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Abstra
tThe 
lassi
al meaning of superoptimization [23℄ is to �nd the optimal 
ode sequen
efor a single, loop-free assembly sequen
e of instru
tions. Superoptimization has pre-viously been studied for 
ompiling small, performan
e 
riti
al 
ode fragments, su
h as
ompute-intensive inner loops. This thesis investigates the use of superoptimizationte
hniques in optimization and 
ode generation for whole programs.The �rst part of the thesis des
ribes peephole superoptimizers and their 
onstru
-tion. A peephole superoptimizer �rst generates a peephole optimizer using superop-timization te
hniques and then applies the generated peephole optimizer to improveexe
utables. Using this approa
h, we are able to generate many useful peepholeoptimizations automati
ally and �nd improvements over 
ode optimized by mature
ompilers.The se
ond part of the thesis applies peephole superoptimizers to perform e�
ientbinary translation between two divergent ar
hite
tures. We use a superoptimizer togenerate equivalen
e relations between 
ode snippets of two di�erent ar
hite
tures.The equivalen
e relation is represented as a peephole transformation. We dis
ussour PowerPC-x86 binary translator implemented using peephole superoptimizationte
hniques, and 
ompare it with existing binary translation tools.The third part of the thesis dis
usses a novel approa
h to signi�
antly lower the
omputational 
omplexity of brute-for
e superoptimization. Our approa
h, whi
h we
all meet-in-the-middle superoptimization, uses reverse exe
ution of instru
tions tosigni�
antly prune the superoptimizer's sear
h spa
e.
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Chapter 1Introdu
tionUsing brute-for
e to �nd the optimal 
ode for a given fun
tion (also termed superop-timization) has previously been studied in the 
ontext of 
omputing small mathemat-i
al fun
tions or optimizing performan
e-
riti
al 
ode fragments[15℄. Our goal in thisthesis is to understand the pra
ti
ality of using superoptimization as a useful 
odegeneration and optimization tool. In this 
hapter, we �rst introdu
e a peephole super-optimizer (Se
tion 1.1), dis
uss its appli
ation as a 
ode generation tool for a binarytranslator (Se
tion 1.2) and �nally present an overview of our meet-in-the-middlesuperoptimization strategy (Se
tion 1.3).1.1 Peephole SuperoptimizersPeephole optimizers are pattern mat
hing systems that repla
e one sequen
e of in-stru
tions by another equivalent, but 
heaper, sequen
e of instru
tions. The op-timizations are usually expressed as parameterized repla
ement rules, so that, forexample, mov r1, r2; mov r2, r1 => mov r1, r2expresses that if the value of register r1 is 
opied to register r2, then the followinginstru
tion mov r2,r1 is useless and 
an be deleted. Today, peephole optimization1



2 Chapter 1. Introdu
tionrules are hand-written, relying on the experien
e and insight of experts in the ma
hinear
hite
ture to re
ognize and 
odify the important rules.In this part of the thesis, we explore a di�erent approa
h to building peepholeoptimizers that is both 
ompletely automati
 and more systemati
. The basi
 ideais to use superoptimization te
hniques (des
ribed further below) to automati
allydis
over repla
ement rules that are optimizations; this 
omputation is done o�-line.The optimizations are then organized into a lookup table, mapping original sequen
esto their optimized 
ounterparts. Optimization of a 
ompiler's generated 
ode 
an thenbe done as e�
iently as a normal peephole optimizer, simply using the pre
omputedrules.This ar
hite
ture, where optimizations are 
omputed o�-line and then presentedas an indexed stru
ture for e�
ient lookup, is mu
h 
loser to a sear
h engine databasethan to a traditional optimizer. Unlike standard 
ompilers where every user has a
opy of the entire system, sear
h engines have so mu
h data that it is more e�
ient tokeep the data at a 
entral site and provide a

ess to users over a network. We believeit is possible to build a peephole optimizer using our approa
h with many millions oflearned optimizations, and at that s
ale the most e�
ient deployment may also be asa network-based sear
h engine. The goal in this thesis is 
onsiderably more modest,fo
using on showing that an automati
ally 
onstru
ted peephole optimizer is possibleand, even with limited resour
es (i.e., a single ma
hine) and learning hundreds tothousands of useful optimizations, su
h an optimizer 
an �nd signi�
ant speedupsthat standard optimizers miss.The 
lassi
al meaning of superoptimization [23℄ is to �nd the optimal 
ode se-quen
e for a single, loop-free assembly sequen
e of instru
tions, whi
h we 
all thetarget sequen
e. As noted in later work [19℄, the term superoptimization is an oxy-moron: If a program has been optimized�meaning it is optimal�then what 
an itmean to be superoptimized? The terminology problem lies in the need to distinguishsuperoptimization from garden variety optimization as that term is normally used;
ompiler optimizations are really just 
ode improvers and it is an a

ident if a 
on-ventional optimizer produ
es an optimal program. However, for brevity, we will oftenrefer to our own system as an optimizer rather than as a superoptimizer.



1.1. Peephole Superoptimizers 3There have been two approa
hes to superoptimization explored in the past. The�rst, used in Massalin's original paper [23℄, simply enumerates sequen
es of instru
-tions of in
reasing length or 
ost, testing ea
h for equality with the target sequen
e;the lowest 
ost equivalent sequen
e found is the optimal one. The se
ond approa
h,pursued in Denali, 
onstrains the sear
h spa
e to a set of equality-preserving trans-formations expressed by the system designer. For a given target sequen
e, a stru
-ture representing all possible equivalent sequen
es under the transformation rules issear
hed for the lowest 
ost equivalent sequen
e [19℄. A 
ommon point of view inboth approa
hes is that superoptimization is something that is expensive, potentiallyrequiring many hours of 
omputation to optimize a single target instru
tion sequen
e,and that the main appli
ation is as an aid to human performan
e experts in speedingup the o

asional 
riti
al inner loop.Our work di�ers from this previous work in a number of ways, beginning with thegoal. Our main interest is in 
reating a peephole superoptimizer that is fast enoughand systemati
 enough to be worth using in every 
ompilation. We are also interestedin investigating, to what extent the 
onsiderable human labor needed to write anoptimizer 
an be automated. To this end, we make the following 
ontributions:
• We superoptimize many target sequen
es (potentially millions) simultaneouslyin a �rst, o�-line phase. The target sequen
es are extra
ted, or harvested, froma training set of programs. The idea is that the important sequen
es to optimizeare the ones emitted by 
ompilers; we simply take all instru
tion sequen
es upto a given length from a representative 
olle
tion of existing binaries as ourtraining set.
• Be
ause we aim to be appli
able to general binaries, our prototype implemen-tation handles nearly all of the 300+ op
odes of the x86 ar
hite
ture; previouse�orts have fo
used on a mu
h smaller set of register-to-register operations. Inparti
ular, we present the �rst te
hniques for 
orre
tly inferring superoptimiza-tions involving memory a

esses and bran
hes, as well as the �rst approa
h thattakes the 
ontext (e.g., the set of live variables) of an instru
tion sequen
e intoa

ount.



4 Chapter 1. Introdu
tion
• A key problem in superoptimization is spending as little time as possible 
onsid-ering instru
tion sequen
es that 
annot be optimal versions of target sequen
es.We introdu
e a new te
hnique, 
anoni
alization, based on the observation thathaving on
e 
onsidered a sequen
e, we need never 
onsider a sequen
e that isequal up to 
onsistent renaming of registers and symboli
 
onstants. We showthat 
anoni
alization dramati
ally redu
es the sear
h spa
e for our system.
• The output of our system is a set of repla
ement rules. Ea
h rule gives asour
e (
anoni
al) instru
tion sequen
e and the resulting optimized (
anoni
al)instru
tion sequen
e. Thus, these rules 
an be indexed and used as e�
ientlyas the rules in a standard peephole optimizer. The rules we dis
over may beless general than rules written by humans�i.e., it may require multiple rulesdis
overed by the superoptimizer to 
over the same fun
tionality as a singlerule written in a more general form. However, a peephole superoptimizer 
an
ompensate for less general rules by automati
ally dis
overing many more rulesthan are written for normal peephole optimizers.
• We report experimental results on a number of kernels where our systema
hieves speedups of between 1.7 and a fa
tor of 10 over 
ode already optimizedby a standard 
ompiler. The improvements show that even mature 
ompilersdo not 
ome 
lose to the best possible 
ode in at least some relatively simplesituations.



1.2. Binary Translation Using Peephole Superoptimizers 51.2 Binary Translation Using PeepholeSuperoptimizersA 
ommon worry for ma
hine ar
hite
ts is how to run existing software on newar
hite
tures. One way to deal with the problem of software portability is throughbinary translation. Binary translation enables 
ode written for a sour
e ar
hite
ture(or instru
tion set) to run on another destination ar
hite
ture, without a

ess to theoriginal sour
e 
ode. A good example of the appli
ation of binary translation to solvea pressing software portability problem is Apple's Rosetta, whi
h enabled Apple to(almost) transparently move its existing software for the PS/2 to a new generationof Intel x86-based 
omputers [2℄.Building a good binary translator is not easy, and few good binary translationtools exist today. There are four main di�
ulties:1. Some performan
e is normally lost in translation. Better translators lose less,but even good translators often lose one-third or more of sour
e ar
hite
tureperforman
e for 
ompute-intensive appli
ations.2. Be
ause the instru
tion sets of modern ma
hines tend to be large and idiosyn-
rati
, just writing the translation rules from one ar
hite
ture to another is asigni�
ant engineering 
hallenge, espe
ially if there are signi�
ant di�eren
es inthe semanti
s of the two instru
tion sets. This problem is also exa
erbated bythe need to perform optimizations wherever possible to minimize problem (1).3. Be
ause high-performan
e translations must exploit ar
hite
ture-spe
i�
 seman-ti
s to maximize performan
e, it is 
hallenging to design a binary translatorthat 
an be qui
kly retargeted to new ar
hite
tures. One popular approa
h isto design a 
ommon intermediate language that 
overs all sour
e and destina-tion ar
hite
tures of interest, but to support needed performan
e this 
ommonlanguage generally must be large and 
omplex.4. If the sour
e and destination ar
hite
tures have di�erent operating systems thensour
e system 
alls must be emulated on the destination ar
hite
ture. Operating



6 Chapter 1. Introdu
tionsystems' wide interfa
es 
ombined with subtle and sometimes undo
umentedsemanti
s and bugs make this a major engineering task in itself.In the se
ond part of the thesis, we present a new approa
h to addressing prob-lems (1)-(3) (we do not address problem (4)). The main idea is that mu
h of the
omplexity of writing an aggressively optimizing translator between two instru
tionsets 
an be eliminated altogether by developing a system that automati
ally and sys-temati
ally learns translations. In Se
tion 3.5 we present performan
e results showingthat this approa
h is 
apable of produ
ing destination ma
hine 
ode that is at least
ompetitive with existing state-of-the-art binary translators, addressing problem (1).While we 
annot meaningfully 
ompare the engineering e�ort needed to develop ourresear
h proje
t with what goes into 
ommer
ial tools, we hope to 
onvin
e the readerthat on its fa
e automati
ally learning translations must require far less e�ort thanhand 
oding translations between ar
hite
tures, addressing problem (2). Similarly,we believe our approa
h helps resolve the tension between performan
e and retar-getability: adding a new ar
hite
ture requires only a parser for the binary format anda des
ription of the instru
tion set semanti
s (see Se
tion 3.2). This is the minimumthat any binary translator would require to in
orporate a new ar
hite
ture; in parti
-ular, our approa
h has no intermediate language that must be expanded or tweakedto a

ommodate the unique features of an additional ar
hite
ture.Our system uses peephole rules to translate 
ode from one ar
hite
ture to another.Peephole rules have traditionally been used for 
ompiler-optimizations, as we do inChapter 2. For our binary translator, we use peephole rules that repla
e a sour
e-ar
hite
ture instru
tion sequen
e by an equivalent destination ar
hite
ture instru
tionsequen
e. For example,ld [r2℄; addi 1; st [r2℄ => in
 [er3℄ { r2 = er3 }is a peephole translation rule from a 
ertain a

umulator-based RISC ar
hite
tureto another CISC ar
hite
ture. In this 
ase, the rule expresses that the operation ofloading a value from memory lo
ation [r2℄, adding 1 to it and storing it ba
k to [r2℄on the RISC ma
hine 
an be a
hieved by a single in-memory in
rement instru
tion



1.2. Binary Translation Using Peephole Superoptimizers 7on lo
ation [er3℄ on the CISC ma
hine, where RISC register r2 is emulated by CISCregister er3.The number of peephole rules required to 
orre
tly translate a 
omplete exe
utablefor any sour
e-destination ar
hite
ture 
an be huge and manually impossible to write.We automati
ally learn peephole translation rules using superoptimization te
hniques:essentially, we exhaustively enumerate possible rules and use formal veri�
ation te
h-niques to de
ide whether a 
andidate rule is a 
orre
t translation or not. This pro
essis slow; in our experiments it required about a pro
essor-week to learn enough rules totranslate full appli
ations. However, the sear
h for translation rules is only done on
e,o�-line, to 
onstru
t a binary translator; on
e dis
overed, peephole rules are appliedto any program using simple pattern mat
hing, as in a standard peephole optimizer.Superoptimization has been previously used in 
ompiler optimization [5, 15℄, but ourwork is the �rst to develop superoptimization te
hniques for binary translation.Binary translation preserves exe
ution semanti
s on two di�erent ma
hines: what-ever result is 
omputed on one ma
hine should be 
omputed on the other. More pre-
isely, if the sour
e and destination ma
hines begin in equivalent states and exe
utethe original and translated programs respe
tively, then they should end in equivalentstates. Here, equivalent states implies we have a mapping telling us how the statesof the two ma
hines are related. In parti
ular, we must de
ide whi
h registers ormemory lo
ations on the destination ma
hine emulate whi
h registers of the sour
ema
hine. Note that the example peephole translation rule given above is 
onditionedby the register map r2 = er3. Only when we have de
ided on a register map 
anwe 
ompute possible translations. The 
hoi
e of register map turns out to be a keyte
hni
al problem: better de
isions about the register map (e.g., di�erent 
hoi
es ofdestination ma
hine registers to emulate sour
e ma
hine registers) lead to better per-forming translations. Of 
ourse, the 
hoi
e of instru
tions to use in the translationalso a�e
ts the best 
hoi
e of register map (by, for example, using more or fewer reg-isters), so the two problems are mutually re
ursive. We present an e�e
tive dynami
programming te
hnique that �nds the best register map and translation for a givenregion of 
ode (Se
tion 3.3.2).We have implemented a prototype binary translator from PowerPC to x86. Our



8 Chapter 1. Introdu
tionprototype handles nearly all of the PowerPC and x86 op
odes and using it we havesu

essfully translated large exe
utables and libraries. We report experimental re-sults on a number of small 
ompute-intensive mi
roben
hmarks, where our translatorsurprisingly often outperforms the native 
ompiler. We also report results on many ofthe SPEC integer ben
hmarks, where the translator a
hieves a median performan
eof around 66% of natively 
ompiled 
ode and 
ompares favorably with both Qemu[28℄, an open sour
e binary translator, and Apple's Rosetta [2℄. While we believethese results show the usefulness of using superoptimization as a binary translationand optimization tool, there are two 
aveats to our experiments that we dis
uss inmore detail in Se
tion 3.5. First, we have not implemented translations of all system
alls. As dis
ussed above under problem (4) this is a separate and quite signi�
antengineering issue. We do not believe there is any systemati
 bias in our results asa result of implementing only enough system 
alls to run many, but not all, of theSPEC integer ben
hmarks. Se
ond, our system is 
urrently a stati
 binary translator,while the systems we 
ompare to are dynami
 binary translators, whi
h may give oursystem an advantage in our experiments as time spent in translation is not 
ountedas part of the exe
ution time. There is nothing that prevents our te
hniques frombeing used in a dynami
 translator; a stati
 translator was just easier to develop giventhe tool base we began with. We give a detailed analysis of translation time for ourben
hmarks, whi
h allows us to bound the additional 
ost that would be in
urred ina dynami
 translator.In summary, our aim in this thesis is to demonstrate the ability to develop binarytranslators with 
ompetitive performan
e at mu
h lower 
ost. Towards this end, wemake the following 
ontributions:
• We present a design for automati
ally learning binary translations using ano�-line sear
h of the spa
e of 
andidate translation rules.
• We identify the problem of sele
ting a register map and give an algorithm forsimultaneously 
omputing the best register map and translation for a region of
ode.
• We give experimental results for a prototype PowerPC to x86 translator, whi
h



1.3. Meet-in-the-Middle Superoptimization 9produ
es 
onsistently high performing translations.1.3 Goal-Dire
ted Superoptimization UsingMeet-in-the-MiddleSuperoptimization normally involves a brute-for
e sear
h over an exponentially largespa
e of instru
tion sequen
es. An important goal is to be able to dis
over te
hniquesto s
ale a superoptimizer to longer instru
tion sequen
e lengths. In this third partof the thesis, we observe that it is possible to signi�
antly prune this sear
h spa
eby using a strategy we 
all meet-in-the-middle. Unlike the naive approa
h where allinstru
tion sequen
es are enumerated 
he
king ea
h of them for a mat
h with the goalfun
tion, the meet-in-the-middle strategy works ba
kwards from the goal fun
tion toenumerate only those instru
tion sequen
es that 
ould possibly yield the goal state.To explain our meet-in-the-middle algorithm, we �rst de�ne forward and ba
kwardexe
ution of instru
tion sequen
es. A forward exe
ution of a sequen
e is a simplein-order exe
ution of the instru
tions in the sequen
e. A ba
kward exe
ution of asequen
e is the operation to undo the e�e
ts of the instru
tion sequen
e on a ma
hinestate. To understand this better, 
onsider a ma
hine state Y that is obtained byforward exe
ution of a sequen
e on a ma
hine state X. A ba
kward exe
ution of thesame sequen
e on Y attempts to re
over the state X as mu
h as possible. To redu
e the
omputational time of a brute for
e superoptimization sear
h, we exe
ute instru
tionsequen
es ba
kwards from the goal ma
hine state 
he
king the result for a mat
hwith any of the states obtained by forward enumeration of instru
tion sequen
es onthe initial ma
hine state. An optimization exists only if one of the states obtained byforward-enumerated sequen
es mat
hes a state obtained from a ba
kward-enumeratedsequen
e (see Figure 1.1). Sin
e we 
an eliminate any intermediate state that 
annotbe obtained by ba
kward exe
ution on the goal state, we 
an prune our sear
h spa
e.The meet-in-the-middle superoptimization strategy signi�
antly redu
es thesear
h spa
e of a brute-for
e superoptimizer. In this third part of the thesis, we
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r2

r1

r1+r2+1

r1

No instruction sequence
inverts to yield intermediate
state from final state

Final State

r1

r1
mov r2, r1

Initial State Intermediate State

 enumeration)
(obtained by forwardFigure 1.1: An Example of Meet-in-the-Middle Pruning: The intermediate state 
anbe pruned away be
ause there is no instru
tion sequen
e beginning in the interme-diate state that results in the �nal state � or, equivalently, there is no sequen
e ofinstru
tion inverses leading from the �nal state to the intermediate state.make the following 
ontributions:

• We des
ribe and analyze our meet-in-the-middle strategy to perform e�
ientgoal-dire
ted superoptimization.
• We de�ne the notion of exe
uting an instru
tion ba
kwards on a ma
hine statethrough instru
tion inverses and don't-know bits. These 
on
epts are explainedboth formally using mathemati
al 
onstru
ts and intuitively using examplesfrom the x86 ar
hite
ture.
• We implement the meet-in-the-middle strategy in both our superoptimizer andthe publi
ly available GNU Superoptimizer[15℄ and report experimental results.



Chapter 2Peephole SuperoptimizersIn this 
hapter, we des
ribe the automati
 generation of peephole superoptimizers.Se
tion 2.1 dis
usses the �ow
hart of a peephole superoptimizer, Se
tions 2.2-2.4des
ribe the steps in the �ow
hart in detail, Se
tions 2.5-2.6 present experimentalresults, Se
tion 2.7 dis
usses related work and �nally Se
tion 2.8 
on
ludes. This
hapter of the thesis is based on work presented in [5℄.2.1 Design of the OptimizerWe begin by de�ning a few terms that we use throughout the thesis. An instru
tionis an op
ode together with some valid operands. For example, on a ma
hine witheight registers r0 through r7, the in
rement op
ode (in
) generates eight uniqueinstru
tions:in
 r0 ; in
 r1 ; in
 r2 ; in
 r3 ;in
 r4 ; in
 r5 ; in
 r6 ; in
 r7A potential problem arises with op
odes that take immediate operands, as they gener-ate an unbounded number of instru
tions. For example, an add-immediate instru
tion(addi) 
an have 232 di�erent variants (on a 32-bit ma
hine) based on the immediateoperand alone.. . . 11
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Figure 2.1: Flow
hart of the superoptimizer.addi $0x12345678, r0addi $0x12345679, r0. . .We restri
t immediate operands to a small set of 
onstants and symboli
 
onstants.For example, we simply use a symboli
 
onstant $c0 to 
apture all the 232 possibilitiesusing one instru
tionaddi $
0, r0We enumerate 
ertain 
onstants (e.g. 0 and 1) separately to 
apture spe
ial opti-mizations. In this way, we ensure op
odes with immediate operands generate only asmall number of distin
t instru
tions.A 
ost fun
tion 
aptures the approximate 
ost of an instru
tion sequen
e on a par-ti
ular pro
essor. We use di�erent 
ost fun
tions for di�erent purposes; e.g., runningtime to optimize speed, instru
tion byte 
ount to optimize the size of a binary. Aninstru
tion sequen
e is optimal if no equivalent sequen
e of lower 
ost exists. Equiv-alen
e of two instru
tion sequen
es is de�ned under a 
ontext, whi
h is a subset ofthe ma
hine state that is live beyond the instru
tion sequen
es themselves. Sin
e



2.1. Design of the Optimizer 13we ignore I/O instru
tions, the ma
hine state for our purposes 
onsists of registers,sta
k and memory. The 
ontext of a target instru
tion sequen
e 
an potentially in-
lude registers, memory lo
ations and sta
k lo
ations live at the program point wherethe instru
tion sequen
e ends. However, for implementation simpli
ity, we 
urrently
onservatively assume memory and sta
k lo
ations are always live. The 
ontext ofan instru
tion sequen
e is thus redu
ed to the set of registers live on exit from thesequen
e.An equivalen
e test ∼=L tests two instru
tion sequen
es for equivalen
e under the
ontext (set of live registers) L. For a target sequen
e T and a 
ost fun
tion c, weare interested in �nding a minimum 
ost instru
tion sequen
e O su
h that
(O ∼=L T )Unlike previous e�orts, our superoptimizer 
omputes the optimal instru
tion se-quen
es for several di�erent target sequen
es simultaneously. Moreover, on
e anoptimization is found, it is saved in an indexed optimization database so that theexpensive work done to 
ompute the optimizations need never be repeated again.Thus, the database represents all the optimizations a
quired by running the super-optimizer. On
e 
omputed, these optimizations 
an be used to optimize any numberof programs.Our optimizer is stru
tured in three parts:

• The harvester extra
ts target instru
tion sequen
es from the training appli
a-tions. The target instru
tion sequen
es are the ones we seek to optimize.
• The enumerator exhaustively enumerates all possible 
andidate instru
tion se-quen
es up to a 
ertain length, 
he
king if ea
h 
andidate sequen
e is an optimalrepla
ement for any of the target instru
tion sequen
es.
• The optimizer applies the optimization database, an index of all dis
overed op-timizations, to appli
ations.There are two key 
hallenges for our approa
h. First, we must redu
e the sear
hspa
e of the enumerator as mu
h as possible (Se
tion 2.3.2). Se
ond, we need a verye�
ient test for equivalen
e of two instru
tion sequen
es (Se
tion 2.4.1).



14 Chapter 2. Peephole SuperoptimizersA �ow
hart of the superoptimizer is shown in Figure 2.1. We dis
uss the 
ompo-nents shown in the �ow
hart in the following se
tions.2.2 Harvesting Target Instru
tion Sequen
esThe �rst step in 
reating a superoptimizer using our approa
h is to obtain targetinstru
tion sequen
es from a representative set of appli
ations. These harvested in-stru
tion sequen
es form the 
orpus used to train the optimizer. Not all instru
tionsequen
es are harvestable in our 
urrent implementation. A harvestable instru
tionsequen
e I must have a single entry point�no instru
tion in I (ex
ept the �rst in-stru
tion) should be a jump target of any instru
tion outside of I. To enfor
e this
onstraint, we identify all jump targets of dire
t-jump instru
tions in the binary ex-e
utable. Also, we identify all instru
tions starting at addresses pointed to by obje
tsymbols sin
e these instru
tions are possible targets of indire
t jump instru
tions.Any su
h instru
tions should not be a part of a harvested instru
tion sequen
e I(ex
ept possibly being the �rst instru
tion in I). Noti
e that a harvested instru
tionsequen
e 
an have multiple exits sin
e we allow jump instru
tions in the sequen
e.When the harvester extra
ts instru
tion sequen
es from a binary, it also re
ordsthe set of registers live at the end of the sequen
e; this 
ontext is used in determiningequivalen
e as dis
ussed in Se
tion 2.1.2.2.1 Canoni
alizationAll well-formed instru
tion sequen
es are valid 
andidates for optimization, but manysequen
es are just transformations of ea
h other under renamings of registers andimmediate operands. For example, on a ma
hine with eight registers, an instru
tionmov r1, r0 has 8∗7 = 56 equivalent versions with di�erent register names. To redu
ewasted e�ort, one would like to eliminate all unne
essary instru
tion sequen
es thatare mere renamings of others�a pro
ess we 
all 
anoni
alization.An instru
tion sequen
e is 
anoni
al if its registers and 
onstants are named inthe order of their appearan
e in the instru
tion sequen
e i.e., the �rst register used



2.2. Harvesting Target Instru
tion Sequen
es 15is always r0, the se
ond distin
t register used is always r1, and so on. Similarly, the�rst 
onstant used in a 
anoni
al instru
tion sequen
e is (the symboli
 
onstant) 
0,the se
ond distin
t 
onstant 
1, and so on.An instru
tion sequen
e is 
anoni
alized by renaming registers and 
onstants. Anoptimization that applies to a sequen
e is also valid for its 
anoni
alization (withregisters and 
onstants suitably renamed). Hen
e, we store only 
anoni
al formsof instru
tion sequen
es in our optimization database. Optimizing an instru
tionsequen
e I requires �rst 
anoni
alizing I to θ(I), where θ is the 
anoni
al renamingof registers and symboli
 
onstants of I. We then sear
h the database for a sequen
e
R equivalent to θ(I), and then �un
anoni
alize� R to θ−1(R) so that the registers and
onstants have their original names as in I. The sequen
e θ−1(R) then repla
es I inthe appli
ation.Dealing with only 
anoni
al instru
tion sequen
es dramati
ally redu
es the size ofthe 
orpus of target instru
tion sequen
es. Figure 2.2 plots the number of unique har-vested instru
tion sequen
es before and after 
anoni
alization. At short instru
tionsequen
e lengths, there are many fewer unique 
anoni
al instru
tion sequen
es thanthe number of unique harvested sequen
es. At longer lengths, the number of har-vested instru
tion sequen
es de
reases be
ause fewer sequen
es meet the harvester's
onstraints.
2.2.2 FingerprintingThe most 
ommon operation in our o�-line 
omputation of optimizations is determin-ing whether an instru
tion sequen
e I is equivalent to any target instru
tion sequen
e.We exe
ute I on test ma
hine states and then 
ompute a hash of the result, whi
h we
all I's �ngerprint. The �ngerprint is the index into a hashtable; ea
h bu
ket holdsthe target instru
tion sequen
es, if any, with that �ngerprint. The most importantproperties of the �ngerprint are that it is very fast to 
ompute and results in at mosta small set of target sequen
es that might be equivalent to I.
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Figure 2.2: The number of unique harvested instru
tion sequen
es in SPEC CINT2000ben
hmarks, before and after 
anoni
alization.We have found it su�
ient to use two pseudo-randomma
hine states 
alled testve
-tors to 
ompute �ngerprints.1 The instru
tion sequen
e is �rst 
onverted into anexe
utable binary form. The ma
hine is loaded with a testve
tor and 
ontrol is trans-ferred to the instru
tion sequen
e. The ma
hine state (the 
ontents of registers, statusbits, and memory�see below) is re
orded after the instru
tion sequen
e �nishes ex-e
ution. This pro
ess is repeated for both testve
tors and a hash is then 
omputedon the ma
hine states that were obtained.Exe
uting the instru
tion sequen
e on the bare ma
hine has three advantages.First, it is extremely fast. Se
ond, it eliminates sour
es of error due to in
orre
tsimulation of instru
tions. And third, ma
hine 
ounters 
an be used to estimate thetime spent in exe
uting the instru
tion sequen
e on hardware, providing hints forshaping the time-based 
ost fun
tion.While exe
uting the instru
tion sequen
e dire
tly on hardware is good, it presents1Ea
h bit in the two testve
tors is set randomly, but the same testve
tors are used for �nger-printing every instru
tion sequen
e.



2.2. Harvesting Target Instru
tion Sequen
es 17Original Instru
tion Sequen
ein
 r1x
hg (r2), r1With Memory Sandboxing Instru
tionsin
 r1mov r2, r7and $0xff, r7add $membase, r7x
hg (r7), r1Figure 2.3: The memory array M starts at address membase and is 28 = 256 byteslong. Every memory a

ess is prepended with three instru
tions ensuring the memorya

ess is 
ontained within M . In this example, a temporary register r7 was used toperform this fun
tion.its own set of 
hallenges. In parti
ular, we must isolate the state of our system fromany side-e�e
ts of the instru
tion sequen
e. We save all registers before exe
uting theinstru
tion sequen
e and restore them after the exe
ution is �nished. We sandbox allmemory and sta
k referen
es by adding extra instru
tions to the exe
uted 
ode. Bothmemory and sta
k a

esses are 
onstrained to small regions of memory in the addressspa
e of the superoptimizer. The memory is approximated by a small array M of size
2s starting at a memory address membase. Ea
h instru
tion performing a memorya

ess is then prepended with instru
tions ensuring that the memory a

ess does notfall outside M . A similar approa
h is taken for sta
k referen
es. Figure 2.3 shows thesandboxing instru
tions used for the x86 instru
tion set. Note that this strategy forhandling memory referen
es preserves the property that if two instru
tions sequen
esare equivalent they result in the same ma
hine state on any testve
tor and thereforehave the same �ngerprint. We have found that a sandboxed memory of size M = 256bytes is su�
ient for minimizing �ngerprint 
ollisions between inequivalent instru
tionsequen
es.

The fun
tion used to hash the ma
hine states obtained after the exe
ution ofthe instru
tion sequen
es on the testve
tors must have some spe
ial properties toensure minimal 
ollisions. First, it should be asymmetri
 with respe
t to di�erent
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ations and registers, whi
h is ne
essary to distinguish between instru
-tion sequen
es performing identi
al operations at two di�erent lo
ations. Se
ond, itshould not be based on a single operator (like xor); otherwise, there are likely to bemany 
ollisions on instru
tion sequen
es using that parti
ular operator. We employ a
ombination of xor and weighted-add operations to 
ompute the hash of the ma
hinestate. To handle 
ontext 
orre
tly, when �ngerprinting a target sequen
e the hashfun
tion in
ludes only the live registers; the values of the dead registers are dis
arded.Finally, the full stru
ture of the �ngerprint hashtable is more elaborate than wehave des
ribed so far. For ea
h target instru
tion sequen
e I, the hashtable re
ords Iand the �ngerprint not only for the 
anoni
alization of I, but also for all of I's di�er-ent register and symboli
 
onstant renamings. This, as we des
ribe in Se
tion 2.3.2,helps us in redu
ing the sear
h spa
e of the enumerator. Hen
e, an instru
tion se-quen
e using r distin
t registers and c distin
t 
onstants 
an generate at most r! ∗ c!�ngerprints. Typi
ally r ≤ 5 and c ≤ 2, so the blow-up is upper-bounded by 240. Inpra
ti
e, we �nd that the blow-up is around 18. The �ngerprint hashtable is indexedby an instru
tion sequen
e's �ngerprint and set of live registers.In summary, the �ngerprint hashtable maps a �ngerprint and set of live registersto a set of instru
tion sequen
es with the same �ngerprint under that 
ontext. Thistable forms the 
orpus of instru
tion sequen
es that we wish to superoptimize.2.3 EnumeratorThe enumerator simply enumerates all possible, unique instru
tion sequen
es. Wedis
uss the enumerable instru
tion set, te
hniques to redu
e the sear
h spa
e, andthe sear
h for useful optimizations in the following subse
tions.2.3.1 Enumerable Instru
tion SetInstru
tion sequen
es are enumerated from a subset of all instru
tions. At most onebran
h instru
tion is allowed in an instru
tion sequen
e. For the bran
h instru
tion,a 
anoni
al target is de�ned whi
h represents an exit point outside of I. Hen
e,



2.3. Enumerator 19an enumerated instru
tion sequen
e is allowed to have at most two di�erent exits:the straight-line exit point in the 
ode, and the exit de�ned by the bran
h instru
-tion. Noti
e that while an enumerated instru
tion sequen
e 
an have at most onebran
h instru
tion, a target instru
tion sequen
e 
ould have more bran
hes; manyoptimizations eliminate or redu
e the number of bran
hes in the target sequen
e.To bound the sear
h spa
e, we restri
t the maximum number of distin
t registersand 
onstants that 
an appear in an enumerable instru
tion sequen
e. For instru
tionsusing a restri
ted subset of registers, only that subset is 
onsidered during enumera-tion. For 
onstants we allow the numbers 0 and 1, the symboli
 
onstants 
0 and 
1,and addition or subtra
tion where the �rst argument is a symboli
 
onstant and these
ond argument is a symboli
 
onstant or 1. Allowing addition and subtra
tion of
onstants enables dis
overy of lo
al 
onstant-folding optimizations. Constant-foldingoptimizations involving more than two 
onstants are 
aptured by repeated appli
ationof optimizations to a 
ode sequen
e.We also restri
t the number of distin
t registers used in an enumerated instru
tionsequen
e. The number of registers used by instru
tion sequen
es varies greatly. Wepro�led some CPU-intensive appli
ations to gauge this distribution (see Figure 2.4)and observed that more than 50% of harvested instru
tion sequen
es of length 8 usefewer than 4 ma
hine registers. Thus, we de
ided to allow at most 4 distin
t regis-ters in an enumerated instru
tion sequen
e. Again, noti
e that a target instru
tionsequen
e 
an use more registers than the 
orresponding optimal instru
tion sequen
e.In fa
t, many optimizations produ
ed by the superoptimizer eliminate redundantregisters.The number of indire
t memory a

esses in an instru
tion sequen
e is 
onstrainedby the number of registers allowed, sin
e an indire
t memory a

ess dereferen
es aregister. For dire
t memory a

esses, we allow at most two distin
t dire
t memoryaddresses (
0 and 
1). Be
ause we use the symboli
 
onstants 
0 and 
1 as bothvalues of immediate operands and memory addresses, we 
apture optimizations in-volving the transformation of indire
t memory a

esses to dire
t memory a

esses.
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tion sequen
es in SPECCINT2000 ben
hmarks.Figure 2.5 shows examples of op
odes of di�erent types and the instru
tions gen-erated by them.2.3.2 Redu
ing the Sear
h Spa
eOn
e the enumerable instru
tion set is �xed, the enumerator's sear
h spa
e is expo-nential in the length of the instru
tion sequen
e. We use two te
hniques to redu
ethe size of the sear
h spa
e.
• We enumerate only 
anoni
al instru
tion sequen
es. While this de
ision redu
esthe size of the enumerated set of sequen
es, it does 
ause a blow-up in the sizeof the �ngerprint hashtable (re
all Se
tion 2.2.2).
• We prune the sear
h spa
e by identifying and eliminating instru
tions that arefun
tionally equivalent to other 
heaper instru
tions.For simple 
ost fun
tions, it is possible to further prune the sear
h spa
e byobserving that all subsequen
es of a length n instru
tion sequen
e must beoptimal�if any subsequen
e is not optimal, then it 
an be repla
ed by a 
heapersequen
e and hen
e the sequen
e is not optimal. This is always true when weare optimizing for 
odesize, sin
e the 
ost fun
tion is simply the sum of individ-ual instru
tion lengths. For runtime optimizations, this is not true in general



2.3. Enumerator 21not <register>not r0not r1not r2not r3de
 <memory lo
ation>de
 (r0)de
 (r1)de
 (r2)de
 (r3)de
 (
0)de
 (
1)add <mem-indire
t>, <immediate>add (r0), 0add (r0), 1add (r0), 
0add (r0), 
1add (r0), 
0+1add (r0), 
0-1add (r0), 
0+
1add (r0), 
0-
1and repetition of the above for r1, r2, . . .Figure 2.5: Examples of instru
tions generated by op
odes taking di�erent operand-types in the x86 instru
tion set.be
ause running time is also dependent on the 
ombination and order of instru
-tions in the sequen
e. In our experiments, we employed this aggressive pruningstrategy only when optimizing for 
odesize. Pruning the sear
h spa
e at smallerinstru
tion sequen
e lengths provides a signi�
ant bene�t for longer instru
tionsequen
es. This idea was �rst proposed by Massalin [23℄. We 
urrently 
he
kthat all subsequen
es of length 2 are optimal using a table that lists all length2 optimal sequen
es, when optimizing for 
odesize.Table 2.1 lists the size of the set of enumerated instru
tion sequen
es with and without
anoni
alization and pruning. While 
anoni
alization provides the biggest redu
tion,the e�e
t is 
umulative and using both te
hniques we a
hieve over 50x improvement



22 Chapter 2. Peephole Superoptimizersin the size of the sear
h spa
e for instru
tion sequen
es of length 3 on the x86 ar-
hite
ture. In Table 2.1, the redu
tion due to pruning is only due to elimination ofsingle instru
tions that are equivalent to other single instru
tions. For the 
odesize
ost fun
tion, where we 
an employ the more aggressive pruning strategy, we get atotal improvement of 60x (20% more) in the size of the sear
h spa
e at length 3.Length OriginalSear
hSpa
e AfterCanoni-
alization AfterPrun-ing Redu
tionFa
tor1 5,453 997 644 8.52 29 m 2.49 m 1.2 m 24.73 162.1 b 8.6 b 3.11 b 52.1Table 2.1: The size of the sear
h spa
e for x86 instru
tion sequen
es of length 1 to 3.The last 
olumn shows the redu
tion in sear
h spa
e a
hieved through pruning and
anoni
alization.Many of the enumerated sequen
es are redundant and it is tempting to avoidenumerating them by pla
ing 
he
ks in the enumerator. For example, it is possibleto 
he
k for instru
tion sequen
es of the form {mov r0, r1; mov r0, r1} and avoid�ngerprinting them. However, su
h 
he
ks in the inner loop of the enumerator resultin an overall slowdown. In the interest of speed, we let the system weed out su
hspe
ial 
ases automati
ally through �ngerprinting and equivalen
e 
he
ks.The enumerator stores enumerable instru
tions in a table with information aboutthe registers and 
onstants used to help the enumerator generate only 
anoni
al in-stru
tion sequen
es. The table is sorted in an order to make enumeration fast. Usingthe fast �ngerprint te
hnique, about 500, 000 instru
tion sequen
es per se
ond 
an beenumerated and �ngerprinted on a single pro
essor.2.3.3 Sear
hing the Fingerprint HashtableEa
h enumerated instru
tion sequen
e is �ngerprinted as des
ribed in Se
tion 2.2.2.The �ngerprint is 
omputed for all possible sets of live registers. The �ngerprintvalue and the 
orresponding set of live registers is then used to look up any mat
hing
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tion sequen
e in the �ngerprint hashtable. If there is a mat
h, wehave found a 
andidate optimization and pro
eed with the equivalen
e test des
ribedin Se
tion 2.4.1. If there is no mat
h in the �ngerprint hashtable, the enumeratedinstru
tion sequen
e is simply dis
arded.Re
all that while we enumerate only 
anoni
al instru
tion sequen
es, the �nger-print hashtable 
ontains instru
tion sequen
es in both 
anoni
al and non-
anoni
alforms. This is important, be
ause it is possible to optimize a 
anoni
al instru
tionsequen
e with a non-
anoni
al instru
tion sequen
e and vi
e-versa. For example, a
anoni
al length 2 instru
tion sequen
e T {mov r0, r1; mov r1, r2} 
an be opti-mized using a non-
anoni
al length 1 instru
tion sequen
e O {mov r0, r2} (assum-ing r1 is not live). To 
at
h this optimization, we keep all renamings of T in the�ngerprint hashtable and enumerate only the 
anoni
al version of O. In this exam-ple, the non-
anoni
al renaming of T {mov r0, r2; mov r2, r1} in the �ngerprinthashtable is optimized by the 
anoni
al enumerated sequen
e {mov r0, r1}.
2.4 Learning an OptimizationOn
e a mat
h is found in the �ngerprint hashtable for an enumerated instru
tionsequen
e, an equivalen
e test is performed. If the target instru
tion sequen
e andthe 
andidate instru
tion sequen
e are found to be equivalent, and the 
ost of the
andidate instru
tion sequen
e is lower than the target (or a previously dis
overedoptimization for that target), the optimization is stored in the optimization database.Ea
h of these steps is des
ribed in the following subse
tions.
2.4.1 Equivalen
e TestThe equivalen
e test pro
eeds in two steps�a fast but in
omplete exe
ution test anda slower but exa
t boolean test.
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ution TestOur fast exe
ution test is similar to �ngerprinting. We run the two sequen
es overa set of testve
tors and observe if they yield the same output on ea
h test. In ourexperiments, we use a total of 18 testve
tors: one is all zeros, one is all ones and inthe remaining 16, ea
h bit is set randomly.Contrary to Massalin's experien
e [23℄, we found a number of pairs of instru
tionsequen
es that passed the exe
ution test and failed the boolean test.2 This situa-tion arises due to a variety of reasons, almost all involving loss of bits during the
omputation. For example, an equality 
omparison of two 
omputed registers onthe testve
tors is likely to always return false. Similarly, memory addresses are al-most never aliased by exe
ution tests, while a boolean deterministi
 test 
at
hes allin
onsisten
ies due to the possibility of memory aliasing.Boolean TestThe boolean veri�
ation test represents an instru
tion sequen
e by a boolean formulaand expresses the equivalen
e relation as a satis�ability 
onstraint. The satis�ability
onstraint is tested using a SAT solver.A ma
hine state is represented by a �nite set of registers and a model of the fullmemory and sta
k. Registers are represented as bitve
tors. Memory is modeled bya map from address expressions to data bits. The �rst use of a memory lo
ation isen
oded by fresh boolean variables representing the data bits at that address. Boolean
lauses are used to en
ode the relationship between the data bits and address bits.e.g., for a sequen
e performing two memory reads at addresses addr1 and addr2, andreturning data bytes data1 and data2 respe
tively, the following 
lause 
aptures theiraliasing relationship:
(addr1 = addr2)⇒ (data1 = data2)All memory writes are stored in a table in order of their o

urren
e. For a memory2Massalin did not implement a 
omplete test, relying on humans to 
on�rm that 
andidateoptimizations that passed an exe
ution test were 
orre
t in all 
ir
umstan
es.
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urring after memory writes, the read-address needs to be 
ompared withthe address expressions of the writes. Ea
h read-a

ess R is 
he
ked for address-equivalen
e with ea
h of the pre
eding write a

esses Wi in de
reasing order of i,where Wi is the i'th write a

ess by the instru
tion sequen
e. The following 
lauseen
odes this relationship between the data of the read a

ess dataR and the data ofone of the pre
eding write a

esses dataWi
.

∨

j≥i

(addrR 6= addrWj
) ∧ addrR = addrWi

⇒ dataR = dataWiFor ea
h pair of memory a

esses, a boolean 
lause is generated to 
apture the pos-sibility of their address expressions aliasing with ea
h other. Where information isnot available, we 
onservatively assume that two memory addresses may alias. Theequivalen
e of two memory states is 
he
ked by reading the bits at ea
h address lo-
ation for both states and 
he
king them for boolean equivalen
e. The model of thesta
k is identi
al to that of memory, with additional bits representing the sta
k andframe pointers.Instru
tions are en
oded as boolean 
ir
uits transforming an input ma
hine stateto an output ma
hine state. Bran
h instru
tions are handled by predi
ating theexe
ution of instru
tions on the true and false paths with the bran
h 
ondition orits negation. The program 
ounter is modeled to indi
ate if a bran
h to a targetoutside the instru
tion sequen
e was taken. The input state is shared between the twoinstru
tion sequen
es being 
he
ked for equivalen
e. Two instru
tion sequen
es areequivalent i� the registers, memory and sta
k expressions obtained in the �nal stateare equivalent. The equivalen
e relation of the output ma
hine states is expressed asa satis�ability 
onstraint before giving it to the SAT solver.2.4.2 Optimization DatabaseThe optimization database re
ords all optimizations dis
overed by the superoptimizer.The database is indexed by the original instru
tion sequen
e (in its 
anoni
al form)and the set of live registers, and returns the 
orresponding optimal sequen
e if one



26 Chapter 2. Peephole Superoptimizersexists. Be
ause instru
tion sequen
es stored in the �ngerprint hashtable need not be
anoni
al, they must be 
anoni
alized (and their optimal versions renamed) beforestoring them in the optimization database.The operation of optimizing a binary exe
utable is fast: it involves only harvestinga target sequen
e, 
anoni
alizing it, and sear
hing the indexed optimization database.Multiple optimization passes are performed on the exe
utable until no further opti-mizations are found.2.5 Experimental ResultsOur implementation of the optimizer is written in C++ and O'Caml [22℄. We use theDiablo link-time rewriting framework [1, 27℄ to 
ompute liveness information for anx86 exe
utable binary. We use zCha� [25, 38℄ as our ba
kend SAT solver be
ause ofits performan
e and in
remental SAT solving 
apabilities. It took around two weeksto write formulas modeling the op
odes of the Intel Pentium instru
tion set for theboolean test. We 
ompared our optimizer on exe
utables 
ompiled using g

 version3.2.3. The default optimization level used was -O2.Our experiments were done using a Linux ma
hine with a single Intel Pentium3.0GHz pro
essor and 100 Gigabytes lo
al storage. We limited the peephole size toinstru
tion sequen
es of length 3, whi
h were not too time 
onsuming to enumerate.Given more resour
es, we 
an easily s
ale the system to length 4 instru
tion sequen
es,whi
h we believe, would produ
e even better results. Going beyond length 4 instru
-tion sequen
es requires additional te
hniques to further redu
e the sear
h spa
e ofthe enumerator. Although, we enumerate only up to length 3 instru
tion sequen
es,we optimized windows of up to length 6 instru
tion sequen
es in our experiments.We use two di�erent 
ost fun
tions, one 
apturing runtime and the other 
odesize.The 
odesize 
ost fun
tion simply 
onsiders the size of the exe
utable binary 
ode ofa sequen
e as its 
ost. The runtime 
ost fun
tion is more involved. It �rst takesinto a

ount the number of memory a

esses and bran
h instru
tions in the sequen
e.Then, the approximate 
y
le 
osts of the instru
tion are 
onsidered, as obtained fromthe te
hni
al manuals on Intel ar
hite
tures. In 
ase of a tie, the number of registers
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ode length are used as tie-breakers. 3In our �rst set of experiments, we took some kernels operating on arrays of in-teger elements. All the kernels were written in C. A des
ription of ea
h of the ker-nels is given in Table 2.3. These kernels were 
ompiled using ar
hite
ture spe
i�
(-mar
h=pentium4, -mmmx and -msse) optimization options in g

, with the loopsunrolled 8 times.Figure 2.6 plots the runtime improvements our superoptimizer obtained in thedi�erent kernels over g

. We a
hieved improvements of between 1.7 and 10 times overalready-optimized 
ode. Some (but not all) of the large improvements in running timeare be
ause the superoptimizer �nds 
lever ways to use the SIMD (single instru
tionmultiple data) instru
tions available in the Intel ar
hite
ture. The problem of emittinge�
ient SIMD 
ode has 
onfounded 
ompiler-authors for many years; g

 at leastdoes not appear to attempt to use SIMD instru
tions. Most 
ode involving the use of
omplex instru
tions is 
urrently hand-
oded by expert assembly programmers. Ourresults show that an automati
ally generated optimizer is at least a partial solutionto this problem.
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Kernel NameFigure 2.6: Speedups for the kernels in Table 2.3.Next, we applied the superoptimizer to appli
ations from the SPEC CINT20003We tried using Pentium performan
e 
ounters to estimate the runtime of an instru
tion sequen
e.In our experien
e, that was not useful for short sequen
es due to the large varian
e in the numbersobtained a
ross di�erent runs.
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hmarks [17℄. The number of optimizations performed and the 
orresponding im-provements over g

 are shown in Table 2.4. As one would expe
t, the improvementsare mu
h less dramati
 for full appli
ations than for 
ompute-intensive kernels. Wefound speedups of 0-5% with these improvements, though we found that speedupvaried a
ross di�erent runs and ma
hine 
on�gurations. We saw improvements in
ode size of 1-6% over exe
utables already optimized for size using -Os.We also ran our optimizer on SPEC exe
utables 
ompiled using the ar
hite
turespe
i�
 Intel C++ 
ompiler i

 [18℄. For the SPEC ben
hmarks, the speedups ob-tained on i

 optimized exe
utables were less than 1%, but we found that the 
odesizeof these exe
utables redu
ed by 2.5-4% with no performan
e penalty. On the kernels,our optimizer a
hieved speedups over i

 
omparable to the results with g

.A sample of some interesting optimizations performed on binaries that had beenalready optimized using g

 are given in Table 2.5. The system found a range ofoptimizations, from ones that are well-known (
onstant folding, redundant load elim-ination, strength-redu
tion) to very ar
hite
ture spe
i�
 optimizations (the use of thex
hg instru
tion to swap registers, and various uses of the SIMD instru
tions). Wedis
uss two dis
overed optimizations in detail. In Example 1 of Table 2.5, the super-optimizer �nds a three-instru
tion sequen
e to 
ompute the sum of eight unsignedbyte integers using the 64 bit registers available on the x86 platform. It �rst zeros outone of the 64 bit registers (mm0) by subtra
ting it from itself. It then uses the psadbwinstru
tion, whi
h 
omputes the sum of absolute di�eren
es of two 64-bit values.Sin
e one of the registers in this sequen
e is zero, this amounts to the 
omputation ofthe sum of the eight bytes in the other operand. The third instru
tion then stores the
omputed sum to the memory lo
ation sum. In Example 5, the destination (registeresi) is intended to be zeroed out only if the 
omparison �ag in the ma
hine is set;here g

 produ
es 
lever 
ode to avoid a bran
h instru
tion. The target sequen
eemitted by g

 reads the �ag to a register eax, de
rements it (
ausing it to be either
0 or −1) and then 
omputes the bitwise-and of eax and esi. Sin
e −1 is representedby all 1s in two's 
omplement, this e�e
tively sets esi to zero only if the 
omparison�ag was set. The superoptimizer proposes the use of a simple 
onditional-move 
movinstru
tion to a
hieve the same result.



2.6. Dis
ussion 29A total of around 3000 
odesize optimizations and 2100 runtime optimizationswere learnt after training the optimizer on a diverse set of integer programs. Onemetri
 of importan
e is the frequen
y of use of these optimizations. We found atremendous amount of re-use. Table 2.2 presents a pro�le of the optimizations thatwere applied to the SPEC integer ben
hmarks. Five optimizations were used morethan 1,000 times ea
h; in total over 600 distin
t optimizations were used at least on
eea
h on these ben
hmarks. To further study the re-use of optimizations, we trainedthe optimizer on one set of exe
utables and optimized another set of exe
utables.We found that most optimizations are 
aptured even though the exe
utable beingoptimized was not a part of the training set. For example, 97% of the optimizationswere 
aptured when we ran the optimizer on the popular internet browser firefoxafter training it only on the SPEC ben
hmarks.Frequen
yOf Use Number ofOptimiza-tions Number ofAppli
ations
> 1000 8 18679
201− 1000 7 4098
51− 200 33 2823
11− 50 82 1737
1− 10 474 1256Table 2.2: Pro�le of the number of optimizations and the number of times they wereapplied on SPEC CINT2000 ben
hmarks.The pro
ess of optimizing a full binary using the optimization database is veryfast, 
ompleting in less than two se
onds on these ben
hmarks. A prototype of oursystem is available online at [33℄.2.6 Dis
ussionIn this se
tion, we show in detail how our system optimizes a simple loop; the purposeis to illustrate what our te
hniques 
an, and 
annot, do using a small but fairly realisti
example. Consider the following C program to traverse a linked list of integers,



30 Chapter 2. Peephole SuperoptimizersKernelName Des
ription Pseudo-
odesum Cal
ulate the sum of unsignedbyte-integers in an array sum += a[i℄image-di� Cal
ulate the sum of absolute dif-feren
es of image pixels sum += ABS (a[i℄ - b[i℄)
omparison Compare ea
h element of two ar-rays 
[i℄ = (a[i℄ < b[i℄) ? 
0 : 
1min Find the minimum of ea
h ele-ment of two arrays 
[i℄ = (a[i℄ < b[i℄) ? a[i℄ : b[i℄xor Computes ex
lusive-OR over twoarrays 
[i℄ = b[i℄ ⊕ a[i℄sprite-
opy Rendering sprite graphi
s (GameProgramming) 
[i℄ = (a[i℄ == 0) ? b[i℄ : a[i℄Table 2.3: Superoptimized kernels, operating on arrays of 4 million elements.multiplying ea
h element by 2:stru
t node{ int val;stru
t node *next;};void traverse (stru
t node *head){ while (head){ head->val *= 2;head = head->next;}}The following assembly 
ode is generated by g

 without optimizations for the loopbody of traverse() (eax, edx are ma
hine registers, ebp is the register holding the



2.6. Dis
ussion 31Runtime CodesizeProgram Des
ription Number ofOptimiza-tions Instru
tionsElimi-nated Number ofOptimiza-tions CodesizeImprove-mentgzip Data CompressionUtility 621 4.16% 402 3.95%m
f Minimum CostNetwork FlowSolver 381 3.73% 335 5.86%
rafty Chess Program 1074 2.19% 758 1.71%bzip2 Data CompressionUtility 396 4.11% 301 4.58%g

 C 
ompiler 10326 2.44% 2996 1.12%parser Natural LanguagePro
essing 1123 3.84% 582 3.06%twolf Pla
e and RouteSimulator 1125 2.17% 619 1.47%Table 2.4: Results of running the optimizer on SPEC CINT2000 ben
hmark appli-
ations. The runtime improvements are shown over `g

 -O2' optimization. The
odesize improvements are shown over `g

 -Os'.frame pointer).1 : movl 8(%ebp), %edx #edx := head2 : movl 8(%ebp), %eax #eax := head3 : movl (%eax), %eax #eax := head->val4 : sall %eax #left-shift eax by 15 : movl %eax, (%edx) #head->val := eax6 : movl 8(%ebp), %eax #eax := head7 : movl 4(%eax), %eax #eax := head->next8 : movl %eax, 8(%ebp) #head := eax9 : 
mpl $0, 8(%ebp) #head == null?The superoptimizer �rst repla
es instru
tion 2 with
2′:movl %edx, %eax
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Des
ription Target Sequen
e Optimal Sequen
e LiveRegisters1. Sum of sum += a[i℄ psubb %mm0, %mm0 sumbyte-integers sum += a[i+1℄ psadbw &a[i℄, %mm0in an array . . . movd %mm0, sumsum += a[i+7℄2. eax ← sub %eax, %e
x notl %eax eaxe
x - eax - 1 mov %e
x, %eax add %e
x, %eaxde
 %eax3. Elimination of sub %eax, %e
x sub %eax, %e
x eax,Bran
h test %e
x, %e
x 
movne %edx, %ebx e
x,Instru
tions je .END ebx,mov %edx, %ebx ebx.END:4. Swap two mov %eax, %e
x x
hg %eax, %edx eax,registers mov %edx, %eax edxmov %e
x, %edx5. Use of setg %al mov $0, %eax esiConditional movzbl %al, %eax 
movg %eax, %esiMove de
 %eaxInstru
tion and %eax, %esi6. Constant mov $8, %eax mov $7, %eax eax,Folding sub %e
x, %eax sub %e
x, %eaxde
 %eax e
x7. Elimination of mov %eax, -20(%ebp) mov %eax, -20(%ebp) e
xRedundantLoads mov -20(%ebp), %e
x mov %eax, %e
xTable 2.5: Examples of runtime optimizations performed by the superoptimizer ong

-optimized exe
utables.



2.6. Dis
ussion 33and instru
tion 9 with
9′:
mpl $0, %eaxeliminating two redundant loads. Then, the instru
tion sequen
e 2′, 3, 4, 5 is repla
edwith a single instru
tion
3′:sall (%edx)taking advantage of the fa
t that eax is not live at the end of instru
tion 5. It isinferred that lo
ations 8(%ebp) and (%edx) in instru
tions 1 and 3′ 
annot alias withea
h other by 
omparing the types of instru
tion operands. Hen
e, in the third step,the instru
tion sequen
e 1, 3′, 6 is repla
ed by the sequen
e 1, 3′, 6′ with

6′:movl %edx, %eaxeliminating another redundant load. Instru
tions 6′ and 7 are repla
ed by
7′:movl 4(%edx), %eaxeliminating a register 
opy and �nally the use of register eax is eliminated in in-stru
tions 7′, 8 and 9′ by repla
ing it with edx in all three instru
tions. After theseoptimizations, the assembly 
ode is:1 : movl 8(%ebp), %edx #edx := head3': sall (%edx) #left-shift head->val by 17': movl 4(%edx), %edx #edx := head->next8': movl %edx, 8(%ebp) #head := edx9': 
mpl $0x0, %edx #edx == null?A standard optimizing 
ompiler produ
es the following 
ode (eax holds the value ofhead before entering the loop body):1 : sall (%eax) #left-shift head->val by 12 : movl 4(%eax), %eax #eax := head->next3 : testl %eax, %eax #eax == null?



34 Chapter 2. Peephole SuperoptimizersIn this example, our automati
ally generated optimizer performs all but one of theoptimizations performed by a standard optimizing 
ompiler. The optimization that ismissed involves the iteration variable (instru
tions 1 and 8). Be
ause data�ow analysisgives the standard 
ompiler a global view of the loop's behavior a
ross all iterations,the standard 
ompiler 
an 
a
he the iteration variable (head) in a register avoidingloads and stores at loop boundaries. Our rule-based system 
annot 
urrently �nd thisoptimization be
ause it does not understand loop-
arried dependen
ies. Unrolling theloop a few times would mitigate this limitation sin
e the intermediate loads 
an stillbe eliminated by pattern-mat
hing on short sequen
es of instru
tions.2.7 Related WorkSuperoptimization of 
ode sequen
es was �rst proposed nearly 20 years ago, but weare aware of just three e�orts that have developed the idea. Massalin �rst des
ribedan exhaustive-sear
h based approa
h using a fast probabilisti
 test to dis
over shortoptimal programs[23℄. By 
onstraining the set of instru
tions to a few register-registeroperations, Massalin was able to s
ale the length of enumerated programs to 12 in-stru
tions. For the probabilisti
 test, Massalin's superoptimizer 
hose a set of 
arefully
hosen inputs for the program being optimized. In the �rst stage, the probabilisti
test used 3 hand-
hosen input ve
tors; if the two programs produ
ed identi
al outputon all 3 inputs, the se
ond stage 
ompared the two programs on many more randomlysele
ted inputs. Massalin also used a pruning strategy to eliminate sub-optimal sub-sequen
es at every intermediate step. He �ltered out instru
tion sequen
es that areknown not to o

ur in any optimal program, using the property that any subsequen
eof an optimal program must also be optimal. To enable this pruning, he used manu-ally 
oded equivalen
es between shorter programs. Although Massalin proposes anddes
ribes a boolean veri�er to determine program equivalen
es in his paper, his pro-totype implementation used only a probabilisti
 test. He used manual inspe
tion tofurther as
ertain equivalen
e of program pairs. Massalin's superoptimizer was ableto test 50,000 programs per se
ond.We have adopted the same basi
 approa
h to sear
hing (enumerating) instru
tion
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es, with the addition of simultaneously optimizing many target sequen
es andredu
ing the sear
h spa
e using 
anoni
alized instru
tion sequen
es. While Mas-salin was interested in 
omputing optimal programs for mathemati
al fun
tions (e.g.signum), our interest is in 
omputing optimal versions of small instru
tion sequen
esfound in 
ommonly exe
uted 
ode. Our probabilisti
 test and pruning strategy arevery similar to those proposed by Massalin. We have enhan
ed the equivalen
e 
he
kerby supporting a large set of instru
tions (in
luding those a

essing memory) and ane�
ient SAT-based implementation of a boolean equivalen
e 
he
ker. Be
ause weaim to superoptimize several sequen
es simultaneously, a boolean 
he
ker be
omesessential to remove false positives produ
ed by the probabilisti
 test. Massalin's workreported on the optimization of relatively long sequen
es (12 instru
tions), at least
ompared to ours. To a
hieve su
h lengths it was ne
essary to restri
t the enumer-able instru
tions to a very small set of 10-15 hand-
hosen op
odes. We deal withroughly 300 op
odes, and so the number of instru
tion sequen
es for us grows mu
hmore rapidly with length. Even though our optimizer 
an test many more instru
tionsequen
es (500,000 per se
ond), our optimizer s
ales to only length-3 sequen
es.The GNU Superoptimizer (GSO) [15℄ learns optimizations involving elimination ofbran
h instru
tions for the RS/6000 pro
essor, for later use with the GNU C Compiler(GCC). They use exhaustive sear
h to �nd the fastest straight-line 
ode 
omputinga goal fun
tion. In parti
ular, they �nd optimal versions of the 
omputation of
omparison operators (A rel-op B). This work is perhaps the 
losest to ours in its goals;we are both interested in learning peephole optimizations. GSO has a large manual
omponent, as a user is required to spe
ify the goal fun
tion and if an optimization isfound, add it to GCC. Our approa
h is 
ompletely automati
. While GSO has beenused to learn a few tens of optimizations, our system has learned thousands and thereis no reason the algorithms should not s
ale to millions of optimizations.One of GSO's primary goals is to ensure portability a
ross ar
hite
tures and theya
hieve it using instru
tion simulation. We instead 
hoose to dire
tly exe
ute instru
-tions on hardware for speed. Therefore, our optimizer 
an run only on the targetar
hite
ture. GSO generates only register-register operations where the output andinputs of the goal fun
tions are assumed to be in spe
i�
 registers. They prune the
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h by trying only operands that are either inputs or have been generated by pre-vious instru
tions. For three-operand ar
hite
tures, the destination of ea
h operationis assumed to be the next available register; for two-operand ma
hines, one of theoperands is used as the destination. For 
ommutative operations, only one orderingof operands is tried. Using su
h optimizations, GSO restri
ts their bran
hing fa
torto between 100 and 1000. The longest sequen
e reported in their examples is fourinstru
tions long. Unlike GSO, we are interested in optimizing arbitrary sequen
esin
luding those that modify multiple registers and memory lo
ations. For this reason,our bran
hing fa
tor is bigger (around 2000-3000). Similarly, while GSO's equivalen
e
he
ker needs to 
ompare only one pair of values (the last generated value and the tar-get fun
tion's value), our equivalen
e 
he
ker needs to 
ompare the full representationof the ma
hine state.Another interesting approa
h to superoptimization is proposed in a system 
alledDenali [19℄. Denali is targeted primarily at optimizing performan
e-
riti
al innerloops. They divide the problem of �nding the optimal sequen
e into two steps: in the�rst step, a sear
h pro
edure �nds the spa
e of programs equivalent to the programbeing sear
hed; and in the se
ond step, they de
ide the optimal program in the spa
eof equivalent programs. To determine equivalen
e, Denali requires a set of axiomsexpressed in �rst order logi
, 
apturing mathemati
al operators and the instru
tionset of the ar
hite
ture. For example, an axiom 
ould express the fa
t that integeraddition is asso
iative, or that the leftshift instru
tion multiplies its operand by
2. The system then pro
eeds by mat
hing the program 
onstru
ts with the 
orre-sponding axioms to �nd all possible ways to 
ompute a goal fun
tion and formulatesa satis�ability 
onstraint, the solution to whi
h expresses the fastest among all possi-ble equivalent instru
tion sequen
es. Be
ause Denali uses goal-dire
ted sear
h, it 
an�nd mu
h longer sequen
es than we 
an 
urrently generate using exhaustive sear
h.However, Denali has two drawba
ks that led us to prefer exhaustive sear
h. First,Denali is dependent on having enough rules (axioms) to 
over all interesting 
ases;we didn't want to rule out optimizations simply be
ause we hadn't thought of them.Se
ond, it is un
lear how this approa
h 
an be used to optimize several instru
tionsequen
es simultaneously; we gain signi�
ant e�
ien
y by amortizing the 
ost of a



2.8. Con
lusions and Summary of Contributions 37single exhaustive enumeration of instru
tion sequen
es over the optimization of manytarget sequen
es.Peephole optimizers, apart from their typi
al use in the �nal optimization pass,have also been used to perform 
ode sele
tion at link time to generate highly portable
ompilers [6, 9, 10, 11, 21℄. In these systems, peephole optimization through pattern-mat
hing is a primary method to perform 
ode optimization. For example, the �veryportable optimizer� (VPO) in [6℄ uses peephole optimization to redu
e the volumeof intermediate 
ode by a fa
tor of two to three. These systems share our goal ofautomati
ally and systemati
ally dis
overing peephole optimizations. The primarydi�eren
es with our work are that our equivalen
e test based on SAT is more general(able to dete
t more equivalent sequen
es) and works for longer sequen
es than pre-vious systems. Dis
overing ea
h optimization is also more expensive in our approa
h;however, by partitioning the work into an o�-line learning phase that 
omputes adatabase of optimizations and an a
tual optimization phase that simply looks uptransformations in the database, our optimization phase 
an be as fast or faster thantraditional peephole optimizers.2.8 Con
lusions and Summary of ContributionsWe have des
ribed the 
onstru
tion of a system to automati
ally generate a peepholesuperoptimizer for a target ar
hite
ture. The system is 
apable of automati
allylearning thousands of peephole optimization rules, ea
h repla
ing the target sequen
ewith the 
orresponding optimal sequen
e. Our superoptimization-based approa
his 
apable of generating e�
ient 
ode involving SIMD instru
tions. It is also usefulapproa
h to automati
ally dis
over many di�erent 
lasses of optimizations in already-
ompiled 
ode.



Chapter 3Binary Translation Using PeepholeSuperoptimizersIn this 
hapter, we dis
uss the use of peephole superoptimizers to perform e�
ientbinary translation. We begin with a dis
ussion on the re
ent appli
ations of binarytranslation (Se
tion 3.1). We then provide a ne
essarily brief overview of peepholesuperoptimizers followed by a dis
ussion on how we employ them for binary trans-lation (Se
tion 3.2). We dis
uss other relevant issues involved in binary translation(Se
tion 3.3) and go on to dis
uss our prototype implementation (Se
tion 3.4). Wethen present our experimental results (Se
tion 3.5), dis
uss related work (Se
tion 3.6),and �nally 
on
lude (Se
tion 3.7).3.1 Appli
ations of Binary TranslationBefore des
ribing our binary translation system, we give a brief overview of a rangeof appli
ations for binary translation. Traditionally, binary translation has been usedto emulate lega
y ar
hite
tures on re
ent ma
hines. With improved performan
e, itis now also seen as an a

eptable portability solution.Binary translation is also useful to hardware designers for ensuring software avail-ability for their new ar
hite
tures. While the design and produ
tion of new ar
hi-te
ture 
hips 
omplete within a few years, it 
an take a long time for software to be38



3.1. Appli
ations of Binary Translation 39available on the new ma
hines. To deal with this situation and ensure early adoptionof their new designs, 
omputer ar
hite
ts often turn to software solutions like virtualma
hines and binary translation[8℄.
Another interesting appli
ation of binary translation for hardware vendors is ba
k-ward and forward 
ompatibility of their ar
hite
ture generations. To run softwarewritten for older generations, newer generations are for
ed to support ba
kward 
om-patibility. On the �ip side, it is often not possible to run newer generation software onolder ma
hines. Both of these problems 
reate 
ompatibility heada
hes for 
omputerar
hite
ts and huge management overheads for software developers. It is not hard toimagine the use of a good binary-translation based solution to solve both problemsin the future.
Binary translation is also being used for ma
hine and appli
ation virtualization.Leading virtualization 
ompanies are now 
onsidering support for allowing the exe
u-tion of virtual ma
hines from multiple ar
hite
tures on a single host ar
hite
ture[31℄.Hardware vendors are also developing virtualization platforms that allow people torun popular appli
ations written for other ar
hite
tures on their ma
hines[26℄. Serverfarms and data 
enters 
an use binary translation to 
onsolidate their servers, thus
utting their power and management 
osts.
People have also used binary translation to improve performan
e and redu
e power
onsumption in hardware. Transmeta Crusoe [20℄ employs on-the-�y hardware binarytranslation to exe
ute x86 instru
tions on a VLIW ar
hite
ture thereby 
utting power
osts[16℄. Similarly, in software, many Java virtual ma
hines perform on-the-�y bi-nary translation from Java byte
ode to the host ma
hine instru
tions[37℄ to improveexe
ution performan
e.



40 Chapter 3. Binary Translation Using Peephole Superoptimizers3.2 Binary Translation Using Peephole Superopti-mizersIn this se
tion we give a ne
essarily brief overview of the design and fun
tionality ofpeephole superoptimizers, fo
using on the aspe
ts that are important in the adapta-tion to binary translation, whi
h is dis
ussed in Se
tion 3.2.3.2.1 Peephole Superoptimizers
a.out
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Indexed table of
Objective Sequences

Training
ProgramsFigure 3.1: In the �rst phase, the harvester extra
ts instru
tion sequen
es from aset of training exe
utable binaries and 
onstru
ts an indexed data stru
ture of targetsequen
esPeephole superoptimizers are an unusual type of 
ompiler optimizer [5, 15℄, andfor brevity we usually refer to a peephole superoptimizer as simply an optimizer.Constru
ting a peephole superoptimizers has three phases:1. A module 
alled the harvester extra
ts target instru
tion sequen
es from a setof training programs (see Figure 3.1). These instru
tion sequen
es are the oneswe seek to optimize.2. A module 
alled the enumerator enumerates all possible instru
tion sequen
esup to a 
ertain length. Ea
h enumerated instru
tion sequen
e s is 
he
ked to seeif it is equivalent to any target instru
tion sequen
e t. If s is equivalent to sometarget sequen
e t and s is 
heaper a

ording to a 
ost fun
tion (e.g., estimated
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ution time or 
ode size) than any other sequen
e known to be equivalent to
t (in
luding t itself), then s is re
orded as the best known repla
ement for t (seeFigure 3.2). A few sample peephole optimization rules are shown in Table 3.1.3. The learned (target sequen
e, optimal sequen
e) pairs are organized into alookup table indexed by target instru
tion sequen
e.On
e 
onstru
ted the optimizer is applied to an exe
utable by simply looking uptarget sequen
es in the exe
utable for a known better repla
ement (see Figure 3.3).The purpose of using harvested instru
tion sequen
es is to fo
us the sear
h for opti-mizations on the 
ode sequen
es (usually generated by other 
ompilers) that appearin a
tual programs. Typi
ally all instru
tion sequen
es up to length 5 or 6 are har-vested, and the enumerator tries all instru
tion sequen
es up to length 3 or 4. Even atthese lengths, there are billions of enumerated instru
tion sequen
es to 
onsider, andte
hniques for pruning the sear
h spa
e are very important [5℄. Thus, the 
onstru
tionof the peephole optimizer is time-
onsuming, requiring a few pro
essor-days. In 
on-trast, a
tually applying the peephole optimizations to a program typi
ally 
ompleteswithin a few se
onds.

Objective
Sequences
for match

Check
match

candidate sequences
upto a certain length

Enumerate all
Add to Peephole TableFigure 3.2: In the se
ond phase, the enumerator enumerates all instru
tion sequen
esup to a 
ertain length, 
he
king ea
h of them with any of the target sequen
es for amat
h. If a suitable mat
h is found, the 
orresponding repla
ement rule is added tothe peephole table.The enumerator's equivalen
e test is performed in two stages: a fast exe
utiontest and a slower boolean test. The exe
ution test is implemented by exe
utingthe target sequen
e and the enumerated sequen
e on hardware and 
omparing theiroutputs on random inputs. If the exe
ution test does not prove that the two sequen
es



42 Chapter 3. Binary Translation Using Peephole Superoptimizersare di�erent (i.e., be
ause they produ
e di�erent outputs on some tested input), theboolean test is used. The equivalen
e of the two instru
tion sequen
es is expressedas boolean formula: ea
h bit of ma
hine state tou
hed by either sequen
e is en
odedas a boolean variable, and the semanti
s of instru
tions is en
oded using standardlogi
al 
onne
tives. A SAT solver is then used to test the formula for satis�ability,whi
h de
ides whether the two sequen
es are equal.Target Sequen
e LiveRegisters EquivalentEnumerated Sequen
emovl (%eax), %e
xmovl %e
x, (%eax) eax,e
x movl (%eax), %e
xsub %eax, %e
xmov %e
x, %eaxde
 %eax eax not %eaxadd %e
x, %eaxsub %eax, %e
xtest %e
x, %e
xje .ENDmov %edx, %ebx.END: eax, e
x,edx, ebx sub %eax, %e
x
movne %edx, %ebxTable 3.1: Examples of peephole rules generated by a superoptimizer for x86 exe
uta-bles .
Using these te
hniques, all length-3 x86 instru
tion sequen
es have previously beenenumerated on a single pro
essor in less than two days[5℄. This parti
ular superop-timizer is 
apable of handling op
odes involving �ag operations, memory a

essesand bran
hes, whi
h on most ar
hite
tures 
overs almost all op
odes. Equivalen
e ofinstru
tion sequen
es involving memory a

esses is 
orre
tly 
omputed by a

ount-ing for the possibility of aliasing. The optimizer also takes into a

ount live registerinformation, allowing it to �nd many more optimizations be
ause 
orre
tness onlyrequires that optimizations preserve live registers (note the live register informationqualifying the peephole rules in Table 3.1).



3.2. Binary Translation Using Peephole Superoptimizers 43
Apply
Peephole
Optimizations

b.outa.outFigure 3.3: In the �nal phase, the optimizations in the peephole table are applied tothe target exe
utable.3.2.2 Binary TranslationHere, we dis
uss how we use a peephole superoptimizer to perform e�
ient binarytranslation. The approa
h is similar to that dis
ussed in Se
tion 3.2.1, ex
ept thatnow our target sequen
es belong to the sour
e ar
hite
ture while the enumeratedsequen
es belong to the destination ar
hite
ture.The binary translator's harvester �rst extra
ts target sequen
es from a trainingset of sour
e-ar
hite
ture appli
ations. The enumerator then enumerates instru
tionsequen
es on the destination ar
hite
ture 
he
king them for equivalen
e with any ofthe target sequen
es. A key issue is that the de�nition of equivalen
e must 
hangein this new setting with di�erent ma
hine ar
hite
tures. Now, equivalen
e is mean-ingful only with respe
t to a register map showing whi
h memory lo
ations on thedestination ma
hine, and in parti
ular registers, emulate whi
h memory lo
ations onthe sour
e ma
hine. Some valid register maps are shown in Table 3.2. A registerin the sour
e ar
hite
ture 
ould be mapped to a register or a memory lo
ation inthe destination ar
hite
ture. It is also possible for a memory lo
ation in the sour
ear
hite
ture to be mapped to a register in the destination ar
hite
ture. The 
hoi
e ofthe register determines the renaming of registers in performing a translation from asour
e sequen
e to an equivalent target sequen
e.During enumeration, all possible register maps are enumerated and a 
orrespond-ing target sequen
e sear
hed. We redu
e the sear
h spa
e by observing that havingon
e 
onsidered a register map, we need never 
onsider a register map that is equalup to a 
onsistent register renaming. In 
ase a mat
h is found, the 
orresponding



44 Chapter 3. Binary Translation Using Peephole SuperoptimizersRegister Map Des
riptionr1→eax Maps PowerPC register tox86 registerr1→M1 Maps PowerPC register to amemory lo
ationMs→eax Maps a memory lo
ation insour
e 
ode to a register inthe translated 
oder1→eaxr2→eax Invalid. Cannot map twoPowerPC registers to thesame x86 registerMs→Mt Maps one memory lo
ationto another (e.g. addressspa
e translation)Table 3.2: Some valid (and invalid) register maps from PowerPC-x86 translation (Mirefers to a memory lo
ation).peephole rule is added to the translation table. The peephole rule now has an extra�eld spe
ifying the register map under whi
h it is valid. Some examples of peepholetranslation rules are shown in Table 3.3.On
e the binary translator is 
onstru
ted, using it is relatively simple. Thetranslation rules are applied to the sour
e-ar
hite
ture 
ode to obtain destination-ar
hite
ture 
ode. The appli
ation of translation rules is more involved than theappli
ation of optimization rules. Now, we also need to sele
t the register map forea
h 
ode point before generating the 
orresponding translated 
ode. The right 
hoi
eof register maps 
an make a visible di�eren
e to the performan
e of generated 
ode.We dis
uss the sele
tion of optimal register maps at translation time in Se
tion 3.3.2.3.3 Other Issues in Binary TranslationIn this se
tion, we dis
uss the main issues relevant to our approa
h to binary trans-lation.



3.3. Other Issues in Binary Translation 45PowerPCSequen
e LiveRegisters StateMap x86 Instru
tionSequen
emr r1,r2 r1,r2 r1→eaxr2→e
x movl %e
x,%eaxmr r1,r2 r1,r2 r1→eaxr2→M1

movl M1,%eaxlwz r1,(r2) r1,r2 r1→eaxr2→e
x movl (%e
x),%eaxbswap %eaxlwz r1,(r2)stw r1,(r3) r1,r2,r3 r1→eaxr2→e
xr3→edx movl (%e
x),%eaxmovl %eax,(%edx)mflr r1 r1,lr r1→eaxlr→e
x movl %e
x,%eaxTable 3.3: Examples of peephole translation rules from PowerPC to x86.3.3.1 Stati
 vs Dynami
 TranslationBinary translation 
an either be performed stati
ally (
ompile-time) or dynami
ally(runtime). Most existing tools perform binary translation dynami
ally for its primaryadvantage of having a 
omplete view of the 
urrent ma
hine state. Moreover, dynami
binary translation provides additional opportunities for runtime optimizations. Thedrawba
k of dynami
 translation is the overhead of performing translation and book-keeping at runtime, whi
h is espe
ially visible while running small user-intera
tiveappli
ations that are invoked multiple times, su
h as many desktop appli
ations. Astati
 translator translates programs o�ine and 
an apply more extensive (and poten-tially whole program) optimizations. However, performing faithful stati
 translationis a slightly harder problem sin
e no assumptions 
an be made about the runtimestate of the pro
ess.Our binary translator is stati
, though we have avoided in
luding anything inour implementation that would make it impra
ti
al to develop a dynami
 translator(e.g., whole-program analysis or optimizations) using the same algorithms. Most ofthe te
hniques we dis
uss are equally appli
able in both settings and when they arenot, we dis
uss the two separately.



46 Chapter 3. Binary Translation Using Peephole Superoptimizers3.3.2 Register MapsWhile translating 
ode from one ar
hite
ture to another, we need to 
hoose whi
hregisters (or memory lo
ations) on the destination ma
hine will emulate whi
h regis-ters on the sour
e ma
hine. Choosing a good register map is 
ru
ial to the quality oftranslation, and moreover the best 
ode may require 
hanging the register map fromone 
ode point to the next. Thus, the best register map is the one that minimizesthe 
ost of the peephole translation rule (generates the fastest 
ode) plus any 
ost ofswit
hing register maps from the previous program point�be
ause swit
hing registermaps requires adding register move instru
tions to the generated 
ode to realize theswit
h at run-time, swit
hing register maps is not free.We formulate a dynami
 programming problem to 
hoose a minimum 
ost registermap at ea
h program point in a given 
ode region. At ea
h 
ode point all feasibleregister maps are enumerated. For ea
h enumerated register map M , the peepholetranslation table is queried for a mat
hing translation rule T and the 
orrespondingtranslation 
ost is re
orded. Assume for simpli
ity that the 
ode point under 
onsid-eration has only one prede
essor, and the possible register maps at the prede
essorare P1, . . . , Pn. The best 
ost register map is the one Pi that minimizes the 
ost ofswit
hing from Pi to M , the 
ost of T , and, re
ursively, the 
ost of Pi:
cost(M) = cost(T ) + mini(cost(Pi) + switch(Pi, M))We solve the re
urren
e in a standard fashion. Beginning at start of a 
ode region(e.g., a fun
tion body), the 
ost of the pre
eding register map is initially 0. Work-ing forwards through the 
ode region, the 
ost of ea
h enumerated register map is
omputed and stored before moving to the next program point and repeating the
omputation. When the end of the 
ode region is rea
hed, the register map with thelowest 
ost is 
hosen and its de
isions are ba
ktra
ked to de
ide the register maps atall pre
eding program points. For program points having multiple prede
essors, weuse a weighted sum of the swit
hing 
osts from ea
h prede
essor. The weights as aproxy for pro�ling or other hints that would tell us how frequently ea
h 
ode path istaken. To handle loops, we perform two iterations of this 
omputation.



3.3. Other Issues in Binary Translation 47An ExampleWe use an example to further explain our algorithm. Consider a fun
tion foo withthree PowerPC instru
tions:foo:mr r2, r1mr r1, r3mr r3, r2blrfoo swaps the registers r1 and r3 using register r2 as a temporary store. For sim-pli
ity, we assume that all three registers (namely r1, r2 and r3) are live at theend of the fun
tion. In Table 3.4, we show the peephole translation rules relevantto this example. A row in the table represents that a PowerPC instru
tion sequen
ein Column 1 
an be translated to the x86 instru
tion sequen
e in Column 3 if theregisters at that program point are mapped a

ording to Column 2. For example,the �rst rule states that the instru
tion mr r1, r2 
an be translated to mov M, R ifPowerPC registers r1 and r2 are mapped to the x86 register R and memory lo
ationM respe
tively. The 
ost of using a peephole translation rule (
olumn 4) is the 
ost ofthe 
orresponding x86 instru
tion sequen
e; our 
ost fun
tion 
aptures the approx-imate runtime of the x86 sequen
e. The other signi�
ant 
omponent of the 
ost isthe 
ost of swit
hing register assignments. Table 3.5 gives the swit
hing 
osts for asingle PowerPC register. The table represents that the 
ost of swit
hing from eitherregister to memory or vi
e versa has the 
ost of a memory a

ess (whi
h is 10 in our
ost model), while the 
ost to remain in the same state is 0.We now des
ribe the solution of our dynami
 programming formulation for astraight line sequen
e of PowerPC 
ode. At ea
h step in our algorithm, w move for-ward by one PowerPC instru
tion. At the end of ea
h step, we would have 
omputedthe best possible translation and it's asso
iated 
ost for ea
h register map.In our example, we start with 
ost 0 at fun
tion entry foo. At this point allregisters are assumed to be in memory. At Step 1, we 
onsider all possible ways totranslate the �rst instru
tion. There are three valid possibilities (depending on the



48 Chapter 3. Binary Translation Using Peephole SuperoptimizersPowerPC Sequen
e Map x86 Sequen
e Costmr r1, r2 r1 → Rr2 → M mov M, R 10mr r1, r2 r1 → Mr2 → R mov R, M 10mr r1, r2 r1 → R1r2 → R2

mov R1, R2 1mr r1, r2mr r2, r3mr r3, r1 r1 → Mr2 → R2r3 → R3

mov R2, Mx
hg R2, R3

11Table 3.4: An example table of peephole translation rules.Transition CostR−→M 10M−→R 10R−→R 0M−→M 0Table 3.5: Swit
hing Costsregister map used):
• Use peephole rule 1 with r1←R and r2←M. The peephole rule 
ost in this 
aseis 10 while the swit
hing 
ost from the previous program point (where bothPowerPC registers were in memory) is 10, totalling to 20.
• Use peephole rule 2 with r1←M and r2←R. This is identi
al to the �rst 
ase,with a total 
ost of 20.
• Use peephole rule 3 with r1←R1 and r2←R2. In this 
ase, the peephole rule
ost is 1, while the swit
hing 
ost is 20 sin
e it involves bringing two PowerPCregisters from memory to x86 registers.At this point, the minimum 
ost translation for the �rst instru
tion is 20, obtainedby using either one of peephole rules 1 and 2. We store all these three possibilities to
ompute the best translations at the next step.



3.3. Other Issues in Binary Translation 49At Step 2, we sear
h for the minimum 
ost translation for the �rst two instru
tions.In this 
ase, there are 6 possibilities for register maps at instru
tion 2, three of whi
hwe dis
uss below. (The other three possibilities are very similar to the ones dis
ussed).
• Use peephole rule 1 with r1←R, r2←M1 and r3←M2. The lowest 
ost translationis a
hieved by using the register map r1←R at the previous instru
tion. Thetotal 
ost in this 
ase is 30 = 20 + 10 where 20 is the 
ost of the previoustranslation and 10 is the 
ost the peephole rule. The swit
hing 
ost in this 
aseis 0.
• Use peephole rule 3 with r1←R1, r2←M and r3←R2. In this 
ase, the lowest
ost translation is a
hieved by using the register map (r1←R, r2←M) at theprevious instru
tion. The total 
ost in this 
ase is 31 = 20 + 10 + 1 where 20 isthe 
ost of the previous translation, 10 is the swit
hing 
ost of bringing r3 intoan x86 register and 1 is the 
ost of the peephole rule.
• Use peephole rule 3 with all three registers r1, r2 and r3mapped to x86 registersR1, R2 and R3 respe
tively. At this point, the best register map at the previousinstru
tion is (r1←R1, r2←R2). The total 
ost in this 
ase is 32 = 21 + 10 + 1,where 21 is the 
ost of the previous translation, 10 is the swit
hing 
ost fromthe previous register map to this one, and 1 is the 
ost of the peephole rule.Next, we attempt to mat
h the instru
tion sequen
e formed by the �rst two instru
-tions to one of the rules in the peephole table. In this 
ase, no mat
hes exist andso, we move on to the next instru
tion. We would like to point out that sin
e theoptimal register map at a program point does not depend on the register maps atprogram points before the prede
essor program point, it su�
es to store only the
urrent register maps and their optimal 
osts.At Step 3, a similar pro
edure is used to 
ompute the 
osts of the possible registermaps at the third instru
tion. The �nal 
osts at the end of the third instru
tionare shown in Figure 3.4 for ea
h register map. As seen in the �gure, the minimum
ost a
hieved by 
onsidering all single instru
tion mat
hes is 33. Next, we attemptto mat
h the instru
tion sequen
e formed by the se
ond and third instru
tions with
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r1,r2

0 + 20 + 1

r2

0 + 10 + 10

r1

0 + 10 + 10

21 + 10 + 1

r1,r2,r3

foo:

mr  r1, r3

mr  r2, r1

0

mr  r3, r2 . . .
r1,r3r1,r2,r3

32 + 0 + 1 31 + 0 + 10

r1,r2

31 + 0 + 10

. . .
r1

20 + 0 + 10 20 + 10 + 1

r1,r3 || r1,r2

Figure 3.4: The enumerated register maps for the example. Ea
h box represents anenumerated register map. The top label on the box indi
ates the PowerPC registersthat are mapped to x86 registers (the other PowerPC registers are in memory). Thevalue in the box is the minimum 
ost of using that register map at that program point.The 
ost is represented as (prede
essor-
ost + swit
hing-
ost + peephole-rule-
ost).The dotted lines indi
ate the prede
essor used to obtain the minimum 
ost.a rule in the peephole table. We �nd no mat
h in this 
ase. Finally, we attempt tomat
h the sequen
e formed by all three instru
tions. In this 
ase, peephole rule 4mat
hes the three instru
tions with r1←M, r2←R1 and r3←R2 with a total 
ost of
31 = 20+11 (here, 20 is the 
ost of swit
hing and 11 is the 
ost of the peephole rule).At the end of the three instru
tions, the minimum 
ost a
hieved is 31 by usingpeephole rule 4, and that is used as the �nal translation of the fun
tion.This pro
edure of enumerating all register maps and then solving a dynami
 pro-gramming problem is 
omputationally intensive and, if not done properly, 
an sig-ni�
antly in
rease translation time. While the 
ost of �nding the best register map



3.3. Other Issues in Binary Translation 51for every 
ode point is not a problem for a stati
 translator, it would add signi�
antoverhead to a dynami
 translator. To bound the 
omputation time, we prune the setof enumerated register maps at ea
h program point. We retain only the n lowest-
ostregister maps before moving to the next program point. We allow the value of n to betunable and refer to it as the prune size. We also have the �exibility to trade 
ompu-tation time for lower quality solutions. For example, for 
ode that is not performan
e
riti
al we 
an 
onsider 
ode regions of size one (e.g., a single instru
tion) or evenuse a �xed register map. In Se
tion 3.5 we show that the 
ost of 
omputing the bestregister maps for frequently exe
uted instru
tions is very small for our ben
hmarks.We also dis
uss the performan
e sensitivity of our ben
hmarks to the prune size.
3.3.3 EndiannessIf the sour
e and destination ar
hite
tures have di�erent endianness we 
onvert allmemory reads to destination endianness and all memory writes to sour
e endianness.This poli
y ensures that memory is always in sour
e endianness while registers havedestination endianness. The extra byte-swap instru
tions needed to maintain thisinvariant are only needed on memory a

esses; in parti
ular, we avoid the additionaloverhead of shu�ing bytes on register operations.While dealing with sour
e-destination ar
hite
ture pairs with di�erent endianness,spe
ial 
are is required in handling OS-related data stru
tures. In parti
ular, all ex-e
utable headers, environment variables and program arguments in the program'saddress spa
e need to be 
onverted from destination endianness to sour
e endiannessbefore transferring 
ontrol to the translated program. This step is ne
essary be
ausethe sour
e program assumes sour
e endianness for everything while the OS writes thedata stru
tures believing that the program assumes destination endianness. In a dy-nami
 translator, these 
onversions are performed inside the translator at startup. Ina stati
 translator, spe
ial initialization 
ode is emitted to perform these 
onversionsat runtime.



52 Chapter 3. Binary Translation Using Peephole Superoptimizers3.3.4 Control Flow Instru
tionsLike all other op
odes, 
ontrol �ow instru
tions are also translated using peepholerules. Dire
t jumps in the sour
e are translated to dire
t jumps in the translated
ode, with the jump destination in being appropriately adjusted to point to the 
or-responding translated 
ode. To handle 
onditional jumps, the 
ondition 
odes ofthe sour
e ar
hite
ture need to be faithfully represented in the destination ar
hite
-ture. Handling 
ondition 
odes 
orre
tly is one of the more involved aspe
ts of binarytranslation be
ause of the divergent 
ondition-
ode representations used by di�erentar
hite
tures. We dis
uss our approa
h to handling 
ondition 
odes in the 
ontextof our PowerPC-x86 binary translator; see Se
tion 3.4.3. The handling of indire
tjumps is more involved and is done di�erently for stati
 and dynami
 translators. Wedis
uss this in detail in Se
tion 3.4.4.
3.3.5 System CallsWhen translating a
ross two di�erent operating systems, ea
h sour
e OS system 
allneeds to be emulated on the destination OS. Even when translating a
ross the sameoperating system on di�erent ar
hite
tures, many system 
alls require spe
ial han-dling. For example, some system 
alls are only implemented for spe
i�
 ar
hite
tures.Also, if the two ar
hite
tures have di�erent endianness, proper endianness 
onversionsare required for all memory lo
ations that the system 
all 
ould read or write.There are other relevant issues to binary translation. For example, di�erent issuesexist in full system emulation vs user-level emulation. A full system emulator needsto also emulate the 
hipset and other peripherals of the sour
e ar
hite
ture, while auser level emulation 
an abstra
t these issues at system-
all interfa
e. Other examplesin
lude pre
ise ex
eptions, misaligned memory a

esses, interpro
ess 
ommuni
ation,signal handling, et
. These problems are orthogonal to the issues in peephole binarytranslation and our solutions to these issues are standard. In this work, our fo
us isprimarily on e�
ient 
ode-generation.



3.4. Implementation 533.4 ImplementationWe have implemented a binary translator that allows PowerPC/Linux exe
utablesto run in an x86/Linux environment. The translator is 
apable of handling almostall PowerPC op
odes (around 180 in all). We have tested our implementation on avariety of di�erent exe
utables and libraries.The translator has been implemented in C/C++ and O'Caml [22℄. Our superop-timizer is 
apable of automati
ally inferring peephole translation rules from PowerPCto x86. To test equivalen
e of instru
tion sequen
es, we use zCha� [25, 38℄ as ourba
kend SAT solver. We have translated most, but not all, Linux PowerPC system
alls. We present our results using the stati
 translator that produ
es an x86 ELF 32-bit binary exe
utable from a PowerPC ELF 32-bit binary. Be
ause we used the stati
peephole superoptimizer des
ribed in [5℄ as our starting point, our binary translatoris also stati
, though as dis
ussed previously our te
hniques 
ould also be applied ina dynami
 translator. A 
onsequen
e of our 
urrent implementation is that we 
analso translate all dynami
ally linked libraries used by the PowerPC program.3.4.1 EndiannessPowerPC is a big-endian ar
hite
ture while x86 is a little-endian ar
hite
ture, whi
hwe handle using the s
heme outlined in Se
tion 3.3.3. For integer operations, thereexist three operand sizes in PowerPC: 1, 2 and 4 bytes. Depending on the operand size,the appropriate 
onversion 
ode is required when reading from or writing to memory.We employ the 
onvenient bswap x86 instru
tion to generate e�
ient 
onversion 
ode.3.4.2 Sta
k and HeapOn Linux, the sta
k is initialized with envp, arg
 and argv and the sta
k pointer issaved to a 
anoni
al register at load time. On x86, the 
anoni
al register storing thesta
k pointer is esp; on PowerPC, it is r1. When the translated exe
utable is loadedin an x86 environment (in the 
ase of dynami
 translation, when the translator isloaded), the esp register is initialized to the sta
k pointer by the operating system



54 Chapter 3. Binary Translation Using Peephole Superoptimizerswhile the emulated r1 register is left uninitialized. To make the sta
k visible to thetranslated PowerPC 
ode, we 
opy the esp register to the emulated r1 register atstartup. In dynami
 translation, this is done by the translator; in stati
 translation,this is done by the initialization 
ode. The handling of the heap requires no spe
iale�ort sin
e the brk Linux system 
all used to allo
ate heap spa
e is identi
al on bothx86 and PowerPC.3.4.3 Condition CodesCondition 
odes are bits representing quantities su
h as 
arry, over�ow, parity, less,greater, equal, et
. PowerPC and x86 handle 
ondition 
odes very di�erently. Figures3.5 and 3.6 show how 
ondition 
odes are represented in PowerPC and x86 respe
-tively.While PowerPC 
ondition 
odes are written using separate instru
tions, x86 
on-dition 
odes are overwritten by almost all x86 instru
tions. Moreover, while PowerPC
ompare instru
tions expli
itly state whether they are doing a signed or an unsigned
omparison and store only one result in their �ags, x86 
ompare instru
tions performboth signed and unsigned 
omparisons and store both results in their 
ondition bits.On x86, the bran
h instru
tion then spe
i�es whi
h 
omparison it is interested in(signed or unsigned). We handle these di�eren
es by allowing the PowerPC 
ondi-
CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

3 4 7 8 11 12 15 16 19 20 23 24 3127 280

CRn LT GT EQ SOFigure 3.5: PowerPC ar
hite
ture has support for eight independent sets of 
ondition
odes CR0-CR7. Ea
h 4-bit CRn register uses one bit ea
h to represent less than (LT),greater (GT), equal (EQ) and over�ow-summary (SO). Expli
it instru
tions are requiredto read/write the 
ondition 
ode bits.tion registers (
r0-
r7) to be mapped to x86 �ags in the register map. For example,
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F
SO

F

OF: Signed Overflow
CF: Unsigned Overflow

SF: Sign Flag
ZF: Zero Flag

F
C

31 11 7 6 0

F
ZEFLAGS

Figure 3.6: The x86 ar
hite
ture supports only a single set of 
ondition 
odes repre-sented as bits in a 32-bit EFLAGS register. Almost all x86 instru
tions overwrite these
ondition 
odes.an entry 
r0→SF in the register map spe
i�es that, at that program point, the 
on-tents of register 
r0 are en
oded in the x86 signed �ags (SF). The translation of abran
h instru
tion then depends on whether the 
ondition register being used (
ri)is mapped to signed (SF) or unsigned (UF) �ags.3.4.4 Indire
t JumpsJumping to an address in a register (or a memory lo
ation) is an indire
t jump.Fun
tion pointers, dynami
 loading, and 
ase statements are all handled using indire
tjumps. Sin
e an indire
t jump 
ould jump almost anywhere in the exe
utable, itrequires 
areful handling. Moreover, sin
e the destination of the indire
t jump 
ouldassume a di�erent register-map than the 
urrent one, the appropriate 
onversion needsto be performed before jumping to the destination . Di�erent approa
hes for dealingwith indire
t jumps are needed in stati
 and dynami
 binary translators.Handling an indire
t jump in a dynami
 translator is simpler. Here, on en
oun-tering an indire
t jump, we relinquish 
ontrol to the translator. The translator thenperforms the register map 
onversion before transferring 
ontrol to the (translated)destination address.Handling an indire
t jump in a stati
 translator is more involved. We �rst iden-tify all instru
tions that 
an be possible indire
t jump targets. Sin
e almost allwell-formed exe
utables use indire
t jumps in only a few di�erent 
ode paradigms,it is possible to identify possible indire
t jump targets by s
anning the exe
utable.We s
an the read-only data se
tions, global o�set tables and instru
tion immedi-ate operands and use a set of pattern mat
hing rules to identify possible indire
t
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movl lr, tmp
lea  .JTAB(tmp), tmp
jmp *(tmp)

Peephole Translation
Table

destination state map
code to convert  to

blr

ppc x86

.JTAB
0

41234

The lookup table stores a pointer to
the state−map conversion code, which then
jumps to the final destination address

jmp <destination>

Figure 3.7: Handling of indire
t jumps in a stati
 binary translator. An indire
t jumpis translated to a table lookup and a jump to the 
orresponding address. The lookuptable stores a pointer to a 
ode fragment that �rst performs state-map 
onversionbefore jumping to the translated 
ode.jump targets. A lookup table is then 
onstru
ted to map these jump targets (whi
hare sour
e ar
hite
ture addresses) to their 
orresponding destination ar
hite
ture ad-dresses. However, as we need to perform register map 
onversion before jumping tothe destination address at runtime, we repla
e the destination addresses in the lookuptable with the address of a 
ode fragment that performs the register-map 
onversionbefore jumping to the destination address. We illustrate this s
heme in Figure 3.7.The translation of an indire
t jump involves a table lookup and some register-map
onversion 
ode. While the table lookup is fast, the register-map 
onversion mayinvolve multiple memory a

esses. Hen
e, an indire
t jump is usually an expensiveoperation.Although the pattern mat
hing rules we use to identify possible indire
t jumptargets have worked extremely well in pra
ti
e, they are heuristi
s and parti
ularlyare prone to adversarial atta
ks. It would not be di�
ult to 
onstru
t an exe
utablethat exploits these rules to 
ause a valid PowerPC program to 
rash on x86. Hen
e,in an adversarial s
enario, it would be wise to assume that all 
ode addresses arepossible indire
t jump targets. Doing so results in a larger lookup table and more
onversion 
ode fragments, in
reasing the overall size of the exe
utable, but will have
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 x86 Comparisonbl 
all bl (bran
h-and-link) saves theinstru
tion pointer to registerlr while 
all pushes it tosta
kblr ret blr (bran
h-to-link-register)jumps to the address pointed-to by lr, while ret pops theinstru
tion pointer from thesta
k and jumps to itTable 3.6: Fun
tion 
all and return instru
tions in PowerPC and x86 ar
hite
turesno e�e
t on running time apart from possible 
a
he e�e
ts.3.4.5 Fun
tion Calls and ReturnsFun
tion 
alls and returns are handled in very di�erent ways in PowerPC and x86.Table 3.6 lists the instru
tions and registers used in fun
tion 
alls and returns forboth ar
hite
tures.We implement fun
tion 
alls of the PowerPC ar
hite
ture by simply emulatingthe link-register(lr) like any other PowerPC register. On a fun
tion 
all (bl), thelink register is updated with the value of the next PowerPC instru
tion pointer. Afun
tion return (blr) is treated just like an indire
t jump to the link register.The biggest advantage of using this s
heme is its simpli
ity. However, it is possi-ble to improve the translation of the blr instru
tion by exploiting the fa
t that blris always used to return from a fun
tion. For this reason, it is straightforward topredi
t the possible jump targets of blr at translation time (it will be the instru
-tion following the fun
tion 
all bl). This information 
an be used to avoid the extramemory reads and writes required for register map 
onversion in an indire
t jump.We have implemented this optimization; while this optimization provides signi�
antimprovements while translating small re
ursive ben
hmarks (e.g., re
ursive 
omputa-tion of the �bona

i series), it is not very e�e
tive for larger ben
hmarks (e.g., SPECCINT2000).
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ode Registers Des
riptionmul reg32 eax, edx Multiplies reg32with eax and storesthe 64-bit result inedx:eax.div reg32 eax, edx Divides edx:eax byreg32 and stores re-sult in eax.any 8-bit insn eax, ebxe
x, edx 8-bit operations 
anonly be performedon these four regis-ters.Table 3.7: Examples of x86 instru
tions that operate only on 
ertain �xed registers.3.4.6 Register Name ConstraintsAnother interesting 
hallenge while translating from PowerPC to x86 is dealing withinstru
tions that operate only on spe
i�
 registers. Su
h instru
tions are present onboth PowerPC and x86. Table 3.7 shows some su
h x86 instru
tions.To be able to generate peephole translations involving these spe
ial instru
tions,the superoptimizer is made aware of the 
onstraints on their operands during enumer-ation. If a translation is found by the superoptimizer involving these spe
ial instru
-tions, the generated peephole rule en
odes the name 
onstraints on the operands asregister name 
onstraints. These 
onstraints are then used by the translator at 
odegeneration time.3.4.7 Self-Referential and Self-Modifying CodeWe handle self-referential 
ode by leaving a 
opy of the sour
e ar
hite
ture 
ode inits original address range for the translated version. To deal with self-modifying 
odeand dynami
 loading, we invalidate the translation of a 
ode fragment on observingany modi�
ation to that 
ode region. We a
hieve this by trapping any writes to 
oderegions and performing the 
orresponding invalidation and re-translation. For a stati




3.4. Implementation 59Number of ReasonAdditions2 Over�ow/under�ow semanti
sof the divide instru
tion (div)2 Over�ow semanti
s of srawishift instru
tion1 The rotate instru
tion rlwinm1 The 
ntlzw instru
tion1 The mf
r instru
tion9 Indire
t jumps referen
ing thejumptableTable 3.8: The distribution of the manual translation rules we added to the peepholetranslation table.translator, this involves making the translator available as a shared library.3.4.8 Untranslated Op
odesFor 16 PowerPC op
odes our translator failed to �nd a short equivalent x86 sequen
eof instru
tions automati
ally. In su
h 
ases, we allow manual additions to the peep-hole table. Table 3.8 des
ribes the number and types hand additions: 9 are due toinstru
tions involving indire
t jumps and 7 are due to 
omplex PowerPC instru
-tions that 
annot be emulated using a bounded length straight-line sequen
e of x86instru
tions. For some more 
omplex instru
tions mostly involving interrupts andother system-related tasks, we used the slow but simple approa
h of emulation usingC-
ode.3.4.9 Compiler OptimizationsAn interesting observation while doing our experiments was that 
ertain 
ompiler op-timizations often have an adverse e�e
t on the performan
e of our binary translator.For example, an optimized PowerPC exe
utable attempts to use all the 8 
ondition-registers (
r0-
r7). However, sin
e x86 has only one set of �ags, other 
ondition



60 Chapter 3. Binary Translation Using Peephole Superoptimizersregisters need to be emulated using x86 registers 
ausing extra register pressure. An-other example of an unfriendly 
ompiler optimization is instru
tion s
heduling. Anoptimizing PowerPC 
ompiler separates two instru
tions involving a data dependen
yin order to minimize pipeline stalls, while our binary translator would like the data-dependent instru
tions to be together to allow the superoptimizer to suggest moreaggressive optimizations. To alleviate this issue, we re-order the instru
tions in abasi
 blo
k to 
luster data-dependent instru
tions together. In our experiments, wedis
uss the advantage of using this optimization.Finally, we would like to point out that while there exist these ar
hite
ture-spe
i�
issues, the vast bulk of the translation and optimization 
omplexity is still hidden bythe superoptimizer.
3.5 Experimental ResultsWe performed our experiments using a Linux ma
hine with a single Intel Pentium4 3.0GHz pro
essor, 1MB 
a
he and 4GB of memory. We used g

 version 4.0.1and glib
 version 2.3.6 to 
ompile the exe
utables on both Intel and PowerPC plat-forms. To produ
e identi
al 
ompilers, we built the 
ompilers from their sour
e treeusing exa
tly the same 
on�guration options for both ar
hite
tures. While 
ompilingour ben
hmarks, we used the -msoft-float �ag in g

 to emulate �oating pointoperations in software; our translator 
urrently does not translate �oating point in-stru
tions. For all our ben
hmarks ex
ept one, emulating �oating point in softwaremakes no di�eren
e in performan
e. All the exe
utables were linked stati
ally andhen
e, the libraries were also 
onverted from PowerPC to x86 at translation time. Toemulate some system-level PowerPC instru
tions, we borrowed C-
ode from the opensour
e emulator Qemu[28℄.In our experiments, we 
ompare the exe
utable produ
ed by our translator to anatively-
ompiled exe
utable. The experimental setup is shown in Figure 3.8. We
ompile from the C sour
e for both PowerPC and x86 platforms using g

. The
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sour
e �le
PowerPCExe
utable x86Exe
utable

x86Exe
utable

g

 <options> -ar
h=pp
 g

 <options> -ar
h=x86
Peephole Binary Translation Compare

Figure 3.8: Experimental Setup. The translated binary exe
utable is 
ompared withthe natively-
ompiled x86 exe
utable. While 
omparing, the same 
ompiler optimiza-tion options are used on both bran
hes.
same 
ompiler optimization options are used for both platforms. The PowerPC ex-e
utable is then translated using our binary translator to an x86 exe
utable. And�nally, the translated x86 exe
utable is 
ompared with the natively-
ompiled one forperforman
e.One would expe
t the performan
e of the translated exe
utable to be stri
tlylower than that of the natively-
ompiled exe
utable. To get an idea of the state-of-the-art in binary translation, we dis
uss two existing binary translators. A general-purpose open-sour
e emulator, Qemu[28℄, provides 10-20% (i.e., 5-10x slowdown) ofthe performan
e of a natively-
ompiled exe
utable. A re
ent 
ommer
ially availabletool by Transitive Corporation[34℄ 
laims �typi
ally about 70-80%� of the performan
eof a natively-
ompiled exe
utable on their website[29℄. Both Qemu and Transitive aredynami
 binary translators.
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hmark Des
ription -O0 -O2 -O2+emptyloop A bounded for-loop do-ing nothing 98.56 % 128.72 % 127 %fibo Compute �rst few Fi-bona

i numbers 118.90 % 319.13 % 127.78 %qui
ksort Qui
ksort on 64-bit in-tegers 81.36 % 92.61 % 90.23 %mergesort Mergesort on 64-bit in-tegers 83.22 % 91.54 % 84.35 %bubblesort Bubble-sort on 64-bitintegers 75.12 % 70.92 % 64.86 %hanoi1 Towers of Hanoi Algo-rithm 1 84.83 % 70.03 % 61.96 %hanoi2 Towers of Hanoi Algo-rithm 2 107.14 % 139.64 % 143.69 %hanoi3 Towers of Hanoi Algo-rithm 3 81.04 % 90.14 % 80.15 %traverse Traverse a linked list 69.06 % 67.67 % 67.15 %binsear
h Perform binary sear
hon a sorted array 65.38 % 61.24 % 62.15 %Table 3.9: Performan
e of the binary translator on some 
ompute-intensive mi-
roben
hmarks. The 
olumns represent the optimization options given to g

. `-O2+'expands to `-O2 -fomit-frame-pointer'. `-O2+' omits storing the frame pointer onx86. On PowerPC, `-O2+' is identi
al to `-O2'. The performan
e is shown relative toa natively 
ompiled appli
ation (the performan
e of a natively 
ompiled appli
ationis 100%).Table 3.9 shows the performan
e of our binary translator on small 
ompute-intensive mi
roben
hmarks. Our mi
roben
hmarks use three well-known sorting al-gorithms, three di�erent algorithms to solve the towers of hanoi problem, one ben
h-mark that 
omputes the Fibona

i sequen
e, a link-list traversal, a binary sear
h ona sorted array, and an empty for-loop. All these programs are written in C. Theyare all highly 
ompute intensive and hen
e designed to stress-test the performan
e ofbinary translation.The translated exe
utables perform roughly at 90% of the performan
e of anatively-
ompiled exe
utable on average. Some ben
hmarks perform as low as 64%



3.5. Experimental Results 63O0 O2x86 peep qemu rosetta peep x86 peep qemu rosetta peep(s) (s) (%) (%) (%) (s) (s) (%) (%) (%)bzip2 311 470 18.5 65.3 66.2 195 265 25.0 54.0 73.7gap 165 313 - - 52.5 87 205 15.7 - 42.5gzip 264 398 15.3 58.7 66.3 178 315 20.9 52.5 56.5m
f 193 221 46.5 84.8 87.3 175 184 64.7 81.5 94.7parser 305 520 16.9 54.4 58.7 228 338 22.5 49.0 67.3twolf 2184 1306 55.6 - 167.2 1783 1165 59.1 - 153vortex 193 463 11.3 43.1 41.7 161 - - 38.0 -Table 3.10: Performan
e of the binary translator on SPEC CINT2000 ben
hmarkappli
ations. The x86 
olumn represents the performan
e of a natively 
ompiledappli
ation. The per
entage(%) �elds represent performan
e relative to the x86 per-forman
e (the performan
e of a natively 
ompiled appli
ation is 100%).`-' entriesrepresent failed translations. peep 
olumns represent the performan
e of our transla-tor. qemu and rosetta represent Qemu and Apple Rosetta respe
tively.of native performan
e and many ben
hmarks outperform the natively 
ompiled exe-
utable. The latter result is a bit surprising. For unoptimized exe
utables, the binarytranslator often outperforms the natively 
ompiled exe
utable, be
ause the superop-timizer performs optimizations that are not seen in an unoptimized natively 
ompiledexe
utable. The bigger surprise o

urs when the translated exe
utable outperformsan already optimized exe
utable (
olumns -O2 and -O2+) indi
ating that even matureoptimizing 
ompilers today are not produ
ing the best possible 
ode. When 
omparedwith Apple Rosetta, our translator 
onsistently performs better than Rosetta on allthese mi
roben
hmarks. On average, our translator is 170% faster than Apple Rosettaon these small programs.A striking result is the performan
e of the fibo ben
hmark in the -O2 
ol-umn where the translated exe
utable is almost three times faster than the natively-
ompiled and optimized exe
utable. On 
loser inspe
tion, we found that this is be-
ause g

, on x86, uses one dedi
ated register to store the frame pointer by de-fault. Sin
e the binary translator makes no su
h reservation for the frame pointer,it e�e
tively has one extra register. In the 
ase of fibo, the extra register avoids



64 Chapter 3. Binary Translation Using Peephole Superoptimizersa memory spill present in the natively 
ompiled 
ode 
ausing the huge perfor-man
e di�eren
e. Hen
e, for a more equal 
omparison, we also 
ompare with the`-fomit-frame-pointer' g

 option on x86 (-O2+ 
olumn).Table 3.10 gives the results for seven of the SPEC integer ben
hmarks. (The otherben
hmarks failed to 
ompile 
orre
tly due to the la
k of 
omplete support for allLinux system 
alls in our translator). For 
omparison, we show the performan
e of twoother binary translators � Apple Rosetta[2℄ and Qemu[28℄. In our 
omparisons withQemu, we used the same PowerPC and x86 exe
utables as used for our own translator.For 
omparisons with Rosetta, we 
ould not use the same exe
utables as Rosettasupports only Ma
 exe
utables while our translator supports only Linux exe
utables.Therefore, to 
ompare, we re
ompiled the ben
hmarks on Ma
 to measure Rosettaperforman
e. To ensure a fair 
omparison, we used exa
tly the same 
ompiler version(g

 4.0.1) on the two platforms (Ma
 and Linux). We ran our Rosetta experiments ona Ma
 Mini Intel Core 2 Duo 1.83GHz pro
essor, 32KB L1-I
a
he, 32KB L1-D
a
he,2MB L2-
a
he and 2GB of memory.Our peephole translator fails on vortex when it is 
ompiled using the -O2 �ag.Similarly, Rosetta fails on twolf for both optimization options. These failures aremost likely due to bugs in the translators. We 
ould not obtain performan
e num-bers for Rosetta on gap be
ause we 
ould not su

essfully build gap on Ma
 OS X.Our peephole translator a
hieves a performan
e of 42-164% of the natively 
ompiledexe
utable. Comparing with Qemu, our translator a
hieves 1.3-4x improvement inperforman
e. When 
ompared with Apple Rosetta, our translator performs 12%better (average) on the exe
utables 
ompiled with -O2 �ag and 3% better on theexe
utables 
ompiled with -O0 �ag. Our system performs as well or better thanRosetta on almost all our ben
hmarks, the only ex
eptions being -O0 for vortexwhere the peephole translator produ
es 
ode 1.4% slower than Rosetta, and -O2 forvortex, whi
h the peephole translator fails to translate. The median performan
e ofthe translator on these 
ompute-intensive ben
hmarks is 67% of native 
ode.A very surprising result is the performan
e of the twolf ben
hmark where theperforman
e of our translator is signi�
antly better than the performan
e of natively
ompiled 
ode. On further investigation, we found that twolf, when 
ompiled with



3.5. Experimental Results 65the -msoft-float �ag, spends a signi�
ant fra
tion of time in the �oating pointemulation library (whi
h is a part of glib
). It turns out that our translator generatesfaster 
ode for the �oating point emulation library than the native 
ompiler leadingto better overall performan
e for twolf. We attribute this performan
e di�eren
e in�oating point emulation 
ode to the availability of an extra frame pointer register,similar to what we observed in fibo mi
roben
hmark. We do not see this e�e
t inall our other ben
hmarks as they spend an insigni�
ant fra
tion of time in �oatingpoint emulation. We present the detailed 
hara
teristi
s of the ben
hmarks (su
h asa
tual running times and per
entage of times spent in �oating point emulation) inAppendix A.

Figure 3.9: Performan
e 
omparison on -O0 exe
utables by toggling optimization�ags in the peephole translator.Next, we 
onsider the performan
e of our translator on SPEC ben
hmarks bytoggling some of the optimizations. The purpose of these experiments is to obtaininsight into the performan
e impa
t of these optimizations. We 
onsider two variantsof our translator:1. No-Reorder: Re
all that, by default, we 
luster data-dependent instru
tionsinside a basi
 blo
k for better translation (refer Se
tion 3.4.9). In this variant,we turn o� the re-ordering of instru
tions.2. With-Profile: In this variant, we pro�le our exe
utables in a separate o�ine
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Figure 3.10: Performan
e 
omparison on -O2 exe
utables by toggling optimization�ags in the peephole translator.run and re
ord the pro�ling data. Then, we use this data to determine appro-priate weights of prede
essors and su

essors during register map sele
tion (seeSe
tion 3.3.2).Figure 3.9 and Figure 3.10 show the 
omparisons of the two variants relative to thedefault 
on�guration for exe
utables 
ompiled using -O0 and -O2 respe
tively. Wemake two key observations:
• The re-ordering of instru
tions inside a basi
 blo
k has a signi�
ant perfor-man
e impa
t on exe
utables 
ompiled with -O2. The PowerPC optimizing
ompiler separates data-dependent instru
tions to minimize data stalls. Toprodu
e e�
ient translated 
ode, it helps to �de-optimize� the 
ode by bringingdata-dependent instru
tions ba
k together. On average, the performan
e gainby re-ordering instru
tions inside a basi
 blo
k is 6.9% for -O2 exe
utables. For-O0 exe
utables, the performan
e impa
t of re-ordering instru
tions is negligi-ble, ex
ept twolf where a signi�
ant fra
tion of time is spent in pre
ompiledoptimized libraries.
• From our results, we think that pro�ling information 
an result in small butnotable improvements in performan
e. In our experiments, the average im-provement obtained by using pro�ling information is 1.4% for -O2 exe
utables



3.5. Experimental Results 67and 0.56% for -O0 exe
utables. We believe, our translator 
an exploit su
hruntime pro�ling information in a dynami
 binary translation s
enario.Our superoptimizer uses a peephole size of at most 2 PowerPC instru
tions. Thex86 instru
tion sequen
e in a peephole rule 
an be larger and is typi
ally 1-3 in-stru
tions long. Ea
h peephole rule is asso
iated with a 
ost whi
h 
aptures theapproximate 
y
le 
ost of the x86 instru
tion sequen
e.We 
ompute the peephole table o�ine only on
e for every sour
e-destination ar-
hite
ture pair. The 
omputation of the peephole table 
an take up to a week ona single pro
essor. On the other hand, applying the peephole table to translate anexe
utable is fast (see Se
tion 3.5.1). For these experiments, the peephole table 
on-sisted of approximately 750 translation rules. Given more time and resour
es, it isstraightforward to s
ale the number of peephole rules by running the superoptimizeron longer length sequen
es. More peephole rules are likely to give better performan
eresults.The size of the translated exe
utable is roughly 5-6x larger than the sour
e Pow-erPC exe
utable. Of the total size of the translated exe
utable, roughly 40% iso

upied by the translated 
ode, 20% by the 
ode and data se
tions of the originalexe
utable, 25% by the indire
t jump lookup table and the remaining 15% by othermanagement 
ode and data.3.5.1 Translation TimeTranslation time is a signi�
ant 
omponent of the runtime overhead for dynami
binary translators. As our prototype translator is stati
, we do not a

ount for thisoverhead in the experiments in Se
tion 3.5. In this se
tion we analyze the time
onsumed by our translator and how it would �t in a dynami
 setting.Our stati
 translator takes 2-6 minutes to translate an exe
utable with around100K instru
tions, whi
h in
ludes the time to disassemble a PowerPC exe
utable,
ompute register liveness information for ea
h fun
tion, perform the a
tual translationin
luding 
omputing the register map for ea
h program point (see Se
tion 3.3.2), buildthe indire
t jump table and then write the translated exe
utable ba
k to disk. Of



68 Chapter 3. Binary Translation Using Peephole Superoptimizersthese various phases, 
omputing the translation and register maps a

ounts for thevast majority of time.A dynami
 translator, on the other hand, typi
ally translates instru
tions as they(and only when they) are exe
uted. Thus, no time is spent translating instru
tionsthat are never exe
uted. Be
ause most appli
ations use only a small portion of theirextensive underlying libraries, in pra
ti
e dynami
 translators only translate a smallpart of the program. Moreover, dynami
 translators often trade translation time for
ode quality, spending more translation time and generating better 
ode for hot 
oderegions.To understand the exe
ution 
hara
teristi
s of a typi
al exe
utable, we study ourtranslator's performan
e on bzip2 in detail. (Be
ause all of our appli
ations buildon the same standard libraries, whi
h form the overwhelming majority of the 
ode,the behavior of the other appli
ations is similar to bzip2.) Of the 100K instru
tionsin bzip2, only around 8-10K instru
tions are ever exe
uted in the ben
hmark runs.Of these, only around 2K instru
tions (hot regions) a

ount for more than 99.99% ofthe exe
ution time. Figure 3.11 shows the time spent in translating the hot regionsof 
ode using our translator.We plot the translation time with varying prune sizes; be
ause 
omputing thetranslation and register maps is the dominant 
ost, the most e�e
tive way for oursystem to trade 
ode quality for translation speed is by adjusting the prune size(re
all Se
tion 3.3.2). We also plot the performan
e of the translated exe
utable atthese prune sizes. At prune size 0, an arbitrary register map is 
hosen where allPowerPC registers are mapped to memory. At this point, the translation time of thehot regions is very small (less than 0.1 se
onds) at the 
ost of the exe
ution time ofthe translated exe
utable. At prune size 1 however, the translation time in
reasesto 8 se
onds and the performan
e already rea
hes 74% of native. At higher prunesizes, the translation overhead in
reases signi�
antly with only a small improvementin runtime (for bzip2, the runtime improvement is 2%). This indi
ates that even ata small prune size (and hen
e a low translation time), we obtain good performan
e.Finally, we point out that while the translation 
ost reported in Figure 3.11 a
-
ounts for only the translation of hot 
ode regions, we 
an use a fast and naive
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Figure 3.11: Translation time overhead with varying prune size for bzip2.translation for the 
old regions. In parti
ular, we 
an use an arbitrary register map(prune size of 0) for the rarely exe
uted instru
tions to produ
e fast translations ofthe remaining 
ode; for bzip2 it takes less than 1 se
ond to translate the 
old regionsusing this approa
h. Thus we estimate that a dynami
 translator based on our te
h-niques would require under 10 se
onds in total to translate bzip2, or less than 4% ofthe 265 se
onds of run-time reported in Table 3.10.3.6 Related WorkBinary translation �rst be
ame popular in the late 1980s as a te
hnique to improvethe performan
e of existing emulation tools. Some of the early 
ommer
ial binarytranslators were those by Hewlett-Pa
kard to migrate their 
ustomers from its HP



70 Chapter 3. Binary Translation Using Peephole Superoptimizers3000 line to the new Pre
ision ar
hite
ture (1987), by Digital Equipment Corporationto migrate users of VAX, MIPS, SPARC and x86 to Alpha (1992), and by AppleComputers to run Motorola 68000 programs on their PowerMAC ma
hines(1994).By the mid-1990's more binary translators had appeared: IBM's DAISY [13℄ usedhardware support to translate popular ar
hite
tures to VLIW ar
hite
tures, Digital'sFX!32 ran x86/WinNT appli
ations on Alpha/WinNT [8℄, Ardi's Exe
utor[14℄ ranold Ma
intosh appli
ations on PCs, Sun's Wabi [32℄ exe
uted Mi
rosoft Windowsappli
ations in UNIX environments and Embra [36℄, a ma
hine simulator, simulatedthe pro
essors, 
a
hes and other memory systems of unipro
essors and 
a
he-
oherentmultipro
essors using binary translation. A 
ommon feature in all these tools is thatthey were all designed to solve a spe
i�
 problem and were tightly 
oupled to thesour
e and/or destination ar
hite
tures and operating systems. For this reason, nomeaningful performan
e 
omparisons exist among these tools.More re
ently, the moral equivalent of binary translation is used extensively inJava just-in-time (JIT) 
ompilers to translate Java byte
ode to the host ma
hineinstru
tions. This approa
h is seen as an e�
ient solution to deal with the problemof portability. In fa
t, some re
ent ar
hite
tures espe
ially 
ater to Java appli
ationsas these appli
ations are likely to be their �rst adopters[3℄.An early attempt to build a general purpose binary translator was the UQBTframework[35℄ that des
ribed the design of a ma
hine-adaptable dynami
 binarytranslator. The design of the UQBT framework is shown in Figure 3.12. The transla-tor works by �rst de
oding the ma
hine-spe
i�
 binary instru
tions to a higher levelRTL-like language (RTL stands for register transfer lists). The RTLs are optimizedusing a ma
hine-independent optimizer, and �nally ma
hine 
ode is generated forthe destination ar
hite
ture from the RTLs. Using this approa
h, UQBT had uptp a 6x slowdown in their �rst implementation. A similar approa
h has been takenby a 
ommer
ial tool being developed at Transitive Corporation[34℄. Transitive �rstdisassembles and de
odes the sour
e instru
tions to an intermediate language, per-forms optimizations on the intermediate 
ode and �nally assembles it ba
k to thedestination ar
hite
ture. In their 
urrent o�erings, Transitive supports SPARC-x86,



3.6. Related Work 71PowerPC-x86, SPARC-x86/64-bit and SPARC-x86/Itanium sour
e-destination ar
hi-te
ture pairs.
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Ms: source architectureFigure 3.12: The framework used in UQBT binary translation. A similar approa
his taken by Transitive Corporation.A weakness in the approa
h used by UQBT and Transitive is the relian
e on awell-designed intermediate RTL language. A universal RTL language would needto 
apture the pe
uliarities of all di�erent ma
hine ar
hite
tures. Moreover, theoptimizer would need to understand these di�erent language features and be able toexploit them. It is a daunting task to �rst design a good and universal intermediatelanguage and then write an optimizer for it, and we believe using a single intermediatelanguage is hard to s
ale beyond a few ar
hite
tures. Our 
omparisons with AppleRosetta (Transitive's PowerPC-x86 binary translator) suggest that superoptimizationis a viable alternative and likely to be easier to s
ale to many ma
hine pairs.



72 Chapter 3. Binary Translation Using Peephole SuperoptimizersIn re
ent years, binary translation has been used in various other settings. Intel'sIA-32 framework provides a software layer to allow running 32-bit x86 appli
ations onIA-64 ma
hines without any hardware support. Qemu[28℄ uses binary translation toemulate multiple sour
e-destination ar
hite
ture pairs. Qemu avoids dealing with the
omplexity of di�erent instru
tion sets by en
oding ea
h instru
tion as a series of op-erations in C. This allows Qemu to support many sour
e-destination pairs at the 
ostof performan
e (typi
ally 5-10x slowdown). Transmeta Crusoe[20℄ uses on-
hip hard-ware to translate x86 CISC instru
tions to RISC operations on-the-�y. This allowsthem to a
hieve 
omparable performan
e to Intel 
hips at lower power 
onsumption.Dynamo and Dynamo-RIO [4, 7℄ use dynami
 binary translation and optimizationto provide se
urity guarantees, perform runtime optimizations and extra
t programtra
e information. Strata[30℄ provides a software dynami
 translation infrastru
tureto implement runtime monitoring and safety 
he
king.3.7 Con
lusions and Summary of ContributionsWe present an e�
ient and portable s
heme to perform e�e
tive binary transla-tion. We a
hieve this using a superoptimizer that automati
ally learns translationsfrom one ar
hite
ture to another. We demonstrate through experiments that oursuperoptimization-based approa
h results in 
ompetitive performan
e while eliminat-ing the 
omplexity of building a high performan
e translator by hand.



Chapter 4Goal-Dire
ted SuperoptimizationUsing Meet-in-the-MiddleIn this 
hapter, we dis
uss a te
hnique to redu
e the sear
h spa
e for goal-dire
tedsuperoptimization. We begin by providing an overview of our approa
h (Se
tion 4.1),des
ribe the details of the te
hnique (Se
tion 4.2-4.3), present experimental results(Se
tion 4.4) and �nally 
on
lude (Se
tion 4.5).4.1 Introdu
tionOur superoptimizer exhaustively enumerates and exe
utes all instru
tion sequen
eson a �xed initial ma
hine state. An optimization is possible only if one of the obje
tivesequen
es produ
es the same ma
hine state as one of the enumerated sequen
es. Api
ture showing this approa
h is shown in Figure 4.1. The runtime 
omplexity ofthis simple te
hnique is O(bn) where b is the size of the instru
tion set and n is themaximum length of the enumerated instru
tion sequen
e.In this 
hapter, we observe that it is possible to redu
e this runtime 
omplexityby pruning the sear
h spa
e. We do this by using information about the goal stateswe are interested in. Many enumerated instru
tion sub-sequen
es 
an be eliminatedas they 
annot possibly lead to the goal state. For example, if we are sear
hing forthe optimal equivalent sequen
e for the following sequen
e73
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Figure 4.1: Finding a 
andidate instru
tion sequen
e for a target ma
hine state usinga brute-for
e exhaustive sear
h#(swap r1 and r2)mov r1, r3mov r2, r1mov r3, r2any sequen
e whi
h begins withmov r1, r2is not useful. It would be wasteful to enumerate a length-2 sequen
e beginning withthe mov r1, r2 instru
tion. To 
apture this, we need to determine at an interme-diate step, if the 
urrent sequen
e 
an eventually lead to the goal fun
tion. To doso, we work ba
kwards from the goal fun
tion to enumerate only those intermediatesubsequen
es that 
an eventually lead to sequen
es that are equivalent to the goalfun
tion. An intermediate subsequen
e that does not meet this 
riteria 
an be dis-
arded. Using this approa
h, it is possible to work forwards from the initial state and



4.1. Introdu
tion 75ba
kwards from the goal state to prune large portions of the sear
h spa
e. We modelour algorithm on this observation and 
all our approa
h the meet-in-the-middle strat-egy. The term meet-in-the middle is borrowed from a 
ryptographi
 atta
k[12℄ whi
huses a similar te
hnique to de
ipher en
ryption keys. In this se
tion, we des
ribe ourmeet-in-the-middle approa
h and it's implementation.Figure 4.2 illustrates the meet-in-the-middle superoptimization strategy. Our goalis to superoptimize a given instru
tion sequen
e whi
h we 
all the target instru
tionsequen
e. We begin with an initial ma
hine state whi
h is a randomly generatedve
tor of 0s and 1s. At the �rst step, we exe
ute the target instru
tion sequen
e onthe initial ma
hine state to obtain a ma
hine state whi
h we 
all the target ma
hinestate. Our goal is to �nd the 
heapest instru
tion sequen
e that, if exe
uted on theinitial ma
hine state, yields the target ma
hine state.In the next step (Step 2), all possible length-n instru
tion sequen
es are exhaus-tively enumerated starting from the initial ma
hine state and the resulting ma
hinestates are 
onverted to bit strings and stored in a 1-bit pre�x tree. A pre�x tree (also
alled a trie) is an ordered tree data stru
ture where all the des
endants of any onenode have a 
ommon pre�x of the string asso
iated with that node. A trie is generallyused for storing di
tionaries; in our algorithm, a trie is an e�
ient data stru
ture tostore, retrieve and mat
h ma
hine states.In the �nal step (Step 3), instru
tion sequen
es of length-m are exhaustivelyenumerated and exe
uted ba
kwards from the target ma
hine state. Re
all fromSe
tion 4.1 that a ba
kward exe
ution of an instru
tion sequen
e involves undoingthe operations of the sequen
e. The ma
hine states obtained by ba
kward exe
utionof length-m sequen
es are the states that 
an rea
h the target state in m instru
tions.It is possible to rea
h the target ma
hine state from the initial ma
hine state in n+minstru
tions only if one of the ma
hine states enumerated in Step 2 mat
hes one ofthe ma
hine states enumerated in Step 3. We 
all the ma
hine states enumerated inStep 2, the forward-enumerated ma
hine states be
ause they are enumerated forwardsfrom the initial ma
hine state; similarly we 
all the states enumerated in Step 3, theba
kward-enumerated ma
hine states.



76 Chapter 4. Meet-in-the-Middle SuperoptimizationEa
h ba
kward-enumerated ma
hine state is 
ompared against all the forward-enumerated ma
hine states. The trie data stru
ture enables e�
ient mat
hing atthis step. If a mat
h is found, we have found a n + m length sequen
e potentiallyequivalent to the target sequen
e. If no mat
h is found, the ba
kward-enumeratedstate is simply dis
arded.
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MATCH

Enumerate all length−n sequences Enumerate all length−m inverse sequencesFigure 4.2: Finding a 
andidate instru
tion sequen
e for a target ma
hine state usingmeet-in-the-middle approa
h. If done exhaustively, this approa
h sear
hes the spa
eof all length-n + m sequen
es.It is not always possible to pre
isely undo an instru
tion, and hen
e a ba
kwardexe
ution may not always produ
e a unique ma
hine state. We 
an only reprodu
esome of the bits by ba
kward exe
ution and for all others, we use the don't-know
hara
ter. We use the 
hara
ter d to denote the don't-know 
hara
ter akin to thedon't-
are bit used in digital hardware design[24℄.The inverse of an instru
tion is an instru
tion sequen
e that undoes the operationsperformed by that instru
tion. The inverse attempts to reverse the exe
ution of theinstru
tion on a ma
hine state to reprodu
e the original ma
hine state as 
losely aspossible. The bits that 
annot be reprodu
ed are represented using don't-know bits.We dis
uss instru
tion inverses and don't-know bits in more detail in Se
tion 4.2.



4.2. Instru
tion Inverses and Don't-Know Bits 77The mat
hing of forward-enumerated ma
hine states and ba
kward-enumeratedma
hine states is done using a 1-bit trie. The trie stores the pre�x bits in its in-ternal nodes and the forward-enumerated ma
hine states at the leaf nodes. Forea
h ba
kward-enumerated ma
hine state, we sear
h the trie for a mat
hing forward-enumerated ma
hine state. We dis
uss this step of our algorithm in detail in Se
-tion 4.3.We have implemented the meet-in-the-middle strategy in two systems: in ourown superoptimizer whi
h we des
ribed in Chapter 2 and the publi
ly available GNUSuperoptimizer[15℄. We present results obtained in both these systems in Se
tion 4.4and �nally dis
uss future work in this dire
tion in Se
tion 4.5.4.2 Instru
tion Inverses and Don't-Know BitsThe inverse of an instru
tion I is a sequen
e of instru
tions that undo the operationsperformed by I. In other words, for a given ma
hine state s, I−1 is de�ned su
h that
I−1(I(s)) = sIt is not always possible to re
over the original ma
hine state s 
ompletely using I−1.Instead, I−1 re
overs as mu
h of state s as possible using don't-know bits for bitsthat 
annot be re
overed. We dis
uss instru
tion inverses and don't-know bits inmore detail in the following subse
tions.4.2.1 Inverse of an Instru
tionSin
e it is not always possible to invert an instru
tion, the inverse aims to re
over atight approximation of the original state (Figure 4.3). In this se
tion, we de�ne aninstru
tion and its inverse more pre
isely.LetM represent the set of ma
hine states. A ma
hine state s ∈ M 
omprises ofregisters, status �ags and memory. An instru
tion i 
an be expressed as a fun
tion
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FinalFigure 4.3: The inverse of an instru
tion.
i :M→M transforming one ma
hine state (say s0) to another (say s1).

i(s0) = s1An instru
tion sequen
e I 
an then be expressed as a 
omposition of individual in-stru
tions. Noti
e that we 
onsider only straight-line sequen
es with no bran
hes.
I = i0 ◦ i1 ◦ i2 . . . inIn other words,
I(s :M) = in(in−1(in−2 . . . i0(s) . . .))The inverse of an instru
tion i−1 :M→M is de�ned as:
i−1(s :M) =







t if ∃t ∈M, s.t. i(t) = sundef otherwiseThis de�nition of inverse provides the following useful property:
i(i−1(s)) = s if i−1(s) is de�ned
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tion Inverses and Don't-Know Bits 79
While every instru
tion always has an inverse, the inverse may not be unique. Let uslook at an example of an instru
tion and 
onstru
t its inverse.Let iadd represent the x86 add instru
tion,

iadd = {add r0, r1}.The semanti
s of iadd on the x86 ar
hite
ture are:r0 ← r0 + r1. flags ← f(r0,r1) .This instru
tion adds the 
ontents of r1 to r0 and writes the result to register r0.The �ags modi�ed by this x86 instru
tion are the 
arry, over�ow, parity, sign, zeroand the auxiliary �ag. The �ags are a fun
tion of the original values of r0 and r1. It isalso possible to express the �ags as a fun
tion of the new value of r0 and r1, su
h thatflags ← f'(r0new,r1)Fun
tionally, this operation 
an be expressed as
iadd(s) = s[r0new ← r0+r1; flags ← f'(r0new,r1)],where s[. . .] denotes s modi�ed by the expression inside the square bra
kets.Noti
e that not every ma
hine state 
an result from an add instru
tion. A ma-
hine state obtained after exe
uting the add instru
tion must have its status �ags setin a

ordan
e with the 
ontents of register r0. In parti
ular, the �ags should obeyflags = f'(r0,r1).Constru
ting the inverse of an add instru
tion �rst involves 
he
king the registerr0 and �ags to see if they agree. If not, this means that this state 
ould not havebeen a result of exe
uting iadd. Hen
e, the inverse 
annot be de�ned. We use thesymbol undef to denote an unde�ned inverse. On the other hand, if the �ags agreewith r0 and r1, i−1 inverts the addition operation by using a subtra
t instru
tion.
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an be expressed as
i−1

add(s) =







isub(s) if flags = f'(r0,r1)undef otherwisewhere,
isub = {sub r0, r1}Noti
e that the inverse of iadd is not unique. Some other valid inverses are{sub r0, r1; 
l
}{add r0, r2; sub r0, r1; sub r0, r2}. . .Noti
e that the inverse of a single instru
tion 
ould be a sequen
e of multiple instru
-tions. In this 
ase, ea
h inverse sequen
e uses the se
ond instru
tion to set the status�ags di�erently.The de�nition of the inverse of an instru
tion sequen
e I is identi
al to that ofthe inverse of an instru
tion:
I−1(s :M) =







t if ∃t ∈M, s.t. I(t) = sundef otherwiseFor an instru
tion sequen
e
I = i0 ◦ i1 ◦ . . . in,its inverse is

I−1 = i−1

n ◦ i−1

n−1 ◦ . . . i−1

0If any of i−1

0 . . . i−1
n produ
e undef on a state s, I−1 produ
es undef on s. Thebits in the inverted ma
hine state that 
annot be re
overed are represented usingdon't-know bits.



4.2. Instru
tion Inverses and Don't-Know Bits 814.2.2 Don't-Know BitsWe use the don't-know 
hara
ter `d' to represent any bit that is not re
overable afterinverse 
omputation. To use our previous example of the add instru
tion iadd, it isnot possible to re
over the status �ags prior the exe
ution of iadd. For this reason, wedenote the status �ags by d bits.Using d bits, it is possible to represent the inverse of an instru
tion uniquely. Theinverse of iadd 
an be uniquely represented as:
i−1

add(s) =







s[r0← r0− r1, flags← d] if flags = f(r0)undef otherwise
Table 4.1 gives some examples of instru
tion inverses for the x86 ar
hite
ture.Instru
tion Inverseadd r0, r1 sub r0,r1 �ags ← dadd r0, r0 shr r0; r0[31] ← d �ags ← dmov r0, r1 r0 ← dand r0, $010110 r0 ← r0 & d1d11d �ags ← dor r0, $010110 r0 ← r0 | 0d0dd0 �ags ← dxor r0, r1 xor r0, r1 �ags ← dx
hg r0, r1 x
hg r0, r1shr r0, $3 shl r0, $3; r0[0..2] ← d �ags ← dror r0, $3 rol r0, $3in
 r0 de
 r0 �ags ← dneg r0 neg r0 �ags ← dnot r0 not r0Table 4.1: Examples of x86 instru
tion inverses.
4.2.3 Inverse Exe
ution ConstraintsNot every ma
hine 
an be inverted on any instru
tion. For example, to invert ama
hine state s using i−1

add in the previous example, the �ags of s must agree with



82 Chapter 4. Meet-in-the-Middle Superoptimizationregister r0 and r1. We 
all this 
onstraint on s, the inverse exe
ution 
onstraint for
iadd. Therefore, to invert a ma
hine state on instru
tion i, the state must obey theinverse exe
ution 
onstraints of i. Table 4.2 lists some examples of inverse exe
ution
onstraints for x86 instru
tions.Instru
tion Inverse Exe
ution Constraintmov r0, r1 r0 = r1add r0, r1 �ags must agree with r0, r1and r0, $010110 bits 0,3 and 5 must be 0or r0, $010110 bits 1,2 and 4 must be 1shr r0, $3 three MSBs must be zeroxor r0, r1 �ags must agree with r0, r1in
 r0 �ags must agree with r0de
 r0 �ags must agree with r0Table 4.2: Examples of x86 instru
tion inverse 
onstraints.Inverse exe
ution 
onstraints are very helpful in pruning the sear
h spa
e duringba
kward enumeration. If an inverse exe
ution 
onstraint is not satis�ed by a ma
hinestate, all inverse sequen
es beginning with that instru
tion are pruned away.4.3 Mat
hing forward-enumerated andba
kward-enumerated statesThe �nal step in the meet-in-the-middle strategy is mat
hing the forward-enumeratedma
hine states with the ba
kwards-enumerated ma
hine states. The forward-enumerated states are stored in a 1-bit trie data stru
ture. The trie represents allma
hine states that 
an be obtained by exe
uting a length-n instru
tion sequen
eon the initial ma
hine state. Ea
h length-m instru
tion sequen
e is then enumeratedba
kwards from the goal state. The ba
kwards-enumerated ma
hine state is thensear
hed in the trie for a mat
h. In this se
tion, we explain the 
onstru
tion andretrieval in a trie in more detail.To insert a ma
hine state in a trie, the ma
hine state is �rst 
onverted into a bit-string (Figure 4.4). At ea
h level in the trie, the 
orresponding bit of the bit-string is



4.3. Mat
hing forward and ba
kward enumerated states 83used to determine the appropriate bran
h to follow. The ma
hine states themselvesare stored at the leaf nodes.Mat
hing of ba
kward-enumerated ma
hine states is very similar to retrieving ama
hine state from the trie. When sear
hing for a mat
h for a ba
kward-enumeratedma
hine state, the trie is traversed using the bits in the ma
hine state, i.e., a 0-bran
h(1-bran
h respe
tively) is followed if the ma
hine state has a 0-bit (1-bit respe
tively)at that position. A ba
kward-enumerated ma
hine state may also have d bits. Duringthe traversal of a trie, if we en
ounter a d-bit in the ma
hine state, both bran
hesof the trie are followed to sear
h for a mat
h. We illustrate this operation using thefollowing pseudo-
ode.bool sear
h(trie_node *root, ma
hine_state bwd_enumerated, int bitpos){ if (root == NULL)return false;if (isLeafNode(root))return true;if (bwd->state[bitpos℄ == 0)return sear
h(root->left, bwd_enumerated, bitpos+1);if (bwd->state[bitpos℄ == 1)return sear
h(root->right, bwd_enumerated, bitpos+1);if (bwd->state[bitpos℄ == 'd')return ( sear
h(root->left, bwd_enumerated, bitpos+1)|| sear
h(root->right, bwd_enumerated, bitpos+1));}If a mat
h is found, we have found a 
andidate sequen
e of length (n+m) (formed by



84 Chapter 4. Meet-in-the-Middle Superoptimizationthe forward-enumerated n-length sequen
e stored in the trie and m-length ba
kward-enumerated sequen
e) that 
ould be equivalent to the target sequen
e. We thenpro
eed with the equivalen
e test. If no mat
h is found, the ba
kward-enumeratedinstru
tion sequen
e is dis
arded.Assuming the height of the trie is h and the number of forward-enumerated statesin the trie are N , the time taken to sear
h for a mat
h for an ba
kwards-enumeratedstate 
an vary from O(h) (when there are no d bits in the ba
kwards-enumeratedstate) to O(N ∗ h) (when all bits in the ba
kwards-enumerated state are d). Using a
ompressed trie, where nodes having only one 
hild are 
oales
ed, the average heightof the trie 
an be redu
ed to h = O(log2N).
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Machine State Bit String Trie of Machine StatesFigure 4.4: All ma
hine states obtained by forward enumeration of instru
tion se-quen
es are indexed using a trie-like data stru
ture. The trie is then sear
hed tomat
h states obtained by inverse exe
ution from the goal state.The 
onstru
tion of the trie 
ompletes in O(N ∗ log2N) time. Sin
e the forward-exe
ution trie needs to be 
onstru
ted only on
e, the 
ost of its 
onstru
tion is amor-tized over the optimization of several goal sequen
es. The time 
omplexity of ex-haustively sear
hing a spa
e of n+m-length instru
tion sequen
es using meet-in-the-middle approa
h is O(Im. log2 Im + In. log2 Im) in the best 
ase, and O(In+mlog2I
m)in the worst 
ase. The 
omplexity depends heavily on the number of d bits in theba
kward-enumerated ma
hine states. It also depends on the pruning a
hieved byinverse exe
ution 
onstraints during inverse exe
ution. We dis
uss the improvements



4.4. Experimental Results 85and these metri
s empiri
ally in our experimental results.4.4 Experimental ResultsWe have implemented the meet-in-the-middle strategy in two superoptimization-based systems : our x86 peephole optimizer and the publi
ly available GNUSuperoptimizer[15℄. For the x86 peephole optimizer, we spe
i�ed instru
tion inverses,don't-know bits and instru
tion inverse 
onstraints for ea
h x86 instru
tion. We 
on-stru
ted a trie on the forward-enumerated sequen
es, and then mat
hed the ma
hinestates obtained by ba
kwards exe
ution against it. If a mat
h was found, we per-formed a 
omplete equivalen
e test to �nd an optimization.Of the 5322 distin
t instru
tions we used in the optimizer's x86 instru
tion set,we found that 477 were perfe
tly invertible, i.e. no d bits were produ
ed on invertingthese instru
tions. We would like to point out that invertibility depends both on theop
ode and the operands. We show the distribution of the don't-know bits produ
edby the instru
tions in Figure 4.5. The x-axis represents the number of don't-knowbits and the y-axis represents the number of instru
tions that produ
ed that numberof don't-know bits. For example, 1938 instru
tions produ
e 6 don't-know bits. Themajority of the instru
tions produ
ed less than 16 don't-know bits. We observed thata lot of instru
tions produ
e either 6 or 32 don't-know bits. Instru
tions produ
ing 6don't-know bits are usually the ones where it is possible to re
over the 
ontents of theoperands but not the �ags � in whi
h 
ase, we represent the �ags by don't-know bits.The instru
tions produ
ing 32 don't-know bits are usually instru
tions that 
lobberone of their operands.We studied the advantage of using a meet-in-the-middle approa
h over our previ-ous approa
h of using only forward enumeration. We use the n+m notation, where nrepresents the length of the forward enumerated instru
tion sequen
es and m repre-sents the length of the ba
kward enumerated instru
tion sequen
es. We �rst enumer-ated length-3 sequen
es using 3 = 2 + 1 (length-2 forwards and length-1 ba
kwards).Using this, we were able to �nd many optimizations involving length-3 sequen
es inonly a few minutes (as opposed to 2 days in our previous experiments). Next, we
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Figure 4.5: The distribution of don't-know bits produ
ed by the instru
tions in ourinstru
tion set.tried length-4 sequen
es using 4 = 2 + 2. In this 
ase, while some of our targetsequen
es were optimized in only a few minutes, some target sequen
es took overa day of 
omputation without �nishing. Through these experiments, we 
on
ludedthat while the meet-in-the-middle strategy 
an produ
e signi�
ant improvements inthe superoptimizer's running time in some 
ases (2 days to few minutes), it does notalways yield signi�
ant improvement. This approa
h fails whenever the number of dbits produ
ed by ba
kwards exe
ution be
omes too large.Next, we dis
uss the results obtained by implementing the meet-in-the-middlestrategy in the GNU Superoptimizer (GSO)[15℄. We spe
i�ed the instru
tion inverses,don't-know bits and inverse instru
tion 
he
ks for all x86 instru
tions inside GSO. Witha maximum sequen
e length of 4, we 
omputed the optimal sequen
es for the goalfun
tions used in GSO. There are 246 unique goal fun
tions spe
i�ed in GSO. For all thegoal fun
tions, we obtained the same results for the optimal sequen
es. On
e again, wefound that for some goal fun
tions, the improvement in the superoptimizer's runningtime was signi�
ant; while for others, there was no improvement. For 22% of the goalfun
tions, the runtime of the superoptimizer was improved by using the meet-in-the-middle strategy. The maximum improvement was a fa
tor of 10,000x for one of thegoal fun
tions while the minimum improvement was 1.62x. The median improvement



4.5. Con
lusions and Future Dire
tions 87in the goal fun
tions that improved was 7x. For 41% of the goal fun
tions, the meet-in-the-middle strategy performed as well as the forwards-only strategy, i.e. we observedneither speedup nor slowdown. This was mostly be
ause the optimal sequen
e inthese 
ases was only one or two instru
tions long, and hen
e both strategies returneda result very qui
kly. For 37% of the goal fun
tions, we observed slowdowns. In these
ases, the overhead of trie 
onstru
tion and mat
hing ex
eeded the bene�t of pruningthe sear
h spa
e.4.5 Con
lusions and Future Dire
tionsTo be able to s
ale the superoptimizer to longer lengths, we need more te
hniques toprune it's sear
h spa
e. Our meet-in-the-middle approa
h is an attempt in this dire
-tion, and we �nd that it is useful in many 
ases. One of the important 
onsiderationsin devising new ways to prune the sear
h spa
e of a superoptimizer is the overheadof the pruning strategy. As we observed in our experiments, the advantage obtainedby pruning must signi�
antly outweigh it's overhead for the strategy to be pra
ti
al.



Chapter 5
Con
lusions and Future Work
This dissertation des
ribes methods to perform e�
ient 
ode generation and opti-mization by using superoptimization te
hniques. We des
ribe two peephole superop-timizers � an automati
ally generated peephole optimizer (Chapter 2) and a binarytranslator (Chapter 3). In the third part of the thesis (Chapter 4), we present as
heme to lower the 
omputational 
omplexity of goal-dire
ted brute-for
e superop-timization.In the �rst part of the thesis, we des
ribe a design to automati
ally generate apeephole optimizer using superoptimization te
hniques. The optimizer �rst infersthousands of optimizations automati
ally in an o�ine phase. The optimizations areorganized into a lookup table, mapping original sequen
es to their optimized 
oun-terparts. Optimization of a 
ompiler's generated 
ode is then done e�
iently as anormal peephole optimizer, simply using the pre
omputed rules. The optimizer ex-haustively enumerates all length-3 instru
tion sequen
es and generates many usefuloptimizations that would traditionally be implemented algorithmi
ally (Table 2.4).We also �nd that the automati
ally generated optimizer is 
apable of generatinge�
ient SIMD 
ode, at least in some simple situations (Figure 2.6).The se
ond part of this thesis des
ribes a design to perform e�
ient binary transla-tion using a peephole superoptimizer. Our translator automati
ally infers equivalen
erelations between sequen
es of the sour
e ar
hite
ture and the target ar
hite
ture88



Chapter 5. Con
lusions and Future Work 89(also 
alled peephole translation rules). These equivalen
e relations are de�ned un-der a map of registers between the two ar
hite
tures. A su

essful translation 
an beperformed if ea
h sour
e instru
tion appears in at least one translation rule. Usingthis approa
h to binary translation, we �nd that many optimizations, that wouldotherwise require manual 
odi�
ation, are automati
ally inferred. Our PowerPC-x86binary translator adaptively sele
ts a register map at ea
h program point to max-imize e�
ien
y of the generated 
ode. We �nd that the translated 
ode generatedby our binary translator 
an sometimes outperform natively 
ompiled 
ode on thedestination ar
hite
ture (Table 3.9). Our 
omparisons with state-of-the-art binarytranslation tools show the bene�ts of using this approa
h (Table 3.10).Allowing the superoptimizer to s
ale to longer instru
tion sequen
es is likely toprodu
e more optimizations. In the third part of the thesis, we des
ribe a s
hemeto lower the 
omputational 
omplexity of brute-for
e sear
h for goal-dire
ted super-optimization. We present the improvements obtained by implementing meet-in-the-middle superoptimization both in our superoptimizer and the publi
ly available GNUSuperoptimizer[15℄.In future work, there is potential to further develop peephole superoptimization asa 
ode generation te
hnique. Peephole optimizers have previously been used to per-form 
ode sele
tion at link time to produ
e highly portable 
ompilers[6, 9, 10, 11, 21℄.More 
ompute power and advan
es in SAT solving 
apabilities present interesting op-portunities and 
hallenges in this dire
tion. The most promising opportunity lies ins
aling this te
hnique to longer instru
tion sequen
es and millions of peephole trans-formations. One 
an imagine an ar
hite
ture quite similar to that of a sear
h engine,where thousands of ma
hines work in the ba
kground to infer peephole optimizations,whi
h are presented as an e�
ient lookup table to be used over the network.Another interesting appli
ation of peephole superoptimizers is binary translation.In our experien
e, peephole superoptimizers lend themselves as a 
ompelling solutionto the problem of e�
ient and portable binary translation. While we have demon-strated a binary translator from PowerPC to Intel x86, we hope this approa
h isadopted to perform binary translation a
ross other ar
hite
ture pairs.



Appendix ARuntime Chara
teristi
s of SPECBen
hmarks
O0Ben
hmark x86 peep qemu x86 rosettaLinux Linux Linux Ma
 Ma
bzip2 310.79 469.85 1727.50 398.77 610.70gap 164.54 313.40 1395.18 - -gzip 263.94 398.36 1771.11 334.55 570.34m
f 193.18 221.18 402.28 188.25 221.91parser 305.23 520.16 1889.61 379.48 697.15twolf 2184.14 1306.41 3918.79 - -vortex 193.31 463.48 1766.75 249.71 578.97Table A.1: Runtimes of the SPEC ben
hmarks (in se
onds) used in Se
tion 3.5 
om-piled using -O0 on all the di�erent platforms. The entries in x86 
olumns are runtimesof exe
utables 
ompiled natively for the x86 platform. The peep, qemu and rosetta
olumns 
ontain runtimes of exe
utables translated using the peephole translator,Qemu and Apple Rosetta respe
tively. The Linux runtimes are re
orded on an IntelPentium 4 3.0 GHz pro
essor, 1MB 
a
he and 4GB of memory. The Ma
 runtimes arere
orded on a Ma
 Mini with Intel Core 2 Duo 1.83GHz pro
essor, 32KB L1-I
a
he,32KB L1-D
a
he, 2MB L2-
a
he and 2GB of memory. `-' entries represent failedruns.

90



BIBLIOGRAPHY 91
O2Ben
hmark x86 peep qemu x86 rosettaLinux Linux Linux Ma
 Ma
bzip2 195.45 265.28 792.54 221.96 410.95gap 87.27 205.47 661.49 - -gzip 177.81 314.66 816.83 205.28 391.17m
f 174.68 184.44 272.69 154.72 189.95parser 227.72 338.47 1082.26 236.50 482.95twolf 1782.62 1164.88 3011.40 - -vortex - - - 187.17 492.21Table A.2: Runtimes of the SPEC ben
hmarks (in se
onds) used in Se
tion 3.5 
om-piled using -O2 on all the di�erent platforms. The entries in x86 
olumns are runtimesof exe
utables 
ompiled natively for the x86 platform. The peep, qemu and rosetta
olumns 
ontain runtimes of exe
utables translated using the peephole translator,Qemu and Apple Rosetta respe
tively. The Linux runtimes are re
orded on an IntelPentium 4 3.0 GHz pro
essor, 1MB 
a
he and 4GB of memory. The Ma
 runtimes arere
orded on a Ma
 Mini with Intel Core 2 Duo 1.83GHz pro
essor, 32KB L1-I
a
he,32KB L1-D
a
he, 2MB L2-
a
he and 2GB of memory. `-' entries represent failedruns.

O0 O2bzip2 0.00 0.00gap 0.00 0.00gzip 0.00 0.00m
f 0.00 0.00parser 0.00 0.00twolf 42.69 51.12vortex 0.00 0.00Table A.3: Per
entage of time spent in �oating point emulation by the SPEC ben
h-marks used in Se
tion 3.5 for -O0 and -O2 �ags on x86 platforms. Ex
ept twolf, allother ben
hmarks spend negligible time in �oating point emulation.
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