to the closed-form equations.

Because our abstraction is finite, constraints from Definition 8 can be encoded

using boolean logic, and thus our target decision procedure for the last step is boolean

SAT. We must at some point translate the constraints from Figure 3.1 into equivalent

boolean constraints; we perform this translation first, before performing any of the

steps above.

For every variable ϕ (ϕ ∈ {α, β}) in the constraint language, we introduce boolean

variables ϕi1, ..., ϕin such that ϕij is true if and only if ϕi = Cj. We map the equation

variables Πf,α,Ci to boolean variables of the same name. A variable Πf,α,Ci represents

the condition under which f returns Ci, hence we refer to Πf,α,Ci ’s as return variables.

We also translate each s1 = s2 occurring in the constraints as:

Ci = Ci ⇔ true

Ci = Cj ⇔ false i 6= j

ϕi = Cj ⇔ ϕij

Note that subexpressions of the form ϕi = ϕj never appear in the constraints gen-

erated by the system of Figure 3.1. We replace every substitution [Cj/αi] by the

boolean substitution [true/αij] and [false/αik] for j 6= k.
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Example 12 The first row of Example 11 results in the following boolean constraints

(here boolean variable α1 represents the equation α = C1 and β2 represents β = C2):

Πf,α,C1 .β2 = (α1 ∨ β2) ∨ (¬(α1 ∨ β2) ∧ Πf,α,C1 [true/α1])

In the general case, the constraints from Figure 3.1 result in a recursive system of

boolean constraints of the following form:

Equation 1 
[~Πf1,α,Ci ].

~β1 = [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci ].
~βk = [~φki(~αk, ~βk, ~Π[~bk/~α])]


where ~Π = 〈Πf1,α,C1 , ...,Πfk,α,Cn〉 and bi ∈ {true, false} and the φ’s are quantifier-free

formulas over ~β, ~α, and ~Π.

Observe that any solution to the constraints generated according to the rules from

Figure 3.1 must assign exactly one abstract value to each variable. More specifically,

in the original semantics, ϕ = Ci∧ϕ = Cj is unsatisfiable for any i, j such that i 6= j,

and
∨
i ϕ = Ci is valid; however, in the boolean encoding ϕi∧ϕj and ¬

∨
i ϕi are both

still satisfiable. Hence, to encode these implicit uniqueness and existence axioms of

the original constraints, we define satisfiability and validity in the following modified

way:

SAT∗(φ) ≡ SAT(φ ∧ ψexist ∧ ψunique)

VALID∗(φ) ≡ ({ψexist} ∪ {ψunique} |= φ)

where φexist and φunique are defined as:

1. Uniqueness: ψunique = (
∧
j 6=k ¬(vij ∧ vik))

2. Existence: ψexist = (
∨
j vij)
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3.2 Strongest Necessary and

Weakest Sufficient Conditions

As discussed in previous sections, a key step in our algorithm is extracting nec-

essary/sufficient conditions from a system of constraints E. The necessary (resp.

sufficient) conditions should be satisfiable (resp. valid) if and only if E is satisfiable

(resp. valid). This section makes precise exactly what necessary/sufficient conditions

we need; in particular, there are two technical requirements:

• The necessary (resp. sufficient) conditions should be as strong (resp. weak) as

possible.

• The necessary/sufficient conditions should be only over observable variables.

In the following, we use V+(φ) to denote the set of observable variables in φ, and

V−(φ) to denote the set of choice variables in φ.

Definition 9 Let φ be a quantifier-free formula. We say dφe is the strongest observ-

able necessary condition for φ if:

(1) φ⇒ dφe (V−(dφe) = ∅)
(2) ∀φ′.((φ⇒ φ′)⇒ (dφe ⇒ φ′))

where V−(φ′) = ∅ ∧ V+(φ′) ⊆ V+(φ)

The first condition says dφe is necessary for φ, and the second condition ensures dφe is

stronger than any other necessary condition with respect to φ’s observable variables

V+(φ). The additional restriction V−(dφe) = ∅ enforces that the strongest necessary

condition for a formula φ has no choice variables.

Definition 10 Let φ be a quantifier-free formula. We say bφc is the weakest observ-

able sufficient condition for φ if:

(1) bφc ⇒ φ (V−(bφc) = ∅)
(2) ∀φ′.((φ′ ⇒ φ)⇒ (φ′ ⇒ bφc))

where V−(φ′) = ∅ ∧ V+(φ′) ⊆ V+(φ)
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1. void f(int* p, int flag) {

2. if(!p || !flag) return;

3. char* buf = malloc(sizeof(char));

4. if(!buf) return;

5. *buf = getUserInput();

6. if(*buf==’i’)

7. *p = 1;

8. }
Figure 3.2: Example code.

Let φ be the condition under which some program property P holds. Then, by

virtue of dφe being a strongest necessary condition, querying the satisfiability of dφe
is equivalent to querying the satisfiability of the original constraint φ for deciding if

property P may hold. Since dφe is a necessary condition for φ, the satisfiability of

φ implies the satisfiability of dφe. More interestingly, because dφe is the strongest

such necessary condition, the satisfiability of dφe also implies the satisfiability of φ;

otherwise, a stronger necessary condition would be false. Analogously, querying the

validity of bφc is equivalent to querying the validity of the original constraint φ for

deciding if property P must hold.

One can think of strongest necessary and weakest sufficient conditions of φ as

defining a tight observable bound on φ. If φ has only observable variables, then the

strongest necessary and weakest sufficient conditions of φ are equivalent to φ. If φ

has only unobservable variables and φ is not equivalent to true or false, then the best

possible bounds are dφe = true and bφc = false. Intuitively, the “difference” between

strongest necessary and weakest sufficient conditions defines the amount of unknown

information present in the original formula.

We now continue with an informal example illustrating the usefulness of strongest

observable necessary and weakest sufficient conditions for statically analyzing pro-

grams.

Example 13 Consider the implementation of f given in Figure 3.3, and suppose we

want to determine the condition under which pointer p is dereferenced in f. It is easy

to see that the exact condition for p’s dereference is given by the constraint:

p!=NULL ∧ flag!=0 ∧ buf!=NULL ∧ ∗buf ==′ i′
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Since the return value of malloc (i.e., buf) and the user input (i.e., ∗buf) are

statically unknown, the strongest observable necessary condition for f to dereference

p is given by the simpler condition:

p!=NULL ∧ flag!=0

On the other hand, the weakest observable sufficient condition for the dereference is

false, which makes sense because no restriction on the arguments to f can guarantee

that p is dereferenced. Observe that these strongest necessary and weakest sufficient

conditions are as precise as the original formula for deciding whether p is dereferenced

by f at any call site of f, and furthermore, these formulas are much more concise than

the original formula.

3.3 Strongest Necessary and

Weakest Sufficient Conditions

As discussed in previous sections, a key step in our algorithm is extracting nec-

essary/sufficient conditions from a system of constraints E. The necessary (resp.

sufficient) conditions should be satisfiable (resp. valid) if and only if E is satisfiable

(resp. valid). This section makes precise exactly what necessary/sufficient conditions

we need; in particular, there are two technical requirements:

• The necessary (resp. sufficient) conditions should be as strong (resp. weak) as

possible.

• The necessary/sufficient conditions should be only over observable variables.

In the following, we use V+(φ) to denote the set of observable variables in φ, and

V−(φ) to denote the set of choice variables in φ.
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Definition 11 Let φ be a quantifier-free formula. We say dφe is the strongest ob-

servable necessary condition for φ if:

(1) φ⇒ dφe (V−(dφe) = ∅)
(2) ∀φ′.((φ⇒ φ′)⇒ (dφe ⇒ φ′))

where V−(φ′) = ∅ ∧ V+(φ′) ⊆ V+(φ)

The first condition says dφe is necessary for φ, and the second condition ensures dφe is

stronger than any other necessary condition with respect to φ’s observable variables

V+(φ). The additional restriction V−(dφe) = ∅ enforces that the strongest necessary

condition for a formula φ has no choice variables.

Definition 12 Let φ be a quantifier-free formula. We say bφc is the weakest observ-

able sufficient condition for φ if:

(1) bφc ⇒ φ (V−(bφc) = ∅)
(2) ∀φ′.((φ′ ⇒ φ)⇒ (φ′ ⇒ bφc))

where V−(φ′) = ∅ ∧ V+(φ′) ⊆ V+(φ)

Let φ be the condition under which some program property P holds. Then, by

virtue of dφe being a strongest necessary condition, querying the satisfiability of dφe
is equivalent to querying the satisfiability of the original constraint φ for deciding if

property P may hold. Since dφe is a necessary condition for φ, the satisfiability of

φ implies the satisfiability of dφe. More interestingly, because dφe is the strongest

such necessary condition, the satisfiability of dφe also implies the satisfiability of φ;

otherwise, a stronger necessary condition would be false. Analogously, querying the

validity of bφc is equivalent to querying the validity of the original constraint φ for

deciding if property P must hold.

One can think of strongest necessary and weakest sufficient conditions of φ as

defining a tight observable bound on φ. If φ has only observable variables, then the

strongest necessary and weakest sufficient conditions of φ are equivalent to φ. If φ

has only unobservable variables and φ is not equivalent to true or false, then the best

possible bounds are dφe = true and bφc = false. Intuitively, the “difference” between
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1. void f(int* p, int flag) {

2. if(!p || !flag) return;

3. char* buf = malloc(sizeof(char));

4. if(!buf) return;

5. *buf = getUserInput();

6. if(*buf==’i’)

7. *p = 1;

8. }
Figure 3.3: Example code.

strongest necessary and weakest sufficient conditions defines the amount of unknown

information present in the original formula.

We now continue with an informal example illustrating the usefulness of strongest

observable necessary and weakest sufficient conditions for statically analyzing pro-

grams.

Example 14 Consider the implementation of f given in Figure 3.3, and suppose we

want to determine the condition under which pointer p is dereferenced in f. It is easy

to see that the exact condition for p’s dereference is given by the constraint:

p!=NULL ∧ flag!=0 ∧ buf!=NULL ∧ ∗buf ==′ i′

Since the return value of malloc (i.e., buf) and the user input (i.e., ∗buf) are

statically unknown, the strongest observable necessary condition for f to dereference

p is given by the simpler condition:

p!=NULL ∧ flag!=0

On the other hand, the weakest observable sufficient condition for the dereference is

false, which makes sense because no restriction on the arguments to f can guarantee

that p is dereferenced. Observe that these strongest necessary and weakest sufficient

conditions are as precise as the original formula for deciding whether p is dereferenced

by f at any call site of f, and furthermore, these formulas are much more concise than

the original formula.
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3.4 Solving the Constraints

In this section, we now return to the problem of computing strongest necessary and

weakest sufficient conditions containing only observable variables for each Πα,fi,Cj

from System of Equations 1. Our algorithm first eliminates the choice variables

from every formula. We then manipulate the system to preserve strongest necessary

(weakest sufficient) conditions under substitution (Section 3.4.2). Finally, we solve

the equations to eliminate recursive constraints (Section 3.4.3), yielding a system of

(non-recursive) formulas over observable variables. Each step preserves the satisfia-

bility/validity of the original equations, and thus the original may/must query can

be decided using a standard SAT solver on the final formulas.

3.4.1 Eliminating Choice Variables

To eliminate the choice variables from the formulas in Figure 1, we use the following

well-known result for computing strongest necessary and weakest sufficient conditions

for boolean formulas [13]:

Lemma 3 The strongest necessary and weakest sufficient conditions of boolean

formula φ not containing variable β are given by:

SNC(φ, β) ≡ φ[true/β] ∨ φ[false/β]

WSC(φ, β) ≡ φ[true/β] ∧ φ[false/β]

Since our definition of satisfiability and validity must also take into account the im-

plicit existence and uniqueness conditions, this standard way of computing strongest

necessary and weakest sufficient conditions of boolean formulas must be slightly modi-

fied. In particular, let β be a choice variable to be eliminated, and let ψexist and ψunique

represent the existence and uniqueness conditions involving β. Then, we compute
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strongest necessary and weakest sufficient conditions as follows:

SNC∗(φ, β) ≡ (φ ∧ ψexist ∧ ψunique)[true/β]∨
(φ ∧ ψexist ∧ ψunique)[false/β]

WSC∗(φ, β) ≡ (φ ∨ ¬ψexist ∨ ¬ψunique)[true/β]∧
(φ ∨ ¬ψexist ∨ ¬ψunique)[false/β]

After applying these elimination procedures to the constraint system from Fig-

ure 1, we obtain two distinct sets of equations of the form:

Equation 2

ENC =


dΠf1,α,C1e = φ′11( ~α1, ~dΠe[~b1/~α])

...

dΠfk,α,Cne = φ′kn(~αk, ~dΠe[~bk/~α])


ESC is analogous to ENC.

Example 15 Consider the function given in Example 11, for which boolean con-

straints are given in Example 12. We compute the weakest sufficient condition for

Πf,α,C1 :

bΠf,α,C1c = (α1 ∨ true) ∨
(¬(α1 ∨ true) ∧ bΠf,α,C1c[true/α1])

∧ (α1 ∨ false) ∨
(¬(α1 ∨ false) ∧ bΠf,α,C1c[true/α1])

= α1 ∨ (¬α1 ∧ bΠf,α,C1c[true/α1])

The reader can verify that the strongest necessary condition for Πf,α,C1 is true. The

existence and uniqueness constraints are omitted since they are redundant.

3.4.2 Preservation Under Substitution

Our goal is to solve the recursive system given in System of Equations 2 by an

iterative, fixed point computation. However, there is a problem: as it stands, System

of Equations 2 may not preserve strongest necessary and weakest sufficient conditions

under substitution for two reasons:
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• Strongest necessary and weakest sufficient conditions are not preserved under

negation (i.e., ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc), and the formulas from System

of Equations 2 contain negated return (Π) variables. Therefore, substituting

¬Π by ¬dΠe and ¬bΠc would yield incorrect necessary and sufficient conditions,

respectively.

• The formulas from System of Equations 2 may contain contradictions and tau-

tologies involving return variables, causing the formula to be weakened (for

necessary conditions) and strengthened (for sufficient conditions) as a result of

substituting the return variables with their respective necessary and sufficient

conditions. As a result, the obtained necessary (resp. sufficient) conditions may

not be as strong (resp. as weak) as possible.

Fortunately, both of these problems can be remedied. For the first problem,

observe that while ¬dφe 6⇔ d¬φe and ¬bφc 6⇔ b¬φc, the following equivalences do

hold:

d¬φe ⇔ ¬bφc b¬φc ⇔ ¬dφe

In other words, the strongest necessary condition of ¬φ is the negation of the weakest

sufficient condition of φ, and similarly, the weakest sufficient condition of ¬φ is the

negation of the strongest necessary condition of φ. Hence, by simultaneously com-

puting strongest necessary and weakest sufficient conditions, one can solve the first

problem using the above equivalences.

To overcome the second problem, an obvious solution is to convert the formula

to disjunctive normal form and drop contradictions before applying a substitution in

the case of strongest necessary conditions. Similarly, for weakest sufficient conditions,

the formula may be converted to conjunctive normal form and tautologies can be

removed. This rewrite explicitly enforces any contradictions and tautologies present

in the original formula such that substituting the Π variables with their necessary

(resp. sufficient) conditions cannot weaken (resp. strengthen) the solution.
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3.4.3 Eliminating Recursion

Since we now have a way of preserving strongest necessary and weakest sufficient

conditions under substitution, it is possible to obtain a closed form solution containing

only observable variables to System of Equations 2 using a standard fixed point

computation technique. To compute a least fixed point, we use the following lattice:

⊥NC =
−−→
falsen·m ⊥SC =

−−→
truen·m

>NC =
−−→
truen·m >SC =

−−→
falsen·m

~γ1 tNC ~γ2 = 〈..., γ1i ∨ γ2i, ...〉 ~γ1 tSC ~γ2 = 〈..., γ1i ∧ γ2i, ...〉

The lattice L is finite (up to logical equivalence) since there are only a finite number

of variables αij and hence only a finite number of logically distinct formulas. This

results in a system of bracketing constraints of the form:

Equation 3

〈ENC, ESC〉 =


〈dΠf1,α,C1

e, bΠf1,α,C1
c〉 = 〈φ′11( ~α1), φ′′11( ~α1)〉

...

〈dΠfk,α,Cne, bΠfk,α,Cnc〉 = 〈φ′kn( ~αk), φ′′kn( ~αk)〉



Recall from Section 3.1 that the original constraints have four possible meanings,

namely ⊥, true, false, and >, while the resulting closed-form strong necessary and

weakest sufficient conditions evaluate to either true or false. This means that in some

cases involving non-terminating program paths, the original system of equations may

have meaning⊥ in least fixed-point semantics (or> in greatest fixed-point semantics),

but the algorithm presented in this chapter may return either true or false, depending

on whether a greatest or least fixed point is computed. Hence, our results are qualified

by the assumption that the program terminates.

Example 16 Recall that in Example 15 we computed bΠf,α,C1c for the function f

defined in Example 11 as:

bΠf,α,C1c = α1 ∨ (¬α1 ∧ bΠf,α,C1c[true/α1])
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To find the weakest sufficient condition for Πf,α,C1 , we first substitute true for bΠf,α,C1c.
This yields the formula α1 ∨ ¬α1, a tautology. As a result, our algorithm finds the

fixed point solution true for the weakest sufficient condition of Πf,α,C1 . Since f is

always guaranteed to return C1, the weakest sufficient condition computed using our

algorithm is the most precise solution possible.

3.5 Limitations

While the technique proposed in this chapter yields the strongest necessary and weak-

est sufficient conditions for a property P with respect to a finite abstraction, it is not

precise for separately tracking the conditions for two distinct properties P1 and P2 and

then combining the individual results. In particular, if φ1 and φ2 are the strongest nec-

essary conditions for P1 and P2 respectively, then φ1∧φ2 does not yield the strongest

necessary condition for P1 and P2 to hold together because strongest necessary con-

ditions do not distribute over conjunctions, and weakest sufficient conditions do not

distribute over disjunctions. Hence, if one is interested in combining reasoning about

two distinct properties, it is necessary to compute strongest necessary and weakest

sufficient conditions for the combined property.

While it is important in our technique that the set of possible values can be

exhaustively enumerated (to guarantee the convergence of the fixed point computation

and to be able to convert the constraints to boolean logic), it is not necessary that the

set be finite, but only finitary, that is, finite for a given program. Furthermore, while

it is clear that the technique can be applied to finite-state properties or enumerated

types, it can also be extended to any property where a finite number of equivalence

classes can be derived to describe the possible outcomes. However, the proposed

technique is not complete for arbitrary non-finite domains.

3.6 Implementation

We have implemented our method in Saturn, a summary-based, context, and in-

traprocedurally path-sensitive analysis framework [1]. Our implementation extends
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the existing Saturn infrastructure to allow client analyses to query fully interpro-

cedural strongest necessary and weakest sufficient conditions for the intraprocedu-

ral constraints computed by Saturn, where function return values and side effects

are represented as unconstrained variables.3 For example, given an intraprocedu-

ral constraint computed by Saturn, such as x = 1 ∧ queryUser(y) = true for the

queryUser function discussed earlier, our analysis yields the interprocedural con-

straints x = 1 ∧ y = true as the strongest necessary condition and false as the

weakest sufficient condition.

While it is important in our technique that the set of possible values can be

exhaustively enumerated (i.e., so that the complement of ¬Πα,Ci is expressible as a

finite disjunction, recall Section 3.4.2), it is not necessary that the set be finite, but

only finitary, that is, finite for a given program. Furthermore, while it is clear that

the technique can be applied to finite state properties or enumerated types, it can

also be extended to any property where a finite number of equivalence classes can be

derived to describe the possible outcomes. Our implementation goes beyond finite

state properties; it first collects the set of all predicates corresponding to comparisons

between function return values (and side effects) and constants. For instance, if a

condition such as if(foo(a) == 3) is used at some call site of foo, then we compute

strongest necessary and weakest sufficient conditions for Πfoo,a,3 and its negation.

This technique allows us to finitize the interesting set of return values associated with

a function and makes it possible to use the algorithms described so far with minor

modifications. Note that any finitization strategy entails a loss of precision in some

situations. For example, if the return values of two arbitrary functions f and g are

compared with each other, the strategy we use may not allow us to determine the

exact necessary and sufficient condition under which f and g return the same value.

The algorithm of Section 3.4.3 computes a least fixed point. However, the under-

lying Saturn infrastructure can fail by exceeding resource limits (e.g., time-outs); if

any iteration of the fixed point computation failed to complete we would be left with

unsound approximations. Thus, our implementation computes a greatest fixed point,

3Saturn treats loops as tail-recursive functions; hence, we also compute strongest necessary and
weakest sufficient conditions for side effects of loops.
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Figure 3.4: Frequency of necessary and sufficient condition sizes (in terms of the
number of boolean connectives) at sinks for Linux

as we can halt at any iteration and still have sound results. The greatest fixed point

is less precise than the least fixed point in some cases, such as for non-terminating

computation paths. For instance, for the simple everywhere non-terminating function:

define f(x) = if(f(x) = c1) then c1 else c2

the greatest fixed point computation yields true for the strongest necessary condition

for f returning c1 while the least fixed point computation yields false.
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Linux Samba OpenSSH
2.6.17.1 3.0.23b 4.3p2

Average original guard size 3.00 4.45 3.02

Average NC size (sink) 0.75 1.02 0.75

Average SC size (sink) 0.48 0.67 0.50

Average NC size (source) 2.39 2.82 1.39

Average SC size (source) 0.45 0.49 0.67

Average call chain depth 5.98 4.67 2.03

Figure 3.5: Necessary and sufficient condition sizes (in terms of number of boolean
connectives in the formula) for pointer dereferences.

3.7 Experimental Results

We conducted two sets of experiments to evaluate our technique on OpenSSH, Samba,

and the Linux kernel. In the first set of experiments we compute necessary and

sufficient conditions for pointer dereferences. Pointer dereferences are ubiquitous in

C programs and computing the necessary and sufficient conditions for each and every

syntactic pointer dereference to execute is a good stress test for our approach. As a

second experiment, we incorporate our technique into a null dereference analysis and

demonstrate that our technique reduces the number of false positives by close to an

order of magnitude without resorting to ad-hoc heuristics or compromising soundness.

In our first set of experiments, we measure the size of necessary and sufficient

conditions for pointer dereferences both at sinks, where pointers are dereferenced,

and at sources, where pointers are first allocated or read from the heap. In Figure

3.3, consider the pointer dereference (sink) at line 11. For the sink experiments, we

would, for example, compute the necessary and sufficient conditions for p’s dereference

as p! = NULL∧flag! = 0 and false respectively. To illustrate the source experiment,

consider the following call sites of function f from Figure 3.3:

void foo() {

int* p = malloc(sizeof(int)); /*source*/

...

bar(p, flag, x);

}
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void bar(int* p, int flag, int x) {

if(x > MAX) *p = -1;

else f(p, flag);

}

The line marked /*source*/ is the source of pointer p;the necessary condition at p’s

source for p to be ultimately dereferenced is x > MAX∨(x <= MAX∧p! = NULL∧flag! =

0) and the sufficient condition is x > MAX.

The results of the sink experiments for Linux are presented in Figure 3.4, and the

results of source experiments are given in Figure 3.6. The table in Figure 3.5 presents

a summary of the results of both the source and sink experiments for OpenSSH,

Samba, and Linux. The histogram in Figure 3.4 plots the size of necessary (resp.

sufficient) conditions against the number of guards that have a necessary (resp. suffi-

cient) condition of the given size. In this figure, red bars indicate necessary conditions,

green bars indicate sufficient conditions, and note that the y-axis is drawn on a log-

scale. Observe that 95% of all necessary and sufficient conditions have fewer than

five subclauses, and 99% have fewer than ten subclauses, showing that necessary

and sufficient conditions are small in practice. Figure 3.5 presents average necessary

and sufficient condition sizes at sinks (rows 2 and 3) for all three applications we

analyzed, confirming that average necessary and sufficient condition sizes are con-

sistently small across all of our benchmarks. Further, the average size of necessary

and sufficient conditions are considerably smaller than the average size of the original

guards (which contain choice variables as well as the place-holder return variables

representing unsolved constraints, denoted by Π in our formalism).

Figure 3.6 plots the maximal length of call chain from a source to any feasible sink

against the size of necessary and sufficient condition sizes at sources for Linux. In

this figure, the points mark average sizes, while the error bars indicate one standard

deviation. First, observe that the size of necessary and sufficient conditions is small

and does not grow with the length of the call chain. Second, note that the necessary

condition sizes are typically larger than sufficient condition sizes; the difference is

especially pronounced as the call chain length grows. Figure 3.5 also corroborates
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Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Figure 3.7: Results of null dereference experiments for the interprocedurally path-
sensitive (first three columns) and intraprocedurally path-sensitive, but interproce-
durally path-insensitive (last three columns) analyses

this trend for the other benchmark applications; average size of necessary conditions

(row 4) is larger than that of sufficient conditions (row 5) at sources.

Our second experiment applies these techniques to finding null dereference errors.

We chose null dereferences as an application because checking for null dereference

errors with sufficient precision often requires tracking complex path conditions. To

identify null dereference errors, we query the strongest necessary condition g1 for

the constraint under which a pointer p is null and the strongest necessary condition

g2 of the constraint under which p is dereferenced. A null pointer error is feasible

if SAT(g1 ∧ g2). Our implementation performs a bottom-up analysis and reports

errors in the first method where a feasible path from a null value to a dereference is

determined.

The first three columns of Figure 3.7 give the results of our fully (interproce-

durally) path-sensitive null dereference experiments, and the last three columns of

the same figure present the results of the intraprocedurally path-sensitive, but in-

terprocedurally path-insensitive null dereference experiments. One important caveat

is that the numbers reported here exclude error reports arising from array elements

and recursive fields of data structures. Saturn does not have a sophisticated shape

analysis; hence, the overwhelming majority (> 95%) of errors reported for elements

of unbounded data structures are false positives. However, shape analysis is an or-

thogonal problem; we leave incorporating shape analysis as future work. (To give the

reader a rough idea of number of reports involving arrays and unbounded data struc-

tures, the number of total reports is 50 and 170 with and without full path-sensitivity
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respectively for OpenSSH.)

A comparison of the results of the intraprocedurally and interprocedurally path-

sensitive analyses shows that our technique reduces the number of false positives by

close to an order of magnitude without resorting to heuristics or compromising sound-

ness in order to eliminate errors arising from interprocedurally correlated branches.

Note that the existence of false positives for the fully path-sensitive experiments does

not contradict our previous claim that our technique is complete. First, even for

finite domains, our technique can only provide relative completeness ; false positives

can still arise from orthogonal sources of imprecision in the analysis (e.g., imprecise

function pointer targets, inline assembly, implementation bugs, time-outs). Second,

while our results are complete for finite domains, we cannot guarantee completeness

for arbitrary domains. For example, when arbitrary arithmetic is involved in path

constraints, our technique may fail to compute the strongest necessary and weakest

sufficient conditions.

The null dereference experiments were performed on a shared cluster, making

it difficult to give precise running times. A typical run with approximately 10-30

cores took around tens of minutes on SSH, a few hours on Samba, and up to more

than ten hours on Linux. The running times (as well as time-out rates) of the fully

path-sensitive and the intraprocedurally path-sensitive analysis were comparable for

OpenSSH and Samba, but the less precise analysis took substantially longer for Linux

because the fully path-sensitive analysis rules out many more interprocedurally in-

feasible paths, substantially reducing summary sizes.

The results of Figure 3.7 show that interprocedurally path-sensitive analysis is

important for practical verification of software. For example, according to Figure

3.7, finding a single correct error report in Samba requires inspecting approximately

22.3 error reports for the interprocedurally path-insensitive analysis, while it takes

2.8 inspections to find a correct bug report with the fully path-sensitive analysis,

presumably reducing user effort by a factor of 8.
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3.8 Related Work

In this section we survey previous approaches to path- and context-sensitive analy-

sis. The earliest path-sensitive techniques were developed for explicit state model-

checking, where essentially every path through the program is symbolically executed

and checked for correctness one at a time. In practice, this approach is used to verify

relatively small finite state systems, such as hardware protocols [19].

More recent software model-checking techniques address sound and complete path-

and context-sensitive analysis [7, 6, 38]. Building on techniques proposed for context-

sensitivity [71, 77], Ball et al. propose Bebop, a whole-program model checking tool

for boolean programs [7, 6]. Bebop is similar to our approach in that it exploits

the scope of local variables through implicit existential quantification and also deals

with recursion through context-free reachability. However, Bebop combines these

two steps, while our approach separates them: we first explicitly construct formu-

las with choice variables and then subsequently perform a reachability analysis as a

fixed point computation. This design allows us to insert a new step in between that

eliminates these choice variables, in particular to convert them to (normally) much

smaller formulas that preserve may or must queries prior to performing the global

reachability computation. This extra step is, we believe, the reason that we are able

to scale our approach to programs much larger than have been previously reported

for systems using model checking of boolean programs [7, 6, 38]. Another advantage

of this approach is that we can use choice variables to model fixed, but unknown,

parts of the environment. Our method is also modular, in contrast to most software

model checking systems that require the entire program.

Current state-of-the-art software model-checking tools are based on counter-example

driven predicate abstraction [8, 10]. Predicate abstraction techniques iteratively refine

an initial coarse abstraction until a property of interest is either verified or refuted.

Refinement-based approaches may not terminate, as the sequence of progressively

more precise abstractions is not guaranteed to converge. Our results show that for a

large class of properties the exact path- and context-sensitive conditions can be com-

puted directly without refinement and for much larger programs (millions of lines)
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than the largest programs to which iterative refinement approaches have been applied

(about one hundred thousand lines). We believe our techniques could be profitably

incorporated into software model checking systems.

An obstacle to scalability in early predicate abstraction techniques was the number

of irrelevant predicates along a path. Craig interpolation [10] allows discovery of

locally useful predicates and, furthermore, these predicates only involve predicates

in scope at a particular program point. Our approach addresses similar issues in a

different way: our technique also explicitly accounts for variable scope, and extracting

necessary/sufficient conditions eliminates many predicates irrelevant to the queries we

want to decide. Unlike interpolants, our technique does not require counter-example

traces, and thus does not require the additional machinery of theorem provers and

successive refinement steps.

Some of the most scalable techniques for path- and context-sensitive analysis are

either unsound or incomplete. For example, ESP is a light-weight and scalable path-

sensitive analysis that tracks branch correlations using the idea that conditional tests

resulting in different analysis states should be tracked separately, while branches lead-

ing to the same analysis state should be merged [30]. ESP’s technique is a heuristic

and sometimes fails to compute the best path-sensitive condition. Another example

of an incomplete system is F-Soft [52]. F-Soft unrolls recursive functions a fixed num-

ber of times, resulting in a loss of precision beyond some predetermined recursion

depth of k. In contrast, our approach does not impose any limit on the recursion

depth and therefore does not lose completeness for programs with recursion. A final

example of an incomplete system is Saturn [1]. While Saturn analyses are generally

fully path-sensitive within a single procedure, Saturn has no general mechanism for

interprocedural path-sensitivity and published Saturn analyses are either interproce-

durally path-insensitive or use heuristics to determine which predicates are important

to track across function boundaries [80, 33, 17, 48]. We implement the ideas proposed

in this chapter in Saturn.

Our technique of computing necessary and sufficient conditions is related to the

familiar notion of over- and under-approximations used both in abstract interpretation
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and model checking. For example, Schmidt [76] proposes the idea of over and under-

approximating states in abstract interpretation and presents a proof of soundness and

completeness for a class of path-insensitive analysis problems. Many model-checking

approaches also incorporate the idea of over- and under-approximating reachable

states to obtain a more efficient fixed point computation [11, 29]. Our contribution is

to show how to compute precise necessary and sufficient conditions while combining

context-sensitivity, path-sensitivity, and recursion.

The idea of computing strongest necessary and weakest sufficient conditions for

propositional formulae dates back to Boole’s technique of eliminating the middle term

[13]. Lin presents efficient algorithms for strongest necessary and weakest sufficient

conditions for fragments of first-order logic, but does not explore computing strongest

necessary and weakest sufficient conditions for the solution of recursive constraints

[59].

In our system, the analysis of a function f may be different for different call-sites

even within f ’s definition, which gives it the expressiveness of context-free reachability

(in the language of dataflow analysis) or polymorphic recursion (in the language

of type theory). Most polymorphic recursive type inference systems are based on

instantiation constraints [49]. Our formalization is closer to Mycroft’s original work

on polymorphic recursion, which represents instantiations directly as substitutions

[65].



Chapter 4

Modular Heap Analysis

It is well-known that precise static reasoning about the heap is a key requirement for

successful verification of real-world software. In standard imperative languages, such

as Java, C, and C++, much of the interesting computation happens as values flow

in and out of the heap, making it crucial to use a precise, context- and flow-sensitive

heap analysis in program verification tools. Flow-sensitivity, in particular, enables

strong updates. Informally, when analyzing an assignment a := b, a strong update

replaces the analysis information for a with the analysis information for b. This

natural rule is unsound if a is a summary location, meaning a may represent more

than one concrete location. In previous work there is an apparent tension between

scalability and precision in heap analysis:

• For scalability, it is desirable to analyze the program in pieces, for example, one

function at a time. Many of the most scalable analyses in the literature are

modular [1, 20].

• For precision, a large body of empirical evidence shows it is necessary to perform

strong updates wherever possible [72, 32].

It is not obvious, however, how to perform strong updates in a modular heap

analysis. Consider a function h(x, y){e}. When analyzing h in isolation, we do not

know how many, or which, locations x and y may point to at a call site of h—it

72
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may be many (if either x or y is a summary location), two, or even one (if x and

y are aliases). Without this information, we cannot safely apply strong updates

to x and y in e. Thus, while there is a large body of existing work on flow- and

context-sensitive heap analysis, most algorithms for this purpose either perform a

whole-program analysis or perform strong updates under very restrictive conditions.

In this chapter, we present a modular, strictly bottom-up, flow- and context-

sensitive heap analysis that uses summaries to apply strong updates to heap locations

at call sites. As corraborated by our experiments, strong updates are crucial for the

level of precision required for successful verification. Furthermore, we are interested

in a modular, summary-based analysis because it offers the following key advantages

over a whole program analysis:

• Reuse of analysis results: A major problem with whole-program analysis is that

results for a particular program component cannot be reused, since functions

are analyzed in a particular context. For instance, adding a single caller to

a library may require complete re-analysis of the entire library. In contrast,

modular analyses allow complete reuse of analysis results because procedure

summaries are valid in any context.

• Analysis scalability: Function summaries express a function’s behavior in terms

of its input/output interface, abstracting away its internal details. We show

experimentally that our function summaries do not grow with program size;

thus, an implementation strategy that analyzes a single function at a time,

requiring only one function and its callee’s summaries to be in memory, should

scale to arbitrarily large programs.

• Parallelizability: In modular analysis, any two functions that do not have

a caller/callee relationship can be analyzed in parallel. Thus, such analyses

naturally exploit multi-core machines.

To illustrate our approach, consider the following simple function f along with its

three callers g1, g2, and g3:
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Figure 4.1: Summary associated with function f

void f(int** a, int** b, int* p, int* q) {

*a = p; *b = q; **a = 3; **b = 4; }

void g1() {

int** a, int** b;

a = new int*;

b = new int*;

int p = 0, q=0;

f(a, b, &p, &q);

assert(p == 3); }

void g2() {

int** a, int** b;

a = new int*;

b = new int*;

int p = 0;

f(a, b, &p, &p);

assert(p == 4); }

void g3() {

int** a, int** b;

a = new int*;

b = a;

int p = 0, q=0;

f(a, b, &p, &q);

assert(p == 0); }

Here, although the body of f is conditional- and loop-free, the value of *p after the

call to f may be either 3, 4, or remain its initial value. In particular, in contexts

where p and q are aliases (e.g., g2), *p is set to 4; in contexts where neither a and b

nor p and q are aliases (e.g., g1), *p is set to 3, and in contexts where a and b are

aliases but p and q are not (e.g., g3), the value of *p is unchanged after a call to f.

Furthermore, to discharge the assertions in g1, g2, and g3, we need to perform strong

updates to all the memory locations.

To give the reader a flavor of our technique, the function summary of f computed

by our analysis is shown in Figure 4.1, which shows the points-to graph on exit from f

(i.e., the heap when f returns). Here, points-to edges between locations are qualified

by constraints, indicating the condition under which this points-to relation holds.

The meaning of a constraint such as ∗p = ∗q is that the location pointed to by p
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and the location pointed to by q are the same, i.e., p and q are aliases. Observe that

Figure 4.1 encodes all possible updates to *p precisely: In particular, this summary

indicates that *p has value 3 under constraint ∗a 6= ∗b ∧ ∗p 6= ∗q (i.e., neither a and

b nor p and q are aliases); *p has value 4 if p and q are aliases, and *p retains its

initial value (**p) otherwise.

There are three main insights underlying our approach:

• First, we observe that a heap abstraction H at any call site of f can be over-

approximated as the finite union of some structurally distinct skeletal points-to

graphs Ĥ1, . . . Ĥm where each abstract location points-to at most one location.

This observation yields a naive, but sound, way of performing summary-based

analysis where the heap state after a call to function f is conditioned upon the

skeletal graph at the call site.

• Second, we symbolically encode all possible skeletal heaps on entry to f in a

single symbolic heap where points-to edges are qualified by constraints. This

insight allows us to obtain a single, polymorphic heap summary valid at any

call site.

• Third, we observe that using summaries to apply strong updates at call sites

requires a negation operation on constraints. Since these constraints may be

approximations, simultaneous reasoning about may and must information on

points-to relations is necessary for applying strong updates when safe. To solve

this difficulty, we use bracketing constraints [32].

The first insight, developed in Section 4.1, forms the basic framework for reasoning

about the correctness and precision of our approach. The second and third insights,

exploited in Section 4.3, yield a symbolic and efficient encoding of the basic approach.

To summarize, this chapter makes the following contributions:

• We develop a theory of abstract heap decompositions that elucidates the basic

principle underlying modular heap analyses. This theory shows that a summary-

based analysis must lose extra precision over a non-summary based analysis in
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some circumstances and also sheds light on the correctness of earlier work on

modular alias analyses, such as [58, 79, 24].

• We present a full algorithm for performing modular heap analysis in a symbolic

and efficient way. While our algorithm builds on the work of [24] in predicat-

ing summaries on aliasing patterns, our approach is much more precise and is

capable of performing strong updates to heap locations at call sites.

• We demonstrate experimentally that our approach is both scalable and precise

for verifying properties about real C and C++ applications up to 100,000 lines

of code.

4.1 Foundations of Modular Heap Analysis

As mentioned earlier, our goal is to analyze a function f independently of its callers

and generate a summary valid in any context. The main difficulty for such an anal-

ysis is that f ’s heap fragment (the portion of the program’s heap reachable through

f ’s arguments and global variables on entry to f) is unknown and may be arbitrar-

ily complex, but a modular analysis must model this unknown heap fragment in a

conservative way.

Our technique models f ’s heap fragment using abstractions H1, . . . , Hk such that

(i) in each Hi, every location points to exactly one location variable representing the

unknown points-to targets of that location on function entry, (ii) each Hi represents

a distinct aliasing pattern that may arise in some calling context, and (iii) the heap

fragment reachable in f at any call site is overapproximated by combining a subset

of the heaps in H1, . . . , Hk.

As the above discussion illustrates, our approach requires representing the heap

abstraction at any call site as the finite union of heap abstractions where each pointer

location has exactly one target. We observe that every known modular heap analysis,

including ours, has this this one-target property. In principle, one could allow the

unknown locations in a function’s initial heap fragment to point to 2, 3, or any

number of other unknown heap locations, but it is unclear how to pick the number
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or take advantage of the potential extra precision.

In this section, we present canonical decompositions, through which the heap is

decomposed into a set of heaps with the one-target property, and structural decom-

positions, which coalesce isomorphic canonical heaps. We then show how these de-

compositions can be used for summary-based heap analysis.

4.1.1 Preliminaries

We describe the basic ideas on a standard may points-to graph, which we usually

call a heap for brevity. A labeled node A represents one or more concrete memory

locations ζ(A).

Definition 13 (Summary Location) An abstract location that may represent mul-

tiple concrete locations is a summary location (e.g., modeling elements in an ar-

ray/list). An abstract location representing exactly one concrete location is a non-

summary location.

For any two distinct abstract locations A and A′, we require ζ(A)∩ζ(A′) = ∅, and

that |ζ(A)| = 1 if A is a non-summary node. An edge (A,B) in the points-to graph

denotes a partial function ζ(A,B) from pointer locations in ζ(A) to locations in ζ(B),

with the requirement that for every pointer location l ∈ ζ(A) there is exactly one

node B such that ζ(A,B)(l) is defined (i.e., each pointer location has a unique target

in a concrete heap). Finally, each possible choice of ζ and compatible edge functions

ζ(A,B) for each edge (A,B) maps a points-to graph H to one concrete heap. We write

γ(H) for the set of all such possible concrete heaps for the points-to graph H. We

also write H1 w H2 if γ(H1) ⊇ γ(H2), and H1 tH2 for the heap that is the union of

all nodes and edges in H1 and H2. We define a semantic judgment H |= S : H ′ as:

H |= S : H ′ ⇔ ∀h ∈ γ(H). ∃h′ ∈ γ(H ′). eval(h, S) = h′

where eval(h, S) is the result of executing code fragment S starting with concrete

heap h. Now, we write H `a S : H ′ to indicate that, given a points-to graph H and

a program fragment S, H ′ is the new heap obtained after analyzing S using pointer
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Figure 4.2: A heap H and its canonical decomposition H1, . . . , H4

analysis a. The pointer analysis a is sound if for all program fragments S:

H `a S : H ′ ⇒ H |= S : H ′

4.1.2 Canonical Decomposition

In this section, we describe how to express a points-to graph H as the union of a set

of points-to graphs H1, . . . , Hk where in each Hi, every abstract location points to at

most one location.

Definition 14 (Canonical points-to graph) We say a points-to graph is canonical

if every abstract memory location has an edge to at most one abstract memory location.

Definition 15 (Canonical decomposition) The canonical decomposition of heap

H is obtained by applying these steps in order:

1. If a summary node A points to multiple locations T1, . . . , Tk, replace T1, . . . , Tk

with a single summary node T such that any edge to/from any Ti is replaced

with an edge to/from T .

2. Let B be a location with multiple edges to T1, . . . , Tk. Split the heap into

H1, . . . , Hk where in each Hi, B has exactly one edge to Ti, and recursively

apply this rule to each Hi.

Lemma 4 Let H1, . . . , Hk be the canonical decomposition of H. Then (H1 t . . . t
Hk) w H.
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Figure 4.3: A heap H and its canonical decomposition H1

Proof 3 Let H ′ be the heap obtained from step 1 of Definition 15. To show H ′ w H

we must show γ(H ′) ⊇ γ(H). Let h ∈ γ(H) and let ζH by the corresponding mapping.

We choose ζH
′
(T ) = ζH(T1) ∪ ... ∪ ζH(Tk) and ζH

′
(X) = ζH(X) otherwise, and

construct the edge mappings ζH(A,B) from ζH
′

(A,B) analogously. Thus, h ∈ γ(H ′) and

we have γ(H ′) ⊇ γ(H). In step 2, observe that any location B with multiple edges

to T1, . . . , Tk must be a non-summary location. Hence, the only concrete location

represented by B must point to exactly one Ti in any execution. Thus, in this step,

(H1 t . . . tHk) = H ′ w H. �

Example 17 Figure 4.2 shows a heap H with only non-summary locations. The

canonical decomposition of H is H1, H2, H3, H4, representing four different concrete

heaps encoded by H.

Example 18 Figure 4.3 shows another heap H with summary node A (indicated by

double circles) and its canonical decomposition H1. Heap H1 is obtained from H by

collapsing locations C and D into a summary location CD. Observe that we cannot

split H into two heaps H1 and H2 where A points to C in H1 and to D in H2:

Such a decomposition would incorrectly state that all elements in A must point to the

same location, whereas H allows distinct concrete elements in A to point to distinct

locations.

Corollary 1 If H has no summary nodes with multiple edges, then its canonical

decomposition is exact, i.e.,
⊔

1≤i≤kHi = H.
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Proof 4 This follows immediately from the proof of Lemma 4. �

Lemma 5 Consider a sound pointer analysis “a” and a heap H with canonical de-

composition H1, . . . , Hk such that:

H1 `a S : H ′1 . . . Hk `a S : H ′k

Then, H |= S : H ′1 t . . . tH ′k.

Proof 5 This follows directly from Lemma 4. �

According to this lemma, we can conservatively analyze a program fragment S by

first decomposing a heap H into canonical heaps H1, . . . , Hk, then analyzing S using

each initial heap Hi, and finally combining the resulting heaps H ′1, . . . , H
′
k.

Recall that in a modular heap analysis, we require each node in a function f ’s

initial heap abstraction to have the single-target property. Corollary 1 implies that

if a call site of f has no summary nodes with multiple targets, then this assumption

results in no loss of information, because we can use multiple distinct heaps for f

that, in combination, are an exact representation of the call site’s heap. However, if a

summary location has multiple targets and there is aliasing involving that summary

node, as illustrated in Figure 4.3, the modular analysis may strictly overapproximate

the heap after a call to f . In this case, the requirement that f ’s initial heap have the

single-target property means that f can only represent the call-site’s heap (shown on

the left of Figure 4.3) by an overapproximating heap that merges the target nodes

(shown on the right of Figure 4.3).

4.1.3 Structural Decomposition

Consider the result of analyzing a program fragment S starting with initial canonical

heaps H1 and H2 shown in Figure 4.4. Here, nodes labeled X and Y represent

memory locations of x and y, which are the only variables in scope in S. Since the

only difference between H1 and H2 is the label of the node pointed to by x and y, the

heaps H ′1 and H ′2 obtained after analyzing S will be identical except for the label of a
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Figure 4.4: Two isomorphic canonical heaps and their skeleton

single node. Thus, S can be analyzed only once starting with heap Ĥ in Figure 4.4,

and H ′1 and H ′2 can be obtained from the resulting heap by renaming ν to loc1 and

loc2 respectively. The rest of this section makes this discussion precise.

Definition 16 (Skeleton) Given a set of nodes N , let ξN(H) be the heap obtained

by erasing the labels of all nodes in H except for those in N . Now ξN defines an

equivalence relation H ≡N H ′ if ξN(H) = ξN(H ′). We select one heap in each

equivalence class of ≡N as the class’ unique skeleton.

Note that nodes of skeletons are labeled—label erasure is only used to determine

equivalence class membership.

Example 19 In Figure 4.4, H1 and H2 have the same skeleton Ĥ.

In other words, if heaps H1, . . . , Hk have the same aliasing patterns with respect

to a set of root locations N , then Ĥ is a unique points-to graph which represents their

common aliasing structure. Skeletons are useful because, if N represents formals and

globals in a function f , all possible aliasing patterns at call sites of f can be expressed

using a finite number of skeletons.

Definition 17 (Π) Let H be a heap and let Ĥ be its skeleton w.r.t. nodes N . The

mapping ΠH,Ĥ maps every node label in Ĥ to the label of the corresponding node in

H and any other node to itself.

Definition 18 (Structural Decomposition) Given heap H and nodes N , the

structural decomposition of H w.r.t. N is a set of heaps D such that for every

Hi in the canonical decomposition of H, the sketelon Ĥ of Hi w.r.t. N is in D.
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Figure 4.5: Structural decomposition of heap H from Figure 4.2

Observe that the cardinality of the structural decomposition of H is never larger than

the cardinality of H’s canonical decomposition.

Definition 19 (Instances of skeleton) Let Ĥ be a skeleton in the structural de-

composition of H. The instances of Ĥ, written IH(Ĥ), are the canonical heaps of H

with skeleton Ĥ.

Example 20 Consider heap H from Figure 4.2 and the root set {A,B}. The struc-

tural decomposition Ĥ1, Ĥ2 of H is shown in Figure 4.5. Observe that canonical heaps

H1 and H4 from Figure 4.2 have the same skeleton Ĥ1, and H2 and H3 have skeleton

Ĥ2. Thus, IH(Ĥ1) = {H1, H4} and IH(Ĥ2) = {H2, H3}. Also:

ΠH1,Ĥ1
= [ν1 7→ C, ν2 7→ D] ΠH4,Ĥ1

= [ν1 7→ D, ν2, 7→ C]

ΠH2,Ĥ2
= [ν 7→ D] ΠH3,Ĥ2

= [ν 7→ C]

Lemma 6 Consider program fragment S and nodes N representing variables in scope

at S. Let HN be the heap fragment reachable through N before analyzing S and let

Ĥ1, . . . , Ĥm be the structural decomposition of HN w.r.t. N . If

Ĥ1 `a S : Ĥ ′1 . . . Ĥm `a S : Ĥ ′m

and if Ĥ ′N is the heap defined as:

Ĥ ′N =
⊔

1≤i≤m

(⊔
Hij∈IHN (Ĥi)

ΠHij ,Ĥi
(Ĥ ′i)

)
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then HN |= S : Ĥ ′N .

Proof 6 First, by Definitions 16 and 14, we have:

⊔
1≤i≤m

(⊔
Hij∈IHN (Ĥi)

Hij

)
w HN

Second, using Lemma 5, this implies:

HN |= S :
⊔

1≤i≤m

(⊔
Hij∈IHN (Ĥi)

H ′ij

)
(∗)

where Hij `a S : H ′ij. From Definition 19, since Hij and Ĥi are equivalent up to

renaming, then H ′ij and Ĥ ′i are also equivalent up to this renaming, given by ΠHij ,Ĥi
.

Together with (*), this implies HN |= S :
⊔

1≤i≤m

(⊔
Hij∈IHN (Ĥi)

ΠHij ,Ĥi
(Ĥ ′i)

)
. �

In other words, the heap defined as Ĥ ′N in Lemma 6 gives us a sound abstraction

of the heap after analyzing program fragment S. Furthermore, Ĥ ′N is precise in the

sense defined below:

Lemma 7 Let Ĥ ′N be the heap defined in Lemma 6, and let H1, . . . , Hk be the canon-

ical decomposition of the heap fragment reachable from N before analyzing S. If

Hj `a H ′j, then:

Ĥ ′N =
⊔

1≤j≤kH
′
j

Proof 7 This follows from Corollary 1 and Definition 18. �

The following corollary states a stronger precision result:

Corollary 2 Let HN and Ĥ ′N be the heap abstractions from Lemma 6, and let HN `a
S : H ′N . If HN does not contain summary locations with multiple points-to targets,

then

Ĥ ′N v H ′N

Proof 8 This follows from Lemma 7 and Corollary 1.
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4.1.4 From Decompositions to Modular Heap Analysis

We now show how the ideas described so far yield a basic modular heap analysis. In

the remainder of this section, we assume there is a fixed bound on the total number

of memory locations used by a program analysis. (In practice, this is achieved by,

e.g., collapsing recursive fields of data structures to a single summary location.)

Lemma 8 Consider a function f , and let N denote the abstract memory locations

associated with the formals and globals of f . Then, there is a finite set Q of skeletons

such that the structural decomposition D w.r.t. N of the heap fragment reachable

from N in any of f ’s call sites satisfies D ⊆ Q.

Proof 9 Recall that in any canonical heap, every location has exactly one target.

Second, observe that when there is bound b on the total number of locations in any

heap, any canonical heap must have at most b locations. Thus, using a fixed set of

nodes, we can only construct a finite set Q of structurally distinct graphs. �

Since there are a bounded number of skeletons that can arise in any context, this

suggests the following strategy for computing a complete summary of function f :

Let N be the set of root locations (i.e., formals and globals) on entry to f , and let

Ĥ1, . . . , Ĥk be the set of all skeletons that can be constructed from root set N . We

analyze f ’s body for each initial skeleton Ĥi, obtaining a new heap Ĥ ′i. Now, let C

be a call site of f and let R be the subset of the skeletons Ĥ1, . . . , Ĥk that occur in

the structural decomposition of heap H in context C. Then, following Lemma 6, the

heap fragment after the call to f can be obtained as:

⊔
Ĥi∈R

(⊔
Hij∈IH(Ĥi))

ΠHij ,Ĥi
(Ĥ ′i)

)
This strategy yields a fully context-sensitive analysis because f ’s body is analyzed

for any possible entry aliasing pattern Ĥi, and at a given call site C, we only use the

resulting heap Ĥi if Ĥi is part of the structural decomposition of the heap at C.
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Furthermore, as indicated by Corollary 2, this strategy is as precise as analyz-

ing the inlined body of the function if there are no summary locations with multi-

ple points-to targets at this call site; otherwise, the precision guarantee is stated in

Lemma 7.

4.1.5 Discussion

While the decompositions described here are useful for understanding the principle

underlying modular heap analyses, the naive algorithm sketched in Section 4.1.4 is

completely impractical for two reasons: First, since the number of skeletons may be

exponential in the number of abstract locations reachable through arguments, such

an algorithm requires analyzing a function body exponentially many times. Second,

although two initial skeletons may be different, the resulting heaps after analyzing

the function body may still be identical. In the rest of this chapter, we describe

a symbolic encoding of the basic algorithm that does not analyze a function more

than once unless cycles are present in the callgraph (see Section 4.3). Then, in

Section 4.4, we show how to identify only those initial skeletons that may affect the

heap abstraction after the function call.

4.2 Language

To formalize our symbolic algorithm for modular heap analysis, we use the following

typed, call-by-value imperative language:

Program P := F+

Function F := define f(a1 : τ1, . . . , an : τn) = S;

Statement S := v1 ← ∗v2 | ∗ v1 ← v2 | v ← allocρ(τ)

| fρ(v1, . . . , vk) | assert(v1 = v2)

| letρ v : τ in S end | S1;S2 | choose(S1, S2)

Type τ := int | ptr(τ)

A program P consists of one or more (possibly recursive) functions F . Statements
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in this language are loads, stores, memory allocations, function calls, assertions, let

bindings, sequencing, and the choose statement, which non-deterministically executes

either S1 or S2 (i.e., a simplified conditional). Allocations, function calls, and let

bindings are labeled with globally unique program points ρ.

Since this language is standard, we omit its operational semantics and highlight

a few important assumptions: Execution starts at the first function defined, and an

assertion failure aborts execution. Also, all bindings in the concrete store have initial

value nil.

4.3 Modular & Symbolic Heap Analysis

In this section, we formally describe our symbolic algorithm for modular heap anal-

ysis. In Section 4.3.1, we first decribe the abstract domain used in our analysis.

Section 4.3.2 formally defines function summaries, and Section 4.3.3 presents a full

algorithm for summary-based heap analysis for the language defined in Section 4.2.

4.3.1 Abstract Domain

Abstract locations π represent a set of concrete locations:

Abstract Locations π := α | l
Location Variables α := νi | ∗ α
Location Constants l := loc~ρ | nil

An abstract location π in function f is either a location variable α or a location

constant l. Location constants represent stack or heap allocations in f and its tran-

sitive callees as well as nil. In contrast, location variables represent the unknown

memory locations reachable from f ’s arguments at call sites, similar to access paths

in [58]. Informally, location variables correspond to the node labels of a skeleton from

Section 4.1.3. Recall from Section 4.1 that, in any canonical points-to graph, every

abstract memory location points to at most one other abstract memory location;

hence, location variable ∗νi describes the unknown, but unique, points-to target of
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f ’s i’th argument in some canonical heap at a call site of f .

Abstract environment E maps program variables v to abstract locations π, and

abstract store S maps each abstract location π to an abstract value set θ of (abstract

location, constraint) pairs:

Abstract value set θ := 2(π,φ)

The abstract store defines the edges of the points-to graph from Section 4.1. A

mapping from abstract location π to abstract value set {(π1, φ1), . . . , (πk, φk)} in S
indicates that the heap abstraction contains a points-to edge from node labeled π

to nodes labeled π1, . . . , πk. Observe that, unlike the simple may points-to graph we

considered in Section 4.1, points-to edges in the abstract store are qualified by con-

straints, which we utilize to symbolically encode all possible skeletons in one symbolic

heap (see Section 4.3.3).

Constraints in our abstract domain are defined as follows:

φ := 〈ϕmay, ϕmust〉
ϕ := T | F | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | t1 = t2

Here, φ is a bracketing constraint 〈ϕmay, ϕmust〉 as in [32], representing the condition

under which a property may and must hold. Recall that the simultaneous use of

may and must information is necessary for applying strong updates whenever safe.

In particular, updates to heap locations require negation (see Section 4.3.3). Since

the negation of an overapproximation is an underapproximation, the use of brack-

eting constraints allows a sound negation operation, defined as ¬〈ϕmay, ϕmust〉 =

〈¬ϕmust,¬ϕmay〉. Conjunction and disjunction are defined on these constraints as

expected:

〈ϕmay, ϕmust〉 ? 〈ϕ′may, ϕ
′
must〉 = 〈ϕmay ? ϕ

′
may, ϕmust ? ϕ

′
must〉

where ? ∈ {∧,∨}. In this chapter, any constraint φ is a bracketing constraint unless

stated otherwise. To make this clear, any time we do not use a bracketing constraint,
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Figure 4.6: A symbolic heap representing two skeletons

we use the letter ϕ instead of φ. Furthermore, if the may and must conditions of

a bracketing constraint are the same, we write a single constraint instead of a pair.

Finally, for a bracketing constraint φ = 〈ϕmay, ϕmust〉, we define dφe = ϕmay and

bφc = ϕmust.

In the definition of constraint ϕ, T and F represent the boolean constants true

and false, and a term t is defined as:

Term t := v | drf(t) | alloc(~ρ) | nil

Here, v represents a variable, drf is an uninterpreted function, and alloc is an in-

vertible uninterpreted function applied to a vector of constants ~ρ. Thus, constraints

ϕ belong to the theory of equality with uninterpreted functions. Our analysis re-

quires converting between abstract locations and terms in the constraint language;

we therefore define a lift operation, written π, for this purpose:

νi = νi ∗α = drf(α) nil = nil loc~ρ = alloc(~ρ)

Observe that a location constant locρ is converted to a term alloc(~ρ), which effectively

behaves as a constant in the constraint language: Since alloc is an invertible function,

alloc(~ρ) = alloc(~ρ′) exactly when ρ = ρ′. A location variable ν is converted to a

constraint variable of the same name, and the location variable ∗ν is represented by

the term drf(ν) which represents the unknown points-to target of ν on function entry.

We write lift−1(t) to denote the conversion of a term to an abstract location.

Example 21 In Figure 4.6, a symbolic heap H represents two skeletons Ĥ1 and Ĥ2.
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Figure 4.7: The abstract store in f ’s summary

In H, the constraint drf(ν1) = drf(ν2) describes contexts where the first and second

arguments are aliases. Observe that, at call sites where the first and second arguments

alias, drf(ν1) = drf(ν2) instantiates to true and drf(ν1) 6= drf(ν2) is false; thus at this

call site, H instantiates exactly to Ĥ2. Similarly, if the first and second arguments

do not alias, H instantiates to Ĥ1.

4.3.2 Function Summaries

A summary ∆ for a function f is a pair ∆ = 〈φ,S〉 where φ is a constraint describing

the precondition for f to succeed (i.e., not abort), and S is a symbolic heap repre-

senting the heap abstraction after f returns. More specifically, let Ĥ1, . . . , Ĥk be the

set of all skeletons for any possible call site of f , and let Ĥi ` S : Ĥ ′i where S is the

body of f . Then, the abstract store S symbolically encodes that in contexts where

the constraints in S are satisfied by initial heap Ĥi, the resulting heap is Ĥ ′i.

Observe that a summary can also be viewed as the Hoare triple {φ} f {S}. Thus,

the computation of a summary for f is equivalent to the inference of sound pre- and

post-conditions for f.

Example 22 Consider the function:
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define f(a1 : ptr(ptr(int)), a2 : ptr(ptr(int))) =

1 : ∗a1 ← alloc1(int);

2 : ∗a2 ← alloc2(int);

3 : let t1 : ptr(int) in t1 ← ∗a1; ∗t1 ← 7 end;

4 : let t2 : ptr(int) in t2 ← ∗a2; ∗t2 ← 8 end;

5 : let t3 : ptr(int) in t3 ← ∗a1;
6 : let t4 : int in t4 ← ∗t3; assert(t4 == 7) end;

7 : end

The summary for f is 〈 drf(ν1) 6= drf(ν2), S 〉 where S is shown in Figure 4.7. The

pre-condition drf(ν1) 6= drf(ν2) indicates that the assertion fails in those contexts

where arguments of f are aliases. Also, in symbolic heap S, the abstract location

reached by dereferencing a1 (whose location is ν1) is either loc1, corresponding to the

allocation at line 1, or loc2, associated with the allocation at line 2, depending on

whether a1 and a2 are aliases.

A global summary environment G is a mapping from each function f in the pro-

gram to a summary ∆f.

4.3.3 The Analysis

We now present the full algorithm for the language of Section 4.2. Section 4.3.3 de-

scribes the symbolic initialization of the local heap to account for all possible aliasing

relations on function entry. Section 4.3.3 gives abstract transformers for all state-

ments except function calls, which is described in Section 4.3.3. Finally, Section 4.3.3

describes the generation of function summaries.

Local Heap Initialization

To analyze a function f independent of its callers, we initialize f ’s abstract store to

account for all possible relevant aliasing relationships at function entry. To perform

this local heap initialization, we utilize an alias partition environment A with the

signature α→ 2α. This environment maps each location variable α to an ordered set
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E = [a1 ← ν1, . . . , ak ← νk]
∀ αi ∈ dom(A).
S(αi)← ∪k≤i(∗αk, (

∧
j<k ∗αi 6= ∗αj) ∧ ∗αi = ∗αk)

A ` init heap(a1, . . . , ak) : E,S

Figure 4.8: Local Heap Initialization

of location variables, called α’s alias partition set. If α′ ∈ A(α), then f’s summary may

differ in contexts where α and α′ are aliases. Since aliasing is a symmetric property,

any alias partition environment A has the property α′ ∈ A(α) ⇔ α ∈ A(α′). Any

location aliases itself, and so A is also reflexive: α ∈ A(α). A correct alias partition

environment A can be trivially computed by stipulating that α′ ∈ A(α) if α and

α′ have the same type. We discuss how to compute a more precise alias partition

environment A in Section 4.4.

A key component of the modular analysis is the init heap rule in Figure 4.8.

Given formal parameters a1, . . . , ak to function f , this rule initializes the abstract

environment and store on entry to f . The environment E is initialized by binding a

location variable νi to each argument ai. The initialization of the abstract store S,

however, is more involved because we need to account for all possible entry aliasing

relationships permitted by A.

Intuitively, if A indicates that α1 and α2 may alias on function entry, we need

to analyze f ’s body with two skeletal heaps, one where α1 and α2 point to the

same location, and one where α1 and α2 point to different locations. To encode this

symbolically, one obvious solution is to introduce three location variables, ∗α1, ∗α2,

and ∗α12 such that α1 (resp. α2) points to ∗α1 (resp. ∗α2) if they do not alias (i.e.,

under constraint drf(α1) 6= drf(α2)) and point to a common location named ∗α12 if

they alias (i.e., under drf(α1) = drf(α2)). While this encoding correctly describes

both skeletal heaps, it unfortunately introduces an exponential number of locations,

one for each subset of entry alias relations in A.

To avoid this exponential blow-up, we impose a total order on abstract locations

such that if αi and αj are aliases, they both point to a common location ∗αk such

that αk is the least element in the alias partition class of αi and αj. Thus, in the
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Figure 4.9: The initial heap abstraction for function from Example 22

init heap rule of Figure 4.8, αi points to ∗αk where k ≤ i under constraint:

(
∧
j<k

∗αi 6= ∗αj) ∧ ∗αi = ∗αk

This condition ensures that αi points to a location named ∗αk only if it does not alias

any other location αj ∈ A(αi) with j < k.

Example 23 Consider the function defined in Example 22. Suppose the alias parti-

tion environment A contains the following mappings:

ν1 7→ {ν1, ν2}, ν2 7→ {ν1, ν2}, ∗ν1 7→ {∗ν1}, ∗ν2 7→ {∗ν2},
∗∗ ν1 7→ {∗∗ ν1}, ∗∗ ν2 7→ {∗∗ ν2}

Figure 4.9 shows the initial heap abstraction using A and the ordering ν1 < ν2. Since

A includes ν1 and ν2 in the same alias partition set, ν2 points to ∗ν1 under drf(ν1) =

drf(ν2) and to ∗ν2 under its negation. But ν1 only points to ∗ν1 since ν2 6< ν1.

The following lemma states that the initial heap abstraction correctly accounts

for all entry aliasing relations permitted by A:

Lemma 9 Let αi and αj be two abstract locations such that αj ∈ A(αi). The initial

local heap abstraction S constructed in Figure 4.8 encodes that αi and αj point to

distinct locations exactly in those contexts where they do not alias.

Proof 10 Without loss of generality, assume i < j.

⇒ Suppose αi and αj are not aliases in a context C, but S encodes they may point to
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the same location ∗αk in context C. Let φ and φ′ be the constraints under which αi and

αj point to αk respectively. By construction, k ≤ i, and φ implies drf(αi) = drf(αk)

and φ′ implies drf(αj) = drf(αk). Thus, we have drf(αi) = drf(αj), contradicting the

fact that αi and αj do not alias in C.

⇐ Suppose αi and αj are aliases in context C, but S allows αi and αj to point to

distinct locations ∗αk and ∗αm. Let φ and φ′ be the constraints under which αi points

to ∗αk and αj points to ∗αm respectively. Case (i): Suppose k < m. Then, by

construction, φ implies drf(αi) = drf(αk), and φ′ implies drf(αj) 6= drf(αk). Hence,

we have drf(αj) 6= drf(αi), contradicting the assumption that αi and αj are aliases in

C. Case (ii): k > m. Then, φ′ implies drf(αj) = drf(αm), and φ implies drf(αi) 6=
drf(αm), again contradicting the fact that αi and αj are aliases in C. �

Lemma 10 For each alias partition set of size n, the init heap rule adds n(n+ 1)/2

points-to edges.

As Lemma 10 states, this construction introduces a quadratic number of edges in

the size of each alias partition set to represent all possible skeletal heaps. Furthermore,

the number of abstract locations in the initial symbolic heap is no larger than the

maximum number of abstract locations in any individual skeleton.

Abstract Transformers for Basic Statements

In this section, we describe the abstract transformers for all statements except func-

tion calls, which is the topic of Section 4.3.3. Statement transformers are given as

inference rules of the form

E,S,G, φ ` S : S′, φ′

which states that under abstract environment E, store S, summary environment G,

and precondition φ, statement S produces a new abstract store S′ and a new precon-

dition φ′ of the current function. The operation S(θ) looks up the value of each πi in

θ:

S({(π1, φ1), . . . , (πk, φk)}) =
⋃

1≤i≤k

S(πi) ∧ φi
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(1)

E(v1) = π1 E(v2) = π2

S(π2) = θ S′ = S[π1 ← S(θ)]

E,S,G, φ ` v1 ← ∗v2 : S′, φ

(2)

E(v1) = π1 E(v2) = π2

S(π1) = θ1 S(π2) = θ2

S′ = S[πi ← ((θ2 ∧ φi) ∪ (S(πi) ∧ ¬φi)) | (πi, φi) ∈ θ1]

E,S,G, φ ` ∗v1 ← v2 : S′, φ

(3)

E(v) = π
S′ = S[π ← {(locρ, T )}, locρ ← {(nil, T )}]

E, S,G, φ ` v ← allocρ(τ) : S′, φ

(4)

E(v1) = π E(v2) = π′

S(π) = {. . . , (πi, φi), . . .}
S(π′) = {. . . , (π′j , φ′j), . . .}
φ′ =

∨
i,j(πi = π′j ∧ φi ∧ φ′j)

E,S,G, φ ` assert(v1 = v2) : S, φ ∧ φ′

(5)

E′ = E[v ← locρ]
S′ = S[∗locρ ← {(nil, T )}]
E′,S′,G, φ ` S : S′′, φ′

E,S,G, φ ` letρ v : τ in S end : S′′\locρ, φ′

(6)

E,S,G, φ ` S1 : S′, φ′
E,S′,G, φ′ ` S2 : S′′, φ′′

E,S,G, φ ` S1;S2 : S′′, φ′′

(7)

E, S,G, φ ` S1 : S1, φ1

E,S,G, φ ` S2 : S2, φ2

E,S,G, φ ` choose (S1, S2) : S1 t S2, φ1 ∧ φ2

Figure 4.10: Abstract Transformers for Basic Statements
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Heap after statement 1 Heap after statement 2

Figure 4.11: The symbolic heap before and after line 2 in Example 22

where S(πi) ∧ φi is a shorthand defined as follows:

θ ∧ φ = {(πj, φj ∧ φ)|(πj, φj) ∈ θ}

In Figure 4.10, rules (1) and (2) give the transformers for loads and stores respec-

tively. The rule for loads is self-explanatory; thus, we focus on the store rule. In

the third hypothesis of rule (2), each πi represents a location that v1 points to under

constraint φi, and θ2 is the value set for v2. Since the write to πi happens under

constraint φi, the new value of πi in S′ is θ2 under constraint φi and retains its old

value set S(πi) under ¬φi. Observe that if φi is true, this rule performs a standard

strong update to πi. On the other hand, if v1 points to πi under some entry alias

assumption, then there is a strong update to πi exactly in those calling contexts where

this alias assumption holds.

Example 24 Figure 4.11 shows the relevant portion of the heap abstraction before

and after the store at line 2 in Example 22.

Rule (3) processes allocations by introducing a new location locρ and initializing

its value in the store to nil. Rule (4) analyzes an assertion by computing the condition

φ′ for the assertion to hold such that if φ′ can be proven valid in a calling context, then

this assertion must hold at that call site. In rule (4), φ′ is computed as the disjunction

of all pairwise equalities of the elements in the two abstract value sets associated with

v1 and v2, i.e., a case analysis of their possible values. Rule (5) describes the abstract
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S, I ` map loc(ν : int) : I
S, I ` map loc(∗ν : τ) : I′

S, I ` map loc(ν : ptr(τ)) : I′

I′ = I[∗α← S(I(α))]

S, I ` map loc(∗α : int) : I′

I′ = I[∗α← S(I(α))]
I′ ` map loc(∗∗ α : τ) : I′′

S, I ` map loc(∗α : ptr(τ)) : I′′

S, [ν1 ← {(E(v1), T )}] ` map loc(ν1) : I1
. . .

S, Ik−1[νk ← {(E(vk), T )}] ` map loc(νk) : Ik
E,S ` map args(v1 : τ1, . . . , vk : τk) : Ik

Figure 4.12: Rules for computing instantiation environment I

semantics of let statements by binding variable v to a new location locρ in E. Rule (6)

for sequencing is standard, and rule (7) gives the semantics of the choose construct,

which computes the join of two abstract stores S1 and S2. To define a join operation

on abstract stores, we first define domain extension:

Definition 20 (Domain Extension) Let π be any binding in abstract store S′ and

let (πi, φi) be any element of S′(π). We say an abstract store S ′′ = S7→S′ is a domain

extention of S with respect to S′ if the following condition holds:

1. If π ∈ dom(S) ∧ (πi, φ
′
i) ∈ S(π), then (πi, φ

′
i) ∈ S7→S′(π).

2. Otherwise, (πi, false) ∈ S7→S′(π)

Definition 21 (Join) Let S′1 = S1 7→S2 and let S′2 = S27→S1. If (π′, 〈ϕ1
may, ϕ

1
must〉) ∈

S′1(π) and (π′, 〈ϕ2
may, ϕ

2
must〉) ∈ S′2(π), then:

(π′, 〈ϕ1
may ∨ ϕ2

may, ϕ
1
must ∧ ϕ2

must〉) ∈ (S1 t S2)(π)

Instantiation of Summaries

The most involved statement transformer is the one for function calls, which we

describe in this subsection. Figure 4.15 gives the complete transformer for function
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I, ρ ` inst loc(nil) : {(nil, T )}
θ = {(locρ::~ρ′ , T )}

I, ρ ` inst loc(loc
~ρ′) : θ

(ρ 6∈ ~ρ′)

I, ρ ` inst loc(α) : I(α)

θ = {(loc~ρ′ , 〈T, F 〉)}

I, ρ ` inst loc(loc
~ρ′) : θ

(ρ ∈ ~ρ′)

Figure 4.13: Rules for instantiating locations

calls, making use of the helper rules defined in Figures 4.12- 4.14, which we discuss

in order.

Given the actuals v1, . . . , vk for a call to function f , Figure 4.12 computes the

instantiation environment I with signature α → θ for this call site. This environ-

ment I, which serves as the symbolic equivalent of the mapping Π from Section 4.1,

maps location variables used in f to their corresponding locations in the current

(calling) function. However, since I is symbolic, it produces an abstract value set

{(π1, φ1), . . . , (πk, φk)} for each α such that α instantiates to πi in some canonical

heap under constraint φi.

Figure 4.13 describes the rules for instantiating any location π used in the sum-

mary. If π is a location variable, we use environment I to look up its instantiation.

On the other hand, if π is a location constant allocated in callee f , we need to rename

this constant to distinguish allocations made at different call sites for full context-

sensitivity. In general, we rename the location constant loc
~ρ′ by prepending to ~ρ′ the

program point ρ associated with the call site. However, in the presence of recursion,

we need to avoid creating an unbounded number of location constants; thus, in Fig-

ure 4.13, we check if this allocation is created on a cyclic path in the callgraph by

testing whether the current program point ρ is already in ~ρ′. In the latter case, we do

not create a new location constant but weaken the bracketing constraint associated

with loc
~ρ′ to 〈T, F 〉, which has the effect of ensuring that stores into this location only

apply weak updates [32], meaning that loc
~ρ′ behaves as a summary location.

In addition to instantiating locations, we must also instantiate the associated

constraints, which is described in Figure 4.14. In the last rule of this figure, instφ

instantiates a bracketing constraint, making use of instϕ to map the constituent may
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and must conditions. The instϕ rule derives judgments of the form I, ρ ` instϕ(ϕ) :

ϕ′, φ, where ϕ′ preserves the structure of ϕ by substituting each term t in ϕ with a

temporary variable k and φ constrains the values of k.

The first rule in Figure 4.14 for instantiating a leaf t1 = t2 is the most interesting

one: Here, we convert t1 and t2 to their corresponding memory locations using the

lift−1 operation from Section 4.3.1 and instantiate the corresponding locations using

inst loc to obtain abstract value sets θ1 and θ2. We then introduce two temporary

variables k and k′ representing θ1 and θ2 respectively, and introduce constraints φ

and φ′, stipulating the equality between k and θ1 and between k′ and θ2. Observe

that in the last rule of Figure 4.14, these temporary variables k and k′ are removed

using a QE procedure to eliminate existentially quantified variables.

Figure 4.15 makes use of all the afore-mentioned rules to instantiate the summary

of function f at a given call site ρ. In the last rule of this figure, we first look

up f ’s summary 〈φf ,Sf〉 in the global summary environment G. The precondition

φf is instantiated to φ′f using instφ. Observe that if φ′f is valid, then the potential

assertion failure in f is discharged at this call site; otherwise, φ′f is conjoined with

the precondition φ of the current function.

Next, we compose the partial heap Sf , representing the heap fragment reachable

in f after the call, with the existing heap S before the function call. The com-

pose partial heap rule used in compose heap instantiates an entry π 7→ θ in f ’s sum-

mary. Observe that if location π in f ’s summary instantiates to location πi in the

current function under φi, existing values of πi are only preserved under ¬φi. Hence,

if φi is true, this rule applies a strong update to πi. On the other hand, if π instanti-

ates to πi under some entry alias condition, then this rule represents a strong update

to πi only in those contexts where the entry aliasing condition holds.

Example 25 Consider a call to function f of Example 22:

define g(a1 : ptr(ptr(int))) = f3(a1, a1)

Before the call to f , g’s local heap is depicted as:
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I, ρ ` inst loc(lift−1(t1)) : {(π1, φ1), . . . , (πk, φk)}
I, ρ ` inst loc(lift−1(t2)) : {(π′1, φ′1), . . . , (π′m, φ

′
m)}

φ =
∨
i(k = πi ∧ φi) φ′ =

∨
j(k
′ = π′j ∧ φ′j) (k, k′ fresh)

I, ρ ` instϕ(t1 = t2) : k = k′, φ ∧ φ′

b ∈ {T, F}
I, ρ ` instϕ(b) : b, T

I, ρ ` instϕ(ϕ) : ϕ1, φ2

I, ρ ` instϕ(¬ϕ) : ¬ϕ1, φ2

I, ρ ` instϕ(ϕ1) : ϕ, φ I, ρ ` instϕ(ϕ2) : ϕ′, φ′

I, ρ ` instϕ(ϕ1 ? ϕ2) : ϕ ? ϕ′, φ ∧ φ′
(? ∈ {∧,∨})

I, ρ ` instϕ(ϕmay) : ϕ′may, φ
′
may I, ρ ` instϕ(ϕmust) : ϕ′must, φ

′
must

ϕ′′may = dQE(∃~k. (ϕ′may ∧ φ′may))e ϕ′′must = bQE(∃~k. (ϕ′must ∧ φ′must))c
I, ρ ` instφ(〈ϕmay, ϕmust〉) : 〈φ′′may, φ

′′
must〉

Figure 4.14: Rules for instantiating constraints

I, ρ ` inst loc(π1) = θ1, . . . inst loc(πk) = θk

I, ρ ` inst theta({(π1, φ1), . . . , (πk, φk)}) :
⋃

1≤i≤k(θi ∧ φi)

I, ρ ` inst loc(π) = θs
I, ρ ` inst theta(θ) = θt

S′ = S[πi ← (θt ∧ φi) ∪ (S(πi) ∧ ¬φi) | (πi, φi) ∈ θs]
S, I, ρ ` compose partial heap(π, θ) : S′

Sf = [(π1 7→ θ1), . . . , (πk 7→ θk)]
S, I, ρ ` compose partial heap(π1, θ1) : S1

. . .
Sk−1, I, ρ ` compose partial heap(πk, θk) : Sk

S, I, ρ ` compose heap(Sf ) : Sk

G(f) = 〈φf , Sf 〉
E, S ` map args(v1, . . . , vk) : I
I, ρ ` instφ(φf ) : φ′f
S, I, ρ ` compose heap(Sf ) : S′

E,S,G, φ ` fρ(v1, . . . , vk) : S′, φ ∧ φ′f

Figure 4.15: Summary Instantiation rules
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Recall from Example 22 that f ’s precondition is drf(ν1) 6= drf(ν2), which instantiates

to drf(ν1) 6= drf(ν1)⇔ false at this call site, indicating that the assertion is guaranteed

to fail. The store in f ’s summary from Figure 4.7 is instantiated at the call site to:

Composing initial heap (*) with the instantiated heap (**), we obtain the final heap

after the function call:

Observe that the resulting abstract heap is as precise as analyzing the inlined body of

f .

Summary Generation and Fixed-point Computation

We now conclude this section by describing function summary generation, given in

Figure 4.16. Before analyzing the body of f , the local abstract heap S is initialized

as described in Section 4.3.3. Next, f ’s body is analyzed using the abstract trans-

formers from Section 4.3.3 and 4.3.3, which yields a store S′ and a precondition φ′.

According to the last hypothesis in Figure 4.16, the summary 〈φf ,Sf〉 is sound if Sf
overapproximates S\{ν1, . . . , νk} and φf implies φ′. Here, S1 v S2 is defined as:

Definition 22 (v) Let S′1 = S17→S2 and S′2 = S27→S1. We say S1 v S2 if for every π ∈
dom(S′1) and for every π′ such that (π′, 〈ϕ1

may, ϕ
1
must〉) ∈ S′1(π), (π′, 〈ϕ2

may, ϕ
2
must〉) ∈

S′2(π), we have:

ϕ1
may ⇒ ϕ2

may ∧ ϕ2
must ⇒ ϕ1

must

While the rule in Figure 4.16 verifies that 〈φf ,Sf〉 is a sound summary, it does not

give an algorithmic way of computing it. In the presence of recursion, we perform a

least fixed-point computation where all entries in G are initially ⊥ (i.e., any location

points to any other location under false), and a new summary for f is obtained by

computing the join of f ’s new and old summaries:

〈S1, φ1〉 t 〈S2, φ2〉 = 〈S1 t S2, φ1 ∧ φ2〉
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A ` init heap(a1, . . . , ak) : E,S
E,S,G, true ` S : φ′,S′
G ` f : 〈φf ,Sf〉
φf ⇒ φ′ Sf w (S′\{ν1, . . . , νk})

G,A ` define f(a1 : τ1, . . . , ak : τk) = S : 〈φf ,Sf〉

Figure 4.16: Summary generation rule

This strategy ensures that the analysis is monotonic by construction. Furthermore,

since the analysis creates a finite number of abstract locations and the constraints

are over a finite vocabulary of predicates, this fixed-point computation is guaranteed

to converge. In fact, for an acyclic callgraph, each function is analyzed only once if a

reverse topological order is used.

4.4 Computing Alias Partition Sets

In the previous section, we assumed the existence of an alias partition environment A
that is used to query whether aliasing between locations α and α′ may affect analysis

results. One simple way to compute such an environment is to require that α′ ∈ A(α)

if α and α′ have the same type (at least in a type-safe language). Fortunately, it is

possible to compute a much more precise alias partition environment because many

aliasing relations at a call site of f do not affect the state of the heap after a call to f .

The following lemma elucidates when we can safely ignore potential aliasing between

two locations in a code fragment S.

Lemma 11 Let H1 and H2 be the canonical heap fragments shown in Figure 4.17,

and let S be a program fragment such that:

• There is either no store to A and no store to B, or

• There is a store to only A that is not followed by a load from B, or
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Figure 4.17: Heaps from Lemma 11

• There are only stores to both A and B, but the store to A must happen after the

store to B

Let H1 ` S : H ′1 and H2 ` S : H ′2, and let O be a partial order such that O(B) ≺
O(A) if there must be a write to A after a write to B in S. Let H ′′2 be the graph

obtained by replacing G’s targets with E’s targets in H ′2 if ΠH2,H1(A) = ΠH2,H1(B)

and O(B) ≺ O(A). Then, H ′1 = ΠH2,H1(H
′′
2 ).

Proof 11 (sketch) There are three cases: (i) If there is no store to A or B, then in

H ′2, E and G still point to F and H, both of which are equivalent to D in H ′1. Thus,

H ′1 = ΠH2,H1(H
′
2). (ii) There is only a store to A, not followed by a load from B: In

H ′1, C will point to some set of new locations T1, . . . , Tk. In H ′2, E must also point

to T ′1, . . . , T
′
k such that Ti = ΠH2,H1(T

′
i ) and G must point to H. First, the result of

any load from B (i.e., H) can be correctly renamed to D, as the read happens before

the store to A. Second, H ′′2 is obtained by removing the edge from G to H and adding

edges from G to each T ′i . Thus, ΠH2,H1(G) = ΠH2,H1(E) = C and G and E’s targets

are renamed to T1, . . . , Tk. (iii) Similar to (ii).

This lemma shows the principle that can be used to reduce the number of entries

in A: Assuming we can impose an order on the sequence of updates to memory

locations and assuming we instantiate summary edges in this order, then the initial

heap abstraction only needs to account for aliasing between α1 and α2 if there is a

store to α1 followed by a load from α2, which is necessary because updates through
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α1 to a location may now affect locations that are reachable through α2. On the other

hand, if there is no load after a store and the updates to memory locations can be

ordered, it is possible to “fix up” the summary at the call site by respecting the order

of updates during instantiation.

To allow such an optimization in the analysis described in Section 4.3, we impose

a partial order ≺ on points-to relations such that (π1 7→ θ1) ≺ (π2 7→ θ2) indicates

that π1 must be assigned to θ1 before π2 is assigned to θ2. Then, to respect the

order of updates in the callee when instantiating the summary, we ensure that if

πi 7→ θi ≺ πj 7→ θj, the compose partial heap rule is invoked on πi 7→ θi before

πj 7→ θj in the compose heap rule of Figure 4.15.

Thus, assuming we modify the analysis from Section 4.3 as described above, we

can compute a better alias partition environment A by performing a least fixed-point

computation over the current function f . In particular, A(α) is initialized to {α} for

each location variable α. Then, if the analysis detects a store to α followed by a load

from α′ of the same type, then α′ ∈ A(α) and α ∈ A(α′). Similarly, if there is a store

s1 to α and a store s2 to α′ (of the same type) such that there is no happens-before

relation between s1 and s2, then α′ ∈ A(α) and α ∈ A(α′).

4.5 Experiments

We have implemented the technique described in this chapter in our Compass pro-

gram verification framework for analyzing C and C++ applications. Our implemen-

tation extends the algorithm described in this chapter in two ways: First, our analysis

is fully (i.e., interprocedurally) path-sensitive and uses the algorithm of Chapter 3

for this purpose. Second, our implementation improves over the analysis presented

here by employing the technique described in [32], which uses indexed locations to

reason precisely about contents of arrays and containers. Hence, the algorithm we

implemented is significantly more precise than a standard may points-to analysis.

Figure 4.18 summarizes the results of our first experiment, which involves verifying

memory safety properties (buffer overruns, null dereferences, casting errors, and access

to deleted memory) in four real C and C++ applications ranging from 16,030 to
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LiteSQL OpenSSH Inkscape Digikam
widget lib.

Lines 16,030 22,615 37,211 128,318

Strong updates at instantiation
Running time (1 CPU) 4.5 min 3.9 min 7.2 min 45.1 min
Running time (8 CPUs) 1.6 min 1.8 min 2.3 min 8.7 min
Memory use 430 MB 230 MB 195 MB 400 MB
Error reports 7 6 7 37
False positives 2 1 3 9

Weak updates at instantiation
Running time (1 CPU) 7.1 min 4.8 min 8.1 min 60.0 min
Running time (8 CPUs) 4 min 3.6 min 2.5 min 10.1 min
Memory use 410 MB 250 MB 200 MB 355 MB
Error reports 312 209 730 1140
False positives 307 204 726 1112

Figure 4.18: Comparison of strong/weak updates at call sites

128,318 lines. The first part of the table, labeled “Strong Updates at Instantiation”,

reports the results obtained by using the modular heap analysis described in this

chapter. Observe that the proposed technique is both scalable, memory-efficient, and

precise. First, the running times on 8 CPU’s range from 1.6 minutes to 8.7 minutes,

and increase roughly linearly with the size of the application. Furthermore, observe

that the modular analysis takes advantage of multiple CPUs to significantly reduce

its wall-clock running time. Second, the maximum memory used by any process does

not exceed 430 MB, and, most importantly, the memory usage is not correlated with

the application size. Figure 4.19 sheds some light on the scalability of the analysis:

This figure plots the maximum call stack depth against summary size, computed as

the number of points-to edges weighted according to the size of the edge constraints

plus the size of the precondition. In this figure, observe that summary size does not

increase with depth of the callstack, confirming our hypothesis that summaries are

useful for exploiting information locality and therefore enable analyses to scale.

Figure 4.18 also illustrates that performing strong updates at call sites is crucial

for the precision required by verification tools. Observe that the analysis using strong
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Figure 4.19: Callstack depth vs. summary size

hostname chroot rmdir su mv
Lines 304 371 483 1047 1151
Modular analysis
running time 0.53s 0.75s 1.54s 2.3s 2.55s
Whole program
running time 3.1s 6.3s 21.6s 45.9s 30.7s

Figure 4.20: Comparison of modular and whole program analysis

updates at instantiation sites is very precise, reporting only a handful of false positives

on all the applications. In contrast, if we use only weak updates when applying

summaries, the number of false positives ranges from 200 to 1000, confirming that

the application of strong updates interprocedurally is a key requirement for successful

verification.

In a second set of experiments on smaller benchmarks, we compare the running

times of our verification tool using the modular analysis described here with the

running times of the same tool using a whole-program analysis. Figure 4.20 shows a

comparison of the analysis running times of the modular and whole program analysis

on five Unix Coreutils applications. As shown in this figure, the whole program
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Figure 4.21: Size of alias partition set vs. Frequency

analysis, which did not report any errors, takes ∼50 seconds on a program with

only 1000 lines, whereas the modular analysis, which also did not report any errors,

analyzes the same program in 2.3 seconds. Furthermore, observe that the running

time of the whole program analysis increases much more quickly in the size of the

application than that of the modular analysis.

In a final set of experiments, we plot the size of the alias partition set vs. the

frequency of this set size for the benchmarks from Figure 4.18. The solid (red) line

shows the size of the alias partition sets obtained by assuming α′ ∈ A(α) if α and α′

have compatible types. In contrast, the dashed (green) line shows the size of the alias

partition sets obtained as described in Section 4.4. Observe that these optimizations

significantly reduce the size of alias partition sets and substantially improve running

time. In particular, without these optimizations, the benchmarks take an average of

2.7 times longer.
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4.6 Related Work

In this section, we review previous approaches to compositional program analysis,

specifically compositional alias analysis, compositional shape analysis and general

modular analysis frameworks. Among those approaches, previous work on composi-

tional alias analysis is most related to the work presented in this chapter.

Compositional Alias Analysis Modular alias analysis of a procedure performed

by starting with unknown values to all parameters was also explored in [79] and then

in Relevant Context Inference (RCI) [24]. The technique presented in [79] computes

a new partial transfer function as new aliasing patterns are encountered at call sites

and requires reanalysis of functions. In contrast, the technique in [24] is purely

bottom-up, and uses equality and disequality queries to generate summary transfer

functions. Our approach is similar to [24] in that we perform a strictly bottom-up

analysis where the unknown points-to target of an argument is represented using one

location variable and summary facts are predicated upon possible aliasing patterns

at function entry. In contrast to our technique, RCI is only able to perform strong

updates in very special cases intraprocedurally, and cannot perform strong updates

at call sites. In fact, the summary computation described in [24] is only sound under

the assumption that no points-to relations are killed by summary application. In

contrast, summaries generated by our analysis are used to perform strong updates

at call sites, and for the recursion-free fragment of the language from Section 4.2,

applying a summary is as precise as analyzing the inlined body of the function.

The compositional pointer analysis algorithms given in [78, 75] assume there is

no aliasing on function entry and analyze the function body under this assumption.

However, since summaries computed in this way may be unsound, the summary

is “corrected” using a fairly involved fixed-point computation at call sites. This

approach is also much less precise than our technique because it only performs strong

updates in a very limited number of situations.

Compositional Shape Analysis Recently, there has also been interest in com-

positional shape analysis using separation logic [21, 45]. Both of these works use
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bi-abduction to compute pre- and post-conditions on the shapes of recursive data

structures. However, neither of these works guarantee precision. While this chapter

does not address computing summaries about shapes of recursive data structures, our

technique can handle deep sharing and allows disjunctive facts.
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General Modular Analysis Frameworks Theoretical foundations for modular

program analysis are explored in [28], [46], and [70]. The work in [82] provides a

framework for computing precise and concise summaries for IFDS [73] and IDE [74]

dataflow problems. This framework is mainly specialized for typestate properties

and relies on global points-to information. While it may be possible to apply this

framework to obtain some form of modular heap analysis in principle, it is unclear

how to do so, and the authors of [82] list this application as a future research direction.



Chapter 5

Constraint Simplification

Static analysis techniques, such as the ones we have described in previous chapters,

build upon SAT and SMT solving by encoding program states as formulas and deter-

mining the feasibility of these states by querying satisfiability. Despite tremendous

progress in solving SAT and SMT formulas over the last decade [36, 56, 62, 31, 35,

14, 9, 12], the scalability of many software verification techniques relies crucially on

controlling the size of the formulas generated by the analysis, because many of the

operations performed on these formulas are highly sensitive to formula size. For this

reason, much research effort has focused on identifying only those states and predi-

cates relevant to some property of interest. For example, predicate abstraction-based

approaches using counter-example guided abstraction refinement [27, 10, 8] attempt

to discover a small set of predicates relevant to verifying a property and only include

this small set of predicates in their formulas. Similarly, many path-sensitive static

analysis techniques have successfully employed various heuristics to identify which

path conditions are likely to be relevant for some property of interest. For example,

property simulation only tracks those branch conditions for which the property-related

behavior differs along the arms of the branch [30]. Other path-sensitive analysis tech-

niques attempt to improve their scalability by either only tracking path conditions

intraprocedurally or by heuristically selecting a small set of predicates to track across

function boundaries [1, 18].

All of these different techniques share one important underlying assumption that

110
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has been validated by a large body of empirical evidence: Many program conditions

do not matter for verifying most properties of interest, making it possible to construct

much smaller formulas sufficient to prove the property. If this is indeed the case, then

one might suspect that even if we construct a formula φ characterizing some program

property P without being particularly careful about what conditions to track, it

should be possible to use φ to construct a much smaller, equivalent formula φ′ for P

since many predicates used in φ do not affect P ’s truth value.

In this chapter, we present a systematic and practical approach for simplifying for-

mulas that identifies and removes irrelevant predicates and redundant subexpressions

as they are generated by the analysis. In particular, given an input formula φ, our

technique produces an equivalent formula φ′ such that no simpler equivalent formula

can be obtained by replacing any subset of the leaves (i.e., syntactic occurrences of

atomic formulas) used in φ′ by true or false. We call such a formula φ′ simplified.

Like all the afore-mentioned approaches to program verification, our interest in

simplification is motivated by the goal of generating formulas small enough to make

software verification scalable. However, we attack the problem from a different angle:

Instead of restricting the set of predicates that are allowed to appear in formulas, we

continuously simplify the constraints generated by the analysis. This approach has

two advantages: First, it does not require heuristics to decide which predicates are

relevant, and second, this approach removes all redundant subparts of a formula in

addition to filtering out irrelevant predicates.

To be concrete, consider the following code snippet:

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};

int perform_op(op_type op, int x, int y) {

int res;

if(op == ADD) res = x+y;

else if(op == SUBTRACT) res = x-y;

else if(op == MULTIPLY) res = x*y;

else if(op == DIV) { assert(y!=0); res = x/y; }

else res = UNDEFINED;

return res; }
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The perform_op function is a simple evaluation procedure inside a calculator pro-

gram that performs a specified operation on x and y. This function aborts if the

specified operation is division and the divisor is 0. Assume we want to know the con-

straint under which the function returns, i.e., does not abort. This constraint is given

by the disjunction of the constraints under which each branch of the if statement

does not abort. The following formula, constructed in a straightforward way from

the program, describes this condition:

op = 0 ∨ (op 6= 0 ∧ op = 1) ∨ (op 6= 0 ∧ op 6= 1 ∧ op = 2)∨
(op 6= 0 ∧ op 6= 1 ∧ op 6= 2 ∧ op = 3 ∧ y 6= 0)∨

(op 6= 0 ∧ op 6= 1 ∧ op 6= 2 ∧ op 6= 3)

Here, each disjunct is associated with one branch of the if statement. In each disjunct,

a disequality constraint of the form op 6= 0, op 6= 1, . . . states that the previous

branches were not taken, encoding the semantics of an else statement. In the fourth

disjunct, the additional constraint y 6= 0 encodes that if this branch is taken, y cannot

be 0 for the function to return.

While this automatically generated constraint faithfully encodes the condition

under which the function returns, it is far from concise. In fact, the above constraint

is equivalent to the much simpler formula:

op 6= 3 ∨ y 6= 0

This formula is in simplified form because it is equivalent to the original formula

and replacing any of the remaining leaves by true or false would not result in an

equivalent formula. This simpler constraint expresses exactly what is relevant to the

function’s return condition and makes no reference to irrelevant predicates, such as

op = 0, op = 1, and op = 2. Although the original formula corresponds to a brute-

force enumeration of all paths in this function, its simplified form yields the most

concise representation of the function’s return condition without requiring specialized

techniques for identifying relevant predicates.

To summarize, this chapter makes the following key contributions:
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• We present an on-line constraint simplification algorithm for improving SMT-

based static analysis techniques.

• We define what it means for a formula to be in simplified form and detail some

important properties of this form.

• We give a practical algorithm for reducing formulas to their simplified form and

show how this algorithm naturally integrates into the DPLL(T ) framework for

solving SMT formulas.

• We demonstrate the effectiveness of our on-line simplification algorithm in the

context of a program verification framework and show that simplification im-

proves overall performance by orders of magnitude, often allowing analysis runs

that did not terminate within the allowed resource limits to complete in just a

few seconds.

5.1 Preliminaries

Any quantifier-free formula φT in theory T is defined by the following grammar:

φT := true | false | AT | ¬AT | φ′T ∧ φ′′T | φ′T ∨ φ′′T

In the above grammar, AT represents an atomic formula in theory T , such as the

boolean variable x in propositional logic or the inequality a + 2b ≤ 3 in linear arith-

metic. Observe that the above grammar requires formulas to be in negation normal

form (NNF) because only atomic formulas may be negated. While the rest of this

chapter relies on formulas being in NNF, this restriction is not important since any

formula may be converted to NNF using De Morgan’s laws in linear time without

increasing the size of the formula (see Definition 2).

Definition 1 (Leaf) We refer to each occurrence of an atomic formula AT or its

negation ¬AT as a leaf of the formula in which it appears.
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It is important to note that different occurrences of the same (potentially negated)

atomic formula in φT form distinct leaves. For example, the two occurrences of

f(x) = 1 in f(x) = 1 ∨ (f(x) = 1 ∧ x + y ≤ 1) correspond to two distinct leaves.

Also, observe that leaves are allowed to be negations. For instance, in the formula

¬(x = y), (x = y) is not a leaf; the only leaf of the formula is ¬(x = y).

In the rest of this chapter, we restrict our focus to quantifier-free formulas in

theory T , and we assume there is a decision procedure DT that can be used to decide

the satisfiability of a quantifier-free formula φT in theory T . Where irrelevant, we

omit the subscript T and denote formulas by φ.

Definition 2 (Size) The size of a formula φ is the number of leaves φ contains.

Definition 3 (Fold) The fold operation removes constant leaves (i.e., true, false)

from the formula. In particular, Fold(φ) is a formula φ′ such that (i) φ⇔ φ′, (ii) φ′

is just true or false or φ′ mentions neither true nor false.

It is easy to see that it is possible to construct this fold operation such that it

reduces the size of the formula φ at least by one if φ contains true or false but φ is

not initially true or false.

5.2 Simplified Form

In this section, we first define redundancy and describe what it means for a formula

to be in simplified form. We then highlight some important properties of simplified

forms. Notions of redundancy similar to ours have been studied in other contexts,

such as in automatic test pattern generation and vacuity detection; see Section 5.6 for

a discussion.

Definition 4 (φ+(L),φ−(L)) Let φ be a formula and let L be a leaf of φ. φ+(L) is

obtained by replacing L by true and applying the fold operation. Similarly, φ−(L) is

obtained by replacing L by false and folding the resulting formula.
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Example 26 Consider the formula:

x = y︸ ︷︷ ︸
L0

∧ (f(x) = 1︸ ︷︷ ︸
L1

∨ (f(y) = 1︸ ︷︷ ︸
L2

∧ x+ y ≤ 1︸ ︷︷ ︸
L3

))

Here, φ+(L1) is (x = y), and φ−(L2) is (x = y ∧ f(x) = 1).

Observe that for any formula φ, φ+(L) is an overapproximation of φ, i.e., φ⇒ φ+(L),

and φ−(L) is an underapproximation, i.e., φ−(L)⇒ φ. This follows immediately from

Definition 4 and the monotonicity of NNF. Also, by construction, the sizes of φ+(L)

and φ−(L) are at least one smaller than the size of φ.

Definition 5 (Redundancy) We say a leaf L is non-constraining in formula φ if

φ+(L) ⇒ φ and non-relaxing if φ ⇒ φ−(L). Leaf L is redundant if L is either

non-constraining or non-relaxing.

The following corollary follows immediately from definition:

Corollary 3 If a leaf L is non-constraining, then φ ⇔ φ+(L), and if L is non-

relaxing, then φ⇔ φ−(L).

Intuitively, if replacing a leaf L by true in formula φ results in an equivalent

formula, then L does not constrain φ; hence, we call such a leaf non-constraining. A

similar intuition applies for non-relaxing leaves.

Example 27 Consider the formula from Example 26. In this formula, leaves L0 and

L1 are not redundant, but L2 is redundant because it is non-relaxing. Leaf L3 is both

non-constraining and non-relaxing, and thus also redundant.

Note that if two leaves L1 and L2 are redundant in formula φ, this does not

necessarily mean we can obtain an equivalent formula by replacing both L1 and L2

with true (if non-constraining) or false (if non-relaxing). This is the case because

eliminating L1 may render L2 non-redundant and vice versa.

Definition 6 (Simplified Form) We say a formula φ is in simplified form if no

leaf mentioned in φ is redundant.
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Lemma 12 If a formula φ is in simplified form, replacing any subset of the leaves

used in φ by true or false does not result in an equivalent formula.

Proof 12 The proof is by induction. If φ contains a single leaf, the property trivially

holds. Suppose φ is of the form φ1 ∨φ2. Then, if φ has a simplification φ′1 ∨φ′2 where

both φ′1 and φ′2 are simplified, then either φ′1 ∨ φ2 or φ1 ∨ φ′2 is also equivalent to φ.

This is the case because (φ⇔ φ′1∨φ′2)∧ (φ 6⇔ φ′1∨φ2)∧ (φ 6⇔ φ1∨φ′2) is unsatisfiable.

A similar argument applies if the connective is ∧.

The following corollary follows directly from Lemma 12:

Corollary 4 A formula φ in simplified form is satisfiable if and only if it is not

syntactically false and valid if and only if it is syntactically true.

This corollary is important in the context of on-line simplification in program

analysis because, if formulas are kept in simplified form, then determining satisfiability

and validity becomes just a syntactic check.

Observe that while a formula φ in simplified form is guaranteed not to contain

redundancies, there may still exist a smaller formula φ′ equivalent to φ. In particular,

a non-redundant formula may be made smaller, for example, by factoring common

subexpressions. We do not address this orthogonal problem in this chapter, and the

algorithm given in Section 5.3 does not change the structure of the formula.

Example 28 Consider the propositional formula (a∧ b)∨ (a∧ c). This formula is in

simplified form, but the equivalent formula a ∧ (b ∨ c) contains fewer leaves.

As this example illustrates, it is not possible to determine the equivalence of

two formulas by checking whether their simplified forms are syntactically identical.

Furthermore, as illustrated by the following example, the simplified form of a formula

φ is not always guaranteed to be unique.

Example 29 Consider the formula x = 1 ∨ x = 2 ∨ (1 ≤ x ∧ x ≤ 2) in the theory

of linear integer arithmetic. The two formulas x = 1 ∨ x = 2 and 1 ≤ x ∧ x ≤ 2 are

both simplified forms that can be obtained from the original formula.
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Lemma 13 If φ is a formula in simplified form, then NNF(¬φ) is also in simplified

form, where NNF converts the formula to negation normal form.

Proof 13 Suppose NNF(¬φ) was not in simplified form. Then, it would be possible

to replace one leaf, say L, by true or false to obtain a strictly smaller, but equivalent

formula. Now consider negating the simplified form of NNF(¬φ) to obtain φ′ which

is equivalent to φ. Note that the ¬L is a leaf in φ, but not in φ′. Thus, φ could not

have been in simplified form.

Hence, if a formula is in simplified form, then its negation does not need to be

resimplified, an important property for on-line simplification in program analysis.

However, simplified forms are not preserved under conjunction or disjunction.

Lemma 14 For every formula φ, there exists a formula φ′ in simplified form such

that (i) φ⇔ φ′, and (ii) size(φ′) ≤ size(φ).

Proof 14 Consider computing φ′ by checking every leaf L of φ for redundancy and

replacing L by true if it is non-constraining and by false if it is non-relaxing. If this

process is repeated until there are no redundant leaves, the resulting formula is in

simplified form and contains at most as many leaves as φ.

The above lemma states that converting a formula to its simplified form never

increases the size of the formula. This property is desirable because, unlike other

representations like BDDs that attempt to describe the formula compactly, computing

a simplified form is guaranteed not to cause a worst-case blow-up. In the experience

of the authors, this property is crucial in program verification.

5.3 Algorithm to Compute Simplified Forms

While the proof of Lemma 14 sketches a naive way of computing the simplified form

of a formula φ, this approach is suboptimal because it requires repeatedly checking

the satisfiability of a formula twice as large as φ until no more redundant leaves can

be identified. In this section, we present a practical algorithm to compute simplified
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forms. For convenience, we assume formulas are represented as trees; however, the

algorithm is easily modified to work on directed acyclic graphs, and in fact, our

implementation uses DAGs to represent formulas. A node in the tree represents

either an ∧ or ∨ connective or a leaf. We assume connectives have at least two

children but may have more than two.

5.3.1 Basic Algorithm

Recall that a leaf L is non-constraining if and only if φ+(L)⇒ φ and non-relaxing if

and only if φ⇒ φ−(L). Since the size of φ+(L) and φ−(L) may be only one less than

φ, checking whether L is non-constraining or non-relaxing using Definition 5 requires

checking the validity of formulas twice as large as φ.

A key idea underlying our algorithm is that it is possible to check for redundancy

of a leaf L by checking the validity of formulas no larger than φ. In particular, for

each leaf L, our algorithm computes a formula α(L), called the critical constraint of

L, such that (i) α(L) is no larger than φ, (ii) L is non-constraining if and only if

α(L) ⇒ L, and (iii) L is non-relaxing if and only if α(L) ⇒ ¬L. This allows us to

determine whether each leaf is redundant by determining the satisfiability of formulas

no larger than the original formula φ.

Definition 7 (Critical constraint)

• Let R be the root node of the tree. Then, α(R) = true.

• Let N be any node other than the root node. Let P denote the parent of N in

the tree, and let S(N) denote the set of siblings of N . Let ? denote ¬ if P is

an ∨ connective, and nothing if P is an ∧ connective. Then,

α(N) = α(P ) ∧
∧

Si∈S(N)

?Si

Intuitively, the critical constraint of a leaf L describes the condition under which L

will be relevant for either permitting or disallowing a particular model of φ. Clearly, if

the assignment to L is to determine whether φ is true or false for a given interpretation,
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Figure 5.1: The representation of the formula from Example 26. The critical con-
straint at each node is shown in red. Observe that the critical constraint for L3 is
false, making L3 both non-constraining and non-relaxing. The critical constraint of
L2 implies its negation; hence, L2 is non-relaxing.

then all the children of an ∧ connective must be true if this ∧ node is an ancestor of L;

otherwise φ is already false regardless of the assignment to L. Also, observe that L is

not relevant in permitting or disallowing a model of φ if some other path not involving

L is satisfied because φ will already be true regardless of the truth value of L. Hence,

the critical constraint includes the negation of the siblings at an ∨ connective while it

includes the siblings themselves at an ∧ node. The critical constraint can be viewed

as a context in the general framework of contextual rewriting [61, 3]; see Section 5.6

for a discussion.

Example 30 Figure 5.1 shows the representation of the formula from Example 26

along with the critical constraints of each node.

Lemma 15 A leaf L is non-constraining if and only if α(L)⇒ L.

Proof 15 (Sketch) Suppose α(L) ⇒ L, but L is constraining, i.e., the formula γ =

(φ+(L) ∧ ¬φ) is satisfiable. Then, there must exist some model M of γ that satisfies
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φ+(L) but not φ. For M to be a model of φ+(L) but not φ, it must (i) assign all the

children of any ∧ node that is an ancestor of L to true, (ii) it must assign L to false,

and (iii) it must assign any other children of an ∨ node that is an ancestor of L to

false. By (i) and (iii), such a model must also satisfy α(L). Since α(L) ⇒ L, M

must also satisfy L, contradicting (ii). The other direction is analogous.

Lemma 16 A leaf L is non-relaxing if and only if α(L)⇒ ¬L.

Proof 16 Similar to the proof of Lemma 15.

We now formulate a simple recursive algorithm, presented in Figure 5.2, to reduce

a formula φ to its simplified form. In this algorithm, N is a node representing the

current subpart of the formula, and α denotes the critical constraint associated with

N . If C is some ordered set, we use the notation C<i and C>i to denote the set of

elements before and after index i in C respectively. Finally, we use the notation ?

as in Definition 7 to denote ¬ if the current node is an ∨ connective and nothing

otherwise.

Observe that, in the algorithm of Figure 5.2, the critical constraint of each child

ci of a connective node is computed by using the new siblings c′k that have been

simplified. This is crucial for the correctness of the algorithm because, as pointed out

in Section 5.2, if two leaves L1 and L2 are both initially redundant, it does not mean

L2 stays redundant after eliminating L1 and vice versa. Using the simplified siblings

in computing the critical constraint of ci has the same effect as rechecking whether ci

remains redundant after simplifying sibling ck.

Another important feature of the algorithm is that, at connective nodes, each

child is simplified as long as any of their siblings change, i.e., the recursive invocation

returns a new sibling not identical to the old one. The following example illustrates

why this is necessary.

Example 31 Consider the following formula: x 6= 1︸ ︷︷ ︸
L1

∧ (x ≤ 0︸ ︷︷ ︸
L2

∨x > 2︸ ︷︷ ︸
L3

∨x = 1︸ ︷︷ ︸
L4

)

︸ ︷︷ ︸
N
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simplify(N , α)

• If N is a leaf:

– If α⇒ N return true

– If α⇒ ¬N return false

– Otherwise return N

• If N is a connective, let C denote the ordered set of children of N , and let C ′

denote the new set of children of N .

– For each ci ∈ C:

αi = α ∧ (
∧
cj∈C>i ?cj) ∧ (

∧
c′k∈C

′
<i
?c′k)

c′i = simplify(ci, αi)
C ′ = C ′ ∪ c′i

– Repeat the previous step until ∀i.ci = c′i

– If N is an ∧ connective, return
∧
c′i∈C′

c′i

– If N is an ∨ connective, return
∨
c′i∈C′

c′i

Figure 5.2: The basic algorithm to reduce a formula N to its simplified form

The simplified form of this formula is x ≤ 0 ∨ x > 2. Assuming we process child

L1 before N in the outer ∧ connective, the critical constraint for L1 is computed as

x ≤ 0∨x > 2∨x = 1, which implies neither L1 nor ¬L1. If we would not resimplify L1

after simplifying N , the algorithm would (incorrectly) yield x 6= 1 ∧ (x ≤ 0 ∨ x > 2)

as the simplified form of the original formula. However, by resimplifying L1 after

obtaining a simplified N ′ = (x ≤ 0∨ x > 2), we can now simplify the formula further

because the new critical constraint of L1, (x ≤ 0 ∨ x > 2), implies x 6= 1.

Lemma 17 The number of validity queries made in the algorithm of Figure 5.2 is

bound by 2n2 where n denotes the number of leaves in the initial formula.

Proof 17 First, observe that if any call to simplify yields a formula different from

the input, the size of this formula must be at least one less than the original formula
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(see Lemma 14). Furthermore, the number of validity queries made in formula of

size k without any simplifications is 2k. Hence, the total number of validity queries

is bound by 2n+ 2(n− 1) + . . .+ 2 which is bound by 2n2.

5.3.2 Making Simplification Practical

In the previous section, we showed that reducing a formula to its simplified form

may require making a quadratic number of validity queries. However, these queries

are not independent of one another in two important ways: First, all the formulas

that correspond to validity queries share exactly the same set of leaves. Second,

the simplification algorithm given in Figure 5.2 has a push-and-pop structure, which

makes it possible to incrementalize queries. In the rest of this section, we discuss how

we can make use of these observations to substantially reduce the cost of simplification

in practice.

The first observation that all formulas whose satisfiability is queried during the

algorithm share the same set of leaves has a fundamental importance when simplifying

SMT formulas. Most modern SMT solvers use the DPLL(T ) framework to solve

formulas [68]. In the most basic version of this framework, leaves in a formula are

treated as boolean variables, and this boolean overapproximation is then solved by

a SAT solver. If the SAT solver generates a satisfying assignment that is not a

valid assignment when theory-specific information is accounted for, the theory solver

then produces (an ideally minimal) conflict clause that is conjoined with the boolean

overapproximation to prevent the SAT solver from generating at least this assignment

in the future. Since the formulas solved by the SMT solver during the algorithm

presented in Figure 5.2 share the same set of leaves, theory-specific conflict clauses

can be gainfully reused. In practice, this means that after a small number of conflict

clauses are learned, the problem of checking the validity of an SMT formula quickly

converges to checking the satisfiability of a boolean formula.

The second important observation is that the construction of the critical constraint

follows a push-pop stack structure. This is the case because the critical constraint

from the parent node is reused, and additional constraints are pushed on the stack
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(i.e., added to the critical constraint) before the recursive call and (conceptually)

popped from the stack after the recursive invocation. This stylized structure is im-

portant for making the algorithm practical because almost all modern SAT and SMT

solvers support pushing and popping constraints to incrementalize solving. In addi-

tion, other tasks that often add overhead, such as CNF construction using Tseitin’s

encoding for the SAT solver, can also be incrementalized rather than done from

scratch. In Section 5.5, we show the expected overhead of simplifying over solving

grows sublinearly in the size of the formula in practice if the optimizations described

in this section are used.

5.4 Integration with Program Analysis

We implemented the proposed algorithm in the Mistral constraint solver [34]. To

tightly integrate simplification into a program analysis system, we designed the in-

terface of Mistral such that instead of giving a “yes/no” answer to satisfiability and

validity queries, it yields a formula φ′ in simplified form. Recall that φ is satisfiable

(valid) if and only if φ′ is not syntactically false (true); hence, in addition to obtaining

a simplified formula, the program analysis system can check whether the formula is

satisfiable by syntactically checking if φ′ is not false. After a satisfiability query is

made, we then replace all instances of φ with φ′ such that future formulas that would

be constructed by using φ are instead constructed using φ′. This functionality is

implemented efficiently through a shared constraint representation. Hence, Mistral’s

interface is designed to be useful for program analysis systems that incrementally

construct formulas from existing formulas and make many intermediary satisfiabil-

ity or validity queries. Examples of such systems include, but are not limited to,

[1, 32, 10, 8, 30, 5].

5.5 Experimental Results

In this section, we report on our experience using on-line simplification in the context

of program analysis. Since the premise of this work is that simplification is useful
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Figure 5.3: Running times with and without simplification

only if applied continuously during the analysis, we do not evaluate the proposed

algorithm on solving off-line benchmarks such as the SMT-LIB. In particular, the

proposed technique is not meant as a preprocessing step before solving and is not

expected to improve solving time on individual constraints.

5.5.1 Impact of On-line Simplification on Analysis Scalability

In our first experiment, we integrate Mistral into the Compass program verification

system. Compass [32] is a path- and context-sensitive program analysis system for

analyzing C programs, integrating reasoning about both arrays and contents of the

heap. Compass checks memory safety properties, such as buffer overruns, null deref-

erences, casting errors, and uninitialized memory; it can also check user-provided

assertions. Compass generates constraints in the combined theory of uninterpreted

functions and linear integer arithmetic, and as typical of many program analysis sys-

tems [40, 1, 32, 5], constraints generated by Compass become highly redundant over

time, as new constraints are obtained by combining existing constraints. Most im-

portantly, unlike other systems that employ various (usually incomplete) heuristics
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to control formula size, Compass tracks program conditions precisely without identi-

fying a relevant set of predicates to track. Hence, this experiment is used to illustrate

that a program analysis system can be made scalable through on-line simplification

instead of using specialized heuristics to control formula size.

In this experiment, we run Compass on 811 program analysis benchmarks, to-

talling over 173,000 lines of code, ranging from small programs with 20 lines to real-

world applications, such as OpenSSH, with over 26,000 lines. For each benchmark, we

fix a time-out of 3600 seconds and a maximum memory of 4 GB. Any run exceeding

either limit was aborted and assumed to take 3600 seconds.

Figure 5.3 compares Compass’s running times on these benchmarks with and with-

out on-line simplification. The x-axis shows the number of lines of code for various

benchmarks and the y-axis shows the running time in seconds. Observe that both

axes are log scale. The blue (dotted) line shows the performance of Compass without

on-line simplification while the red (solid) line shows the performance of Compass

using the simplification algorithm presented in this chapter and using the improve-

ments from Section 5.3.2. In the setting that does not use on-line simplification,

Mistral returns the formula unchanged if it is satisfiable and false otherwise. As

this figure shows, Compass performs dramatically better with on-line simplification

on any benchmark exceeding 100 lines. For example, on benchmarks with an aver-

age size of 1000 lines, Compass performs about two orders of magnitude better with

on-line simplification, and can analyze programs of this size in just a few seconds.

Furthermore, using on-line simplification, Compass can analyze benchmarks with a

few ten thousand lines of code, such as OpenSSH, in the order of just a few minutes

without employing any heuristics to identify relevant conditions.

5.5.2 Redundancy in Program Analysis Constraints

This dramatic impact of simplification on scalability is best understood by consid-

ering how redundant formulas become when on-line simplification is disabled when

analyzing the same set of 811 program analysis benchmarks. Figure 5.4(a) plots the
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size of the initial formula vs. the size of the simplified formula when formulas gen-

erated by Compass are not continuously simplified. The x = y line is plotted as a

comparison to show the worst-case when the simplified formula is no smaller than the

original formula. As this figure shows, while formula sizes grow very quickly without

on-line simplification, these formulas are very redundant, and much smaller formulas

are obtained by simplifying them. We would like to point out that the redundancies

present in these formulas cannot be detected through simple syntactic checks because

Mistral still performs extensive syntactic simplifications, such as detecting duplicates,

syntactic contradictions and tautologies, and folding constants.

To demonstrate that Compass is not the only program analysis system that gen-

erates redundant constraints, we also plot in Figure 5.4(b) the original formula size

vs. simplified formula size on constraints obtained on the same benchmarks by the

Saturn program analysis system [1]. First, observe that the constraints generated by

Saturn are also extremely redundant. In fact, their average size after simplification

is 1.93 whereas the average size before simplification is 73. Second, observe that the

average size of simplified constraints obtained from Saturn is smaller than the aver-

age simplified formula size obtained from Compass. This difference is explained by

two factors: (i) Saturn is significantly less precise than Compass, and (ii) it adopts

heuristics to control formula size.
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The reader may not find it surprising that the redundant formulas generated by

Compass can be dramatically simplified. That is, of course, precisely the point. Com-

pass gains both better precision and simpler engineering from constructing straight-

forward formulas and then simplifying them because it does not need to heuristically

decide in advance which predicates are important. But these experiments also show

that the formulas generated by Compass are not unusually redundant to begin with:

As the Saturn experiment shows, because analysis systems build formulas composi-

tionally guided by the structure of the program, even highly-engineered systems like

Saturn, designed without the assumption of pervasive simplification, can construct

very redundant formulas.

5.5.3 Complexity of Simplification in Practice

In another set of experiments, we evaluate the performance of our simplification algo-

rithm on over 93,000 formulas obtained from our 811 program analysis benchmarks.

Recall from Lemma 17 that simplification may require a quadratic number of validity

checks. Since the size of the formulas whose validity is checked by the algorithm is

at most as large as the original formula, the ratio of simplifying to solving could, in

the worst case, be quadratic in the size of the original formula. Fortunately, with

the improvements discussed in Section 5.3.2, we show empirically that simplification

adds sub-linear overhead over solving in practice.

Figure 5.5 shows a detailed evaluation of the performance of the simplification

algorithm. In all of these graphs, we plot the ratio of simplifying time to solving time

vs. size of the constraints. In graphs 5.5a and 5.5c, the constraints we simplify are

obtained from analysis runs where on-line simplification is enabled. For the data in

graphs 5.5b and 5.5d, we disable on-line simplification during the analysis, allowing

the constraints generated by the analysis to become much larger. We then collect

all of these constraints and run the simplification algorithm on these much larger

constraints in order to demonstrate that the simplification algorithm also performs

well on larger constraints with several hundred leaves. In all of these graphs, the red

(solid) line marks data points, the blue (lower dotted) line marks the function best
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Figure 5.5: Complexity of Simplification in Practice

fitting the data, the green (middle dotted) line marks y = x, and the pink (upper

dotted) line marks y = x2. The top two graphs are obtained from runs that employ

the improvements described in Section 5.3.2 whereas the two bottom graphs are

obtained from runs that do not. Observe that in graphs 5.5a and 5.5b, the average

ratio of simplification to solve time seems to grow sublinearly in formula size. In

fact, from among the family of formulas y = cx2, y = cx, and y = c · log(x), the

data in figures 4a and 4b are best approximated by y = 2.70 · log(x) and y = 2.96 ·
log(x) with asymptotic standard errors 1.98% and 2.42% respectively. On the other

hand, runs that do not exploit the dependence between different implication queries

exhibit much worse performance, often exceeding the y = x line. These experiments
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show the importance of exploiting the interdependence between different implication

queries and validate our hypothesis that simplifying SMT formulas converges quickly

to simplifying SAT formulas when queries are incrementalized. These experiments

also show that the overhead of simplifying vs. solving can be made manageable since

the ratio of simplifying to solving seems to grow very slowly in the size of the formula.

5.6 Related Work

Finding simpler representations of boolean circuits is a well-studied problem in logic

synthesis and automatic test pattern generation (ATPG) [64, 63, 56]. Our defini-

tion of redundancy is reminiscent of the concept of undetectable faults in circuits,

where pulling an input to 0 (false) or 1 (true) is used to identify redundant circuitry.

However, in contrast to the definition of size considered in this chapter, ATPG and

logic synthesis techniques are concerned with minimizing DAG size, representing the

size of the circuit implementing a formula. As a result, the notion of redundancy

considered in this chapter is different from the notion of redundancy addressed by

these techniques. In particular, in our setting, one subpart of the formula may be

redundant while another syntactically identical subpart may not. In this chapter,

we consider different definitions of size and redundancy because except for a few

operations like substitution, most operations performed on constraints in a program

analysis system are sensitive to the “tree size” of the formula, although these formulas

are represented as DAGs internally. Therefore, formulas we consider do not exhibit

reconvergent fanout and every leaf has exactly one path from the root of the formula.

This observation makes it possible to formulate an algorithm based on critical con-

straints for simplifying formulas in an arbitrary theory. Furthermore, we apply this

simplification technique to on-line constraint simplification in program analysis.

The algorithm we present for converting formulas to simplified form can be un-

derstood as an instance of a contextual rewrite system [61, 3]. In contextual rewriting

systems, if a precondition, called a context, is satisfied, a rewrite rule may be ap-

plied. In our algorithm, the critical constraint can be seen as a context that triggers

a rewrite rule L → true if L is implied by the critical constraint α, and L → false
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if α implies ¬L. While contextual rewriting systems have been used for simplifying

constraints within the solver [3], our goal is to generate an equivalent (rather than

equisatisfiable) formula that is in simplified form. Furthermore, we propose simpli-

fication as an alternative to heuristic-based predicate selection techniques used for

improving scalability of program analysis systems.

Finding redundancies in formulas has also been studied in the form of vacuity

detection in temporal logic formulas [57, 4]. Here, the goal is to identify vacuously

valid subparts of formulas, indicating, for example, a specification error. In contrast,

our focus is giving a practical algorithm for on-line simplification of program analysis

constraints.

The problem of representing formulas compactly has received attention from many

different angles. For example, BDDs attempt to represent propositional formulas

concisely, but they suffer from the variable ordering problem and are prone to a

worst-case exponential blow-up [15]. BDDs have also been extended to other theories,

such as linear arithmetic [16, 26, 25]. In contrast to these approaches, a formula

in simplified form is never larger than the original formula. Loveland and Shostak

address the problem of finding a minimal representation of formulas in normal form

[60]; in contrast, our approach does not require formulas to be converted to DNF or

CNF.

Various rewrite-based simplification rules have also been successfully applied as a

preprocessing step for solving, usually for bit-vector arithmetic [44, 53]. These rewrite

rules are syntactic and theory-specific; furthermore, they typically yield equisatisfiable

rather than equivalent formulas and give no goodness guarantees. In contrast, the

technique described in this chapter is not meant as a preprocessing step for solving

and guarantees non-redundancy.

The importance of on-line simplification of program analysis constraints has been

studied previously in the very different setting of set constraints [40]. Simplification

based on syntactic rewrite-rules has also been shown to improve the performance of

a program analysis system significantly in [23].

Finding redundancies in constraints has also been used for optimization of code

in the context of constraint logic programming (CLP) [55]. In this setting, constraint
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simplification is used for improving the running time of constraint logic programs;

however, the simplification techniques considered there do not work on arbitrary

SMT formulas.



Chapter 6

Conclusion

In this thesis, we have described novel static analysis techniques that make it practical

to automatically check low-level safety properties of programs. The analyses we have

described are precise enough to report an acceptable number of false alarms and scale

to real-world applications. The key ingredients that make our analyses successful are

a constraint-based representation of program states, modular algorithms for analyzing

the whole program, and continuous simplification of constraints. We believe that these

ingredients are crucial for the practicality of our proposed static analysis algorithms,

and we believe they can be profitably incorporated into other approaches for static

program analysis.

While we have demonstrated that the analyses presented in this thesis are success-

ful for uncovering low-level memory safety errors in real-world applications, an inter-

esting direction for future work is applying the proposed static analysis techniques for

automatic detection of violations of high-level specifications, such as security proper-

ties. Other interesting applications for the static analysis algorithms described in this

thesis include compiler optimizations and program synthesis. More specifically, we

believe that the proposed static analysis algorithms are useful for performing much

more aggressive compiler optimizations than are performed by current compilers, as

they allow practical path-sensitive reasoning and precise, yet scalable scalable alias

set computation. We also believe that the proposed static analysis techniques are

applicable in the context of program synthesis, where the goal is to generate low-level

132
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code from a high-level specification. In particular, an interesting future direction is

to employ the techniques described in this thesis for targeting implementations of

existing algorithms to new and emerging architectures, such as GPUs.
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