A MODULAR AND SYMBOLIC APPROACH TO STATIC
PROGRAM ANALYSIS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTTAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Thomas Dillig
November 2011

Abstract

This thesis presents novel static analysis techniques for improving the quality of real-
world software. The static analysis techniques we describe are immediately useful
for uncovering errors in real code bases, as they are fully automatic, report few false
alarms, and scale to large applications. The underlying machinery that allows us
to develop these analyses is comprised of a symbolic SAT and SMT-based encoding
of program states as well as modular, one function-at-a-time reasoning about the
program.

More specifically, the contributions of this thesis are four-fold: The first contribu-
tion is a static inconsistency detection algorithm that uncovers inconsistent assump-
tions made by the programmer in a semantic way. Second, we present a novel and
sound algorithm that performs an interprocedurally path-sensitive analysis that is
capable of giving exact answers to may and must queries about the program with re-
spect to a user-provided, finite abstraction. Third, we describe the first fully modular,
summary-based pointer analysis that can systematically perform strong updates to
abstract memory locations reachable through function arguments. Finally, this thesis
describes an on-line constraint simplification algorithm that significantly improves
the scalability of constraint-based program analysis techniques, such as the analyses

outlined above.

v

Acknowledgements

First of all, I want to thank my Advisor, Alex Aiken, for all the guidance and advice
he has provided to me over the years. Working with Alex has truly been a privilege,
and I feel extremely grateful for all his support and mentorship. He has been a role-
model for me in many ways, not just regarding how to conduct good research, but
also regarding mentoring students and balancing work and family life. 1 can only
hope that I will be able to pass some of these qualities on to my own students in the
future.

I also want to thank David Dill for his support over many years, ranging from
being my undergraduate advisor to reading paper drafts and writing my job recom-
mendation letters. David’s unique perspective from a model checking background has
often enriched my research in many ways and I am thankful for all his help.

I would also like to thank Mooly Sagiv for all of his help and support over the
past two years we have known each other. It was truly wonderful to work with Mooly
during his sabbatical year at Stanford, and I hope we continue to collaborate in the
future.

I also thank Martin Rinard and Tom Ball for their help and guidance over the
course of my PhD, and especially during my job search process.

I thank my fellow PhD students at Stanford for their help and support over the
years. In particular, I am grateful to Mayur Naik, Suhabe Bugrara, Philip Guo, Peter
Hawkins, Adam Oliner, Brian Hackett, Sorav Bansal, and Yichen Xie for providing
useful feedback on paper drafts and practice talks.

I also want to thank my family, and especially my dad, for always encouraging

me in my pursuits, especially in attending a university in the United States for my

undergraduate degree. I am also extremely grateful to my uncle Prof. Dr. Rolf
Heimlinger for funding my undergraduate education.

I also thank all my friends for their support and encouragement throughout the
years. | especially thank Aurelie Beaumel, Ana Gardea, and David Craig for always
being there for me.

Finally, none of this work would have been possible without my loving wife, Isil,

who is the most special person in the world for me.

vi

Contents

Abstract

Acknowledgements

1 Introduction

1.1

Contributions
1.1.1 Semantic Inconsistency Detection
1.1.2 A Novel Path-Sensitive Analysis Algorithm
1.1.3 Modular Pointer Analysis
1.1.4 Constraint Simplification

2 Semantic Inconsistency Inference

2.1

2.2

2.3

24

Language and Inference System
21,1 Guards.
Error Detection oo
2.2.1 Source-Sink Errors oL
2.2.2 Incomnsistency Errors 0oL
2.2.3 Intersection of Source-Sink and Inconsistency Errors.
Interprocedural Error Detection
2.3.1 Function Summaries
2.3.2 Correlation Analysis
2.3.3 Summary Application
A Null Dereference Analysis
2.4.1 Extensions for C L.

vil

iv

U = W W NN =

2.5 Results 33

2.6 Related Work 37
A Novel Path-sensitive Analysis 40
3.1 From Programs to Constraints 45
3.1.1 Reduction to Boolean Constraints 50
3.2 Strongest Necessary and
Weakest Sufficient Conditions 52
3.3 Strongest Necessary and
Weakest Sufficient Conditions 54
3.4 Solving the Constraints 57
3.4.1 Eliminating Choice Variables 57
3.4.2 Preservation Under Substitution 58
3.4.3 Eliminating Recursion 60
3.5 Limitationso 61
3.6 Implementation Lo 61
3.7 Experimental Results 64
3.8 Related Work 69
Modular Heap Analysis 72
4.1 Foundations of Modular Heap Analysis 76
4.1.1 Preliminaries 7
4.1.2 Canonical Decomposition. 78
4.1.3 Structural Decomposition 80
4.1.4 From Decompositions to Modular Heap Analysis. 84
4.1.5 Discussion 85
4.2 Language 85
4.3 Modular & Symbolic Heap Analysis 86
4.3.1 Abstract Domain o000 86
4.3.2 Function Summaries 89
4.3.3 The Analysiso 90
4.4 Computing Alias Partition Sets 101

4.5 Experiments 103

4.6 Related Worko 107

5 Constraint Simplification 110
5.1 Preliminarieso 113
5.2 Simplified Formo 114
5.3 Algorithm to Compute Simplified Forms 117
5.3.1 Basic Algorithm L. 118

5.3.2 Making Simplification Practical 122

5.4 Integration with Program Analysis 123
5.5 Experimental Results 123
5.5.1 Impact of On-line Simplification on Analysis Scalability 124

5.5.2 Redundancy in Program Analysis Constraints 125

5.5.3 Complexity of Simplification in Practice 127

5.6 Related Work oo 129

6 Conclusion 132
Bibliography 134

X

List of Tables

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

3.5

3.6

3.7

4.1
4.2
4.3
4.4

Computing guards.
Experimental Results. Column labeled “Bugs” reports the number of
bugs uncovered, “U” corresponds to error reports that were unresolved,
the abbreviation “FP” stands for false positives, the abbreviation “IC”
stands for inconsistent and the abbreviation “SS” stands for source-

sink. ..o,

Inference Ruleso
Example code.
Example code.
Frequency of necessary and sufficient condition sizes (in terms of the
number of boolean connectives) at sinks for Linux
Necessary and sufficient condition sizes (in terms of number of boolean
connectives in the formula) for pointer dereferences.
Necessary and sufficient condition sizes at sources vs. call chain length
in Linux
Results of null dereference experiments for the interprocedurally path-
sensitive (first three columns) and intraprocedurally path-sensitive, but

interprocedurally path-insensitive (last three columns) analyses

Summary associated with function £
A heap H and its canonical decomposition Hy,..., Hy
A heap H and its canonical decomposition Hy

Two isomorphic canonical heaps and their skeleton

xi

31

48

53

o6

63

64

66

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1

5.2
9.3
5.4
9.5

Structural decomposition of heap H from Figure 4.2 82

A symbolic heap representing two skeletons 88
The abstract store in f’s summary 89
Local Heap Initialization 91
The initial heap abstraction for function from Example 22 92
Abstract Transformers for Basic Statements 94
The symbolic heap before and after line 2 in Example 22 95
Rules for computing instantiation environment I 96
Rules for instantiating locations 97
Rules for instantiating constraints 99
Summary Instantiation rules 99
Summary generation rule 101
Heaps from Lemma 11 102
Comparison of strong/weak updates at call sites 104
Callstack depth vs. summary size 105
Comparison of modular and whole program analysis 105
Size of alias partition set vs. Frequency 106

The representation of the formula from Example 26. The critical
constraint at each node is shown in red. Observe that the critical
constraint for Ls is false, making L3 both non-constraining and non-

relaxing. The critical constraint of Ly implies its negation; hence, Lo

is non-relaxing. Lo Lo 119
The basic algorithm to reduce a formula N to its simplified form . . . 121
Running times with and without simplification 124
Reduction in the Size of Formulas 126
Complexity of Simplification in Practice 128

xii

Chapter 1
Introduction

Rough estimates currently put the number of software developers in the world at
about 10 million, producing billions of new lines of code every year. As an increasing
number of products and services come to rely on software, it becomes more and
more critical that programs behave as expected. Unfortunately, the current “best
practice”, which involves standard testing, performs by all measures very poorly: A
typical software project already spends over 50% of its development time in testing,
yet most software shipped today has so many known bugs and security vulnerabilities
that living with software errors has become an expensive and dangerous way of life.

One promising solution to this software quality crisis is static analysis. Unlike
testing, static analysis examines the program at compile-time, without actually run-
ning it. In static analysis, bug finding techniques can improve software quality by
uncovering problems before they appear in deployment and sound werification tech-
niques can deliver guarantees about the absence of certain classes of errors on all
inputs.

While automatic detection of bugs in software systems is a highly desirable goal,
any static analysis technique that hopes to be practical needs to overcome three

important challenges:

e Low false alarms: A useful static analysis should be precise enough not to
overwhelm the user with many spurious error reports, known as false alarms.

Since inspecting a single error report often takes substantial time and effort on

CHAPTER 1. INTRODUCTION 2

the user’s part, static analysis techniques that report a high number of false

alarms are considered to be ineffective.

e Automatibility: A practical static analysis should not require extensive help
from the user, for example, in the form of annotations. Since an analysis that
requires many annotations from programmers is too expensive as measured by
the amount of programmer time it consumes, static analysis techniques that are

fully automatic have a much higher chance of being adopted in practice.

e Scalability: A useful static analysis technique should be able to analyze
large, real-world software systems. A static analysis that does not scale beyong
small hundred-line benchmarks is unlikely to be adopted for improving software

quality in the real world.

This thesis describes novel and practical static analysis techniques that overcome
this apparent trade-off between precision, scalability, and automatibility. More specif-
ically, we consider precise and scalable approaches to static analysis that represent
program states symbolically as logical formulas and perform a modular, one-function-
at-a-time reasoning. By representing program states symbolically as SAT or SMT for-
mulas, we can both take advantage of recent advances in constraint solving techniques
and avoid the best-case exponential blow-up that arises from performing explicit case
splits. By focusing on modular, summary-based analyses, we can both reuse anal-
ysis results in different calling contexts and achieve locality of reasoning by hiding

irrelevant implementation details of a function from its callers.

1.1 Contributions

This thesis makes four main contributions in the area of static program analysis:
e Semantic inconsistency detection
e A new algorithm for interprocedurally path-sensitive analysis

e A modular, summary-based pointer analysis algorithm

CHAPTER 1. INTRODUCTION 3

e A constraint simplification algorithm that significantly improves the scalability
of static analyses that symbolically represent program states as formulas, such

as all the static analyses described in this thesis

In the rest of this section, we give a brief overview of each of these four contribu-

tions.

1.1.1 Semantic Inconsistency Detection

The first static analysis we consider in this thesis is an inconsistency detector which
semantically identifies inconsistent assumptions made by the programmer, such as
contradictory beliefs that a given pointer may be null as well as the belief that it
is definitely non-null. Our inconsistency detection algorithm performs a form of
sophisticated type inference and is both scalable and fully automatic. Unlike pre-
vious approaches to inconsistency detection, our static analysis is semantic and does
not rely on syntactic clues at the source-code level. By encoding programmer as-
sumptions semantically as logical formulas, the algorithm we describe discovers all
inconsistent assumptions made by the programmer. Since inconsistent programmer
assumptions tend to be highly correlated with real bugs, the resulting static analysis
is able to uncover many bugs in real, multi-million line software applications without

overwhelming the user with lots of false alarms.

1.1.2 A Novel Path-Sensitive Analysis Algorithm

The second contribution of this thesis a novel algorithm for fully path-sensitive static
analysis. A static analysis is said to be path-sensitive if it differentiates between
distinct execution paths of the program. While path-sensitive analyses are often
much more precise than path-insensitive ones, they are also more expensive and less
scalable. Many path-sensitive techniques try to improve their scalability by either
using heuristics to select which predicates to track or by using counter-example guided
abstraction refinement to lazily discover relevant predicates. However, heuristic-based
techniques are not guaranteed to track all relevant predicates, while counterexample-

guided techniques can fail to terminate.

CHAPTER 1. INTRODUCTION 4

In this thesis, we address the problem of performing an interprocedurally path-
sensitive analysis in a sound, complete (in the sense of not missing any relevant path
conditions), and scalable way. This technique differentiates between two classes of
program variables, observable variables, whose values may be determined in calling
contexts of a function, and unobservable variables, which represent either non- deter-
ministic choices made by the program’s execution environment or unknowns arising
from imprecision in the static analysis. The key idea underlying our technique is that
while unobservable variables add useful precision within the function invocation in
which they arise, the aggregate behavior of the function can be precisely summarized
in terms of only observable variables for answering may and must queries. Given a
finite abstraction of the program, our technique first generates a recursive system of
equations, describing path- sensitive conditions for some program property. While
this initial recursive system is not directly solvable, we show that the elimination of
unobservable variables leads to a pair of solvable recursive systems that are as precise
as the original system for answering may and must queries. This technique is the
first fully path- sensitive program analysis that has successfully scaled to a program

as large as the entire Linux kernel with over 6 million lines of code.

1.1.3 Modular Pointer Analysis

The third contribution is a flow- and context-sensitive pointer analysis that is fully
modular. The analysis we describe analyzes the program in a strictly bottom-up
fashion, computing polymorphic summaries for each function f and reusing this sum-
mary in every calling context of f. A modular pointer-analysis is advantageous over a
whole-program pointer analysis because (i) it does not need to re-analyze a function
for each of its call sites, (ii) localizes reasoning by hiding irrelevant internal imple-
mentation details, and (iii) allows the algorithm to be naturally parallelized, as any
pair of functions with no caller-callee relationship can be independently analyzed.
The main insight underlying our technique is to represent the unknown points-to

targets of locations using so-called location wvariables such that the sets of concrete

CHAPTER 1. INTRODUCTION 3

locations represented by any two location variables are always disjoint. This repre-
sentation allows the algorithm to soundly apply strong updates to location variables
without knowing the calling context, which is crucial for the precision of a flow-
sensitive pointer analysis. To enforce that the sets of concrete locations represented
by a pair of location variables are disjoint, our algorithm constructs an efficient and
symbolic encoding of all possible aliasing patterns on function entry and conditions
points-to facts that arise in function f on aliasing relations at the call site of f. This
insight allows us to construct the first fully modular pointer-analysis that can perform

strong updates in a systematic way.

1.1.4 Constraint Simplification

Many program analysis techniques, such as all the analyses described above, use SAT
and SMT formulas to symbolically encode program states or to represent the condi-
tions under which a program property holds. However, since formulas are constructed
incrementally, e.g., by taking the conjunction or disjunction of existing constraints,
formulas become more and more redundant as the analysis progresses. Since solving
constraints and other operations, such as quantifier elimination and substitution, are
highly sensitive to formula size, redundancy in constraints substantially hinders the
scalability of static analysis techniques.

Another contribution of this thesis is a simplified form representation of con-
straints that guarantees non-redundancy, and an algorithm for converting SAT and
SMT formulas to their simplified form. Our experiments demonstrate that constraint
simplification based on this algorithm increases the scalability of static analysis tech-

niques by orders of magnitude.

Chapter 2
Semantic Inconsistency Inference

Much recent work in static analysis focuses on source-sink properties: For safety policy
S, if S is violated when a value constructed at location [; is consumed at location [,
then is there a feasible path from [; to [;? If the answer is “yes”, then the program

has a bug (violates policy S). Some typical specifications are:

e Does a null value assigned to a pointer or reference reach a pointer dereference?
e Does any closed file reach a file read?

e Does a tainted input reach a security critical operation?

To be concrete, consider the following C-like code:

foo(...) {
if (Q) p = NULL; (1)

bar (p) ;
}
bar(x) {

if (R) *x; (2)
}

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 7

The null value assigned at (1) reaches the dereference at (2) if predicates Q and R
can both be true, resulting in a program crash. Several model checkers incorporating
predicate abstraction and refinement [8, 10] and type-based systems [43] target such
specifications. These systems work by searching for a path from a source to a sink

violating the specification.

There is a complementary approach to these problems. Instead of trying to prove
that a source can reach a sink, we can look at a set of sinks that a value x reaches and
see if they express inconsistent beliefs about x [37]. In the example above, assume we

did not have the function foo available, but that the function bar is:

bar(x) {
if (x != NULL) *x; (2)

*X ; €))

}

Something is clearly not quite right with this function. At best bar is never called
with a null value, in which case the test at (2) is just unnecessary and might confuse
readers of the code about the actual possible values of x. At worst bar has a latent
crashing bug waiting to happen, as the unprotected dereference at line (3) must cause
an error if x is null.

Previous work on inconsistency checking is informal in nature, and it is not clear
how it relates to standard semantics-based approaches to software analysis [37], but
it is clear that relying only on the uses of a value for clues about program errors is
something different from what source-sink systems do. The purpose of this chapter is
to clarify what inconsistency checking is, how it is different from source-sink analysis,
and to illustrate by example its potential in practice.

We propose that inconsistency checking is best thought of as a form of an older
and better developed idea, type inference. Type inference systems already find type

errors based only on the use of values; for example, in any functional language with

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 8

type inference (e.g., ML or Haskell) the following code
x + cons(y, x)

will be flagged as having a type error just because the two uses of x are type incon-
sistent (one as a number and the other as a list); note that the type declaration of x
(the source) is not needed to discover this error. From this starting point we make

the following contributions:

e The insight that checking consistency of uses is a type inference problem shows a
fundamental difference between type inference and source-sink systems, such as
most model checkers. Type inference systems find inconsistency errors in open
programs, such as libraries (e.g., the second instance of function bar above,
considered without a caller foo) that cannot be found by source-sink analyzers

simply because no source exists.

e Casting many inconsistency checking problems as type inference problems re-
quires non-standard types. The core issue is when the values at two usage sites
x and y are considered to be “the same”, so that x and y are checked for con-
sistency. A particularly problematic case is pointers; we propose that if two
pointers point to the same values under the same conditions then those two

pointers are really the same pointer (see Section 2.4.1).

e For path-sensitive analyses there is a difficulty of how to construct appropriate
predicates when there is no one source-sink path to use as a source of counterex-
amples for refinement. We present a method based on computing correlations

between program predicates and values of interest.

e We conduct an extensive experiment, analyzing over 8 million lines of C source
(including the entire Linux kernel) for null dereference errors. We have imple-
mented both source-sink checking and inconsistency checking, and we find over
600 previously unknown null dereferences, the overwhelming majority of which
are found by inconsistency checking. While there are limitations to our exper-

iment (in particular, our implemented analyzer is unsound, which may affect

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 9

the ratio of source-sink to inconsistency errors detected), based on the results
it is our belief that inconsistency checking is valuable both because it works
for open programs and because the discovered bugs are often local whereas

understanding a source-sink path for the same bug appears daunting.

We begin our presentation with a small, paradigmatic language in which we de-
velop our formal results (Section 2.1). We present both (intraprocedural) source-sink
and inconsistency checking for this language (Section 2.2) and also extend our tech-
nique to an interprocedural analysis (Section 2.3). We then describe a null dereference
analysis and necessary extensions for C programs (Section 2.4) and present our ex-

perimental results (Section 2.5).

2.1 Language and Inference System

This section describes a simple first order, call-by-value language we use for the formal

development.
Program P == F7*
Function F = deff(xy,...,2,) =s
Statement S = x <" C;| x <"y | check’ b |
flzr, .o xn)? | $15° 59 |
if” b then s; else sq
Condition B 1= x = C}

The language has standard function definitions, assignments, statement sequences,
and conditionals; the semantics is also standard and we omit a formal semantics
for brevity. The only values in the language are nullary constructors (constants)
Ci,...,C,. A condition x = C; is true if x has the value C;. A statement check” x =
C; checks whether variable = is C;. We use check statements to model requirements
that a variable must have a certain value at a particular program point. In examples
we sometimes need a no-op statement (e.g., to fill in a branch of an if); in such cases

we write skip” to abbreviate the assignment y <—* y. We also assume for simplicity

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 10

that all variables that are not function arguments are assigned to before they are
read, so we do not need to define how local variables are initialized.

The superscript p’s on statements are labels. We assume all labels in a program
are distinct, uniquely identifying statements. We often abuse our notation slightly by
writing s” to refer to the top-level label p of statement s.

The only sources (constructors) in this language are constants C; and the only
sinks (destructors) are the check statements. For example, the following program

has a source-sink error: the source assigned at py reaches the conflicting sink at py.

Example 1
(x <P Cyq;P1
if” (y = Cy)
then y < Cs
else check” x = Cy);"®
ifrfe (y =Cy)
then skip””

else check” x =Cy

The language syntax allows us to define algorithms via structural induction, but
it is also handy to be able to view a function definition as a control-flow graph.
For each statement label p there are two program points p~ and p* representing the
points immediately before and after the statement executes, respectively. Definition 1

defines the possible order of evaluation of statements within a function.

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 11

Definition 1 (Partial Order on Program Points) For a function def f(z1, ..., z,)
s, let <; be the smallest relation on program points in f satisfying for each sub-

statement of s:

z" . = p <y pt
check” ... = p =<pp*
Po =fP1
ST sy = el =y
Ps =5 Po

~ .
if” b then s}' else s> = V1o p(jr ! pzr
Pi =f Po
Let <} be the transitive closure of <;. A path from po to p, is a sequence of labels

P0, - - -, Pn in f such that
(1) pi <} pipfor0<i<n—1

(2) the sequence is maximal between the endpoints: inserting any additional label

after py and before p,, violates (1).

A path is complete if it cannot be extended either by adding new labels before the first
label or after the last label; a complete path is a path through the entire function
body. For instance, in Example 1, there is a path py, pa, ps because p, < pg <
p5 < py. This path can be extended in both directions to form a complete path

P55 P15 P05 P25 P4y P6, P7-

2.1.1 Guards

To allow for path-sensitivity in our static analysis, we construct guards that express
program constraints. We use boolean satisfiability (SAT) as the underlying decision
procedure for solving constraints; hence guards are represented as boolean formulas.

In this section, we describe how to compute two kinds of guards:

e statement guards that describe the conditions under which a statement executes,

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 12

e constructor guards that describe the condition under which a variable x at a
given program point evaluates to a constructor C;. In addition, a constructor

guard also encodes the source of the value C;.

Constructor guards are functions of type
CG = (Source x Int) — Guard

The Int in the function signature corresponds to a constructor index, and the Source
in function def f(xy,...,x,) is either a label p of an assignment statement z < C; in
f or one of the function arguments x4, . . ., x,. Sources used in constructor guards track
the origin of every value in a function in terms of function arguments or constructor
assignments within that function. We use r, 7/, r1, ... to range over sources.

Consider an assignment = <—* C; with statement guard . The constructor guard
g. for x after the assignment is g,(p,i) = 7, where ~y is the statement guard for p,
and g,(r, j) = false for all r # p and j # i. Thus, the constructor guard encodes that
immediately after the assignment the value of z is C; from source p if v is satisfied,
and no other value/source combinations are possible.

We require that the formulas in the range of a constructor guard to be pairwise
disjoint: if ¢ is a constructor guard and g(r,i) = v, and g(r',j) = 72, then 71 A
Yo = false if r # r’ or i # j. This condition captures the idea that a value cannot
simultaneously be two distinct constructors or come from two different sources. We
can always enforce this condition by adding new unconstrained boolean variables
to guards. For example, if there are only two constructors C; and Cs, then the
constructor guard ¢g with ¢g(r,1) = « and g(r,2) = -« enforces disjointness; for
more constructors we can use additional fresh variables. We write D, for a fresh
constructor guard associated with function argument x. By fresh, we mean that the
formulas in the range of D, share no variables with D, for distinct variables x and y.
Furthermore, D, (r, j) = false for all r # x; i.e., the only source of values in D, is x.

Figure 2.1 gives inference rules for computing both statement guards and con-

structor guards resulting from executing a statement. An environment I' : Var — CG

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE

(1) Coybkax<? Cp: e« F]
where F' = A\(r, j).if (r,j) = (p, 1) then v else false
(2) Poyba <y Tz« Ar,5).L(y)(r5) A
(3) [yt check? 2z =C;: T
(4) oy b f(zg,...,x,)P: T
Lo, vFs1: 1
(5) [, vFsg: Ty

Lo, v F s13P 59 1 1y

7=V, To(x)(r, 1)
Lo, yAmk sy Ty
Lo,y Ak s9: 1

[g,vF if? £ = C; then s else so: 'y LTy
Mt;. Dy, truet s : T
Fdeff(xy,...,x,) =s

Figure 2.1: Computing guards.

13

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 14

is a map from program variables to constructor guards. For a statement s and ini-
tial environment I' and statement guard ~, the system proves sentences of the form
[,y F s : I, where I is the final environment after execution of s. Note that the
inference system is purely structural; in any proof there is exactly one conclusion

associated with statement s, which we can rewrite as:
I AP s et

In this way we can refer to the environments for the program points before and after
p as well as the statement guard under which s” is executed.

We briefly explain the rules in Figure 2.1. When a variable x is assigned a con-
structor C; (rule (1)), a’s constructor guard shows that it cannot have any value
other than C; from source p (guards for all other constructors and all other sources
are false). Furthermore, x only has value C; if the assignment executes (the guard v on
the assignment statement holds). The second form of assignment (rule (2)) says that
the possible sources/values of = after the assignment are the possible sources/values
of y before the assignment, but only if the assignment executes—the statement guard
7 is added to the guard of every possible source/value pair.

A check” x = C; statement (rule (3)) tests the predicate (r = C;) at run-time.
These are the sinks in our language. The purpose of our analyses is to characterize
when the run-time test can evaluate to false; this can model, for example, the implicit
assertion that a pointer is non-null before it is dereferenced, or more generally that
a value of a discriminated union type has the correct constructor (our choice of the
term “constructor” is meant to suggest discriminated unions), or that a value is in the
correct type-state before some operation is performed. As our interest is in when the
test is false and not what happens as a result of the test, we define check statements
to have no effect on the environment.

Function calls (rule (4)) also have no effect on the environment; because there are
no visible side-effects of a function and no return value, function calls have no effect on
the callee’s state. Of course, this rule also gives us no information about check state-

ments in the called function that may fail; thus, Figure 2.1 defines an intraprocedural

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 15

analysis. We discuss extensions to interprocedural analysis in Section 2.3.

Rules (5) and (6) deal with compound statements. The rule for statement se-
quences (rule (5)) is standard. For an if statement (rule (6)) with statement guard
v, the guard m combines all the conditions under which X = C; from any source.
The true branch is analyzed with statement guard v A m and the false branch is an-
alyzed with statement guard v A =m. The final result is a join ['; U I'y of the final

environments of the two branches, defined as
(T uy)(x)(r,d) =Ty (x)(r, i) vV Dy(x)(r,9)

Finally, a function body (rule (7)) is analyzed in an environment where nothing is
known about a function argument except that it evaluates to a single constructor
at a given call site (recall that for each argument z, the guards in the range of the
constructor guard for x are all disjoint).

Notice that statement guards and constructor guards are mutually dependent
(e.g., rules (1) and (6)) and thus are computed simultaneously. The reason for this de-
sign decision is that the computation of statement guards is affected by side-effects of
statements, which are in turn implicitly captured by constructor guards. Conversely,
the condition under which a statement causes a particular side-effect to happen de-
pends on the condition under which that statement executes; hence the computation
of constructor guards make use of statement guards. As an illustration of guard

computation, consider the example:

Example 2
iff (x = Cy)
then (
X Pt Cy;Ps
if”? (x = Cy)

then check” x = Cy
else skip™)

else skip”®

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 16

Let a; and as be formulas that represent the conditions under which the function
argument x evaluates to C; and C, respectively at function entry. Since the statement
guard at program point p; is «a, the constructor guard I'(x)(p1,2) is also «; by Rule
(1). By Rule (6), the statement guard at ps is iy Acg, which is false by our assumption
that the formulas in the range of a constructor guard are disjoint.

As this example illustrates, the computation of statement guards directly allows

the discovery of infeasible paths in a program.

Definition 2 (Feasibility) Let po,...,p, be a path. Then the path is feasible if
SAT(No<i<n V")

Returning to Example 1, the path of the source-sink error pg, p2, p4 is feasible for an
appropriate initial environment, but the path pg, ps, p3, ps, p7 is not feasible in any
environment. The following lemma captures some simple but very useful facts about

feasible paths.

Lemma 1 Assume I,y F s : IV and let o be any assignment that satisfies v. Then
there is a unique complete, feasible path including s such that o satisfies all the

statement guards on the path.

Proof 1 The proof is by induction on the structure of s. The interesting case is when
s = (if? x = C; then s else s9). From rule (6) of Figure 2.1, the final step of the

derivation must be:

m =V, (x)(r i)
CoyAmtks Ty
Loy A=k sy Ty

[y if? o = C; then s; else sy : 11 LT,

Now either o(y A) is true or o(y A=) is true. Assume that o(y A) is true. Then
FyAnkEs Ty

satisfies the induction hypothesis with assignment o, and so there is a unique complete

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 17

feasible path py,...,p, for sy such that o(y") is true for all 1 < i < n. Then

0y P15 - -+, P 1S the desired path for s. The case where o(y A\ —m) is true is symmetric.

2.2 Error Detection

In this section we present techniques for identifying source-sink and inconsistency
errors using the machinery developed in Section 2.1. Only intraprocedural techniques

are discussed here; Section 2.3 extends the approach across function boundaries.

2.2.1 Source-Sink Errors

Source-sink errors arise when a value constructed at one program point reaches an
unexpected destructor at a different program point. Most errors uncovered by model
checking tools, and particularly model checkers based on counter-example driven re-
finement, are source-sink errors. This class of errors includes, for example, type-state
properties, such as errors that arise from dereferencing a pointer that has been as-

signed to null, or using a tainted input in a security critical operation.

Definition 3 (Source-Sink Error) Consider the sub-derivation for a check state-

ment:
I 4k check’ z = C; : I*"

The check can fail because of a value from source p’ if the statement is reachable
when constructor C; originating from p’ is in the constructor guard of z for some
j # i. More formally, a source-sink error arises if there is a label p’ of an assignment

statement y <*' C; such that

SAT(P AN/ T ()6, 7))
J#

The following lemma shows that there is always at least one feasible path correspond-

ing to any source-sink error.

Lemma 2 Every source-sink error is included on at least one complete feasible path.

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 18

Proof 2 Let ¢}, = v* A\, I* (2)(¢',j), and let o be any assignment satisfying
7’05" Since the formula ¢£, 18 satisfiable there is at least one such o. By Lemma 1, o
defines a unique, complete feasible path. By expanding the definition of wg, and using
the fact that rule (1) in Figure 2.1 includes the statement guard in the constructor
guard after the assignment, we can show that 1/),’0)/ satisfies both statement guards v*'

and v*. Thus, both the assignment statement and the check are on the path.

Consider once more the program in Example 1. Assignment statement py gives x a
constructor guard where C; from source py has guard true (just because x is assigned
Cy at pg). The constructor guard of x is unchanged where a check is performed at

pa. Since the check is whether z = (), one of the tests for a source-sink error is:

SAT(y** A\ T%% ()(po, 7))
J#2

Because 7#* is satisfiable and I'’1 (x)(pg, 1) is true, we have shown a source-sink error
in the program.

Note that Definition 3 requires that the source be the label of an assignment
statement—we do not consider function arguments as sources in computing source-
sink errors, because we do not know what actual values a function argument may have
while analyzing only the function body. Source-sink errors may arise if a function is
called with certain arguments that cause the check statement to fail. Interprocedural
analysis is required in this case to find the matching source, if any, that actually causes

the sink to fail; we address interprocedural source-sink errors in Section 2.3.

2.2.2 Inconsistency Errors

In this section, we define inconsistencies and describe a technique for semantically
detecting inconsistency errors.

Consider the following motivating example:

Example 3
def f(a) =

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 19

(x <P a;Pt

if72 (x = Cy)
then check” x =C;
else y " x);®

checkf® a = Cy

In this example, a and x are aliases for the same value because of the assignment
at po. At ps, = is asserted to have the value C and this statement is protected by
the conditional at p,. The variable a is also asserted to be C at pg, but without the
protecting test. Thus, if there actually is an environment in which this function can
be called where a # (', an error is sure to be raised at ps. The presence of the test
at po protecting the check at ps is evidence that some programmer believes there are
such environments. Thus, without knowing anything about the rest of the program,
it is likely that there is something wrong in this function because of the inconsistent
assumptions about a and .

This example illustrates that inconsistency errors can involve aliasing if multiple
names for the same value are used inconsistently. Finding inconsistency errors means
identifying a set of uses of the same value that should be compared. If we are to
take aliasing into account, we cannot rely on uses of the same variable name or (more
generally) syntactically identical program expressions to identify the set of uses—a
semantic test for “sameness” is needed.

More formally, we define a congruence relation v; = vy that captures when two
quantities v; and vy should be checked for consistency. The exact definition of 2 varies
with the programming language. For our toy language, an appropriate definition is
that two variables at given program points are congruent if they have the same values

under the same guards at those points.

Definition 4 (Congruence) Let v; and vy be two variables in the same function f,
and let p; and p;, be program points in f. Then vf; = v§5, meaning variable v; at

program point p; is congruent to variable vy at program point ps, if

Vi. \/T7 (v1)(r,d) = \/ T2 (va)(r,)

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 20

Notice that we do not require that the sources of congruent variables be the same.
Thus x and y can be congruent even if they are constructed completely independently;

we return to this point shortly.

Definition 5 (Inconsistency Error) Consider two check statements check” = =
C; and check” y = ;. There is an inconsistency error between the two statements if
the variables are congruent and one check can fail while the other cannot. Formally,

there is an inconsistency if the following three conditions are satisfied:

(1) zro =y,
(2) —SAT(y AN,V T (2)(r,)
(3) SAT(y AV, V(T (2)(r, 7))
Condition (2) says that it is not the case that the statement guard at py can hold and

x has some value other than C;. Condition (3) says that there is at least one solution

where the statement guard at p; holds and y has some value other than C;.

Returning to Example 3 above, at point p; the variable a has constructor guard
D, (the original guards for a, as there are no assignments to a in the function) and
at point p; the variable x has the same guards because of the assignment at p,.
Thus as = xfs , satisfying condition (1). Now the statement guard at ps includes a
conjunct I'”s (x)(a, 1), which is disjoint with any guard I'”s (z)(r, j) for j # 1 (recall
Section 2.1.1). Hence, the check statement at ps cannot fail, and condition (2) is
satisfied. Finally, the statement guard at pg is just true, and so condition (3) is also
satisfied.

As noted above, our definition of congruence does not require any dataflow re-
lationship between the two variables—variables with different sources may still be
congruent. Thus, unlike in Example 3, two congruent variables may not even have
a common source. At first look, this definition of congruence seems too permissive
in that it allows variables that apparently coincidentally share the same values to be
compared. We argue that even when two variables don’t share a common source, an

inconsistency still exists. Consider the following example:

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 21

Example 4
def f(a) =
if (a=Cy)
then x < Cy
else x < Cy;
if (a=Cy)
then y < Cy
else y < Cy;
check(x=Cy) ;
if (y=C2)
then check(y=Cy)

else skip;

In this example, x and y have the same values under the same conditions, but
not from the same sources. The conditional check (y = C3) indicates that some
programmer believes there is some call site where a can be C;; otherwise, y would
always be C;. But if this is the case, then x can also be Cy, and there is at least one
execution trace where check(x=C,) will fail. Hence, the above example should be
classified as an inconsistency, showing that our definition of congruence is not more
permissive than it should be.

Finally, note that while source-sink errors are characterized by a single feasible
path, inconsistency errors are characterized by a feasible path (condition (3)) and
the absence of any feasible path to a different program point (condition (2)). Thus,
inconsistency inherently requires reasoning about the relationships among multiple

paths, unlike source-sink error detection.

2.2.3 Intersection of Source-Sink and Inconsistency Errors

Our discussion so far highlights that source-sink and inconsistency error detection
techniques are fundamentally different: First, detection of source-sink errors involves
reasoning about a single program path, while the detection of inconsistencies can

require reasoning about multiple paths. Second, source-sink error detection requires

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 22

the source to be explicit in the source code, while inconsistency detection infers errors
only from usage sites, i.e., sinks, and can therefore find errors even when the source
comes from the environment.

Despite these differences, some errors can be seen both as source-sink and incon-

sistency errors; the following example is prototypical:

Example 5
iff(x = Cy)
then check’ x = C,

else skip”

This example has an obvious error since the conditional if(x = C;) ensures that
the check statement at program point p; fails. Despite the fact that there is no
explicit source (i.e., a constructor assignment), the above example can be considered a
source-sink error. Since x is known to be C, inside the true branch of the if statement,
adding an extra assignment of the form x <—” C; in the true branch preserves program
semantics and introduces a feasible path between the source x < C; and the sink
check” x = C,.

On the other hand, we can also see this error as an inconsistency. Using the
intuition that inconsistency detection is a generalization of type inference, we can in-
troduce types POSSIBLY C1 and NOT_C1. Informally, the example does not type-check
because the test if”*(x = C,) adds a type constraint that x has type POSSIBLY C1,
while the unprotected check statement assigns the NOT_C1 type to x. More pre-
cisely, we can identify this error using Definition 5. Assuming that the language has
only the constructors C; and Cs, adding the check statements check” x = C; and
check”’ x = C, in the true and false branches of the if statement respectively pre-

serves the semantics of the above program, yielding the semantically equivalent code:

ifP0(x = Cy)
then (

/ /
check” x = Cy;’

check” x=2Cy)

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 23

else check” x = Co

This directly exposes the inconsistency in the program according to Definition 5,

because the check statement at p; can fail while the one at p” cannot.

2.3 Interprocedural Error Detection

In this section we discuss interprocedural extensions to our approach for detecting
both source-sink and inconsistency errors. Before presenting our interprocedural anal-
ysis we first revisit what we mean by inconsistency errors; unlike source-sink errors,
the definition of inconsistency must be reconsidered in the interprocedural case. Con-

sider the following example:

Example 6
def f(x) =
iffo(x = Cy)
then check” x = Cy

else skip” ;7

g(x)r

def g(y) =
check” y=2C;

This program clearly has an inconsistency error: the check at p; is protected by a
test at pg, but the check in g on the same value is unprotected. Now consider the

following, slightly different, example:

Example 7
def f(x) =
g(x)r

check” x = Cy

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 24

def g(y) =
iffo(y = Cy)
then check” y = Cy

else skip®

This example simply interchanges the protected and unprotected check statements:
now the check in the caller is unprotected while the callee guards the check. Extend-
ing our intraprocedural definition of inconsistency errors in the obvious way leads us
to conclude that this example also has an inconsistency error, but this definition of
inconsistency results in large numbers of false positives on real programs. The issue
is that g may have other callers besides f. That is, while £ may be safe in relying on
x = Cq, other callers of g may pass arguments other than (. Defensive programming
of this sort is very common in practice. A typical example is a library that does ex-
tensive checking of arguments, while client code may be written with the knowledge
that certain values cannot arise.!

In summary, Example 6 should be considered an inconsistency error, while Ex-
ample 7 should not. Thus, when comparing two uses of a value between a caller and
a callee, we only consider pairs of uses where the callee check can fail. This decision
implies that we do not need to track check statements that are guaranteed to succeed
outside of their containing function; the only interprocedural information we need is
knowledge of when a function can fail.

We use function summaries for interprocedural analysis: a summary is computed
of the conditions under which a function f can fail, and this summary is then used
at each call site of f to model f’s behavior for the purpose of detecting source-sink
and inconsistency errors. This approach is context-sensitive, since the summaries are
applied separately at every call site. We begin by describing how function summaries
are defined and used in a basic form (Sections 2.3.1 and 2.3.3) and then describe a

significant improvement (Section 2.3.2).

LA similar problem arises with our definition of inconsistency in the presence of function macros.
Since macros are used in many different contexts, they are often written with defensive checks. In
our implementation, code resulting from a macro expansion is tagged in the parse tree as coming
from a macro and treated as an inlined function.

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 25

2.3.1 Function Summaries

A function summary describes the preconditions on the execution of a function that,
if satisfied, may lead to errors. Computing sound and very precise preconditions is
easy in our framework; the disjunction of all the failure conditions for every check
statement in a function characterizes exactly the condition under which some check
will fail. Unfortunately, propagating such precise information interprocedurally is
prohibitively expensive; the formulas grow very rapidly as conditions are propagated
through a series of function calls.

We take a different approach to function summaries that is designed to scale while
still expressing all the possible conditions under which a check in a function may fail.
The price we pay is a loss of precision in the general case; one can construct examples
for which our summaries greatly overestimate the precondition for failure. However,
our summaries do precisely summarize the failure precondition of the vast majority
of functions we have observed in practice.

A function summary S has the same signature as a constructor guard, a map from
sources, in this case just function arguments, and constructor indices to guards. The
interpretation of summaries is different, however. The idea is that if S(a, k) = 7, then
a call of f where formal parameter a is C) can fail if the initial state of the call also
satisfies predicate m. For example, in Example 6, S,(y, 1) = false and Sy(y, 1) = true
for ¢ # 1 captures that when the argument is C; for any ¢ # 1 function g may fail. In

Example 7, Sy(y,) = false for all i expresses that the function can never fail.

Definition 6 (Function Summary) Consider a function f where

Ae;. Dy, true = sP° : T
Fdeff(zy,...,z,) = sPo

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 26

Then
(S¢(xi,j) = m) = H(zy, j, m) where
M(x;, j,m) =
(1) V(check” z = C}%) in f where k # j.
(2) if SAT(y** ATt (z)(2;,7)) then
(3) (vt AT () (2, 5)) = 7

In words, for each function argument z; and constructor C;, on line (1) we consider
the set S of all statements check” = = ()} such that the check fails if = C; (i.e.,
the condition k # j). On line (2) we further restrict our focus to the subset S’ of
statements in S where the check can fail because the source of constructor Cj is
argument x;. On line (3), for every check in this smaller set S’, we are looking for a
necessary condition 7w that holds whenever one of the checks in S’ fails. As a result,
m gives an over-approximation of the condition under which a check statement in
f will fail if argument z; is constructor C; at some call site. In other words, if
SAT (m A (x; = C})) for some call site, a check may fail in f.

It is easy to see that setting 7 to true always satisfies the conditions, so that
S¢(x;,j) = true for all z; and C; is always a correct, if very imprecise, function
summary. If Sy(z;,j) = false then no check in f can fail when z; = C}.

One simple strategy for computing function summaries is:

false if I(x;, j, false)

true otherwise

Sy(ws,7) :{

The reader may easily confirm that this algorithm yields Sy(y,2) = true and
Sy(y,1) = false for Example 6. In Section 2.3.2 we consider how to compute guards

7 other than true and false. Now consider a more involved example:

Example 8
def foo(aj,az) =
i£/0(ay = Cy)

then x <! a,

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 27

else x P2 a; ;3

check” x = Cq

Assume that the only constructors are C; and Cy. Applying the test given in

Definition 6 to Stoo(as, 1), we have:
e The single check statement satisfies line (1) of Definition 6 with k = 2.

e For line (2), y** is true and I'”+ (z)(ay, 1) is satisfiable because of the assignment

at P2.

e For line (3), setting m = true satisfies the implication.

2.3.2 Correlation Analysis

The summary generation strategy described in Section 2.3.1 has two principal strengths.
First, it captures the common case where an error in the body of a function is trig-
gered by the value of a single function argument. Second, if the only possibilities for
7 are true and false, then the size of summaries is guaranteed to be bounded by the
product of the number of function arguments and the number of distinct constructors.
However, there are many realistic examples where this approach is not expres-
sive enough, because there are times when programmers use two or more correlated
arguments to a function; consider, for example, when one argument serves as a flag
describing the state of another argument. The following example encodes such an

idiom in our toy language:

Example 9
def f(aj, ay) =
iff(ag = Cy)
then check’ a; = Cy

else skip™

If the predicates of S¢ are limited to true and false, then the best we can do

in this example is S¢(a;,2) = true, which is rather coarse as f’s check does not

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 28

unconditionally fail when a; # C;. A better summary would record that Sg(ay,2) =
(ay = Cy), precisely capturing the necessary condition for failure when a; = C,. We

perform a correlation analysis to discover such additional predicates:

Definition 7 (Correlation Analysis) Consider a function definition def f(x4,...,%,) =

s. Let ¢, be a formula for the expression (xx = Cy).

St(xs,7) = /\{d)k,hm(ﬂfi»ja%h)}

In Example 9, we have 7 = (a; = Cy), and so S¢(a;,2) = (ay = Cy) using the
algorithm in Definition 7. Similarly, using the correlation analysis for computing a
more precise summary for Example 8, we obtain Sge(as, 1) = (ag = Cy).

It is instructive to compare our approach to interprocedural path sensitivity with
source-sink error detectors. While full interprocedural path sensitivity may be in-
tractable for large programs, model checking techniques have shown that computing
path sensitivity in a demand-driven fashion can avoid tracking unnecessary predicates
and allow analyses to scale [10, 8, 30]. However, such model checkers rely on having a
full path from source to sink to drive the process of discovering the needed predicates,
information we do not have available both in an inconsistency analysis and a com-
positional interprocedural source-sink analysis. Correlation analysis allows us to find
relevant predicates that play a role in interprocedural communication by computing
necessary conditions for errors to occur. The price we pay is that we restrict the
space of predicates considered to ensure scalability; for example, in our toy language

we only consider the predicates ¢y .

2.3.3 Summary Application
Consider a function definition

def f(as,...,ay) =s

and call site f(xy,...,%,) and a summary S;. We use the summary of £ to model f’s

behavior at the call site as follows. We define a new function fgsymary(as,...,an) = s’

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 29

where s’ = ...;s;j;... is a sequence of statements, one for every argument a; and

constructor C;. From Definition 7, S¢(a;, j) must have the form

St(ai; j) = Py Ao A i1,
Abusing our syntax slightly, we define s;; to be:

ifpij (ai = CJ)
then check((ay, # c1,) V...V (ay, # c1,))

else skip;

At the call site we simply replace the statement f(xy,...,%,) by s'[x1/as1,...,%a/a4].
This approach, which inlines a “stub” function that approximates the error behavior
of the original function, allows us to reuse the intraprocedural algorithms for detecting

source-sink and inconsistency errors from Section 2.2 unchanged.

2.4 A Null Dereference Analysis

In this section, we apply our approach to the problem of detecting null dereference
errors in C programs. We first present an encoding of the null dereference problem
in our framework and then discuss extensions needed to analyze C.

To apply the techniques in Sections 2.1-2.3 to the problem of detecting unsafe
null dereferences, we need only define the constructors and an appropriate congruence
relation. Null dereference analysis is about understanding what pointers can be null,
which in turn requires a reasonably precise model of all the possible values of all
pointers in a program. Our C implementation incorporates a sound context-, flow-
and partially path-sensitive points-to analysis for C [47]. Most points-to analyses
compute a graph where the nodes V are the set of abstract locations and there is
an edge (v,v") € E if location v may point to . The points-to analysis we use
labels each points-to edge with a guard (v,v’)9, where g is a formula specifying under
what conditions v points to v'. The value NULL is treated as a node in the graph, so

(v, NULL)Y means that v may be a NULL pointer whenever guard ¢ is satisfied.

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 30
For the congruence relation, given a guarded points-to graph (V, E), we say that
v1, vy € V are congruent, v; = vg, if
\V/Ug € V(((Ul,l)g)gl SRS (UQ,U3)92 ek) N g = gg)

That is, two pointers are equivalent if they are aliases of one another: they point to
the same locations under the same conditions.
To model constructors, we classify all pointers as NULL or NOT-NULL (i.e., every-

thing except NULL). Before each pointer dereference xx we insert a check:
check” x = NOT-NULL

The check succeeds only if the NULL guard in x’s points-to graph is unsatisfiable at

point p—.

To illustrate how we detect null inconsistency errors in C, consider the following
example:
Example 10
void foo(int* p, int* g, bool flag)
{

Pi. flag = (p'= NULL);

P2. q = p;

P3. if (flag)

P4. *p = 8;

P5. xq = 4;
}

The assignment at P2 ensures p and q have the same guarded points-to relation-
ships; thus p = q. The dereference of p at P4 cannot fail because the statement guard
(the test on flag at P3) guarantees that p is non-null. However, the dereference of
q at P5 can fail because the statement guard is just true. Thus, we detect a null

inconsistency in foo.

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 31

LOC | Total | Bugs | U | FP | % FP IC | SS | Both || % Interproc | % Alias
OpenSSL
0.9.8b 339319 55 47 2 6 | 11.3% 40 6 1 38.3% 34.0%
Samba
3.0.23b 515689 68 46 3 19 | 29.2% 40 4 2 34.8% 17.4%
OpenSSH
4.3p2 154660 9 8 0 1 11.1% 6 2 0 37.4% 0.0%
Pine
4.64 372458 150 119 3 28 | 19.0% || 105 10 4 42.0% 6.7%
MPlayer
1.0pre8 761708 119 89 2 28 23.9% 71 16 2 41.6% 30.3%
Sendmail
8.13.8 364569 9 8 0 1] 11.1% 7 1 0 62.5% 12.5%
Linux
2.6.17.1 6275017 373 299 8 66 18.1% 249 38 12 27.8% 12.0%

[Total [8783420 [783] 616 [18 [149 [195% [518 [77 [21 | 341% | 154 % |

Figure 2.2: Experimental Results. Column labeled “Bugs” reports the number of bugs
uncovered, “U” corresponds to error reports that were unresolved, the abbreviation
“FP” stands for false positives, the abbreviation “IC” stands for inconsistent and the
abbreviation “‘SS” stands for source-sink.

2.4.1 Extensions for C

There are features in C that are not in the toy language we have used to present our
techniques. We briefly discuss the most significant extensions that are required to
support analysis of C programs.

The biggest technical difference between the toy language and C is that C functions
can have externally visible side-effects. In particular, for a null dereference analysis, it
is necessary to estimate the set of function side-effects making locations either null or
not null. We address this problem by using a separate side-effect analysis to compute
sources of null (both in the return value and as a result of function side-effects) as well
as to track modifications to function arguments. However, this side-effect analysis is
best effort and unsound; it tracks side-effects that must result in a location being
assigned null, but it does not capture all assignments that just might result in a
location being assigned null. In our opinion, this is the major source of unsoundness
in our implementation.

The difficulty in estimating function side-effect information lies in resolving the
tension between two competing goals. First, the quantity of side-effect information is

potentially enormous; computing even simple use/mod information for every function

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 32

(i.e., just the set of abstract locations the function reads or writes) in a large program
is intractable if the result is represented naively, because the set of side-effects of a
function includes all the side-effects of functions it can call either directly or indirectly.
Thus, it is necessary to aggressively summarize interprocedural side-effect information
to avoid consuming space quadratic (or worse) in the size of the program. Second,
the resulting information must be precise enough to yield useful results, because
even small imprecisions can lead to overwhelming numbers of false positives. We are
not aware of any general results on efficiently computing interprocedural side-effect
information; the problem appears to be unsolved. Previous null dereference analyzers
have focused on intraprocedural checking (see Section 2.6).

Another separate issue is what predicates are used by the correlation analysis
to compute function summaries. In Definition 7, we considered only predicates ¢y, 5,
corresponding to conditions of the form (x; = Cy). Unfortunately, in a real program-
ming language, there are arbitrarily many predicates of this form. For example, if a
function argument x is an integer, it is obvious that we cannot test x = c for every
possible integer constant. Our approach is to consider only the predicates that occur
inside if statements in the computation of .

An orthogonal issue is the modeling of loops and recursive functions. The system
defined in Sections 2.1-2.3 can be used to analyze recursive functions in a sound
manner by a standard iterative fixed point computation. In our implementation for
C we analyze each function only once and do not attempt to compute fixed points, in
part to limit the growth in interprocedural side-effect information.? We have observed
that the function summary guards inferred by correlation analysis are almost always
very simple; in fact, conjunctions of more than two simple atomic predicates are
exceedingly rare, if in fact they ever occur (we have yet to notice one with more than
two clauses). Thus, we believe that very simple restrictions on the size and form of
function summary guards (along with conservative approximation if those limits are
exceeded) would be sufficient to ensure that a fixed point computation terminates
with useful (i.e., sufficiently precise) results.

Finally, as discussed above, our system builds upon a may-alias analysis for C.

2Cycles of mutually recursive functions are analyzed once in an arbitrary order.

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 33

This underlying analysis is sound assuming the C program is memory safe (a standard
assumption in may-alias analysis), a condition that is not checked by the alias analysis

or our system.

2.5 Results

We have run our null dereference analysis on seven widely used open source projects
and identified 616 null dereference issues with 149 false positive reports (an overall
19.5% false positive rate). These projects receive regular source code checking from
multiple commercial bug-finding tools, and so we sought to learn whether these bugs
had been previously reported. Developers for the Samba project confirmed that none
of the Samba bugs had been previously found. For the other projects we did not
receive such an explicit acknowledgment that the bugs were new; however, we judge
from the fact that fixes were released quickly for many of the bugs shortly after our
reports were filed that at least the majority of the bugs we found were previously
unknown. The large majority of these bugs, 518, were found by our inconsistency
analysis.

We ran our null dereference analysis on a compute cluster. Analyzing the Linux
kernel with over 6 MLOC required about 4 hours using 30 CPU’s, which was by far
the longest time required for any of the projects. The smallest project we analyzed
was OpenSSH, which took 2 minutes and 33 seconds to analyze on the same clus-
ter. Our system makes many calls to a boolean SAT solver to test the satisfiability
of the various predicates used in our analyses, and for Linux the number of SAT
queries numbers in the millions. We impose a 60 second time limit for analyzing any
individual function; if the analysis of a function times out, its function summary is
incomplete.

Figure 2.2 summarizes our experimental results. The first column gives the num-
ber of lines of code for each project, the second column presents the total number of
reports, which is classified in the following three columns into correct reports, false
positives, and undecided reports (reports that we could not classify as either correct

reports or as false positives, because the interpretation of these reports required a

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 34

more global understanding of the code base than we had). The sixth column gives
the false positive rate, which is calculated without including the undecided reports.
The second group of three columns breaks down the correct reports by kind: the
count of inconsistency errors excluding those also found by source-sink detection, the
number of source-sink errors found also as inconsistencies, and the number of errors
identified by both. The last group of two columns show the percentages of correct re-
ports that were interprocedural and that involved pointer aliasing, respectively. Many
current bug finders ignore pointer aliasing and interprocedural analysis; at least for
null dereference analysis, our results show that both features are important.

We used the following methodology in classifying the error reports. First, source-
sink errors resulting from dereferences of return values of functions which can po-
tentially return null were counted once per function, not once per call site. Return
values of malloc wrappers that can return null are often used unsafely at many call
sites, resulting in a misleadingly large number of correct reports if each such call site
is counted as a bug. Second, we classified inconsistency reports as correct reports
if there was actually an inconsistency, not if we could prove that the inconsistency
would lead to a run-time crash. Lacking a detailed global understanding of these
large projects, we could often not differentiate between redundant null checks and
potential crashing bugs. In our correspondence with project developers, we were told
that some of the inconsistency errors are due to redundant null checks. However, a
large majority of developers deemed every inconsistency, including those believed to
be redundant null checks, worth fixing. The majority view was that inconsistency er-
rors represented misunderstandings of the inconsistent function’s interface and should
be fixed. A large number of error reports we classified as correct were confirmed by
the developers; however not all project developers gave us feedback about the validity
of error reports. In such cases, the numbers in Figure 2.2 represent our best effort to
classify these errors.

Figure 2.2 shows that the large majority (87.5%) of the errors are inconsistency
errors (including conditional misuse errors). Since most of these inconsistency errors
were immediately fixed by developers, it is our belief that semantic inconsistency

detection is able to identify real errors and important interface violations in real

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 35

code. Figure 2.2 also reveals that roughly a third of the overall correct reports involve
interprocedural dependencies, sometimes involving many function calls, especially in
the case of source-sink errors. Our initial experiments with the tool also highlight
the importance of selective path-sensitivity: A first version of the analysis without
path-sensitivity resulted in a high false positive rate, while experiments with full
path-sensitivity had unacceptably high time-out rates. However, using the correlation
analysis, the time-out rate in our experiments stayed between 0.71% and 6.4% of all
functions with an acceptable false positive rate.

Another interesting observation from Figure 2.2 is that a non-negligible number of
errors (roughly one-third in OpenSSL and MPlayer) involve pointer aliasing. Pointer
aliasing contributes to a significant source of null pointer errors, especially inconsis-
tency errors, in two common programming patterns. The first pattern we observed is
that generic void* pointers are often aliased by typed pointers and aliases with dif-
ferent types are used with inconsistent null pointer assumptions. The other pattern
is that array elements are often assigned to “convenience” pointers, which denote
current, head, or tail elements of a data structure. Programmers sometimes make
different null pointer assumptions when they alternate, for example, between using
array[0] and hd.

The main source of false positives is imprecision in the pointer analysis we used,
which collapses aggregate structures (e.g., arrays, lists) to a single abstract location.
If a null pointer is assigned to any element of an aggregate data structure, it contam-
inates other elements of the same data structure, causing the analysis to raise false
alarms whenever an element of such a contaminated data structure is dereferenced.
Other contributing factors to false positives are some unmodeled constructs, such as
inline assembly.

We conclude this section by presenting two sample errors reported by the analysis,
which we believe to be representative of many of the error reports generated by the

tool:

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 36

/* Linux, net/sctp/output.c, line 270 */

236 pmtu = ((packet->transport->asoc) 7
237 (packet->transport->asoc->pathmtu)
238 (packet->transport->pathmtu));

269 if (sctp_chunk is data(chunk)) {
270 retval = sctp_packet_append_data(packet, chunk);

286 }

538 sctp_xmit_t sctp_packet_append._data
(struct sctp_packet *packet,...)
540 {

543 struct sctp_transport *transport = packet->transport;

545 struct sctp_association *asoc = transport->asoc;

562 rwnd = asoc—>peer.rwnd;

This example illustrates an interprocedural inconsistency error involving pointer
aliasing, which might potentially cause a null dereference at line 562. On line 236,
the pointer packet->
transport->asoc is compared against null and packet is later passed to a function
which first aliases packet->transport as transport and then aliases transport->asoc
as asoc, which is finally dereferenced at line 562. Despite these aliasing relationships,
the caller function assumes that packet->transport->asoc may be null, while the
called function dereferences the same pointer without ensuring it is non-null, causing
the analysis to generate an inconsistency warning.

The next error illustrates an inconsistency error involving two mutually exclusive

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 37

paths:

/* OpenSSL, e_chil.c line 1040 */

static int hwcrhk_rsa_mod_exp(BIGNUM *r, const BIGNUM =I,
RSA *rsa, BN_CTX *ctx)

967 {

985 if ((hptr = RSA_get_ex_data(rsa, hndidx_rsa))!= NULL)

987 {

990 if(lrsa->n){

994 goto err;

995 }

997 /* Prepare the params */

998 bn_expand2(r, rsa->n->top); /* Check for error !! x/

1027 }
1028 else
1029 {

1039 /* Prepare the params */

1040 bn_expand2(r, rsa->n->top); /* Check for error !! */

1080 }

In the true branch of the if statement, the pointer rsa->n is checked for being
null and subsequently dereferenced at line 998. On the other hand, the same pointer
is dereferenced without a null check in the false branch of the same if statement at
line 1040. The important point about this example is that detecting inconsistencies

requires reasoning about multiple paths simultaneously.

2.6 Related Work

The various program analysis traditions appear to have equivalent power; for example,

there is an equivalence between type systems and model checking [66]. However,

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 38

these results are for closed programs. We observe that for open programs techniques
that search only for a single source-sink path cannot express inconsistency errors
requiring simultaneous reasoning about multiple distinct paths. We view semantic
inconsistency checking as complementary to source-sink error detection; inconsistency
checking can find bugs where there are multiple sinks but no sources, while source-sink
checking can detect bugs between a single source and a single sink.

Our choice of the terms constructor and destructoris inspired by work on detecting
uncaught exceptions in functional programs [81, 69] and soft typing [22, 2]. A core
issue in both bodies of work is tracking which datatype constructors a program value
may actually have at run-time. Null dereference analysis is a special case where there
are only two constructors NULL and NON-NULL; our techniques could be adapted to
give very precise analysis for these other applications as well.

FindBugs [50] is a widely used tool for Java that has paid particular attention to
finding null dereference errors [51]. FindBugs pattern-matches on constructs that are
common sources of certain error classes and performs some data-flow computation. As
our implementation is for C, it is not possible to do a direct comparison. Nevertheless,
it is clear that FindBugs would not find the many path-sensitive, interprocedural, and
alias-dependent bugs our more semantic analyses uncover. One can also interpret our
results as indicating that, at least for tools requiring no user annotations, one must
move to computationally intensive models (incorporating at least path sensitivity) to
do significantly better than tools like FindBugs without unusably high false positive
rates.

Some approaches attack null dereferences using user annotations on function pa-
rameters and local checking of each function body. LCLint [39] uses an unsound
procedure to check the safety of dereferences of parameters annotated as may-be-
null. More recent annotation-based systems are much closer to being sound [42, 41].
Current annotation languages, which mark a single parameter as possibly null or defi-
nitely not null, are not expressive enough to capture the more complex path-sensitive
and interprocedural relationships we observed in our experiments.

Another approach, exemplified by CCured [67], is to use a relatively inexpensive

static analysis to verify the safety of many pointer dereferences statically and then

CHAPTER 2. SEMANTIC INCONSISTENCY INFERENCE 39

to introduce dynamic checks to enforce the remaining dereferences at run-time. The
unification-based type inference used in CCured would not find most of the bugs our
tool detected, and while the program would at least fail in a well-defined way if the
null dereference was triggered at run-time, it would still fail.

Engler et al. were the first to explicitly propose a method for finding null deref-
erence errors based on inconsistency checking [37]. They argue that inconsistencies
suggest programmer confusion and the presence of bugs, and they give some tech-
niques for discovering inconsistencies. We observe that their notion of inconsistency
is essentially the same as the idea underlying type inference systems, where incon-
sistent type constraints from multiple uses of a value result in a type error. Our
inconsistency analysis adopts this more semantic point of view and we give purely
semantic conditions for inconsistency checking, which allows our system to uncover
subtler bugs involving, e.g., pointer aliasing.

Our approach to selective inter-procedural path-sensitivity is reminiscent of some
selectively path-sensitive model-checking techniques. ESP, for example, only accu-
rately tracks branches that affect relevant properties within that branch [30]. Unlike
ESP, our approach is fully path-sensitive intraprocedurally, and more importantly,
our analysis infers correlated predicates by computing implication relations between
predicates and guards of relevant events. Model checking tools based on predicate
abstraction and refinement [8, 10, 54] also achieve selective path-sensitivity by discov-
ering relevant predicates. Such tools start with a coarse abstraction which is refined
by tracking additional relevant predicates until a path is shown to be feasible or infea-
sible or until no new useful predicates can be discovered. As discussed in Section 2.3,
our approach differs because inconsistency analysis does not have a source-sink path

to use as a source of counterexamples.

Chapter 3
A Novel Path-sensitive Analysis

Path-sensitivity is an important element of many program analysis applications, but
existing approaches exhibit one or both of two difficulties. First, so far as we know,
there are no prior scalable techniques that are also sound and complete for a language
with recursion. Second, even in implementations of incomplete methods, interpro-
cedural path-sensitive conditions can become unwieldy and expensive to compute.
Existing approaches deal with these problems by some combination of heuristics,
accepting limited scalability, and possible non-termination of the analysis.

In this chapter, we give a new approach that addresses both of these theoretical
as well as practical issues. One important insight underlying our approach is that
certain values in a program are simply unknown at static analysis time. For example,
if a program queries the user for an input, this input appears as a non-deterministic
environment choice to the static analysis. Similarly, the result of receiving arbitrary
data from the network or the result of reading operating system state are all unknowns
that need to be treated as non-deterministic environment choices by the analysis.

Even in the special case where all program inputs are known, static analyses still
need to deal with unknowns that arise from approximating program behavior. A
static analysis cannot simply carry out an exact program simulation; if nothing else,
we usually want to guarantee the analysis terminates even if the program does not.
Thus, static analysis always has some imprecision built in. For example, since lists,

sets, and trees may have an unbounded number of elements, many static techniques

40

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 41

do not precisely model the data structure’s contents. Reading an element from a
data structure is modeled as a non-deterministic choice that returns any element of
the data structure. Similarly, if the chosen program abstraction cannot express non-
linear arithmetic, the value of a “complicated” expression, such as coef*a*b+size,
may also need to treated as an unknown by the static analysis.

The question of what, if any, useful information can be garnered from such un-
known values is not much discussed in the literature. It is our impression that if the
question is considered at all, it is left as an engineering detail in the implementation;
at least, this is the approach we have taken ourselves in the past. But two obser-
vations have changed our minds: First, unknown values are astonishingly pervasive
when statically analyzing programs; there are always calls to external functions not
modeled by the analysis as well as approximations that lose information. Second, in
our experience, analyses that do a poor job handling unknown values either end up
being unscalable or too imprecise. For these reasons, we now believe a systematic
approach for dealing with unknown values is a problem of the first order in the design
of an expressive static analysis.

We begin by informally sketching a very simple, but imprecise, approach to dealing

with unknown values in static analysis. Consider the following code snippet:

1: char input = get_user_input();

2: if(input == ’y’) f = fopen(FILE_NAME);
3: process_file_internal(f);

4: if (input == ’y’) fclose(f);

Suppose we want to prove that for every call to fopen, there is exactly one matching
call to fclose. For the matching property to be violated, it must be the case that
the value of input is ’y’ on line 2, but the value of input is not ’y’ on line 4. Since
the value of the input is unknown, one simple approach is to represent the unknown
value using a special abstract constant x. Now, programs may have multiple sources
of unknown values, all of which are represented by x. Thus, % is not a particular
unknown but the set of all unknowns in the program. Hence, the predicates x =’ y’

(which should be read as: 'y’ is equal to some element of values represented by x)

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 42

and * £y (which should be read as: 'y’ is not equal to some element of values
represented by x) are simultaneously satisfiable. As a result, program paths where
input is equal to 'y" at line (2), but not equal to 'y" at line (4) (or vice versa) cannot
be ruled out, and the analysis would erroneously report an error.

A more precise alternative for reasoning about unknown values is to name them
using variables (called choice variables) that stand for a single, but unknown, value.
Observe that this strategy of introducing choice variables is a refinement over the pre-
vious approach because two distinct environment choices are modeled by two distinct
choice variables, § and #’. Thus, while a choice variable 8 may represent any value,
it cannot represent two distinct values at the same time. For instance, if we introduce
the choice variable 3 for the unknown value of the result of the call to get_user_input
on line 1, the constraint characterizing the failure condition is 8 = y A 8 # y, which
is unsatisfiable, establishing that the call to fopen is matched by a call to fclose.
The insight is that the use of choice variables allows the analysis to identify when two
values arise from the same environment choice without imposing any restrictions on
their values.

While this latter strategy allows for more precise reasoning, it leads to two diffi-
culties —one theoretical and one practical- that the simpler, but less precise, strategy

does not suffer from. Consider the following function:!

bool query_user(bool feature_enabled) {
if (! feature_enabled) return false;
char input = get_user_input();
if (input == ’y’) return true;

if (input == ’n’) return false;

Please try again.\n");

A
B
C
D
E: printf("Input must be y or n!
F
G: return query_user(true);

}

Suppose we want to know when query_user returns true. The return value of

"'While this function would typically be written using a loop, the same problem arises both for
loops and recursive functions, and we use a recursive function because it is easier to explain.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 43

get_user_input is statically unknown; hence it is identified by a choice variable 3.
The variable feature_enabled, however, is definitely not a non-deterministic choice,
as its value is determined by the function’s caller. We represent feature enabled
by an observable variable, o, provided by callers of this function. The condition, II,
under which query_user returns true (abbreviated T) in any calling context, is then

given by the constraint:
MG =(a=T)A(B="y'V (~(8="0) AT[T/a] = T)) (¥)

This formula is read as follows. The term a = T captures that the function
returns true only if feature enabled is true (line A). Furthermore, the user input
must either be 'y’ (term 5 ="'y’ and line C) or it must not be 'n’ (term —(f = 'n’) and
line D) and the recursive call on line G must return true (term II[T/a]). Observe
that because the function is recursive, so is the formula. In the term II[T/«], the
substitution [T/«] models that on the recursive call, the formal parameter « is replaced
by actual parameter true. Finally, the binding II.5 reminds us that [is a choice
variable. When the equation is unfolded to perform the substitution [T/a] we must
also make the environment choice for 5. The most general choice we can make is
to replace [with a fresh variable ', indicating that we do not know what choice is
made, but it is potentially different from any other choice on subsequent recursive
calls. Thus, II[T/«] unfolds to:

(T=T)A (B ="y V (=(8"="n) NI[T/a]

While the equation (*) expresses the condition under which query_user returns
true, the recursive definition means it is not immediately useful. Furthermore, it
is easy to see that there is no finite non-recursive formula that is a solution of the
recursive equation (*) because repeated unfolding of I1[T/«a] introduces an infinite
sequence of fresh choice variables g, 3", 3", Hence, it is not always possible to
give a finite closed-form formula describing the exact condition under which a program
property holds.

On the practical side, real programs have many sources of unknowns; for example,

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 44

assuming we do not reason about the internal state of the memory management
system, every call to malloc in a C program appears as a non-deterministic choice
returning either NULL or newly allocated memory. In practice, the number of choice
variables grows rapidly with the size of the program, overwhelming the constraint
solver and resulting in poor analysis scalability. Therefore, it is important to avoid
tracking choice variables whenever they are unnecessary for proving a property.

Our solution to both the theoretical and the practical problems can be understood
only in the larger context of why we want to perform static analysis in the first
place. Choice variables allow us to create precise models of how programs interact
with their environment, which is good because we never know a priori which parts
of the program are important to analyze precisely and so introducing unnecessary
imprecision anywhere in the model is potentially disastrous. But the model has more
information than needed to answer most individual questions we care about; in fact,
we are usually interested in only two kinds of 1-bit decision problems, may and must
queries. If one is interested in proving that a program does not do something “bad”
(so-called safety properties), then the analysis needs to ask may questions, such as
“May this program dereference NULL?” or “May this program raise an exception?”.
On the other hand, if one is interested in proving that a program eventually does
something good (so called liveness properties), then the analysis needs to ask must
questions, such as “Must this memory be eventually freed?”.

May questions can be formulated as satisfiability queries; if a formula representing
the condition under which the bad event happens is satisfiable, then the program is
not guaranteed to be error-free. Conversely, must questions are naturally formulated
as validity queries: If a formula representing the condition under which something
good happens is not valid, then the program may violate the desired property. Hence,
to answer may and must questions about programs precisely, we do not necessarily
need to solve the exact formula characterizing a property, but only formulas that
preserve satisfiability (for may queries) or validity (for must queries).

The key idea underlying our technique is that while choice variables add useful
precision within the function invocation in which they arise, the aggregate behavior

of the function can be precisely summarized in terms of only observable variables

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 45

for answering may and must queries. Given a finite abstraction of the program, our
technique first generates a recursive system of equations, which is precise with respect
to the initial abstraction but contains choice variables. We then eliminate choice
variables from this recursive system to obtain a pair of equisatisfiable and equivalid
systems over only observable variables. After ensuring that satisfiability and validity
are preserved under syntactic substitution, we then solve the two recursive systems
via standard fixed-point computation. The final result is a bracketing constraint
(dne, Psc) for each initial equation, corresponding to closed-form strongest necessary
and weakest sufficient conditions.

We demonstrate experimentally that the resulting bracketing constraints are small
in practice and, most surprisingly, do not grow in the size of the program, allowing
our technique to scale to analyzing programs as large as the entire Linux kernel. We
also apply this technique for finding null dereference errors in large open source C
applications and show that this technique is useful for reducing the number of false

positives by an order of magnitude.

3.1 From Programs to Constraints

As mentioned earlier, static analyses operate on a model or abstraction of the pro-
gram rather than the program itself. In this chapter, we consider a family of finite
abstractions where each variable has one of abstract values C1, ..., Cy. These abstract
values can be any fixed set of predicates, typestates, dataflow values, or any chosen
finite domain. We consider a language with abstract values C', ..., Cy; while simple,

this language is sufficiently expressive to illustrate the main ideas of our techniques:

Program P n= FT
Function F = define f(x) = F
Ezpression E = true | false | C; | x | £(E)

| if F4 then F, else Fj
| let x = F in Ey
|E1:E2 ’El/\EQ ’El\/EQ’_'E

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 46

Expressions are true, false, abstract values C;, variables x, function calls, condi-
tional expressions, let bindings and comparisons between two expressions. Boolean-
valued expressions can be composed using the standard boolean connectives, A, V,
and —. In this language, we model unknown values by references to unbound variables,
which are by convention taken to have a non-deterministic value chosen on function
invocation. Thus, any free variables occurring in a function body are choice variables.
Observe that this language has an expressive set of predicates used in conditionals,
so the condition under which some program property holds may be non-trivial.

To be specific, in the remainder of this chapter, we consider the program properties
“May a given function return constant (i.e., abstract value) C;7?” and “Must a given
function return constant C;?”. Hence, our goal is to compute the constraint under

which each function returns constant C;. These constraints are of the following form:

Definition 8 (Constraints)

Equation & == [IL].5 = [F]
Constraint F == (s1 = s9) | I1[C;/q]

| ANF | AV | = F
Symbol s = a| B G

Symbols s in the constraint language are abstract values Cj, choice variables /3
whose corresponding abstract values are unknown, and observable variables « rep-
resenting function inputs provided by callers. Because the values of inputs to each
function f are represented by variables «, the constraints generated by the analysis
are polymorphic, i.e., can be used in any calling context of f. Constraints F are equal-
ities between symbols (s; = s3), constraint variables with a substitution II[C;/a], or
boolean combinations of constraints. The substitutions [C;/a] on constraint variables
are used for the substitution of formals by actuals, and recall that the vector of choice
variables 5 named with the II variable is replaced by a vector of fresh choice variables

E’ in each unfolding of the equation. More formally, if II. 5 = F, then:

[Ci/a] = FIC;/a][8/B) (B fresh)

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 47

This renaming is necessary both to avoid naming collisions and to model that a differ-
ent environment choice may be made on different recursive invocations. Constraints
express the condition under which a function f with input « returns a particular
abstract value C;; we usually index the corresponding constraint variable Il , « for

clarity. So, for example, if there are only two abstract values C and Cs, the equation

[nya,clv Hf:a,cz] = [tme, false]

describes the function f that always returns Cy, and
[Hf,a,(]l, Hfuach] = [a =Cy, = Cl]

describes the function f that returns C if its input has abstract value Cy and vice

versa. As a final example, the function
define f(x) = if (y = Cy) then C; else Cy

where the unbound variable y models a non-deterministic choice is described by the
equation:

Mfaci Mpac).f=[6=Cs f=C1

Note that g is shared by the two constraints; in particular, in any solution 5 must be
either C or Cy, capturing that a function call returns only one value.

Our goal is to generate constraints characterizing the condition under which a
given function returns an abstract value C;. Figure 3.1 presents most of the con-
straint inference rules for the language given above; the remaining rules are omitted
but are all straightforward analogs of the rules shown. In these inference rules, an
environment A maps program variables to variables «, § in the constraint language.
Rules 1-5 prove judgments A b, e : F where b € {true, false}, describing the con-
straints F under which an expression e evaluates to true or false in environment A.
Rules 6-11 prove judgments A k¢, e : F that give the constraint under which expres-
sion e evaluates to C;. Finally, rule 12 constructs systems of equations, giving the

(possibly) mutually recursive conditions under which a function returns each abstract

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 48

(10)

(11)

(12)

A Fie true : true

A Fye false : false

A l_ci €1 - ./—'.172'
A '_Ci €9 .]:2’2'

AF e (61 =e€2) 1 V. (Fri A Fay)

Abyye e F
A }_false e:F

Ay €11 F1
Al_true62:~/—_.2
® € {A,V}

Al €1 ®eg : F1 ®@ Fy

Atlte, C;: true
LF]
Atc, Cj: false

Alw) =¢ (p€{a,8})
Al—czv(wzCl)

Al_true €1 : Fl
Al_ci €9 . .FQ
Al_Ci €3 . .7:3

Abg, if eq then eq else ez : (Fi A JFa) V (=F1 A F3)

A l_C'j €1 -Flj
Ajx:albe e Foy (a fresh)
Al let x =€y ineg: Vj(flj N Fai N (a = Cj))

At e Fy
At fle): V(Fr ANlyac[Cr/al)
ag{ﬁhvﬁm}
3330473413/81a--->yn3/3m|_0i€1]:i 1§Z§7’L

F define f(x) = e: [lj[fya’ci]ﬂ_»: []—i]
Figure 3.1: Inference Rules

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 49

value?.

We briefly explain a subset of the rules in more detail. In Rule 3, two expressions
e; and ey are equal whenever both have the same abstract value. Rule 8 says that
if under environment A, the abstract value of variable x is represented by constraint
variable «, then x has abstract value C; only if a = C;. Rule 11 presents the rule for
function calls: If the input to function f has the abstract value C} under constraint
Fi, and the constraint under which freturns C; is Il;, ¢,, then fle) evaluates to C;

under the constraint Fj, A Iy, ¢, [Cr/al.

Example 11 Suppose we analyze the following function:

define f(x) = if ((x =Cy) V (y = C3)) then C; else £(Cy)

where y models an environment choice and the only abstract values are C; and C,.

Then
Hf,a701 (a =C1vp= Cg)\/

6: —|(a:Cl\/ﬁZCQ)/\Hf,mCl[Cl/a]

is the equation computed by the inference rules. Note that the substitution [C}/«]

in the formula expresses that the argument of the recursive call to £ is Cf.

We briefly sketch the semantics of constraints. Constraints are interpreted over
the standard four-point lattice with 1< true, false, T and _L, true, false < T, where
A is meet, V is join, and ~1=1, =T = T, —true = false, and —false = true. Given
an assignment 6 for the choice variables , the meaning of a system of equations
E is a standard limit of a series of approximations §(E°),0(E?),... generated by
repeatedly unfolding E. We are interested in both the least fixed point (where the
first approximation of all IT variables is L) and greatest fixed point (where the first
approximation is T) semantics. The value L in the least fixed point semantics (resp.

T in the greatest fixed point) represents non-termination of the analyzed program.

2Note that rules 3, 10, 11, and 12 implicitly quantify over multiple hypotheses; we have omitted
explicit quantifiers to avoid cluttering the rules.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 50

3.1.1 Reduction to Boolean Constraints

Our main technical result is a sound and complete method for answering satisfiability
(may) and validity (must) queries for the constraints of Definition 8. As outlined in

the beginning, the algorithm has four major steps:

e climinate choice variables by extracting strongest necessary and weakest suffi-

cient conditions;
e rewrite the equations to preserve satisfiability /validity under substitution;
e climinate recursion by a fixed point computation;
e finally, apply a decision procedure to the closed-form equations.

Because our abstraction is finite, constraints from Definition 8 can be encoded
using boolean logic, and thus our target decision procedure for the last step is boolean
SAT. We must at some point translate the constraints from Figure 3.1 into equivalent
boolean constraints; we perform this translation first, before performing any of the
steps above.

For every variable ¢ (¢ € {«, 8}) in the constraint language, we introduce boolean
variables @1, ..., @in such that ¢;; is true if and only if ¢; = C;. We map the equation
variables Il , ¢, to boolean variables of the same name. A variable Il ¢, represents
the condition under which f returns C;, hence we refer to Il , ¢,’s as return variables.

We also translate each s; = sy occurring in the constraints as:

C;=0C;, & true
Ci=C; & false 1#j
i =C; & vy

Note that subexpressions of the form ¢; = ¢; never appear in the constraints gen-
erated by the system of Figure 3.1. We replace every substitution [C;/a;] by the
boolean substitution [true/ca;;] and [false/ayy] for j # k.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS o1

Example 12 The first row of Example 11 results in the following boolean constraints

(here boolean variable oy represents the equation o = Cy and (5 represents = Cy):

Hf,a,C’l-BQ = (Oél V 52) V (—|(Oz1 vV 52) VAN Hf7a7cl[t7'u€/a1])

In the general case, the constraints from Figure 3.1 result in a recursive system of

boolean constraints of the following form:

Equation 1
Mpac]-Br = [du(ds, Bi,11[b1/d])]

Mfac])Be = [0k, Br, T[br/d))]

where Tl = (g achs o g ac,) and b; € {true, false} and the ¢’s are quantifier-free
formulas over 5 , @, and I1.

Observe that any solution to the constraints generated according to the rules from
Figure 3.1 must assign exactly one abstract value to each variable. More specifically,
in the original semantics, ¢ = C; A ¢ = C} is unsatisfiable for any ¢, j such that i # j,
and \/, ¢ = C; is valid; however, in the boolean encoding ¢; A¢; and =/, ¢; are both
still satisfiable. Hence, to encode these implicit uniqueness and existence axioms of
the original constraints, we define satisfiability and validity in the following modified

way:
SAT*(Qb) = SAT(Cb A ¢ezist A wumque)
VAL[D*((b) = ({wem’st} U {wunique} }: ¢)

where @ezise and @ypigue are defined as:

1. Uniqueness: Yunique = (/\#,C = (vij A vir))
2. Ezistence: Vewist = (\/] Vij)

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 52

3.2 Strongest Necessary and
Weakest Sufficient Conditions

As discussed in previous sections, a key step in our algorithm is extracting nec-
essary /sufficient conditions from a system of constraints £. The necessary (resp.
sufficient) conditions should be satisfiable (resp. valid) if and only if E is satisfiable
(resp. valid). This section makes precise exactly what necessary /sufficient conditions

we need; in particular, there are two technical requirements:

e The necessary (resp. sufficient) conditions should be as strong (resp. weak) as

possible.

e The necessary/sufficient conditions should be only over observable variables.

In the following, we use V" (¢) to denote the set of observable variables in ¢, and
V™ (¢) to denote the set of choice variables in ¢.

Definition 9 Let ¢ be a quantifier-free formula. We say [¢| is the strongest observ-

able necessary condition for ¢ if:

1) =[] (V([¢])=0)
(2) V¢'.((9=¢) = ([¢] = ¢))
where V= (¢') =0 A V1 (¢') CVT(9)

The first condition says [¢] is necessary for ¢, and the second condition ensures [¢] is
stronger than any other necessary condition with respect to ¢’s observable variables
V*t(¢). The additional restriction V™ ([¢]) = () enforces that the strongest necessary

condition for a formula ¢ has no choice variables.

Definition 10 Let ¢ be a quantifier-free formula. We say |¢| is the weakest observ-

able sufficient condition for ¢ if:

(2) V¢'.((¢/ ;‘(= [9]))

(1) L¢J:>¢> (V= (le)) =0)
= 9)
where V=(¢') =0 AN VH(¢') CVT(9)

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 53

void f(int* p, int flag) {
if('p || !flag) return;
char* buf = malloc(sizeof (char));
if ('buf) return;
xbuf = getUserInput();
if (¢¥buf=="1i’)
*p = 1;

00 ~NO O W N+

Figure 3.2: Example code.

Let ¢ be the condition under which some program property P holds. Then, by
virtue of [¢] being a strongest necessary condition, querying the satisfiability of [¢]
is equivalent to querying the satisfiability of the original constraint ¢ for deciding if
property P may hold. Since [¢] is a necessary condition for ¢, the satisfiability of
¢ implies the satisfiability of [¢]. More interestingly, because [¢] is the strongest
such necessary condition, the satisfiability of [¢] also implies the satisfiability of ¢;
otherwise, a stronger necessary condition would be false. Analogously, querying the
validity of |¢] is equivalent to querying the validity of the original constraint ¢ for
deciding if property P must hold.

One can think of strongest necessary and weakest sufficient conditions of ¢ as
defining a tight observable bound on ¢. If ¢ has only observable variables, then the
strongest necessary and weakest sufficient conditions of ¢ are equivalent to ¢. If ¢
has only unobservable variables and ¢ is not equivalent to true or false, then the best
possible bounds are [¢] = true and |¢| = false. Intuitively, the “difference” between
strongest necessary and weakest sufficient conditions defines the amount of unknown
information present in the original formula.

We now continue with an informal example illustrating the usefulness of strongest
observable necessary and weakest sufficient conditions for statically analyzing pro-

grams.

Example 13 Consider the implementation of £ given in Figure 3.3, and suppose we
want to determine the condition under which pointer p is dereferenced in £. It is easy

to see that the exact condition for p’s dereference is given by the constraint:

p!=NULL A flag!=0 A buf !=NULL A xbuf =="' i’

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS o4

Since the return value of malloc (i.e., buf) and the user input (i.e., *buf) are
statically unknown, the strongest observable necessary condition for £ to dereference

p is given by the simpler condition:
p!=NULL A flag!=0

On the other hand, the weakest observable sufficient condition for the dereference is
false, which makes sense because no restriction on the arguments to £ can guarantee
that p is dereferenced. Observe that these strongest necessary and weakest sufficient
conditions are as precise as the original formula for deciding whether p is dereferenced
by £ at any call site of £, and furthermore, these formulas are much more concise than

the original formula.

3.3 Strongest Necessary and
Weakest Sufficient Conditions

As discussed in previous sections, a key step in our algorithm is extracting nec-
essary /sufficient conditions from a system of constraints £. The necessary (resp.
sufficient) conditions should be satisfiable (resp. valid) if and only if E is satisfiable
(resp. valid). This section makes precise exactly what necessary /sufficient conditions

we need; in particular, there are two technical requirements:

e The necessary (resp. sufficient) conditions should be as strong (resp. weak) as

possible.
e The necessary/sufficient conditions should be only over observable variables.

In the following, we use V" (¢) to denote the set of observable variables in ¢, and
V~(¢) to denote the set of choice variables in ¢.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 95

Definition 11 Let ¢ be a quantifier-free formula. We say [¢] is the strongest ob-

servable necessary condition for ¢ if:

(1) ¢o=T1s] (V([¢])=0)
(2) Y¢'.((¢p=¢) = ([¢] = ¢))
where V= (¢') =0 A VT (¢) C V()

The first condition says [¢] is necessary for ¢, and the second condition ensures [¢] is
stronger than any other necessary condition with respect to ¢’s observable variables
V*(¢). The additional restriction V= ([¢]) = 0 enforces that the strongest necessary

condition for a formula ¢ has no choice variables.

Definition 12 Let ¢ be a quantifier-free formula. We say |¢| is the weakest observ-

able sufficient condition for ¢ if:

0)
(2) vo'.((¢/ 2‘(= [0]))

(1) (o] :>¢ (V=(lo))
= ¢)
where V= (¢') =0 N V*(¢') C V()

Let ¢ be the condition under which some program property P holds. Then, by
virtue of [¢] being a strongest necessary condition, querying the satisfiability of [¢]
is equivalent to querying the satisfiability of the original constraint ¢ for deciding if
property P may hold. Since [¢] is a necessary condition for ¢, the satisfiability of
¢ implies the satisfiability of [¢]. More interestingly, because [¢] is the strongest
such necessary condition, the satisfiability of [¢] also implies the satisfiability of ¢;
otherwise, a stronger necessary condition would be false. Analogously, querying the
validity of |¢| is equivalent to querying the validity of the original constraint ¢ for
deciding if property P must hold.

One can think of strongest necessary and weakest sufficient conditions of ¢ as
defining a tight observable bound on ¢. If ¢ has only observable variables, then the
strongest necessary and weakest sufficient conditions of ¢ are equivalent to ¢. If ¢
has only unobservable variables and ¢ is not equivalent to true or false, then the best

possible bounds are [¢]| = true and |¢| = false. Intuitively, the “difference” between

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 56

1. void f(int* p, int flag) {

2. if(!p || !'flag) return;

3. char* buf = malloc(sizeof (char));
4. if('buf) return;

5. xbuf = getUserInput();

6 if (¢¥buf=="1i’)

7 *p = 1;

8

Figure 3.3: Example code.

strongest necessary and weakest sufficient conditions defines the amount of unknown
information present in the original formula.

We now continue with an informal example illustrating the usefulness of strongest
observable necessary and weakest sufficient conditions for statically analyzing pro-

grams.

Example 14 Consider the implementation of £ given in Figure 3.3, and suppose we
want to determine the condition under which pointer p is dereferenced in f. It is easy

to see that the exact condition for p’s dereference is given by the constraint:
p!=NULL A flag!=0 A buf !=NULL A *buf =='3’

Since the return value of malloc (i.e., buf) and the user input (i.e., ¥buf) are
statically unknown, the strongest observable necessary condition for £ to dereference

p is given by the simpler condition:
p!=NULL A flag!=0

On the other hand, the weakest observable sufficient condition for the dereference is
false, which makes sense because no restriction on the arguments to £ can guarantee
that p is dereferenced. Observe that these strongest necessary and weakest sufficient
conditions are as precise as the original formula for deciding whether p is dereferenced
by f at any call site of £, and furthermore, these formulas are much more concise than

the original formula.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS o7

3.4 Solving the Constraints

In this section, we now return to the problem of computing strongest necessary and
weakest sufficient conditions containing only observable variables for each Il y, ¢,
from System of Equations 1. Our algorithm first eliminates the choice variables
from every formula. We then manipulate the system to preserve strongest necessary
(weakest sufficient) conditions under substitution (Section 3.4.2). Finally, we solve
the equations to eliminate recursive constraints (Section 3.4.3), yielding a system of
(non-recursive) formulas over observable variables. Each step preserves the satisfia-
bility /validity of the original equations, and thus the original may/must query can

be decided using a standard SAT solver on the final formulas.

3.4.1 Eliminating Choice Variables

To eliminate the choice variables from the formulas in Figure 1, we use the following
well-known result for computing strongest necessary and weakest sufficient conditions

for boolean formulas [13]:

Lemma 3 The strongest necessary and weakest sufficient conditions of boolean

formula ¢ not containing variable [are given by:

SNC(¢,8) = ¢ltrue/B]V ¢[false/p)]
WSC(¢,8) = oltrue/S] A ¢lfalse/]

Since our definition of satisfiability and validity must also take into account the im-
plicit existence and uniqueness conditions, this standard way of computing strongest
necessary and weakest sufficient conditions of boolean formulas must be slightly modi-
fied. In particular, let 8 be a choice variable to be eliminated, and let ¥ czist and Yynigue

represent the existence and uniqueness conditions involving #. Then, we compute

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 58

strongest necessary and weakest sufficient conditions as follows:

SNC (¢, B)

(& N Vegist N Yunique) [true/ BV

(& N Vegist N Vunique) [false/ B]
WSC (¢, 8) = (¢V ewist V " Vunique) [true/ BIA

(@ V ~egist V Vunique) [false/ B]

After applying these elimination procedures to the constraint system from Fig-

ure 1, we obtain two distinct sets of equations of the form:

Equation 2
[Hpac] = onlay, [1][b/d])
Enc = :

M| = Gl @, [T[5/a))

FEs¢ is analogous to Eye.

Example 15 Consider the function given in Example 11, for which boolean con-
straints are given in Example 12. We compute the weakest sufficient condition for

Hf7a7cl :

Hfac,] = (a1Vtrue) v

(= (a1 V true) A [Ilfq 0, |[true/aq])
A (o V false) v

(—(on V false) A | a0 |[true/oq])
= a1V (moq A e |[true/oq])

The reader can verify that the strongest necessary condition for Il ¢, is true. The

existence and uniqueness constraints are omitted since they are redundant.

3.4.2 Preservation Under Substitution

Our goal is to solve the recursive system given in System of Equations 2 by an
iterative, fixed point computation. However, there is a problem: as it stands, System
of Equations 2 may not preserve strongest necessary and weakest sufficient conditions

under substitution for two reasons:

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 59

e Strongest necessary and weakest sufficient conditions are not preserved under
negation (i.e., =7[¢] ¥ [—¢] and —|¢| ¥ |—¢]), and the formulas from System
of Equations 2 contain negated return (II) variables. Therefore, substituting
—II by —=[II] and —|1I| would yield incorrect necessary and sufficient conditions,

respectively.

e The formulas from System of Equations 2 may contain contradictions and tau-
tologies involving return variables, causing the formula to be weakened (for
necessary conditions) and strengthened (for sufficient conditions) as a result of
substituting the return variables with their respective necessary and sufficient
conditions. As a result, the obtained necessary (resp. sufficient) conditions may

not be as strong (resp. as weak) as possible.

Fortunately, both of these problems can be remedied. For the first problem,
observe that while =[¢] ¢ [—¢]| and —|¢]| & |—¢], the following equivalences do
hold:

[—¢l & =lo] (6] & (0]

In other words, the strongest necessary condition of —¢ is the negation of the weakest
sufficient condition of ¢, and similarly, the weakest sufficient condition of —¢ is the
negation of the strongest necessary condition of ¢. Hence, by simultaneously com-
puting strongest necessary and weakest sufficient conditions, one can solve the first
problem using the above equivalences.

To overcome the second problem, an obvious solution is to convert the formula
to disjunctive normal form and drop contradictions before applying a substitution in
the case of strongest necessary conditions. Similarly, for weakest sufficient conditions,
the formula may be converted to conjunctive normal form and tautologies can be
removed. This rewrite explicitly enforces any contradictions and tautologies present
in the original formula such that substituting the II variables with their necessary

(resp. sufficient) conditions cannot weaken (resp. strengthen) the solution.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 60

3.4.3 Eliminating Recursion

Since we now have a way of preserving strongest necessary and weakest sufficient
conditions under substitution, it is possible to obtain a closed form solution containing
only observable variables to System of Equations 2 using a standard fixed point

computation technique. To compute a least fixed point, we use the following lattice:

Lye = false™™ Lo = true™™
— -
T yo = true™™ Tsc = false™™

YiUnc Yo = (oo, 10 V Yais o) 1 Use Vo = (s y1i A iy -2

The lattice L is finite (up to logical equivalence) since there are only a finite number
of variables «;; and hence only a finite number of logically distinct formulas. This

results in a system of bracketing constraints of the form:

Equation 3

(Mg a0 Mpae) = ($h1(at), 875 (a1))
(Exc, Esc) =
<{ka,a,0n]’ Lnfk,a,CnJ> = <¢;€n(a7c)’ ¢%n(a7c)>

Recall from Section 3.1 that the original constraints have four possible meanings,
namely L, true, false, and T, while the resulting closed-form strong necessary and
weakest sufficient conditions evaluate to either true or false. This means that in some
cases involving non-terminating program paths, the original system of equations may
have meaning | in least fixed-point semantics (or T in greatest fixed-point semantics),
but the algorithm presented in this chapter may return either true or false, depending
on whether a greatest or least fixed point is computed. Hence, our results are qualified

by the assumption that the program terminates.

Example 16 Recall that in Example 15 we computed |Il;, ¢, | for the function f
defined in Example 11 as:

Hiac] = a1V (ma A |y a0 |[true/ad))

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 61

To find the weakest sufficient condition for Il , ¢, , we first substitute true for 117, ¢, |.
This yields the formula oy V —aq, a tautology. As a result, our algorithm finds the
fixed point solution true for the weakest sufficient condition of Il;, . Since f is
always guaranteed to return C, the weakest sufficient condition computed using our

algorithm is the most precise solution possible.

3.5 Limitations

While the technique proposed in this chapter yields the strongest necessary and weak-
est sufficient conditions for a property P with respect to a finite abstraction, it is not
precise for separately tracking the conditions for two distinct properties P, and P, and
then combining the individual results. In particular, if ¢, and ¢, are the strongest nec-
essary conditions for P; and P, respectively, then ¢, A ¢o does not yield the strongest
necessary condition for P, and P, to hold together because strongest necessary con-
ditions do not distribute over conjunctions, and weakest sufficient conditions do not
distribute over disjunctions. Hence, if one is interested in combining reasoning about
two distinct properties, it is necessary to compute strongest necessary and weakest
sufficient conditions for the combined property.

While it is important in our technique that the set of possible values can be
exhaustively enumerated (to guarantee the convergence of the fixed point computation
and to be able to convert the constraints to boolean logic), it is not necessary that the
set be finite, but only finitary, that is, finite for a given program. Furthermore, while
it is clear that the technique can be applied to finite-state properties or enumerated
types, it can also be extended to any property where a finite number of equivalence
classes can be derived to describe the possible outcomes. However, the proposed

technique is not complete for arbitrary non-finite domains.

3.6 Implementation

We have implemented our method in Saturn, a summary-based, context, and in-

traprocedurally path-sensitive analysis framework [1]. Our implementation extends

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 62

the existing Saturn infrastructure to allow client analyses to query fully interpro-
cedural strongest necessary and weakest sufficient conditions for the intraprocedu-
ral constraints computed by Saturn, where function return values and side effects
are represented as unconstrained variables.®> For example, given an intraprocedu-
ral constraint computed by Saturn, such as x = 1 A queryUser(y) = true for the
queryUser function discussed earlier, our analysis yields the interprocedural con-
straints x = 1 Ay = true as the strongest necessary condition and false as the
weakest sufficient condition.

While it is important in our technique that the set of possible values can be
exhaustively enumerated (i.e., so that the complement of —II, ¢, is expressible as a
finite disjunction, recall Section 3.4.2), it is not necessary that the set be finite, but
only finitary, that is, finite for a given program. Furthermore, while it is clear that
the technique can be applied to finite state properties or enumerated types, it can
also be extended to any property where a finite number of equivalence classes can be
derived to describe the possible outcomes. Our implementation goes beyond finite
state properties; it first collects the set of all predicates corresponding to comparisons
between function return values (and side effects) and constants. For instance, if a
condition such as if(foo(a) == 3) is used at some call site of foo, then we compute
strongest necessary and weakest sufficient conditions for Il .3 and its negation.
This technique allows us to finitize the interesting set of return values associated with
a function and makes it possible to use the algorithms described so far with minor
modifications. Note that any finitization strategy entails a loss of precision in some
situations. For example, if the return values of two arbitrary functions f and g are
compared with each other, the strategy we use may not allow us to determine the
exact necessary and sufficient condition under which £ and g return the same value.

The algorithm of Section 3.4.3 computes a least fixed point. However, the under-
lying Saturn infrastructure can fail by exceeding resource limits (e.g., time-outs); if
any iteration of the fixed point computation failed to complete we would be left with

unsound approximations. Thus, our implementation computes a greatest fixed point,

3Saturn treats loops as tail-recursive functions; hence, we also compute strongest necessary and
weakest sufficient conditions for side effects of loops.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 63

Necessary and Sufficient Condition Size Frequency

100000 T T T T T T T L. T T
Necessary Condition
Sufficient Condition ===
10000 | .
)
IS
[&]
2}
3 1000 ¢ .
=
2y
S 100 .
>
o
o
LL
10 __
1

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
Size of necessary and sufficient conditions

Figure 3.4: Frequency of necessary and sufficient condition sizes (in terms of the
number of boolean connectives) at sinks for Linux

as we can halt at any iteration and still have sound results. The greatest fixed point
is less precise than the least fixed point in some cases, such as for non-terminating

computation paths. For instance, for the simple everywhere non-terminating function:
define f(x) = if(f(x) = c1) then c; else cy

the greatest fixed point computation yields true for the strongest necessary condition

for £ returning c; while the least fixed point computation yields false.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 64

Linux | Samba | OpenSSH

2.6.17.1 | 3.0.23b 4.3p2
Average original guard size 3.00 4.45 3.02
Average NC size (sink) 0.75 1.02 0.75
Average SC size (sink) 0.48 0.67 0.50
Average NC size (source) 2.39 2.82 1.39
Average SC size (source) 0.45 0.49 0.67
Average call chain depth 5.98 4.67 2.03

Figure 3.5: Necessary and sufficient condition sizes (in terms of number of boolean
connectives in the formula) for pointer dereferences.

3.7 Experimental Results

We conducted two sets of experiments to evaluate our technique on OpenSSH, Samba,
and the Linux kernel. In the first set of experiments we compute necessary and
sufficient conditions for pointer dereferences. Pointer dereferences are ubiquitous in
C programs and computing the necessary and sufficient conditions for each and every
syntactic pointer dereference to execute is a good stress test for our approach. As a
second experiment, we incorporate our technique into a null dereference analysis and
demonstrate that our technique reduces the number of false positives by close to an
order of magnitude without resorting to ad-hoc heuristics or compromising soundness.

In our first set of experiments, we measure the size of necessary and sufficient
conditions for pointer dereferences both at sinks, where pointers are dereferenced,
and at sources, where pointers are first allocated or read from the heap. In Figure
3.3, consider the pointer dereference (sink) at line 11. For the sink experiments, we
would, for example, compute the necessary and sufficient conditions for p’s dereference
as p! = NULLAflag! = 0 and false respectively. To illustrate the source experiment,

consider the following call sites of function f from Figure 3.3:

void foo() {

int* p = malloc(sizeof(int)); /*sourcex*/

bar(p, flag, x);

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 65

void bar(int* p, int flag, int x) {
if(x > MAX) *p = -1;
else f(p, flag);

The line marked /*source*/ is the source of pointer p;the necessary condition at p’s
source for p to be ultimately dereferenced is x > MAXV (x <= MAXAp! = NULLAflag! =
0) and the sufficient condition is x > MAX.

The results of the sink experiments for Linux are presented in Figure 3.4, and the
results of source experiments are given in Figure 3.6. The table in Figure 3.5 presents
a summary of the results of both the source and sink experiments for OpenSSH,
Samba, and Linux. The histogram in Figure 3.4 plots the size of necessary (resp.
sufficient) conditions against the number of guards that have a necessary (resp. suffi-
cient) condition of the given size. In this figure, red bars indicate necessary conditions,
green bars indicate sufficient conditions, and note that the y-axis is drawn on a log-
scale. Observe that 95% of all necessary and sufficient conditions have fewer than
five subclauses, and 99% have fewer than ten subclauses, showing that necessary
and sufficient conditions are small in practice. Figure 3.5 presents average necessary
and sufficient condition sizes at sinks (rows 2 and 3) for all three applications we
analyzed, confirming that average necessary and sufficient condition sizes are con-
sistently small across all of our benchmarks. Further, the average size of necessary
and sufficient conditions are considerably smaller than the average size of the original
guards (which contain choice variables as well as the place-holder return variables
representing unsolved constraints, denoted by IT in our formalism).

Figure 3.6 plots the maximal length of call chain from a source to any feasible sink
against the size of necessary and sufficient condition sizes at sources for Linux. In
this figure, the points mark average sizes, while the error bars indicate one standard
deviation. First, observe that the size of necessary and sufficient conditions is small
and does not grow with the length of the call chain. Second, note that the necessary
condition sizes are typically larger than sufficient condition sizes; the difference is

especially pronounced as the call chain length grows. Figure 3.5 also corroborates

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 66

Necessary Condition Size vs. Depth of Propagation in Linux
6 T T T T

’nc_'depth.txt" %

Necessary condition size
w

0 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Maximal depth of dereference propagation

Sufficient Condition Size vs. Depth of Propagation in Linux

12 T T T T T T
; 'sc_depth.txt’ ———
1 - .
]
N .
(2] -
c 0.8 B N
R 1
E 1]
o 0.6 i
(&) b N
=
Q 3
L 04| 1
5 L]
" |]
02| f { | | -
0 1 I % % % X ¥ * ARV % 5 9
0 5 10 15 20 25 30 35

Maximal depth of dereference propagation

Figure 3.6: Necessary and sufficient condition sizes at sources vs. call chain length in
Linux

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS

Interprocedurally Path-sensitive || Intraprocedurally Path-sensitive
OpenSSH | Samba Linux OpenSSH | Samba Linux
4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1

Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

67

Figure 3.7: Results of null dereference experiments for the interprocedurally path-
sensitive (first three columns) and intraprocedurally path-sensitive, but interproce-
durally path-insensitive (last three columns) analyses

this trend for the other benchmark applications; average size of necessary conditions
(row 4) is larger than that of sufficient conditions (row 5) at sources.

Our second experiment applies these techniques to finding null dereference errors.
We chose null dereferences as an application because checking for null dereference
errors with sufficient precision often requires tracking complex path conditions. To
identify null dereference errors, we query the strongest necessary condition g; for
the constraint under which a pointer p is null and the strongest necessary condition
go of the constraint under which p is dereferenced. A null pointer error is feasible
if SAT(g1 A ¢g2). Our implementation performs a bottom-up analysis and reports
errors in the first method where a feasible path from a null value to a dereference is
determined.

The first three columns of Figure 3.7 give the results of our fully (interproce-
durally) path-sensitive null dereference experiments, and the last three columns of
the same figure present the results of the intraprocedurally path-sensitive, but in-
terprocedurally path-insensitive null dereference experiments. One important caveat
is that the numbers reported here exclude error reports arising from array elements
and recursive fields of data structures. Saturn does not have a sophisticated shape
analysis; hence, the overwhelming majority (> 95%) of errors reported for elements
of unbounded data structures are false positives. However, shape analysis is an or-
thogonal problem; we leave incorporating shape analysis as future work. (To give the
reader a rough idea of number of reports involving arrays and unbounded data struc-

tures, the number of total reports is 50 and 170 with and without full path-sensitivity

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 68

respectively for OpenSSH.)

A comparison of the results of the intraprocedurally and interprocedurally path-
sensitive analyses shows that our technique reduces the number of false positives by
close to an order of magnitude without resorting to heuristics or compromising sound-
ness in order to eliminate errors arising from interprocedurally correlated branches.
Note that the existence of false positives for the fully path-sensitive experiments does
not contradict our previous claim that our technique is complete. First, even for
finite domains, our technique can only provide relative completeness; false positives
can still arise from orthogonal sources of imprecision in the analysis (e.g., imprecise
function pointer targets, inline assembly, implementation bugs, time-outs). Second,
while our results are complete for finite domains, we cannot guarantee completeness
for arbitrary domains. For example, when arbitrary arithmetic is involved in path
constraints, our technique may fail to compute the strongest necessary and weakest
sufficient conditions.

The null dereference experiments were performed on a shared cluster, making
it difficult to give precise running times. A typical run with approximately 10-30
cores took around tens of minutes on SSH, a few hours on Samba, and up to more
than ten hours on Linux. The running times (as well as time-out rates) of the fully
path-sensitive and the intraprocedurally path-sensitive analysis were comparable for
OpenSSH and Samba, but the less precise analysis took substantially longer for Linux
because the fully path-sensitive analysis rules out many more interprocedurally in-
feasible paths, substantially reducing summary sizes.

The results of Figure 3.7 show that interprocedurally path-sensitive analysis is
important for practical verification of software. For example, according to Figure
3.7, finding a single correct error report in Samba requires inspecting approximately
22.3 error reports for the interprocedurally path-insensitive analysis, while it takes
2.8 inspections to find a correct bug report with the fully path-sensitive analysis,

presumably reducing user effort by a factor of 8.

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 69

3.8 Related Work

In this section we survey previous approaches to path- and context-sensitive analy-
sis. The earliest path-sensitive techniques were developed for explicit state model-
checking, where essentially every path through the program is symbolically executed
and checked for correctness one at a time. In practice, this approach is used to verify
relatively small finite state systems, such as hardware protocols [19].

More recent software model-checking techniques address sound and complete path-
and context-sensitive analysis [7, 6, 38]. Building on techniques proposed for context-
sensitivity [71, 77], Ball et al. propose Bebop, a whole-program model checking tool
for boolean programs [7, 6]. Bebop is similar to our approach in that it exploits
the scope of local variables through implicit existential quantification and also deals
with recursion through context-free reachability. However, Bebop combines these
two steps, while our approach separates them: we first explicitly construct formu-
las with choice variables and then subsequently perform a reachability analysis as a
fixed point computation. This design allows us to insert a new step in between that
eliminates these choice variables, in particular to convert them to (normally) much
smaller formulas that preserve may or must queries prior to performing the global
reachability computation. This extra step is, we believe, the reason that we are able
to scale our approach to programs much larger than have been previously reported
for systems using model checking of boolean programs [7, 6, 38]. Another advantage
of this approach is that we can use choice variables to model fixed, but unknown,
parts of the environment. Our method is also modular, in contrast to most software
model checking systems that require the entire program.

Current state-of-the-art software model-checking tools are based on counter-example
driven predicate abstraction [8, 10]. Predicate abstraction techniques iteratively refine
an initial coarse abstraction until a property of interest is either verified or refuted.
Refinement-based approaches may not terminate, as the sequence of progressively
more precise abstractions is not guaranteed to converge. Our results show that for a
large class of properties the exact path- and context-sensitive conditions can be com-

puted directly without refinement and for much larger programs (millions of lines)

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 70

than the largest programs to which iterative refinement approaches have been applied
(about one hundred thousand lines). We believe our techniques could be profitably
incorporated into software model checking systems.

An obstacle to scalability in early predicate abstraction techniques was the number
of irrelevant predicates along a path. Craig interpolation [10] allows discovery of
locally useful predicates and, furthermore, these predicates only involve predicates
in scope at a particular program point. Our approach addresses similar issues in a
different way: our technique also explicitly accounts for variable scope, and extracting
necessary /sufficient conditions eliminates many predicates irrelevant to the queries we
want to decide. Unlike interpolants, our technique does not require counter-example
traces, and thus does not require the additional machinery of theorem provers and
successive refinement steps.

Some of the most scalable techniques for path- and context-sensitive analysis are
either unsound or incomplete. For example, ESP is a light-weight and scalable path-
sensitive analysis that tracks branch correlations using the idea that conditional tests
resulting in different analysis states should be tracked separately, while branches lead-
ing to the same analysis state should be merged [30]. ESP’s technique is a heuristic
and sometimes fails to compute the best path-sensitive condition. Another example
of an incomplete system is F-Soft [52]. F-Soft unrolls recursive functions a fixed num-
ber of times, resulting in a loss of precision beyond some predetermined recursion
depth of k. In contrast, our approach does not impose any limit on the recursion
depth and therefore does not lose completeness for programs with recursion. A final
example of an incomplete system is Saturn [1]. While Saturn analyses are generally
fully path-sensitive within a single procedure, Saturn has no general mechanism for
interprocedural path-sensitivity and published Saturn analyses are either interproce-
durally path-insensitive or use heuristics to determine which predicates are important
to track across function boundaries [80, 33, 17, 48]. We implement the ideas proposed
in this chapter in Saturn.

Our technique of computing necessary and sufficient conditions is related to the

familiar notion of over- and under-approximations used both in abstract interpretation

CHAPTER 3. A NOVEL PATH-SENSITIVE ANALYSIS 71

and model checking. For example, Schmidt [76] proposes the idea of over and under-
approximating states in abstract interpretation and presents a proof of soundness and
completeness for a class of path-insensitive analysis problems. Many model-checking
approaches also incorporate the idea of over- and under-approximating reachable
states to obtain a more efficient fixed point computation [11, 29]. Our contribution is
to show how to compute precise necessary and sufficient conditions while combining
context-sensitivity, path-sensitivity, and recursion.

The idea of computing strongest necessary and weakest sufficient conditions for
propositional formulae dates back to Boole’s technique of eliminating the middle term
[13]. Lin presents efficient algorithms for strongest necessary and weakest sufficient
conditions for fragments of first-order logic, but does not explore computing strongest
necessary and weakest sufficient conditions for the solution of recursive constraints
[59].

In our system, the analysis of a function f may be different for different call-sites
even within f’s definition, which gives it the expressiveness of context-free reachability
(in the language of dataflow analysis) or polymorphic recursion (in the language
of type theory). Most polymorphic recursive type inference systems are based on
instantiation constraints [49]. Our formalization is closer to Mycroft’s original work
on polymorphic recursion, which represents instantiations directly as substitutions
[65].

Chapter 4
Modular Heap Analysis

It is well-known that precise static reasoning about the heap is a key requirement for
successful verification of real-world software. In standard imperative languages, such
as Java, C, and C++, much of the interesting computation happens as values flow
in and out of the heap, making it crucial to use a precise, context- and flow-sensitive
heap analysis in program verification tools. Flow-sensitivity, in particular, enables
strong updates. Informally, when analyzing an assignment a := b, a strong update
replaces the analysis information for a with the analysis information for b. This
natural rule is unsound if a is a summary location, meaning a may represent more
than one concrete location. In previous work there is an apparent tension between

scalability and precision in heap analysis:

e For scalability, it is desirable to analyze the program in pieces, for example, one
function at a time. Many of the most scalable analyses in the literature are
modular [1, 20].

e For precision, a large body of empirical evidence shows it is necessary to perform

strong updates wherever possible [72, 32].

It is not obvious, however, how to perform strong updates in a modular heap
analysis. Consider a function h(x,y){e}. When analyzing h in isolation, we do not

know how many, or which, locations x and y may point to at a call site of h—it

72

CHAPTER 4. MODULAR HEAP ANALYSIS 73

may be many (if either x or y is a summary location), two, or even one (if x and
y are aliases). Without this information, we cannot safely apply strong updates
to x and y in e. Thus, while there is a large body of existing work on flow- and
context-sensitive heap analysis, most algorithms for this purpose either perform a
whole-program analysis or perform strong updates under very restrictive conditions.

In this chapter, we present a modular, strictly bottom-up, flow- and context-
sensitive heap analysis that uses summaries to apply strong updates to heap locations
at call sites. As corraborated by our experiments, strong updates are crucial for the
level of precision required for successful verification. Furthermore, we are interested
in a modular, summary-based analysis because it offers the following key advantages

over a whole program analysis:

o Reuse of analysis results: A major problem with whole-program analysis is that
results for a particular program component cannot be reused, since functions
are analyzed in a particular context. For instance, adding a single caller to
a library may require complete re-analysis of the entire library. In contrast,
modular analyses allow complete reuse of analysis results because procedure

summaries are valid in any context.

o Analysis scalability: Function summaries express a function’s behavior in terms
of its input/output interface, abstracting away its internal details. We show
experimentally that our function summaries do not grow with program size;
thus, an implementation strategy that analyzes a single function at a time,
requiring only one function and its callee’s summaries to be in memory, should

scale to arbitrarily large programs.

o Parallelizability: In modular analysis, any two functions that do not have
a caller/callee relationship can be analyzed in parallel. Thus, such analyses

naturally exploit multi-core machines.

To illustrate our approach, consider the following simple function f along with its

three callers g1, g2, and g3:

CHAPTER 4. MODULAR HEAP ANALYSIS 74

xa # *b V xp = *q ‘@*a

= xb A\ *p # *q
S0

Figure 4.1: Summary associated with function f

void f(int** a, int** b, int* p, intx q) {

*a = p; *b = q; **a = 3; **b = 4; }

void g1 () { void g20) { void g3() {
int** a, int** b; int** a, int** b; int** a, int** b;
a = new int*; a = new int*; a = new int*;
b = new intx; b = new intx*; b = a;
int p = 0, q=0; int p = 0; int p = 0, q=0;
f(a, b, &p, &q); f(a, b, &p, &p); f(a, b, &p, &q);
assert(p == 3); } assert(p == 4); } assert(p == 0); }

Here, although the body of f is conditional- and loop-free, the value of *p after the
call to £ may be either 3, 4, or remain its initial value. In particular, in contexts
where p and q are aliases (e.g., g2), *p is set to 4; in contexts where neither a and b
nor p and q are aliases (e.g., g1), *p is set to 3, and in contexts where a and b are
aliases but p and q are not (e.g., g3), the value of *p is unchanged after a call to f.
Furthermore, to discharge the assertions in g1, g2, and g3, we need to perform strong
updates to all the memory locations.

To give the reader a flavor of our technique, the function summary of £ computed
by our analysis is shown in Figure 4.1, which shows the points-to graph on exit from f
(i.e., the heap when f returns). Here, points-to edges between locations are qualified
by constraints, indicating the condition under which this points-to relation holds.

The meaning of a constraint such as xp = xq is that the location pointed to by p

CHAPTER 4. MODULAR HEAP ANALYSIS 75

and the location pointed to by q are the same, i.e., p and q are aliases. Observe that
Figure 4.1 encodes all possible updates to *p precisely: In particular, this summary
indicates that *p has value 3 under constraint xa # *b A xp # *q (i.e., neither a and
b nor p and q are aliases); *p has value 4 if p and q are aliases, and *p retains its
initial value (**p) otherwise.

There are three main insights underlying our approach:

e First, we observe that a heap abstraction H at any call site of £ can be over-
approximated as the finite union of some structurally distinct skeletal points-to
graphs ﬁl, ... H,, where each abstract location points-to at most one location.
This observation yields a naive, but sound, way of performing summary-based
analysis where the heap state after a call to function £ is conditioned upon the

skeletal graph at the call site.

e Second, we symbolically encode all possible skeletal heaps on entry to f in a
single symbolic heap where points-to edges are qualified by constraints. This
insight allows us to obtain a single, polymorphic heap summary valid at any

call site.

e Third, we observe that using summaries to apply strong updates at call sites
requires a negation operation on constraints. Since these constraints may be
approximations, simultaneous reasoning about may and must information on
points-to relations is necessary for applying strong updates when safe. To solve

this difficulty, we use bracketing constraints [32].

The first insight, developed in Section 4.1, forms the basic framework for reasoning
about the correctness and precision of our approach. The second and third insights,
exploited in Section 4.3, yield a symbolic and efficient encoding of the basic approach.

To summarize, this chapter makes the following contributions:

e We develop a theory of abstract heap decompositions that elucidates the basic
principle underlying modular heap analyses. This theory shows that a summary-

based analysis must lose extra precision over a non-summary based analysis in

CHAPTER 4. MODULAR HEAP ANALYSIS 76

some circumstances and also sheds light on the correctness of earlier work on

modular alias analyses, such as [58, 79, 24].

e We present a full algorithm for performing modular heap analysis in a symbolic
and efficient way. While our algorithm builds on the work of [24] in predicat-
ing summaries on aliasing patterns, our approach is much more precise and is

capable of performing strong updates to heap locations at call sites.

e We demonstrate experimentally that our approach is both scalable and precise
for verifying properties about real C and C++ applications up to 100,000 lines

of code.

4.1 Foundations of Modular Heap Analysis

As mentioned earlier, our goal is to analyze a function f independently of its callers
and generate a summary valid in any context. The main difficulty for such an anal-
ysis is that f’s heap fragment (the portion of the program’s heap reachable through
f’s arguments and global variables on entry to f) is unknown and may be arbitrar-
ily complex, but a modular analysis must model this unknown heap fragment in a
conservative way.

Our technique models f’s heap fragment using abstractions Hi, ..., Hy such that
(i) in each H;, every location points to exactly one location variable representing the
unknown points-to targets of that location on function entry, (ii) each H; represents
a distinct aliasing pattern that may arise in some calling context, and (iii) the heap
fragment reachable in f at any call site is overapproximated by combining a subset
of the heaps in Hy, ..., H;.

As the above discussion illustrates, our approach requires representing the heap
abstraction at any call site as the finite union of heap abstractions where each pointer
location has exactly one target. We observe that every known modular heap analysis,
including ours, has this this one-target property. In principle, one could allow the
unknown locations in a function’s initial heap fragment to point to 2, 3, or any

number of other unknown heap locations, but it is unclear how to pick the number

CHAPTER 4. MODULAR HEAP ANALYSIS 7

or take advantage of the potential extra precision.

In this section, we present canonical decompositions, through which the heap is
decomposed into a set of heaps with the one-target property, and structural decom-
positions, which coalesce isomorphic canonical heaps. We then show how these de-

compositions can be used for summary-based heap analysis.

4.1.1 Preliminaries

We describe the basic ideas on a standard may points-to graph, which we usually
call a heap for brevity. A labeled node A represents one or more concrete memory

locations ((A).

Definition 13 (Summary Location) An abstract location that may represent mul-
tiple concrete locations is a summary location (e.g., modeling elements in an ar-
ray/list). An abstract location representing exactly one concrete location is a non-

summary location.

For any two distinct abstract locations A and A’ we require ((A)N{(A’) = 0, and
that |[((A)| = 1 if A is a non-summary node. An edge (A, B) in the points-to graph
denotes a partial function (4,) from pointer locations in ((A) to locations in ((B5),
with the requirement that for every pointer location | € ((A) there is exactly one
node B such that ((4,p)(l) is defined (i.e., each pointer location has a unique target
in a concrete heap). Finally, each possible choice of ¢ and compatible edge functions
C(a,p) for each edge (A, B) maps a points-to graph H to one concrete heap. We write
v(H) for the set of all such possible concrete heaps for the points-to graph H. We
also write Hy J Hs if v(Hy) 2 v(Hs), and Hy U Hy for the heap that is the union of
all nodes and edges in H; and Hs. We define a semantic judgment H |= S : H' as:

HES:H & VYhe~(H). 3n € y(H'). eval(h,S) = h

where eval(h,S) is the result of executing code fragment S starting with concrete
heap h. Now, we write H b, S : H' to indicate that, given a points-to graph H and

a program fragment S, H' is the new heap obtained after analyzing S using pointer

CHAPTER 4. MODULAR HEAP ANALYSIS 78

H,

OO OO ®® ®
cRolcRelclolcke

Figure 4.2: A heap H and its canonical decomposition Hy, ..., Hy

OO
<
© ©

analysis a. The pointer analysis a is sound if for all program fragments S:

H+,S:H = HES:H

4.1.2 Canonical Decomposition

In this section, we describe how to express a points-to graph H as the union of a set
of points-to graphs Hi, ..., H; where in each H;, every abstract location points to at

most one location.

Definition 14 (Canonical points-to graph) We say a points-to graph is canonical

if every abstract memory location has an edge to at most one abstract memory location.

Definition 15 (Canonical decomposition) The canonical decomposition of heap

H is obtained by applying these steps in order:

1. If a summary node A points to multiple locations Ty, ..., Ty, replace T, ..., Ty
with a single summary node T such that any edge to/from any T; is replaced

with an edge to/from T.

2. Let B be a location with multiple edges to Ti,...,T). Split the heap into
Hy,... Hy where in each H;, B has exactly one edge to T;, and recursively

apply this rule to each H;.

Lemma 4 Let Hy,..., Hy be the canonical decomposition of H. Then (Hy U ...U
Hy) JH.

CHAPTER 4. MODULAR HEAP ANALYSIS 79

® ®
© ©

Figure 4.3: A heap H and its canonical decomposition H;

Proof 3 Let H' be the heap obtained from step 1 of Definition 15. To show H' 3 H
we must show y(H') 2 ~v(H). Let h € v(H) and let (g by the corresponding mapping.
We choose ' (T) = ¢H(Ty) U ... U ¢(Ty) and ¢'(X) = ¢(X) otherwise, and
construct the edge mappings C&B) from C&:B) analogously. Thus, h € ~v(H') and
we have y(H') D v(H). In step 2, observe that any location B with multiple edges
to Ty, ..., Ty, must be a non-summary location. Hence, the only concrete location

represented by B must point to exactly one T; in any execution. Thus, in this step,
(HiU...UHy)=H' JH. O

Example 17 Figure 4.2 shows a heap H with only non-summary locations. The
canonical decomposition of H is Hy, Hy, H3, Hy, representing four different concrete

heaps encoded by H .

Example 18 Figure 4.3 shows another heap H with summary node A (indicated by
double circles) and its canonical decomposition Hy. Heap H; is obtained from H by
collapsing locations C' and D into a summary location C'D. Observe that we cannot
split H into two heaps Hy, and Ho where A points to C' in Hy and to D in Hy:
Such a decomposition would incorrectly state that all elements in A must point to the
same location, whereas H allows distinct concrete elements in A to point to distinct

locations.

Corollary 1 If H has no summary nodes with multiple edges, then its canonical

decomposition is exact, i.e., |_|1§i§k H,=H.

CHAPTER 4. MODULAR HEAP ANALYSIS 80

Proof 4 This follows immediately from the proof of Lemma 4. [J

“.

Lemma 5 Consider a sound pointer analysis “a” and a heap H with canonical de-

composition Hy, ..., Hy such that:

H+F,S:H ... Hyt,S:H,
Then, H =S : HiU...UH].
Proof 5 This follows directly from Lemma 4. [J

According to this lemma, we can conservatively analyze a program fragment S by
first decomposing a heap H into canonical heaps Hy, ..., Hy, then analyzing S using
each initial heap H;, and finally combining the resulting heaps Hj,..., H;.

Recall that in a modular heap analysis, we require each node in a function f’s
initial heap abstraction to have the single-target property. Corollary 1 implies that
if a call site of f has no summary nodes with multiple targets, then this assumption
results in no loss of information, because we can use multiple distinct heaps for f
that, in combination, are an exact representation of the call site’s heap. However, if a
summary location has multiple targets and there is aliasing involving that summary
node, as illustrated in Figure 4.3, the modular analysis may strictly overapproximate
the heap after a call to f. In this case, the requirement that f’s initial heap have the
single-target property means that f can only represent the call-site’s heap (shown on
the left of Figure 4.3) by an overapproximating heap that merges the target nodes
(shown on the right of Figure 4.3).

4.1.3 Structural Decomposition

Consider the result of analyzing a program fragment S starting with initial canonical
heaps H; and H; shown in Figure 4.4. Here, nodes labeled X and Y represent
memory locations of x and y, which are the only variables in scope in S. Since the
only difference between H; and Hj is the label of the node pointed to by x and y, the
heaps H] and H), obtained after analyzing S will be identical except for the label of a

CHAPTER 4. MODULAR HEAP ANALYSIS 81

SIIRC

Figure 4.4: Two isomorphic canonical heaps and their skeleton

single node. Thus, S can be analyzed only once starting with heap Hin Figure 4.4,
and H! and H} can be obtained from the resulting heap by renaming v to loc' and

loc® respectively. The rest of this section makes this discussion precise.

Definition 16 (Skeleton) Given a set of nodes N, let {y(H) be the heap obtained
by erasing the labels of all nodes in H except for those in N. Now &y defines an
equivalence relation H =5 H' if Ey(H) = En(H'). We select one heap in each

equivalence class of =y as the class’ unique skeleton.

Note that nodes of skeletons are labeled—Ilabel erasure is only used to determine

equivalence class membership.
Example 19 In Figure 4.4, Hy and Hy have the same skeleton H.

In other words, if heaps Hy,..., H; have the same aliasing patterns with respect
to a set of root locations NV, then Hisa unique points-to graph which represents their
common aliasing structure. Skeletons are useful because, if N represents formals and
globals in a function f, all possible aliasing patterns at call sites of f can be expressed

using a finite number of skeletons.

Definition 17 (II) Let H be a heap and let H be its skeleton w.r.t. nodes N. The
mapping g maps every node label in H to the label of the corresponding node in

H and any other node to itself.

Definition 18 (Structural Decomposition) Given heap H and nodes N, the
structural decomposition of H w.r.t. N is a set of heaps D such that for every

H; in the canonical decomposition of H, the sketelon H of H; w.r.t. N isin D.

CHAPTER 4. MODULAR HEAP ANALYSIS 82

A A

H, H,

®» 6 ®®
W ®» O

Figure 4.5: Structural decomposition of heap H from Figure 4.2

Observe that the cardinality of the structural decomposition of H is never larger than

the cardinality of H’s canonical decomposition.

Definition 19 (Instances of skeleton) Let H be a skeleton in the structural de-
composition of H. The instances of I:I, written IH(]:I), are the canonical heaps of H
with skeleton H.

Example 20 Consider heap H from Figure 4.2 and the root set {A, B}. The struc-
tural decomposition H,, H, of H is shown in Figure 4.5. Observe that canonical heaps
H, and Hy from Figure 4.2 have the same skeleton ﬁl, and Hy and Hs have skeleton
H,. Thus, Iy (H,) = {Hy, Hy} and Ty (Hs) = {Hs, Hs}. Also:

HHLHI - [Vl = C D] HH4J:I1 = [Vl = D, vg, — C]
HHg,ﬁg =[v— D] HHg,HQ =[v—C]

Lemma 6 Consider program fragment S and nodes N representing variables in scope
at S. Let Hy be the heap fragment reachable through N before analyzing S and let
Hi, ..., H,, be the structural decomposition of Hy w.r.t. N. If

HivF,S:H, ... H,+,S:H,

and if ﬁj\, is the heap defined as:

HE\/ - |_|1<z<m <|_|H”eZHN(H) HHZ; H; (H’))

CHAPTER 4. MODULAR HEAP ANALYSIS 83

then Hy = S : Hl,.

Proof 6 First, by Definitions 16 and 14, we have:

|—|1§Z§m <|_|HijEIHN(I:Ii) HU) ; HN

Second, using Lemma 5, this implies:

Hy =S Lh<i<m (l—lHijGIHN(ﬁi) ng) *)

where H;; o S : H{j. From Definition 19, since H;; and HZ are equivalent up to

renaming, then H;; and HZ’ are also equivalent up to this renaming, given by 11 Hij i
Together with (*), this implies Hy = S : | |, <icpm <|—|HijeIHN (F:) HHZ]HZ<H1/)) O

In other words, the heap defined as H % in Lemma 6 gives us a sound abstraction
of the heap after analyzing program fragment S. Furthermore, ﬁ]’v is precise in the

sense defined below:

Lemma 7 Let fI]’V be the heap defined in Lemma 6, and let Hy, ..., Hy be the canon-
ical decomposition of the heap fragment reachable from N before analyzing S. If
Hj o H}, then:

Hy = Li<j< Hj
Proof 7 This follows from Corollary 1 and Definition 18. [J

The following corollary states a stronger precision result:

Corollary 2 Let Hy and ﬁf\, be the heap abstractions from Lemma 6, and let Hy b,
S : Hy. If Hy does not contain summary locations with multiple points-to targets,
then

Hi\ C HYy

Proof 8 This follows from Lemma 7 and Corollary 1.

CHAPTER 4. MODULAR HEAP ANALYSIS 84

4.1.4 From Decompositions to Modular Heap Analysis

We now show how the ideas described so far yield a basic modular heap analysis. In
the remainder of this section, we assume there is a fixed bound on the total number
of memory locations used by a program analysis. (In practice, this is achieved by,

e.g., collapsing recursive fields of data structures to a single summary location.)

Lemma 8 Consider a function f, and let N denote the abstract memory locations
associated with the formals and globals of f. Then, there is a finite set Q) of skeletons
such that the structural decomposition D w.r.t. N of the heap fragment reachable
from N in any of f’s call sites satisfies D C Q.

Proof 9 Recall that in any canonical heap, every location has exactly one target.
Second, observe that when there is bound b on the total number of locations in any
heap, any canonical heap must have at most b locations. Thus, using a fized set of

nodes, we can only construct a finite set Q) of structurally distinct graphs. [

Since there are a bounded number of skeletons that can arise in any context, this
suggests the following strategy for computing a complete summary of function f:
Let N be the set of root locations (i.e., formals and globals) on entry to f, and let
I:Ib cee H, be the set of all skeletons that can be constructed from root set N. We
analyze f’s body for each initial skeleton H;, obtaining a new heap I:IZ' . Now, let C'
be a call site of f and let R be the subset of the skeletons Hl, ..., Hy, that occur in
the structural decomposition of heap H in context C'. Then, following Lemma 6, the

heap fragment after the call to f can be obtained as:

UILER (UHijeIH(ﬁi)) HH]H<H1,)>

This strategy yields a fully context-sensitive analysis because f’s body is analyzed
for any possible entry aliasing pattern H;, and at a given call site C'; we only use the

resulting heap H, if H; is part of the structural decomposition of the heap at C'.

CHAPTER 4. MODULAR HEAP ANALYSIS 85

Furthermore, as indicated by Corollary 2, this strategy is as precise as analyz-
ing the inlined body of the function if there are no summary locations with multi-
ple points-to targets at this call site; otherwise, the precision guarantee is stated in

Lemma 7.

4.1.5 Discussion

While the decompositions described here are useful for understanding the principle
underlying modular heap analyses, the naive algorithm sketched in Section 4.1.4 is
completely impractical for two reasons: First, since the number of skeletons may be
exponential in the number of abstract locations reachable through arguments, such
an algorithm requires analyzing a function body exponentially many times. Second,
although two initial skeletons may be different, the resulting heaps after analyzing
the function body may still be identical. In the rest of this chapter, we describe
a symbolic encoding of the basic algorithm that does not analyze a function more
than once unless cycles are present in the callgraph (see Section 4.3). Then, in
Section 4.4, we show how to identify only those initial skeletons that may affect the

heap abstraction after the function call.

4.2 Language

To formalize our symbolic algorithm for modular heap analysis, we use the following

typed, call-by-value imperative language:

Program P = F™*
Function F' := define f(ay :71,...,a,:Tp) = 5;
Statement S := vy < *vy | * v < vy | v < alloc’(T)

| fP(v1,...,0%) | assert(vy = vg)

| let’ v:Tin S end| Si;Ss | choose(St, Ss)
Type T = ant | ptr(7)

A program P consists of one or more (possibly recursive) functions F'. Statements

CHAPTER 4. MODULAR HEAP ANALYSIS 86

in this language are loads, stores, memory allocations, function calls, assertions, let
bindings, sequencing, and the choose statement, which non-deterministically executes
either Sy or Sy (i.e., a simplified conditional). Allocations, function calls, and let
bindings are labeled with globally unique program points p.

Since this language is standard, we omit its operational semantics and highlight
a few important assumptions: Execution starts at the first function defined, and an
assertion failure aborts execution. Also, all bindings in the concrete store have initial

value nil.

4.3 Modular & Symbolic Heap Analysis

In this section, we formally describe our symbolic algorithm for modular heap anal-
ysis. In Section 4.3.1, we first decribe the abstract domain used in our analysis.
Section 4.3.2 formally defines function summaries, and Section 4.3.3 presents a full

algorithm for summary-based heap analysis for the language defined in Section 4.2.

4.3.1 Abstract Domain

Abstract locations m represent a set of concrete locations:

Abstract Locations 1 = «a |l
Location Variables a = v; | *«
Location Constants | := loc” | nil

An abstract location 7 in function f is either a location variable o or a location
constant [. Location constants represent stack or heap allocations in f and its tran-
sitive callees as well as nil. In contrast, location variables represent the unknown
memory locations reachable from f’s arguments at call sites, similar to access paths
in [58]. Informally, location variables correspond to the node labels of a skeleton from
Section 4.1.3. Recall from Section 4.1 that, in any canonical points-to graph, every
abstract memory location points to at most one other abstract memory location;

hence, location variable *xv; describes the unknown, but unique, points-to target of

CHAPTER 4. MODULAR HEAP ANALYSIS 87

f’s i’th argument in some canonical heap at a call site of f.
Abstract environment E maps program variables v to abstract locations 7, and
abstract store S maps each abstract location 7 to an abstract value set 6 of (abstract

location, constraint) pairs:
Abstract value set § = 2%

The abstract store defines the edges of the points-to graph from Section 4.1. A
mapping from abstract location 7 to abstract value set {(my,é1),..., (7, @)} in S
indicates that the heap abstraction contains a points-to edge from node labeled 7
to nodes labeled 7y, ..., . Observe that, unlike the simple may points-to graph we
considered in Section 4.1, points-to edges in the abstract store are qualified by con-
straints, which we utilize to symbolically encode all possible skeletons in one symbolic
heap (see Section 4.3.3).

Constraints in our abstract domain are defined as follows:

¢ = <90may> @must)
o = T|F|loiNpa| o1V | gt =t

Here, ¢ is a bracketing constraint (©may, ©must) as in [32], representing the condition
under which a property may and must hold. Recall that the simultaneous use of
may and must information is necessary for applying strong updates whenever safe.
In particular, updates to heap locations require negation (see Section 4.3.3). Since
the negation of an overapproximation is an underapproximation, the use of brack-
eting constraints allows a sound negation operation, defined as —(Pmay, Pmust) =
(" Omusts "Pmay)- Conjunction and disjunction are defined on these constraints as

expected:

<90maya Ormust) * <90/mayv Qolmust> = <90may * Qolmayv Pmust * Qolmust>

where x € {A, V}. In this chapter, any constraint ¢ is a bracketing constraint unless

stated otherwise. To make this clear, any time we do not use a bracketing constraint,

CHAPTER 4. MODULAR HEAP ANALYSIS 88

A A

Figure 4.6: A symbolic heap representing two skeletons

we use the letter ¢ instead of ¢. Furthermore, if the may and must conditions of
a bracketing constraint are the same, we write a single constraint instead of a pair.
Finally, for a bracketing constraint ¢ = (Pmay, Pmust), We define [@] = @pq, and
|9] = Pumust-

In the definition of constraint ¢, T" and F' represent the boolean constants true

and false, and a term ¢ is defined as:
Term t := v | drf(t) | alloc(p) | nil

Here, v represents a variable, drf is an uninterpreted function, and alloc is an in-
vertible uninterpreted function applied to a vector of constants p. Thus, constraints
¢ belong to the theory of equality with uninterpreted functions. Our analysis re-
quires converting between abstract locations and terms in the constraint language;

we therefore define a [ift operation, written 7, for this purpose:
U= *a=drf@) nil= nil loc” = alloc(p)

Observe that a location constant loc” is converted to a term alloc(p), which effectively
behaves as a constant in the constraint language: Since alloc is an invertible function,
alloc(p) = alloc(p)) exactly when p = p/. A location variable v is converted to a
constraint variable of the same name, and the location variable *v is represented by
the term drf(v) which represents the unknown points-to target of v on function entry.

We write lift *(t) to denote the conversion of a term to an abstract location.

Example 21 In Figure 4.6, a symbolic heap H represents two skeletons H, and H,.

CHAPTER 4. MODULAR HEAP ANALYSIS 89

drf(vy drf(vs
i) # i) 73N T @

Figure 4.7: The abstract store in f’s summary

In H, the constraint drf(vy) = drf(ry) describes contexts where the first and second
arguments are aliases. Observe that, at call sites where the first and second arguments
alias, drf(vy) = drf(vg) instantiates to true and drf(vy) # drf(vs) is false; thus at this
call site, H instantiates exactly to H,. Similarly, if the first and second arguments

do not alias, H instantiates to H,.

4.3.2 Function Summaries

A summary A for a function f is a pair A = (¢, S) where ¢ is a constraint describing
the precondition for f to succeed (i.e., not abort), and S is a symbolic heap repre-
senting the heap abstraction after f returns. More specifically, let Hi, ..., H be the
set of all skeletons for any possible call site of f, and let H S]:I,f where S is the
body of f. Then, the abstract store S symbolically encodes that in contexts where
the constraints in S are satisfied by initial heap H;, the resulting heap is ﬁ{)
Observe that a summary can also be viewed as the Hoare triple {¢} f {S}. Thus,
the computation of a summary for f is equivalent to the inference of sound pre- and

post-conditions for f.

Example 22 Consider the function:

CHAPTER 4. MODULAR HEAP ANALYSIS 90

define f(a; : ptr(ptr(int)), as: ptr(ptr(int))) =
xa; < alloc!(int);
xay < alloc?(int);

let ty : ptr(int) in t; < %a;; *t; < 7 end;

1
2
3
4: let ty:ptr(int) in t, < *ap; ¥ty < 8 end;
5 let t3: ptr(int) in tz « *as;

6 let ty4:int in tg < *t3; assert(ts == 7) end,;
-

end

The summary for £ is (drf(vy) # drf(va), S) where S is shown in Figure 4.7. The
pre-condition drf(vy) # drf(vy) indicates that the assertion fails in those contexts
where arqguments of f are aliases. Also, in symbolic heap S, the abstract location
reached by dereferencing a; (whose location is vy) is either locy, corresponding to the
allocation at line 1, or locy, associated with the allocation at line 2, depending on

whether a; and as are aliases.

A global summary environment G is a mapping from each function f in the pro-

gram to a summary Ay.

4.3.3 The Analysis

We now present the full algorithm for the language of Section 4.2. Section 4.3.3 de-
scribes the symbolic initialization of the local heap to account for all possible aliasing
relations on function entry. Section 4.3.3 gives abstract transformers for all state-
ments except function calls, which is described in Section 4.3.3. Finally, Section 4.3.3

describes the generation of function summaries.

Local Heap Initialization

To analyze a function f independent of its callers, we initialize f’s abstract store to
account for all possible relevant aliasing relationships at function entry. To perform
this local heap initialization, we utilize an alias partition environment A with the

signature a« — 2%. This environment maps each location variable o to an ordered set

CHAPTER 4. MODULAR HEAP ANALYSIS 91

E=la; < vi,...,a5 < V]
Vo a; € dom(A).
Slev) = Un<i(rau, (/\; o %0 # *05) N i = %)
A+ anit_heap(ay, ... a;) : E,S

Figure 4.8: Local Heap Initialization

of location variables, called a’s alias partition set. If o/ € A(«), then f’s summary may
differ in contexts where o and o are aliases. Since aliasing is a symmetric property,
any alias partition environment A has the property o/ € A(a) & a € A(d/). Any
location aliases itself, and so A is also reflexive: o € A(ar). A correct alias partition
environment A can be trivially computed by stipulating that o/ € A(«) if o and
o’ have the same type. We discuss how to compute a more precise alias partition
environment A in Section 4.4.

A key component of the modular analysis is the init_heap rule in Figure 4.8.
Given formal parameters aq,...,a, to function f, this rule initializes the abstract
environment and store on entry to f. The environment E is initialized by binding a
location variable v; to each argument a;. The initialization of the abstract store S,
however, is more involved because we need to account for all possible entry aliasing
relationships permitted by A.

Intuitively, if A indicates that oy and as may alias on function entry, we need
to analyze f’s body with two skeletal heaps, one where a; and «sy point to the
same location, and one where o and as point to different locations. To encode this
symbolically, one obvious solution is to introduce three location variables, o, *aq,
and *aq9 such that a; (resp. ag) points to *a; (resp. *az) if they do not alias (i.e.,
under constraint drf{ay) # drf{az)) and point to a common location named ko if
they alias (i.e., under drflay) = drf(as)). While this encoding correctly describes
both skeletal heaps, it unfortunately introduces an exponential number of locations,
one for each subset of entry alias relations in A.

To avoid this exponential blow-up, we impose a total order on abstract locations
such that if a; and «; are aliases, they both point to a common location *qy, such

that oy, is the least element in the alias partition class of «; and «;. Thus, in the

CHAPTER 4. MODULAR HEAP ANALYSIS 92

Figure 4.9: The initial heap abstraction for function from Example 22
init_heap rule of Figure 4.8, a; points to *ay where k < ¢ under constraint:
(/\ ¥ # %a5) A Fa; = %ay,
j<k

This condition ensures that a; points to a location named *qy, only if it does not alias

any other location «; € A(w;) with j < k.

Example 23 Consider the function defined in Example 22. Suppose the alias parti-

tion environment A contains the following mappings:

v = {v, e}, ve = {vn, e}, kg {xg b sve = {xnl

sk Uy > {kx g ok g > {1)

Figure 4.9 shows the initial heap abstraction using A and the ordering v1 < vy. Since
A includes vy and vy in the same alias partition set, vy points to xvy under drf(vy) =

drf(vy) and to xvy under its negation. But vy only points to xvy since vo £ vy.

The following lemma states that the initial heap abstraction correctly accounts

for all entry aliasing relations permitted by A:

Lemma 9 Let o; and o be two abstract locations such that a; € A(cy). The initial
local heap abstraction S constructed in Figure 4.8 encodes that o; and «; point to

distinct locations exactly in those contexts where they do not alias.

Proof 10 Without loss of generality, assume i < j.

= Suppose o; and o are not aliases in a context C, but S encodes they may point to

CHAPTER 4. MODULAR HEAP ANALYSIS 93

the same location *xay, in context C. Let ¢ and ¢’ be the constraints under which a; and
a; point to oy, respectively. By construction, k < i, and ¢ implies drf(e;) = drf(oy,)
and ¢ implies drf(a;) = drf(ay). Thus, we have drf(c;) = drf(ey), contradicting the
fact that o; and o do not alias in C.

< Suppose o; and o are aliases in context C, but S allows «; and o to point to
distinct locations *ay, and *qu,. Let ¢ and ¢ be the constraints under which o; points
to xay and «; points to *au, respectively. Case (i): Suppose k < m. Then, by
construction, ¢ implies drf(o;) = drf(ay), and ¢ implies drf(cy;) # drf(oy). Hence,
we have drf(a;) # drf(o;), contradicting the assumption that o; and o are aliases in
C. Case (ii): k > m. Then, ¢' implies drf(a;) = drf(av,,), and ¢ implies drf(o;) #

drf(ayy,), again contradicting the fact that o; and o are aliases in C. O

Lemma 10 For each alias partition set of size n, the init_heap rule adds n(n+1)/2

points-to edges.

As Lemma 10 states, this construction introduces a quadratic number of edges in
the size of each alias partition set to represent all possible skeletal heaps. Furthermore,
the number of abstract locations in the initial symbolic heap is no larger than the

maximum number of abstract locations in any individual skeleton.

Abstract Transformers for Basic Statements

In this section, we describe the abstract transformers for all statements except func-
tion calls, which is the topic of Section 4.3.3. Statement transformers are given as

inference rules of the form
E,S,G,¢oFS:S, ¢

which states that under abstract environment E, store S, summary environment G,
and precondition ¢, statement S produces a new abstract store S’ and a new precon-
dition ¢’ of the current function. The operation S(#) looks up the value of each 7; in
0:

S 1), (m, 00} = | S(m) A

1<i<k

CHAPTER 4. MODULAR HEAP ANALYSIS 94

E(Ul) = T E(U2) = 79
S(my) =6 S =S[m « S(6)]
E,S,G,¢pF vy < *v92: S, ¢

E(Ul) = T E(Ug) = T
S(m1) =601 S(ma) = b9
@) S = S[mi « ((02 A ¢i) U (S(mi) A —¢3)) | (i, di) € 61]
E,S,G,pF xv1 < v9: 5, ¢

Ew)=mn
S' = S[r « {(loc®, T)}, loc® {(nil, T)}]
(3) E,S,G, ¢ F v« alloc’(7): S, ¢

7T,¢Z' ,}
).}
@ ¢ =V, (mi =7 N\ di AP

E,S,G, ¢ - assert(vy = va) : S, ¢ A ¢’

E' = E[v « loc”]
S’ = S[xloc? + {(nil, T)}]
E S G, ¢+ S:S", ¢
(5) E,S,G,¢F let’ v:7 in S end :S"\loc’, ¢/

E.S,G,o+ S : 5, ¢
E7S/7G7 (b/ H SQ : S//v ¢//
Ev SaG7¢ F Sl; SQ : SN7¢H

E,S,G,¢oF S : S, ¢1
7 E7SvG7¢|_SQ:827¢2
() E,S,G,¢F choose (51,52) : Sy USQ,¢1 A 3

Figure 4.10: Abstract Transformers for Basic Statements

CHAPTER 4. MODULAR HEAP ANALYSIS 95

T' @mﬂyl) # drf(vy) @

difn) # drflvs) N 1
>{*1/9
N4

Heap after statement 1 Heap after statement 2

Figure 4.11: The symbolic heap before and after line 2 in Example 22

where S(7;) A ¢; is a shorthand defined as follows:

ON¢={(m;,0; \O)|(m),d;) € 0}

In Figure 4.10, rules (1) and (2) give the transformers for loads and stores respec-
tively. The rule for loads is self-explanatory; thus, we focus on the store rule. In
the third hypothesis of rule (2), each m; represents a location that v; points to under
constraint ¢;, and 6, is the value set for v,. Since the write to m; happens under
constraint ¢;, the new value of 7; in S’ is 6, under constraint ¢; and retains its old
value set S(m;) under —¢;. Observe that if ¢; is true, this rule performs a standard
strong update to m;. On the other hand, if v; points to m; under some entry alias
assumption, then there is a strong update to 7; exactly in those calling contexts where

this alias assumption holds.

Example 24 Figure /.11 shows the relevant portion of the heap abstraction before
and after the store at line 2 in Example 22.

Rule (3) processes allocations by introducing a new location loc” and initializing
its value in the store to nil. Rule (4) analyzes an assertion by computing the condition
¢’ for the assertion to hold such that if ¢’ can be proven valid in a calling context, then
this assertion must hold at that call site. In rule (4), ¢’ is computed as the disjunction
of all pairwise equalities of the elements in the two abstract value sets associated with

vy and v, i.e., a case analysis of their possible values. Rule (5) describes the abstract

CHAPTER 4. MODULAR HEAP ANALYSIS 96

S, I+ map_loc(xv : 1) : T
S,IF map_loc(v :int) : 1T S, I+ map_loc(v : ptr(r)) : I

I' = I[xa « S(I(«))]
I = T[xa + S(I())] '+ map_loc(x* o : 1) : T
S, I F map_loc(xa: int) : ' S,IF map_loc(xa : ptr(7)) : 17

S, [v1 {(E(v1),T)}] F map_loc(vy) : I

S, Ig—1[vk < {(E(vg), T)}] F map_-loc(vy) : Iy
E,SF map_args(vy : 11, ... v 2 k) = Ik

Figure 4.12: Rules for computing instantiation environment I

semantics of let statements by binding variable v to a new location loc¢” in E. Rule (6)
for sequencing is standard, and rule (7) gives the semantics of the choose construct,
which computes the join of two abstract stores S; and S,. To define a join operation

on abstract stores, we first define domain extension:

Definition 20 (Domain Extension) Let w be any binding in abstract store S' and
let (m;, ¢;) be any element of S'(w). We say an abstract store 8" = S is a domain

extention of S with respect to S’ if the following condition holds:
1. If m € dom(S) A (m;, ¢}) € S(7), then (m;, @) € Soys(7).
2. Otherwise, (m;, false) € S_g ()

Definition 21 (Join) Let S| = Sy, and let Sy = Sors, . If (7', (Phay Proust)) €
Si(m) and (7', (Phiay: Poust)) € Sa(m), then:

<7T/7 <()0r1nay v (p?naw gorlnust A 9012nu5t>) € (Sl U SQ)<7T)

Instantiation of Summaries

The most involved statement transformer is the one for function calls, which we

describe in this subsection. Figure 4.15 gives the complete transformer for function

CHAPTER 4. MODULAR HEAP ANALYSIS 97

0= {(locp”';/ T)} =
. —— (p&r)
I p - anst_loc(nal) : {(nil, T)} 7 ,p b inst. loc(locp): 6
0 = {(loc”, (T, F))} y
— . : - (per)
L p b dnst_loc(a) : I() L p - inst_loc(loc”) : 0

Figure 4.13: Rules for instantiating locations

calls, making use of the helper rules defined in Figures 4.12- 4.14, which we discuss
in order.

Given the actuals vy,...,v; for a call to function f, Figure 4.12 computes the
instantiation environment I with signature o — 6 for this call site. This environ-
ment I, which serves as the symbolic equivalent of the mapping II from Section 4.1,
maps location variables used in f to their corresponding locations in the current
(calling) function. However, since I is symbolic, it produces an abstract value set
{(m1,61),..., (7, ¢r)} for each a such that « instantiates to m; in some canonical
heap under constraint ¢;.

Figure 4.13 describes the rules for instantiating any location 7 used in the sum-
mary. If 7 is a location variable, we use environment I to look up its instantiation.
On the other hand, if 7 is a location constant allocated in callee f, we need to rename
this constant to distinguish allocations made at different call sites for full context-
sensitivity. In general, we rename the location constant loc” by prepending to ﬁ the
program point p associated with the call site. However, in the presence of recursion,
we need to avoid creating an unbounded number of location constants; thus, in Fig-
ure 4.13, we check if this allocation is created on a cyclic path in the callgraph by
testing whether the current program point p is already in p7 . In the latter case, we do
not create a new location constant but weaken the bracketing constraint associated
with loc” to (T, F), which has the effect of ensuring that stores into this location only
apply weak updates [32], meaning that lo” behaves as a summary location.

In addition to instantiating locations, we must also instantiate the associated
constraints, which is described in Figure 4.14. In the last rule of this figure, inst,

instantiates a bracketing constraint, making use of inst, to map the constituent may

CHAPTER 4. MODULAR HEAP ANALYSIS 98

and must conditions. The inst, rule derives judgments of the form I, p I inst,(y) :
¢, ¢, where ¢ preserves the structure of ¢ by substituting each term ¢ in ¢ with a
temporary variable k and ¢ constrains the values of k.

The first rule in Figure 4.14 for instantiating a leaf ¢; = 5 is the most interesting
one: Here, we convert t; and ¢y to their corresponding memory locations using the
lift ! operation from Section 4.3.1 and instantiate the corresponding locations using
inst_loc to obtain abstract value sets #; and 6. We then introduce two temporary
variables k and k' representing #; and 6, respectively, and introduce constraints ¢
and ¢, stipulating the equality between k& and #; and between k' and ;. Observe
that in the last rule of Figure 4.14, these temporary variables k and &’ are removed
using a QF procedure to eliminate existentially quantified variables.

Figure 4.15 makes use of all the afore-mentioned rules to instantiate the summary
of function f at a given call site p. In the last rule of this figure, we first look
up f’s summary (¢, Sy) in the global summary environment G. The precondition
¢y is instantiated to (b’f using inst,. Observe that if (b’f is valid, then the potential
assertion failure in f is discharged at this call site; otherwise, ¢; is conjoined with
the precondition ¢ of the current function.

Next, we compose the partial heap Sy, representing the heap fragment reachable
in f after the call, with the existing heap S before the function call. The com-
pose_partial_heap rule used in compose_heap instantiates an entry 7+ 6 in f’s sum-
mary. Observe that if location 7 in f’s summary instantiates to location m; in the
current function under ¢;, existing values of m; are only preserved under —¢;. Hence,
if ¢; is true, this rule applies a strong update to m;. On the other hand, if 7 instanti-
ates to m; under some entry alias condition, then this rule represents a strong update

to m; only in those contexts where the entry aliasing condition holds.
Example 25 Consider a call to function f of FExample 22:
define g(a;s : ptr(ptr(int))) = £3(a, a1)

Before the call to f, g’s local heap is depicted as:

OG-0

CHAPTER 4. MODULAR HEAP ANALYSIS 99

L, p b inst_loc(lift ™ (t1)) : {(71, 1), ..., (7k, 1)}

I, p b inst_loc(lift ™ (t2)) : {(x}, (;5/1) (T}

6=Vilk=mno) o =V, = Adh) (b K fresh)
Lpkinst,(ti =t2) :k=k,pN¢

be{T,F} I pFinsty(@) : o1, P2
I ptFinsty(b) : 0, T 1, pt insty(—e) : 1, da

Lot insty(¢1) 1 0,0 Lphinsty(p2) : ¢, ¢’
L p b insty(o1 % p2) : o', o A @

€ {AV))

L P H inst ((Pmay) (Pmagp (bmay]L P - inshp(‘ﬁmust) Spmustv ¢must
Solr/nay = ’—QE(Hk ((pmay A ¢may))-| (plrlnust = LQE(E]k (gpmust N Qsmust))J
Lok Zn5t¢(<<ﬁmay> SOmUSt>) : < may’ ¢must>

Figure 4.14: Rules for instantiating constraints

L p & inst_loc(my) = 601, . .. inst_loc(my) = O
Lok inSt*theta({(Trlv ¢1)7 SRR (TFk, st‘)}) : Ulgzgk(el N qbl)

L p F inst_loc(m) = 6
I, p & inst_theta(0) = 04
S = S[ﬂ'z — (915 A d)l) U (S(ﬂ'z) A —|¢51) | (ﬂ'i, qbl) € 05]
S,L, p F compose_partial_heap(m,0) : S

Sf = [(7’1’1 = 91)7 S (Wk = Qk’)]
S, L, p b compose_partial_heap(my,01) : Sy

Sk—1,L, p = compose_partial_heap(my, Oy) : Sg

S, L, p = compose_heap(Sy) : Sy

G(f) = (¢7,5¢)

E,S F map_args(vi,...,vx) : 1

L p - instg(oy) : gb’f

S, I, p = compose_heap(Sy) : S/
E,S,G,¢F fr(vy,...,v): S’,qb/\gi)}

Figure 4.15: Summary Instantiation rules

CHAPTER 4. MODULAR HEAP ANALYSIS 100

Recall from Ezample 22 that f’s precondition is drf(vy) # drf(vs), which instantiates
to drf(ry) # drf(vy) < false at this call site, indicating that the assertion is guaranteed

to fail. The store in f’s summary from Figure 4.7 is instantiated at the call site to:

@O0

Composing initial heap (*) with the instantiated heap (**), we obtain the final heap

after the function call:

Observe that the resulting abstract heap is as precise as analyzing the inlined body of

f.

Summary Generation and Fixed-point Computation

We now conclude this section by describing function summary generation, given in
Figure 4.16. Before analyzing the body of f, the local abstract heap S is initialized
as described in Section 4.3.3. Next, f’s body is analyzed using the abstract trans-
formers from Section 4.3.3 and 4.3.3, which yields a store S’ and a precondition ¢'.
According to the last hypothesis in Figure 4.16, the summary (¢, S¢) is sound if Sy
overapproximates S\{v1, ..., v} and ¢ implies ¢'. Here, S; C S, is defined as:

Definition 22 (C) Let S| = Sy, and Sy = Soys,. We say Sy T Sy if for every m €
dom(Sll) and fO?" every 7' such that (7T/7 <<pr1nay7 Sprlnust>) < S,1 (77'), (ﬂ—/u <90r2nay7 gp?nust>) S
Sh(), we have:

1 2 2 1
Somay = Spmay N Pmust = Pmust

While the rule in Figure 4.16 verifies that (¢f,Sy) is a sound summary, it does not
give an algorithmic way of computing it. In the presence of recursion, we perform a
least fixed-point computation where all entries in G are initially L (i.e., any location
points to any other location under false), and a new summary for f is obtained by

computing the join of f’s new and old summaries:

(S1, 1) U (Sa, ¢2) = (S1USy, ¢1 A 2)

CHAPTER 4. MODULAR HEAP ANALYSIS 101

A& init_heap(ay, ..., ax) : E,S
E,S,G, truet S : ¢/, S
GtE f:{07,Sy)
¢f = ¢/ Sf | (S’\{I/l, .. .,I/k})
G,AF define f(ay :1,...,a5 1) =S : (¢, Sy)

Figure 4.16: Summary generation rule

This strategy ensures that the analysis is monotonic by construction. Furthermore,
since the analysis creates a finite number of abstract locations and the constraints
are over a finite vocabulary of predicates, this fixed-point computation is guaranteed
to converge. In fact, for an acyclic callgraph, each function is analyzed only once if a

reverse topological order is used.

4.4 Computing Alias Partition Sets

In the previous section, we assumed the existence of an alias partition environment A
that is used to query whether aliasing between locations « and o/ may affect analysis
results. One simple way to compute such an environment is to require that o/ € A(«)
if @ and o/ have the same type (at least in a type-safe language). Fortunately, it is
possible to compute a much more precise alias partition environment because many
aliasing relations at a call site of f do not affect the state of the heap after a call to f.
The following lemma elucidates when we can safely ignore potential aliasing between

two locations in a code fragment S.

Lemma 11 Let Hy and Hs be the canonical heap fragments shown in Figure 4.17,

and let S be a program fragment such that:
e There is either no store to A and no store to B, or

e There is a store to only A that is not followed by a load from B, or

CHAPTER 4. MODULAR HEAP ANALYSIS 102

Hy

RO @

U, m,(E) =C
11 2, 1(F):D
HZQ,ZI(H):D Q Q

Figure 4.17: Heaps from Lemma 11

e There are only stores to both A and B, but the store to A must happen after the

store to B

Let Hi = S : H| and Hy & S : H), and let O be a partial order such that O(B) <
O(A) if there must be a write to A after a write to B in S. Let HY be the graph
obtained by replacing G'’s targets with E’s targets in Hb if Iy, g, (A) = Uy, g, (B)
and O(B) < O(A). Then, H} =y, u, (HY).

Proof 11 (sketch) There are three cases: (i) If there is no store to A or B, then in
H), E and G still point to F' and H, both of which are equivalent to D in Hy. Thus,
H{ =1y, g, (HS). (ii) There is only a store to A, not followed by a load from B: In
Hi, C will point to some set of new locations Ty, ...,Ty. In H), E must also point
to T7,..., T} such that T; = Iy, g, (T}) and G must point to H. First, the result of
any load from B (i.e., H) can be correctly renamed to D, as the read happens before
the store to A. Second, HY is obtained by removing the edge from G to H and adding
edges from G to each T]. Thus, g, g, (G) = g, g, (F) = C and G and E’s targets

are renamed to Ty, ..., Ty. (ii1) Similar to (ii).

This lemma shows the principle that can be used to reduce the number of entries
in A: Assuming we can impose an order on the sequence of updates to memory
locations and assuming we instantiate summary edges in this order, then the initial
heap abstraction only needs to account for aliasing between «; and s if there is a

store to oy followed by a load from as, which is necessary because updates through

CHAPTER 4. MODULAR HEAP ANALYSIS 103

a1 to a location may now affect locations that are reachable through as. On the other
hand, if there is no load after a store and the updates to memory locations can be
ordered, it is possible to “fix up” the summary at the call site by respecting the order
of updates during instantiation.

To allow such an optimization in the analysis described in Section 4.3, we impose
a partial order < on points-to relations such that (m; — 6;) < (7 — 65) indicates
that m; must be assigned to #; before 7y is assigned to #,. Then, to respect the
order of updates in the callee when instantiating the summary, we ensure that if
™ 0 < m; — 0;, the compose_partial_heap rule is invoked on m; +— 6; before
m; +— 0; in the compose_heap rule of Figure 4.15.

Thus, assuming we modify the analysis from Section 4.3 as described above, we
can compute a better alias partition environment A by performing a least fixed-point
computation over the current function f. In particular, A(«) is initialized to {«a} for
each location variable a. Then, if the analysis detects a store to « followed by a load
from o' of the same type, then o € A(a) and o € A(o). Similarly, if there is a store
s1 to a and a store sy to o’ (of the same type) such that there is no happens-before

relation between s; and sg, then o € A(a) and a € A().

4.5 Experiments

We have implemented the technique described in this chapter in our COMPASS pro-
gram verification framework for analyzing C and C++ applications. Our implemen-
tation extends the algorithm described in this chapter in two ways: First, our analysis
is fully (i.e., interprocedurally) path-sensitive and uses the algorithm of Chapter 3
for this purpose. Second, our implementation improves over the analysis presented
here by employing the technique described in [32], which uses indezed locations to
reason precisely about contents of arrays and containers. Hence, the algorithm we
implemented is significantly more precise than a standard may points-to analysis.
Figure 4.18 summarizes the results of our first experiment, which involves verifying
memory safety properties (buffer overruns, null dereferences, casting errors, and access

to deleted memory) in four real C and C++ applications ranging from 16,030 to

CHAPTER 4. MODULAR HEAP ANALYSIS 104

LiteSQL | OpenSSH | Inkscape | Digikam

widget lib.
Lines 16,030 22,615 37,211 128,318
Strong updates at instantiation
Running time (1 CPU) 4.5 min 3.9 min 7.2 min 45.1 min
Running time (8 CPUs) | 1.6 min 1.8 min 2.3 min 8.7 min
Memory use 430 MB 230 MB 195 MB 400 MB
Error reports 7 6 7 37
False positives 2 1 3 9
Weak updates at instantiation
Running time (1 CPU) 7.1 min 4.8 min 8.1 min 60.0 min
Running time (8 CPUs) | 4 min 3.6 min 2.5 min 10.1 min
Memory use 410 MB 250 MB 200 MB 355 MB
Error reports 312 209 730 1140
False positives 307 204 726 1112

Figure 4.18: Comparison of strong/weak updates at call sites

128,318 lines. The first part of the table, labeled “Strong Updates at Instantiation”,
reports the results obtained by using the modular heap analysis described in this
chapter. Observe that the proposed technique is both scalable, memory-efficient, and
precise. First, the running times on 8 CPU’s range from 1.6 minutes to 8.7 minutes,
and increase roughly linearly with the size of the application. Furthermore, observe
that the modular analysis takes advantage of multiple CPUs to significantly reduce
its wall-clock running time. Second, the maximum memory used by any process does
not exceed 430 MB, and, most importantly, the memory usage is not correlated with
the application size. Figure 4.19 sheds some light on the scalability of the analysis:
This figure plots the maximum call stack depth against summary size, computed as
the number of points-to edges weighted according to the size of the edge constraints
plus the size of the precondition. In this figure, observe that summary size does not
increase with depth of the callstack, confirming our hypothesis that summaries are
useful for exploiting information locality and therefore enable analyses to scale.
Figure 4.18 also illustrates that performing strong updates at call sites is crucial

for the precision required by verification tools. Observe that the analysis using strong

CHAPTER 4. MODULAR HEAP ANALYSIS 105

OpenSSH' —__

400 r = LiteSQL
Inkscape
350 DigiKam

2 4 6 .. 8
Maximum depth of transitive callee

Figure 4.19: Callstack depth vs. summary size

hostname | chroot | rmdir | su mv
Lines 304 371 483 1047 | 1151
Modular analysis
running time 0.53s 0.75s 1.54s | 2.3s | 2.55s
Whole program
running time 3.1s 6.3s 21.6s | 45.9s | 30.7s

Figure 4.20: Comparison of modular and whole program analysis

updates at instantiation sites is very precise, reporting only a handful of false positives
on all the applications. In contrast, if we use only weak updates when applying
summaries, the number of false positives ranges from 200 to 1000, confirming that
the application of strong updates interprocedurally is a key requirement for successful
verification.

In a second set of experiments on smaller benchmarks, we compare the running
times of our verification tool using the modular analysis described here with the
running times of the same tool using a whole-program analysis. Figure 4.20 shows a
comparison of the analysis running times of the modular and whole program analysis

on five Unix Coreutils applications. As shown in this figure, the whole program

CHAPTER 4. MODULAR HEAP ANALYSIS 106

10000 . . - T ;
type-based alias partitions
optimized alias partitions
1000t
100}
%)
10} 1
o
>
(on
o
o 1r 1
1 2 3 4 5 6 7

Size of alias partition
Figure 4.21: Size of alias partition set vs. Frequency

analysis, which did not report any errors, takes ~50 seconds on a program with
only 1000 lines, whereas the modular analysis, which also did not report any errors,
analyzes the same program in 2.3 seconds. Furthermore, observe that the running
time of the whole program analysis increases much more quickly in the size of the
application than that of the modular analysis.

In a final set of experiments, we plot the size of the alias partition set vs. the
frequency of this set size for the benchmarks from Figure 4.18. The solid (red) line
shows the size of the alias partition sets obtained by assuming o € A(«) if a and o/
have compatible types. In contrast, the dashed (green) line shows the size of the alias
partition sets obtained as described in Section 4.4. Observe that these optimizations
significantly reduce the size of alias partition sets and substantially improve running
time. In particular, without these optimizations, the benchmarks take an average of

2.7 times longer.

CHAPTER 4. MODULAR HEAP ANALYSIS 107

4.6 Related Work

In this section, we review previous approaches to compositional program analysis,
specifically compositional alias analysis, compositional shape analysis and general
modular analysis frameworks. Among those approaches, previous work on composi-

tional alias analysis is most related to the work presented in this chapter.

Compositional Alias Analysis Modular alias analysis of a procedure performed
by starting with unknown values to all parameters was also explored in [79] and then
in Relevant Context Inference (RCI) [24]. The technique presented in [79] computes
a new partial transfer function as new aliasing patterns are encountered at call sites
and requires reanalysis of functions. In contrast, the technique in [24] is purely
bottom-up, and uses equality and disequality queries to generate summary transfer
functions. Our approach is similar to [24] in that we perform a strictly bottom-up
analysis where the unknown points-to target of an argument is represented using one
location variable and summary facts are predicated upon possible aliasing patterns
at function entry. In contrast to our technique, RCI is only able to perform strong
updates in very special cases intraprocedurally, and cannot perform strong updates
at call sites. In fact, the summary computation described in [24] is only sound under
the assumption that no points-to relations are killed by summary application. In
contrast, summaries generated by our analysis are used to perform strong updates
at call sites, and for the recursion-free fragment of the language from Section 4.2,
applying a summary is as precise as analyzing the inlined body of the function.

The compositional pointer analysis algorithms given in [78, 75] assume there is
no aliasing on function entry and analyze the function body under this assumption.
However, since summaries computed in this way may be unsound, the summary
is “corrected” using a fairly involved fixed-point computation at call sites. This
approach is also much less precise than our technique because it only performs strong

updates in a very limited number of situations.

Compositional Shape Analysis Recently, there has also been interest in com-

positional shape analysis using separation logic [21, 45]. Both of these works use

CHAPTER 4. MODULAR HEAP ANALYSIS 108

bi-abduction to compute pre- and post-conditions on the shapes of recursive data
structures. However, neither of these works guarantee precision. While this chapter
does not address computing summaries about shapes of recursive data structures, our

technique can handle deep sharing and allows disjunctive facts.

CHAPTER 4. MODULAR HEAP ANALYSIS 109

General Modular Analysis Frameworks Theoretical foundations for modular
program analysis are explored in [28], [46], and [70]. The work in [82] provides a
framework for computing precise and concise summaries for IFDS [73] and IDE [74]
dataflow problems. This framework is mainly specialized for typestate properties
and relies on global points-to information. While it may be possible to apply this
framework to obtain some form of modular heap analysis in principle, it is unclear

how to do so, and the authors of [82] list this application as a future research direction.

Chapter 5
Constraint Simplification

Static analysis techniques, such as the ones we have described in previous chapters,
build upon SAT and SMT solving by encoding program states as formulas and deter-
mining the feasibility of these states by querying satisfiability. Despite tremendous
progress in solving SAT and SMT formulas over the last decade [36, 56, 62, 31, 35,
14, 9, 12], the scalability of many software verification techniques relies crucially on
controlling the size of the formulas generated by the analysis, because many of the
operations performed on these formulas are highly sensitive to formula size. For this
reason, much research effort has focused on identifying only those states and predi-
cates relevant to some property of interest. For example, predicate abstraction-based
approaches using counter-example quided abstraction refinement [27, 10, 8] attempt
to discover a small set of predicates relevant to verifying a property and only include
this small set of predicates in their formulas. Similarly, many path-sensitive static
analysis techniques have successfully employed various heuristics to identify which
path conditions are likely to be relevant for some property of interest. For example,
property simulation only tracks those branch conditions for which the property-related
behavior differs along the arms of the branch [30]. Other path-sensitive analysis tech-
niques attempt to improve their scalability by either only tracking path conditions
intraprocedurally or by heuristically selecting a small set of predicates to track across
function boundaries [1, 18].

All of these different techniques share one important underlying assumption that

110

CHAPTER 5. CONSTRAINT SIMPLIFICATION 111

has been validated by a large body of empirical evidence: Many program conditions
do not matter for verifying most properties of interest, making it possible to construct
much smaller formulas sufficient to prove the property. If this is indeed the case, then
one might suspect that even if we construct a formula ¢ characterizing some program
property P without being particularly careful about what conditions to track, it
should be possible to use ¢ to construct a much smaller, equivalent formula ¢ for P
since many predicates used in ¢ do not affect P’s truth value.

In this chapter, we present a systematic and practical approach for simplifying for-
mulas that identifies and removes irrelevant predicates and redundant subexpressions
as they are generated by the analysis. In particular, given an input formula ¢, our
technique produces an equivalent formula ¢’ such that no simpler equivalent formula
can be obtained by replacing any subset of the leaves (i.e., syntactic occurrences of
atomic formulas) used in ¢’ by true or false. We call such a formula ¢’ simplified.

Like all the afore-mentioned approaches to program verification, our interest in
simplification is motivated by the goal of generating formulas small enough to make
software verification scalable. However, we attack the problem from a different angle:
Instead of restricting the set of predicates that are allowed to appear in formulas, we
continuously simplify the constraints generated by the analysis. This approach has
two advantages: First, it does not require heuristics to decide which predicates are
relevant, and second, this approach removes all redundant subparts of a formula in
addition to filtering out irrelevant predicates.

To be concrete, consider the following code snippet:

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};
int perform_op(op_type op, int x, int y) {
int res;

if(op == ADD) res = x+y;

else if (op == SUBTRACT) res = x-y;
else if (op == MULTIPLY) res = x*y;
else if (op == DIV) { assert(y!=0); res = x/y;

else res = UNDEFINED;

return res; }

CHAPTER 5. CONSTRAINT SIMPLIFICATION 112

The perform_op function is a simple evaluation procedure inside a calculator pro-
gram that performs a specified operation on x and y. This function aborts if the
specified operation is division and the divisor is 0. Assume we want to know the con-
straint under which the function returns, i.e., does not abort. This constraint is given
by the disjunction of the constraints under which each branch of the if statement
does not abort. The following formula, constructed in a straightforward way from

the program, describes this condition:

op=0V(op£O0Nop=1)V(op£O0ANop#1Aop=2)V
(op£O0Nop#1Nop#2Nop=3ANy#0)V
(op#£O0Nop#1ANop#2ANop#3)

Here, each disjunct is associated with one branch of the if statement. In each disjunct,
a disequality constraint of the form op # 0,0p # 1,... states that the previous
branches were not taken, encoding the semantics of an else statement. In the fourth
disjunct, the additional constraint y # 0 encodes that if this branch is taken, y cannot
be 0 for the function to return.

While this automatically generated constraint faithfully encodes the condition
under which the function returns, it is far from concise. In fact, the above constraint

is equivalent to the much simpler formula:

op#3Vy#0

This formula is in simplified form because it is equivalent to the original formula
and replacing any of the remaining leaves by true or false would not result in an
equivalent formula. This simpler constraint expresses exactly what is relevant to the
function’s return condition and makes no reference to irrelevant predicates, such as
op = 0,0p = 1, and op = 2. Although the original formula corresponds to a brute-
force enumeration of all paths in this function, its simplified form yields the most
concise representation of the function’s return condition without requiring specialized
techniques for identifying relevant predicates.

To summarize, this chapter makes the following key contributions:

CHAPTER 5. CONSTRAINT SIMPLIFICATION 113

e We present an on-line constraint simplification algorithm for improving SMT-

based static analysis techniques.

e We define what it means for a formula to be in simplified form and detail some

important properties of this form.

e We give a practical algorithm for reducing formulas to their simplified form and
show how this algorithm naturally integrates into the DPLL(7") framework for

solving SMT formulas.

e We demonstrate the effectiveness of our on-line simplification algorithm in the
context of a program verification framework and show that simplification im-
proves overall performance by orders of magnitude, often allowing analysis runs
that did not terminate within the allowed resource limits to complete in just a

few seconds.

5.1 Preliminaries

Any quantifier-free formula ¢+ in theory 7T is defined by the following grammar:

o7 = true | false | Ar | =Ar | 97 N7 | ¢V ¢F

In the above grammar, Aj represents an atomic formula in theory 7T, such as the
boolean variable x in propositional logic or the inequality a + 2b < 3 in linear arith-
metic. Observe that the above grammar requires formulas to be in negation normal
form (NNF) because only atomic formulas may be negated. While the rest of this
chapter relies on formulas being in NNF, this restriction is not important since any
formula may be converted to NNF using De Morgan’s laws in linear time without

increasing the size of the formula (see Definition 2).

Definition 1 (Leaf) We refer to each occurrence of an atomic formula Ay or its

negation = Ay as a leaf of the formula in which it appears.

CHAPTER 5. CONSTRAINT SIMPLIFICATION 114

It is important to note that different occurrences of the same (potentially negated)
atomic formula in ¢ form distinct leaves. For example, the two occurrences of
flz)=11in f(x) = 1V (f(zr) = 1 Az +y < 1) correspond to two distinct leaves.
Also, observe that leaves are allowed to be negations. For instance, in the formula
—(z =y), (x = y) is not a leaf; the only leaf of the formula is —(x = y).

In the rest of this chapter, we restrict our focus to quantifier-free formulas in
theory 7, and we assume there is a decision procedure D+ that can be used to decide
the satisfiability of a quantifier-free formula ¢+ in theory 7. Where irrelevant, we

omit the subscript 7 and denote formulas by ¢.
Definition 2 (Size) The size of a formula ¢ is the number of leaves ¢ contains.

Definition 3 (Fold) The fold operation removes constant leaves (i.e., true, false)
from the formula. In particular, Fold(¢) is a formula ¢’ such that (i) ¢ < ¢', (ii) ¢’

is just true or false or ¢’ mentions neither true nor false.

It is easy to see that it is possible to construct this fold operation such that it
reduces the size of the formula ¢ at least by one if ¢ contains true or false but ¢ is

not initially true or false.

5.2 Simplified Form

In this section, we first define redundancy and describe what it means for a formula
to be in simplified form. We then highlight some important properties of simplified
forms. Notions of redundancy similar to ours have been studied in other contexts,
such as in automatic test pattern generation and vacuity detection; see Section 5.6 for

a discussion.

Definition 4 (¢ (L), ¢ (L)) Let ¢ be a formula and let L be a leaf of ¢. ¢+ (L) is
obtained by replacing L by true and applying the fold operation. Similarly, ¢~ (L) is
obtained by replacing L by false and folding the resulting formula.

CHAPTER 5. CONSTRAINT SIMPLIFICATION 115

Example 26 Consider the formula:

p=y A (@) =1V (f) =1 A z+y<1)
Lo L Lo Ls

Here, ¢T(Ly) is (x = y), and ¢~ (L) is (x =y A f(x) =1).

Observe that for any formula ¢, ¢ (L) is an overapproximation of ¢, i.e., ¢ = ¢ (L),
and ¢~ (L) is an underapproximation, i.e., ¢~ (L) = ¢. This follows immediately from
Definition 4 and the monotonicity of NNF. Also, by construction, the sizes of ¢* (L)

and ¢~ (L) are at least one smaller than the size of ¢.

Definition 5 (Redundancy) We say a leaf L is non-constraining in formula ¢ if
¢t(L) = ¢ and non-relaxing if ¢ = ¢ (L). Leaf L is redundant if L is either

non-constraining or non-relaxing.

The following corollary follows immediately from definition:

Corollary 3 If a leaf L is non-constraining, then ¢ < ¢+ (L), and if L is non-
relazing, then ¢ < ¢~ (L).

Intuitively, if replacing a leaf L by true in formula ¢ results in an equivalent
formula, then L does not constrain ¢; hence, we call such a leaf non-constraining. A

similar intuition applies for non-relaxing leaves.

Example 27 Consider the formula from Example 26. In this formula, leaves Ly and
Ly are not redundant, but Ly is redundant because it is non-relaxing. Leaf L3 is both

non-constraining and non-relaxing, and thus also redundant.

Note that if two leaves L; and Ly are redundant in formula ¢, this does not
necessarily mean we can obtain an equivalent formula by replacing both L; and Lo
with true (if non-constraining) or false (if non-relaxing). This is the case because

eliminating L, may render L, non-redundant and vice versa.

Definition 6 (Simplified Form) We say a formula ¢ is in simplified form if no

leaf mentioned in ¢ is redundant.

CHAPTER 5. CONSTRAINT SIMPLIFICATION 116

Lemma 12 If a formula ¢ is in simplified form, replacing any subset of the leaves

used in ¢ by true or false does not result in an equivalent formula.

Proof 12 The proof is by induction. If ¢ contains a single leaf, the property trivially
holds. Suppose ¢ is of the form ¢1V ¢o. Then, if ¢ has a simplification ¢ V ¢, where
both ¢ and ¢, are simplified, then either ¢ V ¢o or ¢1 V ¢ is also equivalent to ¢.
This is the case because (¢ < @1V Py) N (P & OV P2) AP &5 1V @) is unsatisfiable.

A similar argument applies if the connective is A.

The following corollary follows directly from Lemma 12:

Corollary 4 A formula ¢ in simplified form is satisfiable if and only if it is not

syntactically false and valid if and only if it is syntactically true.

This corollary is important in the context of on-line simplification in program
analysis because, if formulas are kept in simplified form, then determining satisfiability
and validity becomes just a syntactic check.

Observe that while a formula ¢ in simplified form is guaranteed not to contain
redundancies, there may still exist a smaller formula ¢ equivalent to ¢. In particular,
a non-redundant formula may be made smaller, for example, by factoring common
subexpressions. We do not address this orthogonal problem in this chapter, and the

algorithm given in Section 5.3 does not change the structure of the formula.

Example 28 Consider the propositional formula (a ANb)V (a Ac). This formula is in

simplified form, but the equivalent formula a A (bV ¢) contains fewer leaves.

As this example illustrates, it is not possible to determine the equivalence of
two formulas by checking whether their simplified forms are syntactically identical.
Furthermore, as illustrated by the following example, the simplified form of a formula

¢ is not always guaranteed to be unique.

Example 29 Consider the formula x = 1V x =2V (1 <z Az < 2) in the theory
of linear integer arithmetic. The two formulas x =1V e =2 and 1 <x Ax <2 are

both simplified forms that can be obtained from the original formula.

CHAPTER 5. CONSTRAINT SIMPLIFICATION 117

Lemma 13 If ¢ is a formula in simplified form, then NNF(—¢) is also in simplified

form, where NNF converts the formula to negation normal form.

Proof 13 Suppose NNF(—¢) was not in simplified form. Then, it would be possible
to replace one leaf, say L, by true or false to obtain a strictly smaller, but equivalent
formula. Now consider negating the simplified form of NNF(—¢) to obtain ¢ which
is equivalent to ¢. Note that the —L is a leaf in ¢, but not in ¢'. Thus, ¢ could not

have been in simplified form.

Hence, if a formula is in simplified form, then its negation does not need to be
resimplified, an important property for on-line simplification in program analysis.

However, simplified forms are not preserved under conjunction or disjunction.

Lemma 14 For every formula ¢, there exists a formula ¢ in simplified form such

that (i) ¢ < @', and (ii) size(¢') < size(o).

Proof 14 Consider computing ¢’ by checking every leaf L of ¢ for redundancy and
replacing L by true if it is non-constraining and by false if it is non-relaxing. If this
process is repeated until there are no redundant leaves, the resulting formula is in

simplified form and contains at most as many leaves as ¢.

The above lemma states that converting a formula to its simplified form never
increases the size of the formula. This property is desirable because, unlike other
representations like BDDs that attempt to describe the formula compactly, computing
a simplified form is guaranteed not to cause a worst-case blow-up. In the experience

of the authors, this property is crucial in program verification.

5.3 Algorithm to Compute Simplified Forms

While the proof of Lemma 14 sketches a naive way of computing the simplified form
of a formula ¢, this approach is suboptimal because it requires repeatedly checking
the satisfiability of a formula twice as large as ¢ until no more redundant leaves can

be identified. In this section, we present a practical algorithm to compute simplified

CHAPTER 5. CONSTRAINT SIMPLIFICATION 118

forms. For convenience, we assume formulas are represented as trees; however, the
algorithm is easily modified to work on directed acyclic graphs, and in fact, our
implementation uses DAGs to represent formulas. A node in the tree represents
either an A or V connective or a leaf. We assume connectives have at least two

children but may have more than two.

5.3.1 Basic Algorithm

Recall that a leaf L is non-constraining if and only if ¢*(L) = ¢ and non-relaxing if
and only if ¢ = ¢~ (L). Since the size of ¢7(L) and ¢~ (L) may be only one less than
¢, checking whether L is non-constraining or non-relaxing using Definition 5 requires
checking the validity of formulas twice as large as ¢.

A key idea underlying our algorithm is that it is possible to check for redundancy
of a leaf L by checking the validity of formulas no larger than ¢. In particular, for
each leaf L, our algorithm computes a formula «(L), called the critical constraint of
L, such that (i) (L) is no larger than ¢, (ii) L is non-constraining if and only if
a(L) = L, and (iii) L is non-relaxing if and only if a(L) = —L. This allows us to
determine whether each leaf is redundant by determining the satisfiability of formulas

no larger than the original formula ¢.

Definition 7 (Critical constraint)
e Let R be the root node of the tree. Then, a(R) = true.

e Let N be any node other than the root node. Let P denote the parent of N in
the tree, and let S(N) denote the set of siblings of N. Let x denote — if P is

an \V connective, and nothing if P is an N\ connective. Then,

a(Ny=aP)A [\ =S
S;€S(N)

Intuitively, the critical constraint of a leaf L describes the condition under which L
will be relevant for either permitting or disallowing a particular model of ¢. Clearly, if

the assignment to L is to determine whether ¢ is true or false for a given interpretation,

CHAPTER 5. CONSTRAINT SIMPLIFICATION 119

Ly|f(x) =1 Llf(y) =1 Lifz+y<1

r=y A x=yA flx) #1A false
(fly) #1va+y>1) r+y<l1

Figure 5.1: The representation of the formula from Example 26. The critical con-
straint at each node is shown in red. Observe that the critical constraint for Ls is
false, making L3 both non-constraining and non-relaxing. The critical constraint of
Ly implies its negation; hence, Lo is non-relaxing.

then all the children of an A connective must be true if this A node is an ancestor of L;
otherwise ¢ is already false regardless of the assignment to L. Also, observe that L is
not relevant in permitting or disallowing a model of ¢ if some other path not involving
L is satisfied because ¢ will already be true regardless of the truth value of L. Hence,
the critical constraint includes the negation of the siblings at an V connective while it
includes the siblings themselves at an A node. The critical constraint can be viewed
as a context in the general framework of contextual rewriting [61, 3]; see Section 5.6

for a discussion.

Example 30 Figure 5.1 shows the representation of the formula from Example 26

along with the critical constraints of each node.
Lemma 15 A leaf L is non-constraining if and only if (L) = L.

Proof 15 (Sketch) Suppose (L) = L, but L is constraining, i.e., the formula v =
(0T (L) A —¢) is satisfiable. Then, there must exist some model M of vy that satisfies

CHAPTER 5. CONSTRAINT SIMPLIFICATION 120

¢t (L) but not ¢. For M to be a model of ¢ (L) but not ¢, it must (i) assign all the
children of any A node that is an ancestor of L to true, (ii) it must assign L to false,
and (i) it must assign any other children of an V node that is an ancestor of L to
false. By (i) and (iii), such a model must also satisfy a(L). Since a(L) = L, M

must also satisfy L, contradicting (ii). The other direction is analogous.
Lemma 16 A leaf L is non-relaxing if and only if a(L) = —L.
Proof 16 Similar to the proof of Lemma 15.

We now formulate a simple recursive algorithm, presented in Figure 5.2, to reduce
a formula ¢ to its simplified form. In this algorithm, N is a node representing the
current subpart of the formula, and « denotes the critical constraint associated with
N. If C is some ordered set, we use the notation C'.; and C5; to denote the set of
elements before and after index ¢ in C respectively. Finally, we use the notation x
as in Definition 7 to denote — if the current node is an V connective and nothing
otherwise.

Observe that, in the algorithm of Figure 5.2, the critical constraint of each child
¢; of a connective node is computed by using the new siblings ¢} that have been
simplified. This is crucial for the correctness of the algorithm because, as pointed out
in Section 5.2, if two leaves L; and Ls are both initially redundant, it does not mean
Ly stays redundant after eliminating L; and vice versa. Using the simplified siblings
in computing the critical constraint of ¢; has the same effect as rechecking whether ¢;
remains redundant after simplifying sibling cy.

Another important feature of the algorithm is that, at connective nodes, each
child is simplified as long as any of their siblings change, i.e., the recursive invocation
returns a new sibling not identical to the old one. The following example illustrates

why this is necessary.

Example 31 Consider the following formula: x #1A(x <0Vz >2Va=1)
Ll L2 3 4

N

CHAPTER 5. CONSTRAINT SIMPLIFICATION 121

simplify (N, «)
o If N is a leaf:

— If &« = N return true
— If « = =N return false

— Otherwise return N

e If N is a connective, let C' denote the ordered set of children of N, and let C’
denote the new set of children of N .

— For each ¢; € "

¢, = simplify(¢;, ;)
¢ = C'ud

Repeat the previous step until Vi.c; = ¢}
/
i

— If N is an A connective, return A, e c

. . /
— If N is an V connective, return \/C; co G

Figure 5.2: The basic algorithm to reduce a formula N to its simplified form

The simplified form of this formula is x < 0V x > 2. Assuming we process child
Ly before N in the outer A connective, the critical constraint for Ly is computed as
x < 0Vx > 2Vx = 1, which implies neither Ly nor —Ly. If we would not resimplify Ly
after simplifying N, the algorithm would (incorrectly) yield x # 1A (x <0V z > 2)
as the simplified form of the original formula. However, by resimplifying Ly after
obtaining a simplified N' = (x < 0V x > 2), we can now simplify the formula further

because the new critical constraint of Ly, (x <0V x > 2), implies © # 1.

Lemma 17 The number of validity queries made in the algorithm of Figure 5.2 is

bound by 2n? where n denotes the number of leaves in the initial formula.

Proof 17 First, observe that if any call to simplify yields a formula different from

the input, the size of this formula must be at least one less than the original formula

CHAPTER 5. CONSTRAINT SIMPLIFICATION 122

(see Lemma 14). Furthermore, the number of validity queries made in formula of
size k without any simplifications is 2k. Hence, the total number of validity queries

is bound by 2n + 2(n — 1) + ...+ 2 which is bound by 2n>.

5.3.2 Making Simplification Practical

In the previous section, we showed that reducing a formula to its simplified form
may require making a quadratic number of validity queries. However, these queries
are not independent of one another in two important ways: First, all the formulas
that correspond to validity queries share exactly the same set of leaves. Second,
the simplification algorithm given in Figure 5.2 has a push-and-pop structure, which
makes it possible to incrementalize queries. In the rest of this section, we discuss how
we can make use of these observations to substantially reduce the cost of simplification
in practice.

The first observation that all formulas whose satisfiability is queried during the
algorithm share the same set of leaves has a fundamental importance when simplifying
SMT formulas. Most modern SMT solvers use the DPLL(7) framework to solve
formulas [68]. In the most basic version of this framework, leaves in a formula are
treated as boolean variables, and this boolean overapproximation is then solved by
a SAT solver. If the SAT solver generates a satisfying assignment that is not a
valid assignment when theory-specific information is accounted for, the theory solver
then produces (an ideally minimal) conflict clause that is conjoined with the boolean
overapproximation to prevent the SAT solver from generating at least this assignment
in the future. Since the formulas solved by the SMT solver during the algorithm
presented in Figure 5.2 share the same set of leaves, theory-specific conflict clauses
can be gainfully reused. In practice, this means that after a small number of conflict
clauses are learned, the problem of checking the validity of an SMT formula quickly
converges to checking the satisfiability of a boolean formula.

The second important observation is that the construction of the critical constraint
follows a push-pop stack structure. This is the case because the critical constraint

from the parent node is reused, and additional constraints are pushed on the stack

CHAPTER 5. CONSTRAINT SIMPLIFICATION 123

(i.e., added to the critical constraint) before the recursive call and (conceptually)
popped from the stack after the recursive invocation. This stylized structure is im-
portant for making the algorithm practical because almost all modern SAT and SMT
solvers support pushing and popping constraints to incrementalize solving. In addi-
tion, other tasks that often add overhead, such as CNF' construction using Tseitin’s
encoding for the SAT solver, can also be incrementalized rather than done from
scratch. In Section 5.5, we show the expected overhead of simplifying over solving
grows sublinearly in the size of the formula in practice if the optimizations described

in this section are used.

5.4 Integration with Program Analysis

We implemented the proposed algorithm in the Mistral constraint solver [34]. To
tightly integrate simplification into a program analysis system, we designed the in-

¢

terface of Mistral such that instead of giving a “yes/no” answer to satisfiability and
validity queries, it yields a formula ¢ in simplified form. Recall that ¢ is satisfiable
(valid) if and only if ¢’ is not syntactically false (true); hence, in addition to obtaining
a simplified formula, the program analysis system can check whether the formula is
satisfiable by syntactically checking if ¢ is not false. After a satisfiability query is
made, we then replace all instances of ¢ with ¢’ such that future formulas that would
be constructed by using ¢ are instead constructed using ¢’. This functionality is
implemented efficiently through a shared constraint representation. Hence, Mistral’s
interface is designed to be useful for program analysis systems that incrementally
construct formulas from existing formulas and make many intermediary satisfiabil-

ity or validity queries. Examples of such systems include, but are not limited to,
1, 32, 10, 8, 30, 5].

5.5 Experimental Results

In this section, we report on our experience using on-line simplification in the context

of program analysis. Since the premise of this work is that simplification is useful

CHAPTER 5. CONSTRAINT SIMPLIFICATION 124

1000 F -

.......

100

10
1
0.1
Analysis time with online simplification
001 B] Analysis time withput simplification P
10 100 1000 10000

Figure 5.3: Running times with and without simplification

only if applied continuously during the analysis, we do not evaluate the proposed
algorithm on solving off-line benchmarks such as the SMT-LIB. In particular, the
proposed technique is not meant as a preprocessing step before solving and is not

expected to improve solving time on individual constraints.

5.5.1 Impact of On-line Simplification on Analysis Scalability

In our first experiment, we integrate Mistral into the Compass program verification
system. Compass [32] is a path- and context-sensitive program analysis system for
analyzing C programs, integrating reasoning about both arrays and contents of the
heap. Compass checks memory safety properties, such as buffer overruns, null deref-
erences, casting errors, and uninitialized memory; it can also check user-provided
assertions. Compass generates constraints in the combined theory of uninterpreted
functions and linear integer arithmetic, and as typical of many program analysis sys-
tems [40, 1, 32, 5], constraints generated by Compass become highly redundant over
time, as new constraints are obtained by combining existing constraints. Most im-

portantly, unlike other systems that employ various (usually incomplete) heuristics

CHAPTER 5. CONSTRAINT SIMPLIFICATION 125

to control formula size, Compass tracks program conditions precisely without identi-
fying a relevant set of predicates to track. Hence, this experiment is used to illustrate
that a program analysis system can be made scalable through on-line simplification
instead of using specialized heuristics to control formula size.

In this experiment, we run Compass on 811 program analysis benchmarks, to-
talling over 173,000 lines of code, ranging from small programs with 20 lines to real-
world applications, such as OpenSSH, with over 26,000 lines. For each benchmark, we
fix a time-out of 3600 seconds and a maximum memory of 4 GB. Any run exceeding
either limit was aborted and assumed to take 3600 seconds.

Figure 5.3 compares Compass’s running times on these benchmarks with and with-
out on-line simplification. The x-axis shows the number of lines of code for various
benchmarks and the y-axis shows the running time in seconds. Observe that both
axes are log scale. The blue (dotted) line shows the performance of Compass without
on-line simplification while the red (solid) line shows the performance of Compass
using the simplification algorithm presented in this chapter and using the improve-
ments from Section 5.3.2. In the setting that does not use on-line simplification,
Mistral returns the formula unchanged if it is satisfiable and false otherwise. As
this figure shows, Compass performs dramatically better with on-line simplification
on any benchmark exceeding 100 lines. For example, on benchmarks with an aver-
age size of 1000 lines, Compass performs about two orders of magnitude better with
on-line simplification, and can analyze programs of this size in just a few seconds.
Furthermore, using on-line simplification, Compass can analyze benchmarks with a
few ten thousand lines of code, such as OpenSSH, in the order of just a few minutes

without employing any heuristics to identify relevant conditions.

5.5.2 Redundancy in Program Analysis Constraints

This dramatic impact of simplification on scalability is best understood by consid-
ering how redundant formulas become when on-line simplification is disabled when

analyzing the same set of 811 program analysis benchmarks. Figure 5.4(a) plots the

CHAPTER 5. CONSTRAINT SIMPLIFICATION 126

size of the initial formula vs. the size of the simplified formula when formulas gen-
erated by Compass are not continuously simplified. The x = y line is plotted as a
comparison to show the worst-case when the simplified formula is no smaller than the
original formula. As this figure shows, while formula sizes grow very quickly without
on-line simplification, these formulas are very redundant, and much smaller formulas
are obtained by simplifying them. We would like to point out that the redundancies
present in these formulas cannot be detected through simple syntactic checks because
Mistral still performs extensive syntactic simplifications, such as detecting duplicates,
syntactic contradictions and tautologies, and folding constants.

To demonstrate that Compass is not the only program analysis system that gen-
erates redundant constraints, we also plot in Figure 5.4(b) the original formula size
vs. simplified formula size on constraints obtained on the same benchmarks by the
Saturn program analysis system [1]. First, observe that the constraints generated by
Saturn are also extremely redundant. In fact, their average size after simplification
is 1.93 whereas the average size before simplification is 73. Second, observe that the
average size of simplified constraints obtained from Saturn is smaller than the aver-
age simplified formula size obtained from Compass. This difference is explained by
two factors: (i) Saturn is significantly less precise than Compass, and (ii) it adopts

heuristics to control formula size.

120 , — 50 :
data ! data i
y=x e 45 | y=X ;

100 f / /
40

© Sl

g 8o g

8 S a0t

el el

(] @

£ 60 £ 25

Qo [=%

£ £

K @ 20 b

S 40} k]

R g5F 7

2] F) i

20/ 1 0

50 100 150 200 250 300 350 400 450 500 20 40 60 80 100 120 140 160 180 200

Size of initial formula Size of initial formula
(a) Size of initial formula vs. size of simplified(b) Size of initial formula vs. size of simplified
formula in Compass without simplification formula in Saturn

Figure 5.4: Reduction in the Size of Formulas

CHAPTER 5. CONSTRAINT SIMPLIFICATION 127

The reader may not find it surprising that the redundant formulas generated by
Compass can be dramatically simplified. That is, of course, precisely the point. Com-
pass gains both better precision and simpler engineering from constructing straight-
forward formulas and then simplifying them because it does not need to heuristically
decide in advance which predicates are important. But these experiments also show
that the formulas generated by Compass are not unusually redundant to begin with:
As the Saturn experiment shows, because analysis systems build formulas composi-
tionally guided by the structure of the program, even highly-engineered systems like
Saturn, designed without the assumption of pervasive simplification, can construct

very redundant formulas.

5.5.3 Complexity of Simplification in Practice

In another set of experiments, we evaluate the performance of our simplification algo-
rithm on over 93,000 formulas obtained from our 811 program analysis benchmarks.
Recall from Lemma 17 that simplification may require a quadratic number of validity
checks. Since the size of the formulas whose validity is checked by the algorithm is
at most as large as the original formula, the ratio of simplifying to solving could, in
the worst case, be quadratic in the size of the original formula. Fortunately, with
the improvements discussed in Section 5.3.2, we show empirically that simplification
adds sub-linear overhead over solving in practice.

Figure 5.5 shows a detailed evaluation of the performance of the simplification
algorithm. In all of these graphs, we plot the ratio of simplifying time to solving time
vs. size of the constraints. In graphs 5.5a and 5.5¢, the constraints we simplify are
obtained from analysis runs where on-line simplification is enabled. For the data in
graphs 5.5b and 5.5d, we disable on-line simplification during the analysis, allowing
the constraints generated by the analysis to become much larger. We then collect
all of these constraints and run the simplification algorithm on these much larger
constraints in order to demonstrate that the simplification algorithm also performs
well on larger constraints with several hundred leaves. In all of these graphs, the red

(solid) line marks data points, the blue (lower dotted) line marks the function best

CHAPTER 5. CONSTRAINT SIMPLIFICATION 128

300

45

datg —— ‘ ‘ ‘ ‘ datg ——
10} V;ff] V;f%
o y=2.70l0g(X) o 250 f y=2.96l0g(x)
East { £
S S
S 30 S 200
2 2
25
£ £ 150
220t 2
3 =
E st £ 100
kS kS|
gor g 50
[vs) o r 4
5| e A]
P
10 20 30 40 50 60 70 0 100 200 300 400 500 600
Size of formula Size of formula
(a) (b)
300 - - - - a 300 - o~
2 N atg ——
y=><g y=><g
250 | b { o 250 - b]
e Y=2.70l0g(X) = e y=2.9610g(X)
2 2
S 200 3 200 -
12} (2]
e]
(o) (9]
£ 150 £ 150 |
2 2
g g
£ 100 - £ 100 -
k] S
he] o
8 50t 8 s0f
10 20 30 40 50 60 50 100 150 200 250 300 350 400 450
Size of formula Size of formula
(c) (d)

Figure 5.5: Complexity of Simplification in Practice

fitting the data, the green (middle dotted) line marks y = x, and the pink (upper
dotted) line marks y = z%. The top two graphs are obtained from runs that employ
the improvements described in Section 5.3.2 whereas the two bottom graphs are
obtained from runs that do not. Observe that in graphs 5.5a and 5.5b, the average
ratio of simplification to solve time seems to grow sublinearly in formula size. In
fact, from among the family of formulas y = cz?, y = cz, and y = ¢ - log(x), the
data in figures 4a and 4b are best approximated by y = 2.70 - log(x) and y = 2.96 -
log(x) with asymptotic standard errors 1.98% and 2.42% respectively. On the other
hand, runs that do not exploit the dependence between different implication queries

exhibit much worse performance, often exceeding the y = x line. These experiments

CHAPTER 5. CONSTRAINT SIMPLIFICATION 129

show the importance of exploiting the interdependence between different implication
queries and validate our hypothesis that simplifying SMT formulas converges quickly
to simplifying SAT formulas when queries are incrementalized. These experiments
also show that the overhead of simplifying vs. solving can be made manageable since

the ratio of simplifying to solving seems to grow very slowly in the size of the formula.

5.6 Related Work

Finding simpler representations of boolean circuits is a well-studied problem in logic
synthesis and automatic test pattern generation (ATPG) [64, 63, 56]. Our defini-
tion of redundancy is reminiscent of the concept of undetectable faults in circuits,
where pulling an input to 0 (false) or 1 (true) is used to identify redundant circuitry.
However, in contrast to the definition of size considered in this chapter, ATPG and
logic synthesis techniques are concerned with minimizing DAG size, representing the
size of the circuit implementing a formula. As a result, the notion of redundancy
considered in this chapter is different from the notion of redundancy addressed by
these techniques. In particular, in our setting, one subpart of the formula may be
redundant while another syntactically identical subpart may not. In this chapter,
we consider different definitions of size and redundancy because except for a few
operations like substitution, most operations performed on constraints in a program
analysis system are sensitive to the “tree size” of the formula, although these formulas
are represented as DAGs internally. Therefore, formulas we consider do not exhibit
reconvergent fanout and every leaf has exactly one path from the root of the formula.
This observation makes it possible to formulate an algorithm based on critical con-
straints for simplifying formulas in an arbitrary theory. Furthermore, we apply this
simplification technique to on-line constraint simplification in program analysis.
The algorithm we present for converting formulas to simplified form can be un-
derstood as an instance of a conteztual rewrite system [61, 3]. In contextual rewriting
systems, if a precondition, called a contert, is satisfied, a rewrite rule may be ap-
plied. In our algorithm, the critical constraint can be seen as a context that triggers

a rewrite rule L — true if L is implied by the critical constraint «, and L — false

CHAPTER 5. CONSTRAINT SIMPLIFICATION 130

if o implies —L. While contextual rewriting systems have been used for simplifying
constraints within the solver [3], our goal is to generate an equivalent (rather than
equisatisfiable) formula that is in simplified form. Furthermore, we propose simpli-
fication as an alternative to heuristic-based predicate selection techniques used for
improving scalability of program analysis systems.

Finding redundancies in formulas has also been studied in the form of vacuity
detection in temporal logic formulas [57, 4]. Here, the goal is to identify vacuously
valid subparts of formulas, indicating, for example, a specification error. In contrast,
our focus is giving a practical algorithm for on-line simplification of program analysis
constraints.

The problem of representing formulas compactly has received attention from many
different angles. For example, BDDs attempt to represent propositional formulas
concisely, but they suffer from the variable ordering problem and are prone to a
worst-case exponential blow-up [15]. BDDs have also been extended to other theories,
such as linear arithmetic [16, 26, 25]. In contrast to these approaches, a formula
in simplified form is never larger than the original formula. Loveland and Shostak
address the problem of finding a minimal representation of formulas in normal form
[60]; in contrast, our approach does not require formulas to be converted to DNF or
CNF.

Various rewrite-based simplification rules have also been successfully applied as a
preprocessing step for solving, usually for bit-vector arithmetic [44, 53]. These rewrite
rules are syntactic and theory-specific; furthermore, they typically yield equisatisfiable
rather than equivalent formulas and give no goodness guarantees. In contrast, the
technique described in this chapter is not meant as a preprocessing step for solving
and guarantees non-redundancy.

The importance of on-line simplification of program analysis constraints has been
studied previously in the very different setting of set constraints [40]. Simplification
based on syntactic rewrite-rules has also been shown to improve the performance of
a program analysis system significantly in [23].

Finding redundancies in constraints has also been used for optimization of code

in the context of constraint logic programming (CLP) [55]. In this setting, constraint

CHAPTER 5. CONSTRAINT SIMPLIFICATION 131

simplification is used for improving the running time of constraint logic programs;

however, the simplification techniques considered there do not work on arbitrary

SMT formulas.

Chapter 6
Conclusion

In this thesis, we have described novel static analysis techniques that make it practical
to automatically check low-level safety properties of programs. The analyses we have
described are precise enough to report an acceptable number of false alarms and scale
to real-world applications. The key ingredients that make our analyses successful are
a constraint-based representation of program states, modular algorithms for analyzing
the whole program, and continuous simplification of constraints. We believe that these
ingredients are crucial for the practicality of our proposed static analysis algorithms,
and we believe they can be profitably incorporated into other approaches for static
program analysis.

While we have demonstrated that the analyses presented in this thesis are success-
ful for uncovering low-level memory safety errors in real-world applications, an inter-
esting direction for future work is applying the proposed static analysis techniques for
automatic detection of violations of high-level specifications, such as security proper-
ties. Other interesting applications for the static analysis algorithms described in this
thesis include compiler optimizations and program synthesis. More specifically, we
believe that the proposed static analysis algorithms are useful for performing much
more aggressive compiler optimizations than are performed by current compilers, as
they allow practical path-sensitive reasoning and precise, yet scalable scalable alias
set computation. We also believe that the proposed static analysis techniques are

applicable in the context of program synthesis, where the goal is to generate low-level

132

CHAPTER 6. CONCLUSION 133

code from a high-level specification. In particular, an interesting future direction is
to employ the techniques described in this thesis for targeting implementations of

existing algorithms to new and emerging architectures, such as GPUs.

Bibliography

1]

A. Aiken, S. Bugrara, . Dillig, T. Dillig, B. Hackett, and P. Hawkins. An
overview of the SATURN project. In Proceedings of the 7th ACM SIGPLAN-

SIGSOFT workshop on program analysis for software tools and engineering,
pages 43-48. ACM, 2007.

A. Aiken, E. Wimmers, and T. K. Lakshman. Soft typing with conditional types.
In Proceedings of the Symposium on Principles of Programming Languages, pages
163-173, 1994.

A. Armando and S. Ranise. Constraint contextual rewriting. Journal of Symbolic
Computation, 36(1):193-216, 2003.

R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and
M. Vardi. Enhanced vacuity detection in linear temporal logic. In Financial

Cryptography, pages 368-380. Springer, 2003.

D. Babic and A.J. Hu. Calysto. In ICSE’08. ACM/IEEE 30th International
Conference on Software Engineering, 2008., pages 211-220. IEEE, 2008.

T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification, pages 113-130, London, UK, 2000. Springer-
Verlag.

T. Ball and S. Rajamani. Bebop: a path-sensitive interprocedural dataflow

engine. In PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

134

BIBLIOGRAPHY 135

[10]

[11]

[12]

[16]

workshop on Program analysis for software tools and engineering, pages 97-103,

New York, NY, USA, 2001. ACM.

T. Ball and S. Rajamani. The SLAM project: Debugging system software via
static analysis. In Proceedings of the Symposium on Principles of Programming

Languages, pages 1-3, January 2002.

Clark Barrett and Cesare Tinelli. CVC3. In Computer Aided Verification, volume
4590 of Lecture Notes in Computer Science, pages 298-302. Springer-Verlag, July
2007. Berlin, Germany.

D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. Checking memory safety
with Blast. In Proceedings of the Conf. on Fundamental Approaches to Software
Engineering, pages 2-18, 2005.

R. Bloem, I.LH. Moon, K. Ravi, and F. Somenzi. Approximations for fixpoint
computations in symbolic model checking. In Proceedings World Multiconference
on Systemics, Cybernetics and Informatics, volume 8, pages 701-706. Citeseer,
2000.

M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, and A. Rubio.
The Barcelogic SMT Solver. In Computer Aided Verification, pages 294-298.
Springer-Verlag.

G. Boole. An Investigation of the Laws of Thought. Dover Publications, Incor-
porated, 1858.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,
and Roberto Sebastiani. The MathSAT 4 SMT Solver. In Computer Aided
Verification, pages 299-303. Springer-Verlag, 2008.

R.E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys (CSUR), 24(3):293-318, 1992.

R.E. Bryant and Y.A. Chen. Verification of arithmetic functions with BMDs,
1994.

BIBLIOGRAPHY 136

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

S. Bugrara and A. Aiken. Verifying the safety of user pointer dereferences. In

IEEE Symposium on Security and Privacy, 2008.

S. Bugrara and A. Aiken. Verifying the safety of user pointer dereferences. In
IEEE Symposium on Security and Privacy, 2008. SP 2008, pages 325-338, 2008.

J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model check-
ing: 10% states and beyond. In Proceedings Symposium on Logic in Computer

Science, June 1990.

W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic pro-
gramming errors. Software Practice and Experience, 30(7):775-802, 2000.

C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape
analysis by means of bi-abduction. Proceedings of Principles of Programming
Languages, pages 289-300, 2009.

R. Cartwright and M. Fagan. Soft typing. In Proceedings of Programming Lan-
guage Design and Implementation, pages 278-292, 1991.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: a powerful
approach to weakest preconditions. SIGPLAN Not., 44(6):363-374, 20009.

R. Chatterjee, B.G. Ryder, and W.A. Landi. Relevant context inference. In
Proceedings of Principles of Programming Languages, pages 133-146. ACM, 1999.

K.C.K. Cheng and R.H.C. Yap. Constrained decision diagrams. In Proceedings
of the National Conference on Artificial Intelligence, volume 20, page 366, 2005.

E. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams overcoming the
limitations of MTBDDs and BMDs. In Proceedings of the 1995 IEEE/ACM

international conference on Computer-aided design, 1995.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM (JACM),
50(5):752-794, 2003.

BIBLIOGRAPHY 137

28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

Patrick Cousot and Radhia Cousot. Modular static program analysis. In Com-
piler Construction, pages 159-178, 2002.

D. Dill and H. Wong-Toi. Verification of real-time systems by successive over
and under approximation. In Proceedings International Conference On Computer
Aided Verification, volume 939, pages 409-422, 1995.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In Proceedings of the Conf. on Programming Language Design

and Implementation, pages 57-68, 2002.

Leonardo De Moura and Nikolaj Bjorner. Z3: An Efficient SMT Solver. Tools
and Algorithms for the Construction and Analysis of Systems, pages 337-340,
2008.

I. Dillig, T. Dillig, and A. Aiken. Fluid Updates: Beyond Strong vs. Weak
Updates. Proceedings of European Symposium on Programming Languages 2010,
pages 246-266.

I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic incon-
sistency inference. In Proceedings Conference on Programming Language Design
and Implementation, pages 335-345, 2007.

I. Dillig, T. Dillig, and A. Aiken. Cuts from proofs: A complete and practi-
cal technique for solving linear inequalities over integers. In Computer Aided

Verification. Springer, 2009.

Bruno Dutertre and Leonardo De Moura. The Yices SMT Solver. Technical
report, SRI, 2006.

N. Een and N. Sorensson. MiniSat: A SAT solver with conflict-clause minimiza-
tion. 8th SAT Conference, 2005.

D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behav-
ior: A general approach to inferring errors in systems code. Operating Systems
Review, 35(5):57-72, 2001.

BIBLIOGRAPHY 138

[38]

[39]

[40]

[41]

[42]

[43]

J. Esparaza and S. Schwoon. A bdd-based model checker for recursive programs.
Lecture Notes in Computer Science, 2102/2001:324-336, 2001.

D. Evans. Static detection of dynamic memory errors. In Proceedings of the Conf.

on Programming Language Design and Implementation, pages 44-53, 1996.

M. Faehndrich, J.S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination
in inclusion constraint graphs. In In proceedings of Conference on Programming

Languages Design and Implementation, page 96. ACM, 1998.

M. Faehndrich and K. Rustan M. Leino. Declaring and checking non-null types
in an object-oriented language. In Proceedings of the Conf. on Object-Oriented

Programing, Systems, Languages and Applications, pages 302-312, 2003.

C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the Conf. on Programming

Language Design and Implementation, pages 234-245, 2002.

J. Foster, M. Faehndrich, and A. Aiken. A theory of type qualifiers. In Proceed-
ings of the Conf. on Programming Language Design and Implementation, pages
192-203, 1999.

V. Ganesh and D.L. Dill. A decision procedure for bit-vectors and arrays. Lecture
Notes in Computer Science, 4590:519, 2007.

B. Gulavani, S. Chakraborty, G. Ramalingam, and A. Nori. Bottom-up shape
analysis. Static Analysis Symposium, pages 188-204, 2009.

S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural

analysis. Proceedings of European Symposium on Programming Languages, pages
253-267, 2007.

B. Hackett and A. Aiken. How is aliasing used in systems software? In Pro-
ceedings of the ACM International Symposium on Foundations of Software En-

gineering, pages 69-80, 2006.

BIBLIOGRAPHY 139

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[56]

B. Hackett and A. Aiken. How is aliasing used in systems software? In Proceed-

ings International Symposium on Foundations of Software Engineering, pages
69-80, 2006.

F. Henglein. Type inference and semi-unification. In Proceedings Conference on
LISP and Functional Programming, pages 184-197, 1988.

D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92—
106, December 2004.

D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static analysis
to find null pointer bugs. In Proceedings of the Workshop on Program Analysis
for Software Tools and Engineering, pages 1319, 2005.

F. Ivancic, Z. Yang, M.K. Ganai, A. Gupta, [. Shlyakhter, and P. Ashar.
F-soft:software verification platform. Lecture Notes in Computer Science,
3576/2005:301-306, 2005.

S. Jha, R. Limaye, and S.A. Seshia. Beaver: Engineering an Efficient SMT Solver
for Bit-Vector Arithmetic. In In CAV Lecture Notes in Comp. Sc. Springer, 2009.

R. Jhala and K. McMillan. Interpolant-based transition relation approximation.
In Proceedings of the International Conf. on Computer Aided Verification, pages
39-51, 2005.

A.D. Kelly, A.M.K. Marriott, P.J. Stuckey, and R.H.C. Yap. Effectiveness of
Optimizing Compilation for CLP (R). In Proceedings of the 1996 Joint Inter-

national Conference and Symposium on Logic Programming, page 37. The MIT
Press, 1996.

J. Kim, J.P.M. Silva, H. Savoj, and K.A. Sakallah. RID-GRASP: Redundancy
identification and removal using GRASP. In International Workshop on Logic
Synthesis, 1997.

BIBLIOGRAPHY 140

[57]

[58]

[59]

[60]

[61]

[62]

O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking.
International Journal on Software Tools for Technology Transfer, 4(2):224-233,
2003.

W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural
aliasing. SIGPLAN Not., 27(7):235-248, 1992.

F. Lin. On strongest necessary and weakest sufficient conditions. In Proceed-
ings International Conference on Principles of Knowledge Representation and
Reasoning, pages 143-159, April 2000.

D.W. Loveland and R.E. Shostak. Simplifying interpreted formulas. In Pro-
ceedings 5th Conf. on Automated Deduction (CADE), volume 87, pages 97-109.
Springer, 1987.

S. Lucas. Fundamentals of Contex-Sensitive Rewriting. Lecture Notes in Com-
puter Science, pages 405-412, 1995.

S. Malik, Y. Zhao, C.F. Madigan, L. Zhang, and M.W. Moskewicz. Chaff: En-
gineering an Efficient SAT Solver. In Proceedings of the 38th annual Design
Automation Conference, pages 530-535. ACM, 2001.

A. Mishchenko, R. Brayton, J.H.R. Jiang, and S. Jang. SAT-based logic opti-
mization and resynthesis. Proceedings IWLS 07, pages 358-364.

A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG rewriting: A
fresh look at combinational logic synthesis. In Proceedings of the 43rd annual

Design Automation Conference, pages 532-535, 2006.

A. Mycroft. Polymorphic type schemes and recursive definitions. In Proceedings

Colloquium on International Symposium on Programming, pages 217228, 1984.

M. Naik and J. Palsberg. A type system equivalent to a model checker. In
Proceedings of the European Symposium on Programming, pages 374-388, 2005.

BIBLIOGRAPHY 141

[67]

[68]

[69]

[70]

[71]

[72]

[73]

G. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy
code. In Proceedings of the Symposium on Principles of Programming Languages,
pages 128-139, 2002.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis—Putnam-Logemann—Loveland procedure to
DPLL (T). Journal of the ACM (JACM), 53(6):977, 2006.

F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions. In Pro-

ceedings of Principles of Programming Languages, pages 276-290, 1999.

M.S.A. Pnueli. Two approaches to interprocedural data flow analysis. Program

Flow Analysis: Theory and Applications, pages 189-234, 1981.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 49-61, New
York, NY, USA, 1995. ACM.

T. W. Reps, S. Sagiv, and R. Wilhelm. Static program analysis via 3-valued
logic. In Proceedings of Conference on Computer Aided Verification, volume
3114, pages 15-30. Springer, 2004.

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of Principles of Pro-

gramming Languages, pages 49-61, 1995.

Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. Precise interprocedural

dataflow analysis with applications to constant propagation. Theor. Comput.
Sei., 167(1&2):131-170, 1996.

A. Salcinau. Pointer Analysis for Java Programs: Nowvel Techniques and Appli-
cations. PhD thesis, MIT, 2006.

D. Schmidt. A calculus of logical relations for over- and underapproximating

static analyses. Science of Computer Programming, 64(1):29-53, 2007.

BIBLIOGRAPHY 142

[77]

78]

[79]

[30]

[81]

[82]

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

Program Flow Analysis: Theory and Applications, pages 189-234, 1981.

J. Whaley and M. Rinard. Compositional pointer and escape analysis for java
programs. In ACM Sigplan Notices, volume 34, pages 187-206. ACM, 1999.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis
for ¢ programs. In Proceedings of Programming Languages Design and Imple-

mentation, 1995.

Y. Xije and A. Aiken. Scalable error detection using boolean satisfiability. Pro-
ceedings of Principles of Programming Languages, 40(1):351-363, 2005.

K. Yi and S. Ryu. Towards a cost-effective estimation of uncaught exceptions
in SML programs. In Proceedings of the International Symposium on Static
Analysis, pages 98-113, 1997.

G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise procedure
summaries. Proceedings of Principles of Programming Languages, 43(1):221-234,
2008.

