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Abstract

The classical meaning of superoptimization 23] is to find the optimal code sequence
for a single, loop-free assembly sequence of instructions. Superoptimization has pre-
viously been studied for compiling small, performance critical code fragments, such as
compute-intensive inner loops. This thesis investigates the use of superoptimization
techniques in optimization and code generation for whole programs.

The first part of the thesis describes peephole superoptimizers and their construc-
tion. A peephole superoptimizer first generates a peephole optimizer using superop-
timization techniques and then applies the generated peephole optimizer to improve
executables. Using this approach, we are able to generate many useful peephole
optimizations automatically and find improvements over code optimized by mature
compilers.

The second part of the thesis applies peephole superoptimizers to perform efficient
binary translation between two divergent architectures. We use a superoptimizer to
generate equivalence relations between code snippets of two different architectures.
The equivalence relation is represented as a peephole transformation. We discuss
our PowerPC-x86 binary translator implemented using peephole superoptimization
techniques, and compare it with existing binary translation tools.

The third part of the thesis discusses a novel approach to significantly lower the
computational complexity of brute-force superoptimization. Our approach, which we
call meet-in-the-middle superoptimization, uses reverse execution of instructions to

significantly prune the superoptimizer’s search space.
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Chapter 1
Introduction

Using brute-force to find the optimal code for a given function (also termed superop-
timization) has previously been studied in the context of computing small mathemat-
ical functions or optimizing performance-critical code fragments[15]. Our goal in this
thesis is to understand the practicality of using superoptimization as a useful code
generation and optimization tool. In this chapter, we first introduce a peephole super-
optimizer (Section 1.1), discuss its application as a code generation tool for a binary
translator (Section 1.2) and finally present an overview of our meet-in-the-middle

superoptimization strategy (Section 1.3).

1.1 Peephole Superoptimizers

Peephole optimizers are pattern matching systems that replace one sequence of in-
structions by another equivalent, but cheaper, sequence of instructions. The op-
timizations are usually expressed as parameterized replacement rules, so that, for

example,
mov rl, r2; mov r2, rl => mov rl1, r2

expresses that if the value of register r1 is copied to register r2, then the following

instruction mov r2,rl is useless and can be deleted. Today, peephole optimization
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rules are hand-written, relying on the experience and insight of experts in the machine

architecture to recognize and codify the important rules.

In this part of the thesis, we explore a different approach to building peephole
optimizers that is both completely automatic and more systematic. The basic idea
is to use superoptimization techniques (described further below) to automatically
discover replacement rules that are optimizations; this computation is done off-line.
The optimizations are then organized into a lookup table, mapping original sequences
to their optimized counterparts. Optimization of a compiler’s generated code can then
be done as efficiently as a normal peephole optimizer, simply using the precomputed

rules.

This architecture, where optimizations are computed off-line and then presented
as an indexed structure for efficient lookup, is much closer to a search engine database
than to a traditional optimizer. Unlike standard compilers where every user has a
copy of the entire system, search engines have so much data that it is more efficient to
keep the data at a central site and provide access to users over a network. We believe
it is possible to build a peephole optimizer using our approach with many millions of
learned optimizations, and at that scale the most efficient deployment may also be as
a network-based search engine. The goal in this thesis is considerably more modest,
focusing on showing that an automatically constructed peephole optimizer is possible
and, even with limited resources (i.e., a single machine) and learning hundreds to
thousands of useful optimizations, such an optimizer can find significant speedups

that standard optimizers miss.

The classical meaning of superoptimization [23| is to find the optimal code se-
quence for a single, loop-free assembly sequence of instructions, which we call the
target sequence. As noted in later work [19], the term superoptimization is an oxy-
moron: If a program has been optimized meaning it is optimal then what can it
mean to be superoptimized? The terminology problem lies in the need to distinguish
superoptimization from garden variety optimization as that term is normally used;
compiler optimizations are really just code improvers and it is an accident if a con-
ventional optimizer produces an optimal program. However, for brevity, we will often

refer to our own system as an optimizer rather than as a superoptimizer.
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There have been two approaches to superoptimization explored in the past. The
first, used in Massalin’s original paper |23|, simply enumerates sequences of instruc-
tions of increasing length or cost, testing each for equality with the target sequence;
the lowest cost equivalent sequence found is the optimal one. The second approach,
pursued in Denali, constrains the search space to a set of equality-preserving trans-
formations expressed by the system designer. For a given target sequence, a struc-
ture representing all possible equivalent sequences under the transformation rules is
searched for the lowest cost equivalent sequence [19]. A common point of view in
both approaches is that superoptimization is something that is expensive, potentially
requiring many hours of computation to optimize a single target instruction sequence,
and that the main application is as an aid to human performance experts in speeding
up the occasional critical inner loop.

Our work differs from this previous work in a number of ways, beginning with the
goal. Our main interest is in creating a peephole superoptimizer that is fast enough
and systematic enough to be worth using in every compilation. We are also interested
in investigating, to what extent the considerable human labor needed to write an

optimizer can be automated. To this end, we make the following contributions:

e We superoptimize many target sequences (potentially millions) simultaneously
in a first, off-line phase. The target sequences are extracted, or harvested, from
a training set of programs. The idea is that the important sequences to optimize
are the ones emitted by compilers; we simply take all instruction sequences up
to a given length from a representative collection of existing binaries as our

training set.

e Because we aim to be applicable to general binaries, our prototype implemen-
tation handles nearly all of the 300+ opcodes of the x86 architecture; previous
efforts have focused on a much smaller set of register-to-register operations. In
particular, we present the first techniques for correctly inferring superoptimiza-
tions involving memory accesses and branches, as well as the first approach that
takes the context (e.g., the set of live variables) of an instruction sequence into

account.
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e A key problem in superoptimization is spending as little time as possible consid-
ering instruction sequences that cannot be optimal versions of target sequences.
We introduce a new technique, canonicalization, based on the observation that
having once considered a sequence, we need never consider a sequence that is
equal up to consistent renaming of registers and symbolic constants. We show

that canonicalization dramatically reduces the search space for our system.

e The output of our system is a set of replacement rules. Each rule gives a
source (canonical) instruction sequence and the resulting optimized (canonical)
instruction sequence. Thus, these rules can be indexed and used as efficiently
as the rules in a standard peephole optimizer. The rules we discover may be
less general than rules written by humans i.e., it may require multiple rules
discovered by the superoptimizer to cover the same functionality as a single
rule written in a more general form. However, a peephole superoptimizer can
compensate for less general rules by automatically discovering many more rules

than are written for normal peephole optimizers.

e We report experimental results on a number of kernels where our system
achieves speedups of between 1.7 and a factor of 10 over code already optimized
by a standard compiler. The improvements show that even mature compilers
do not come close to the best possible code in at least some relatively simple

situations.
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1.2 Binary Translation Using Peephole
Superoptimizers

A common worry for machine architects is how to run existing software on new
architectures. One way to deal with the problem of software portability is through
binary translation. Binary translation enables code written for a source architecture
(or instruction set) to run on another destination architecture, without access to the
original source code. A good example of the application of binary translation to solve
a pressing software portability problem is Apple’s Rosetta, which enabled Apple to
(almost) transparently move its existing software for the PS/2 to a new generation
of Intel x86-based computers [2].

Building a good binary translator is not easy, and few good binary translation

tools exist today. There are four main difficulties:

1. Some performance is normally lost in translation. Better translators lose less,
but even good translators often lose one-third or more of source architecture

performance for compute-intensive applications.

2. Because the instruction sets of modern machines tend to be large and idiosyn-
cratic, just writing the translation rules from one architecture to another is a
significant engineering challenge, especially if there are significant differences in
the semantics of the two instruction sets. This problem is also exacerbated by

the need to perform optimizations wherever possible to minimize problem (1).

3. Because high-performance translations must exploit architecture-specific seman-
tics to maximize performance, it is challenging to design a binary translator
that can be quickly retargeted to new architectures. One popular approach is
to design a common intermediate language that covers all source and destina-
tion architectures of interest, but to support needed performance this common

language generally must be large and complex.

4. If the source and destination architectures have different operating systems then

source system calls must be emulated on the destination architecture. Operating
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systems’ wide interfaces combined with subtle and sometimes undocumented

semantics and bugs make this a major engineering task in itself.

In the second part of the thesis, we present a new approach to addressing prob-
lems (1)-(3) (we do not address problem (4)). The main idea is that much of the
complexity of writing an aggressively optimizing translator between two instruction
sets can be eliminated altogether by developing a system that automatically and sys-
tematically learns translations. In Section 3.5 we present performance results showing
that this approach is capable of producing destination machine code that is at least
competitive with existing state-of-the-art binary translators, addressing problem (1).
While we cannot meaningfully compare the engineering effort needed to develop our
research project with what goes into commercial tools, we hope to convince the reader
that on its face automatically learning translations must require far less effort than
hand coding translations between architectures, addressing problem (2). Similarly,
we believe our approach helps resolve the tension between performance and retar-
getability: adding a new architecture requires only a parser for the binary format and
a description of the instruction set semantics (see Section 3.2). This is the minimum
that any binary translator would require to incorporate a new architecture; in partic-
ular, our approach has no intermediate language that must be expanded or tweaked
to accommodate the unique features of an additional architecture.

Our system uses peephole rules to translate code from one architecture to another.
Peephole rules have traditionally been used for compiler-optimizations, as we do in
Chapter 2. For our binary translator, we use peephole rules that replace a source-
architecture instruction sequence by an equivalent destination architecture instruction

sequence. For example,
1d [r2]; addi 1; st [r2] => inc [er3] { r2 = er3 }

is a peephole translation rule from a certain accumulator-based RISC architecture
to another CISC architecture. In this case, the rule expresses that the operation of
loading a value from memory location [r2], adding 1 to it and storing it back to [r2]

on the RISC machine can be achieved by a single in-memory increment instruction
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on location [er3] on the CISC machine, where RISC register r2 is emulated by CISC

register er3.

The number of peephole rules required to correctly translate a complete executable
for any source-destination architecture can be huge and manually impossible to write.
We automatically learn peephole translation rules using superoptimization techniques:
essentially, we exhaustively enumerate possible rules and use formal verification tech-
niques to decide whether a candidate rule is a correct translation or not. This process
is slow; in our experiments it required about a processor-week to learn enough rules to
translate full applications. However, the search for translation rules is only done once,
off-line, to construct a binary translator; once discovered, peephole rules are applied
to any program using simple pattern matching, as in a standard peephole optimizer.
Superoptimization has been previously used in compiler optimization [5, 15|, but our

work is the first to develop superoptimization techniques for binary translation.

Binary translation preserves execution semantics on two different machines: what-
ever result is computed on one machine should be computed on the other. More pre-
cisely, if the source and destination machines begin in equivalent states and execute
the original and translated programs respectively, then they should end in equivalent
states. Here, equivalent states implies we have a mapping telling us how the states
of the two machines are related. In particular, we must decide which registers or
memory locations on the destination machine emulate which registers of the source
machine. Note that the example peephole translation rule given above is conditioned
by the register map r2 = er3. Only when we have decided on a register map can
we compute possible translations. The choice of register map turns out to be a key
technical problem: better decisions about the register map (e.g., different choices of
destination machine registers to emulate source machine registers) lead to better per-
forming translations. Of course, the choice of instructions to use in the translation
also affects the best choice of register map (by, for example, using more or fewer reg-
isters), so the two problems are mutually recursive. We present an effective dynamic
programming technique that finds the best register map and translation for a given

region of code (Section 3.3.2).

We have implemented a prototype binary translator from PowerPC to x86. Our
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prototype handles nearly all of the PowerPC and x86 opcodes and using it we have
successfully translated large executables and libraries. We report experimental re-
sults on a number of small compute-intensive microbenchmarks, where our translator
surprisingly often outperforms the native compiler. We also report results on many of
the SPEC integer benchmarks, where the translator achieves a median performance
of around 66% of natively compiled code and compares favorably with both Qemu
[28|, an open source binary translator, and Apple’s Rosetta |2|. While we believe
these results show the usefulness of using superoptimization as a binary translation
and optimization tool, there are two caveats to our experiments that we discuss in
more detail in Section 3.5. First, we have not implemented translations of all system
calls. As discussed above under problem (4) this is a separate and quite significant
engineering issue. We do not believe there is any systematic bias in our results as
a result of implementing only enough system calls to run many, but not all, of the
SPEC integer benchmarks. Second, our system is currently a static binary translator,
while the systems we compare to are dynamic binary translators, which may give our
system an advantage in our experiments as time spent in translation is not counted
as part of the execution time. There is nothing that prevents our techniques from
being used in a dynamic translator; a static translator was just easier to develop given
the tool base we began with. We give a detailed analysis of translation time for our
benchmarks, which allows us to bound the additional cost that would be incurred in
a dynamic translator.

In summary, our aim in this thesis is to demonstrate the ability to develop binary
translators with competitive performance at much lower cost. Towards this end, we

make the following contributions:

e We present a design for automatically learning binary translations using an

off-line search of the space of candidate translation rules.

e We identify the problem of selecting a register map and give an algorithm for
simultaneously computing the best register map and translation for a region of

code.

e We give experimental results for a prototype PowerPC to x86 translator, which
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produces consistently high performing translations.

1.3 Goal-Directed Superoptimization Using
Meet-in-the-Middle

Superoptimization normally involves a brute-force search over an exponentially large
space of instruction sequences. An important goal is to be able to discover techniques
to scale a superoptimizer to longer instruction sequence lengths. In this third part
of the thesis, we observe that it is possible to significantly prune this search space
by using a strategy we call meet-in-the-middle. Unlike the naive approach where all
instruction sequences are enumerated checking each of them for a match with the goal
function, the meet-in-the-middle strategy works backwards from the goal function to
enumerate only those instruction sequences that could possibly yield the goal state.
To explain our meet-in-the-middle algorithm, we first define forward and backward
execution of instruction sequences. A forward execution of a sequence is a simple
in-order execution of the instructions in the sequence. A backward execution of a
sequence is the operation to undo the effects of the instruction sequence on a machine
state. To understand this better, consider a machine state Y that is obtained by
forward execution of a sequence on a machine state X. A backward execution of the
same sequence on Y attempts to recover the state X as much as possible. To reduce the
computational time of a brute force superoptimization search, we execute instruction
sequences backwards from the goal machine state checking the result for a match
with any of the states obtained by forward enumeration of instruction sequences on
the initial machine state. An optimization exists only if one of the states obtained by
forward-enumerated sequences matches a state obtained from a backward-enumerated
sequence (see Figure 1.1). Since we can eliminate any intermediate state that cannot

be obtained by backward execution on the goal state, we can prune our search space.

The meet-in-the-middle superoptimization strategy significantly reduces the

search space of a brute-force superoptimizer. In this third part of the thesis, we
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mov r2, rl P O
No instruction sequence ri+r2+1

inverts to yield intermediate

state from final state

Initial State Intermediate State Final State
(obtained by forward
enumeration)

Figure 1.1: An Example of Meet-in-the-Middle Pruning: The intermediate state can
be pruned away because there is no instruction sequence beginning in the interme-
diate state that results in the final state or, equivalently, there is no sequence of
instruction inverses leading from the final state to the intermediate state.

make the following contributions:

e We describe and analyze our meet-in-the-middle strategy to perform efficient

goal-directed superoptimization.

e We define the notion of executing an instruction backwards on a machine state
through instruction inverses and don’t-know bits. These concepts are explained
both formally using mathematical constructs and intuitively using examples

from the x86 architecture.

e We implement the meet-in-the-middle strategy in both our superoptimizer and

the publicly available GNU Superoptimizer|15] and report experimental results.



Chapter 2
Peephole Superoptimizers

In this chapter, we describe the automatic generation of peephole superoptimizers.
Section 2.1 discusses the flowchart of a peephole superoptimizer, Sections 2.2-2.4
describe the steps in the flowchart in detail, Sections 2.5-2.6 present experimental
results, Section 2.7 discusses related work and finally Section 2.8 concludes. This

chapter of the thesis is based on work presented in [5].

2.1 Design of the Optimizer

We begin by defining a few terms that we use throughout the thesis. An instruction
is an opcode together with some valid operands. For example, on a machine with
eight registers rQ through r7, the increment opcode (inc) generates eight unique

instructions:

inc rO ; inc rl ; inc r2 ; inc r3 ;

inc r4 ; inc r5 ; inc r6 ; inc r7

A potential problem arises with opcodes that take immediate operands, as they gener-
ate an unbounded number of instructions. For example, an add-immediate instruction
(addi) can have 232 different variants (on a 32-bit machine) based on the immediate

operand alone.

11
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Harvester .| Canonicalizer Fingerprinter

l

A

Training
Programs Check for match R Fingerprint
- Hashtable

. N , ) Boolean
3 ® > *\‘ Fingerprinter yes Equivalence pass_ | Optimization

- ® Database
“ Test
Enumeratc

Figure 2.1: Flowchart of the superoptimizer.

addi $0x12345678, r0
addi $0x12345679, rO0

We restrict immediate operands to a small set of constants and symbolic constants.
For example, we simply use a symbolic constant $c0 to capture all the 232 possibilities

using one instruction
addi $c0, r0

We enumerate certain constants (e.g. 0 and 1) separately to capture special opti-
mizations. In this way, we ensure opcodes with immediate operands generate only a
small number of distinct instructions.

A cost function captures the approximate cost of an instruction sequence on a par-
ticular processor. We use different cost functions for different purposes; e.g., running
time to optimize speed, instruction byte count to optimize the size of a binary. An
instruction sequence is optimal if no equivalent sequence of lower cost exists. Equiv-
alence of two instruction sequences is defined under a contezt, which is a subset of

the machine state that is live beyond the instruction sequences themselves. Since
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we ignore /O instructions, the machine state for our purposes consists of registers,
stack and memory. The context of a target instruction sequence can potentially in-
clude registers, memory locations and stack locations live at the program point where
the instruction sequence ends. However, for implementation simplicity, we currently
conservatively assume memory and stack locations are always live. The context of
an instruction sequence is thus reduced to the set of registers live on exit from the
sequence.

An equivalence test =, tests two instruction sequences for equivalence under the
context (set of live registers) L. For a target sequence T and a cost function ¢, we

are interested in finding a minimum cost instruction sequence O such that
(0=,T)

Unlike previous efforts, our superoptimizer computes the optimal instruction se-
quences for several different target sequences simultaneously. Moreover, once an
optimization is found, it is saved in an indexed optimization database so that the
expensive work done to compute the optimizations need never be repeated again.
Thus, the database represents all the optimizations acquired by running the super-
optimizer. Once computed, these optimizations can be used to optimize any number
of programs.

Our optimizer is structured in three parts:

e The harvester extracts target instruction sequences from the training applica-

tions. The target instruction sequences are the ones we seek to optimize.

e The enumerator exhaustively enumerates all possible candidate instruction se-
quences up to a certain length, checking if each candidate sequence is an optimal

replacement for any of the target instruction sequences.

e The optimizer applies the optimization database, an index of all discovered op-

timizations, to applications.

There are two key challenges for our approach. First, we must reduce the search
space of the enumerator as much as possible (Section 2.3.2). Second, we need a very

efficient test for equivalence of two instruction sequences (Section 2.4.1).
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A flowchart of the superoptimizer is shown in Figure 2.1. We discuss the compo-

nents shown in the flowchart in the following sections.

2.2 Harvesting Target Instruction Sequences

The first step in creating a superoptimizer using our approach is to obtain target
instruction sequences from a representative set of applications. These harvested in-
struction sequences form the corpus used to train the optimizer. Not all instruction
sequences are harvestable in our current implementation. A harvestable instruction
sequence I must have a single entry point—mno instruction in I (except the first in-
struction) should be a jump target of any instruction outside of I. To enforce this
constraint, we identify all jump targets of direct-jump instructions in the binary ex-
ecutable. Also, we identify all instructions starting at addresses pointed to by object
symbols since these instructions are possible targets of indirect jump instructions.
Any such instructions should not be a part of a harvested instruction sequence [
(except possibly being the first instruction in I). Notice that a harvested instruction
sequence can have multiple exits since we allow jump instructions in the sequence.
When the harvester extracts instruction sequences from a binary, it also records
the set of registers live at the end of the sequence; this context is used in determining

equivalence as discussed in Section 2.1.

2.2.1 Canonicalization

All well-formed instruction sequences are valid candidates for optimization, but many
sequences are just transformations of each other under renamings of registers and
immediate operands. For example, on a machine with eight registers, an instruction
mov rl, rO0 has 8«7 = 56 equivalent versions with different register names. To reduce
wasted effort, one would like to eliminate all unnecessary instruction sequences that
are mere renamings of others—a process we call canonicalization.

An instruction sequence is canonical if its registers and constants are named in

the order of their appearance in the instruction sequence i.e., the first register used
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is always r0, the second distinct register used is always r1, and so on. Similarly, the
first constant used in a canonical instruction sequence is (the symbolic constant) c0,

the second distinct constant c1, and so on.

An instruction sequence is canonicalized by renaming registers and constants. An
optimization that applies to a sequence is also valid for its canonicalization (with
registers and constants suitably renamed). Hence, we store only canonical forms
of instruction sequences in our optimization database. Optimizing an instruction
sequence [ requires first canonicalizing I to (1), where 6 is the canonical renaming
of registers and symbolic constants of /. We then search the database for a sequence
R equivalent to (1), and then “uncanonicalize” R to §~'(R) so that the registers and
constants have their original names as in I. The sequence §~1(R) then replaces I in

the application.

Dealing with only canonical instruction sequences dramatically reduces the size of
the corpus of target instruction sequences. Figure 2.2 plots the number of unique har-
vested instruction sequences before and after canonicalization. At short instruction
sequence lengths, there are many fewer unique canonical instruction sequences than
the number of unique harvested sequences. At longer lengths, the number of har-
vested instruction sequences decreases because fewer sequences meet the harvester’s

constraints.

2.2.2 Fingerprinting

The most common operation in our off-line computation of optimizations is determin-
ing whether an instruction sequence [ is equivalent to any target instruction sequence.
We execute I on test machine states and then compute a hash of the result, which we
call I’s fingerprint. The fingerprint is the index into a hashtable; each bucket holds
the target instruction sequences, if any, with that fingerprint. The most important
properties of the fingerprint are that it is very fast to compute and results in at most

a small set of target sequences that might be equivalent to I.
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Figure 2.2: The number of unique harvested instruction sequences in SPEC CINT2000
benchmarks, before and after canonicalization.

We have found it sufficient to use two pseudo-random machine states called testvec-
tors to compute fingerprints.! The instruction sequence is first converted into an
executable binary form. The machine is loaded with a testvector and control is trans-
ferred to the instruction sequence. The machine state (the contents of registers, status
bits, and memory see below) is recorded after the instruction sequence finishes ex-
ecution. This process is repeated for both testvectors and a hash is then computed
on the machine states that were obtained.

Executing the instruction sequence on the bare machine has three advantages.
First, it is extremely fast. Second, it eliminates sources of error due to incorrect
simulation of instructions. And third, machine counters can be used to estimate the
time spent in executing the instruction sequence on hardware, providing hints for
shaping the time-based cost function.

While executing the instruction sequence directly on hardware is good, it presents

!Each bit in the two testvectors is set randomly, but the same testvectors are used for finger-
printing every instruction sequence.
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Original Instruction Sequence
inc rl
xchg (r2), r1
With Memory Sandboxing Instructions
inc rl
mov r2, r7
and $0xff, r7
add $membase, r7
xchg (xr7), ri

Figure 2.3: The memory array M starts at address membase and is 2% = 256 bytes
long. Every memory access is prepended with three instructions ensuring the memory
access is contained within M. In this example, a temporary register r7 was used to
perform this function.

its own set of challenges. In particular, we must isolate the state of our system from
any side-effects of the instruction sequence. We save all registers before executing the
instruction sequence and restore them after the execution is finished. We sandboz all
memory and stack references by adding extra instructions to the executed code. Both
memory and stack accesses are constrained to small regions of memory in the address
space of the superoptimizer. The memory is approximated by a small array M of size
2° starting at a memory address membase. Each instruction performing a memory
access is then prepended with instructions ensuring that the memory access does not
fall outside M. A similar approach is taken for stack references. Figure 2.3 shows the
sandboxing instructions used for the x86 instruction set. Note that this strategy for
handling memory references preserves the property that if two instructions sequences
are equivalent they result in the same machine state on any testvector and therefore
have the same fingerprint. We have found that a sandboxed memory of size M = 256
bytes is sufficient for minimizing fingerprint collisions between inequivalent instruction

sequences.

The function used to hash the machine states obtained after the execution of
the instruction sequences on the testvectors must have some special properties to

ensure minimal collisions. First, it should be asymmetric with respect to different
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memory locations and registers, which is necessary to distinguish between instruc-
tion sequences performing identical operations at two different locations. Second, it
should not be based on a single operator (like xor); otherwise, there are likely to be
many collisions on instruction sequences using that particular operator. We employ a
combination of xor and weighted-add operations to compute the hash of the machine
state. To handle context correctly, when fingerprinting a target sequence the hash
function includes only the live registers; the values of the dead registers are discarded.

Finally, the full structure of the fingerprint hashtable is more elaborate than we
have described so far. For each target instruction sequence I, the hashtable records I
and the fingerprint not only for the canonicalization of I, but also for all of I’s differ-
ent register and symbolic constant renamings. This, as we describe in Section 2.3.2,
helps us in reducing the search space of the enumerator. Hence, an instruction se-
quence using r distinct registers and c¢ distinct constants can generate at most 7! ¢!
fingerprints. Typically » < 5 and ¢ < 2, so the blow-up is upper-bounded by 240. In
practice, we find that the blow-up is around 18. The fingerprint hashtable is indexed
by an instruction sequence’s fingerprint and set of live registers.

In summary, the fingerprint hashtable maps a fingerprint and set of live registers
to a set of instruction sequences with the same fingerprint under that context. This

table forms the corpus of instruction sequences that we wish to superoptimize.

2.3 Enumerator

The enumerator simply enumerates all possible, unique instruction sequences. We
discuss the enumerable instruction set, techniques to reduce the search space, and

the search for useful optimizations in the following subsections.

2.3.1 Enumerable Instruction Set

Instruction sequences are enumerated from a subset of all instructions. At most one
branch instruction is allowed in an instruction sequence. For the branch instruction,

a canonical target is defined which represents an exit point outside of I. Hence,
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an enumerated instruction sequence is allowed to have at most two different exits:
the straight-line exit point in the code, and the exit defined by the branch instruc-
tion. Notice that while an enumerated instruction sequence can have at most one
branch instruction, a target instruction sequence could have more branches; many

optimizations eliminate or reduce the number of branches in the target sequence.

To bound the search space, we restrict the maximum number of distinct registers
and constants that can appear in an enumerable instruction sequence. For instructions
using a restricted subset of registers, only that subset is considered during enumera-
tion. For constants we allow the numbers 0 and 1, the symbolic constants c0 and cl1,
and addition or subtraction where the first argument is a symbolic constant and the
second argument is a symbolic constant or 1. Allowing addition and subtraction of
constants enables discovery of local constant-folding optimizations. Constant-folding
optimizations involving more than two constants are captured by repeated application

of optimizations to a code sequence.

We also restrict the number of distinct registers used in an enumerated instruction
sequence. The number of registers used by instruction sequences varies greatly. We
profiled some CPU-intensive applications to gauge this distribution (see Figure 2.4)
and observed that more than 50% of harvested instruction sequences of length 8 use
fewer than 4 machine registers. Thus, we decided to allow at most 4 distinct regis-
ters in an enumerated instruction sequence. Again, notice that a target instruction
sequence can use more registers than the corresponding optimal instruction sequence.
In fact, many optimizations produced by the superoptimizer eliminate redundant

registers.

The number of indirect memory accesses in an instruction sequence is constrained
by the number of registers allowed, since an indirect memory access dereferences a
register. For direct memory accesses, we allow at most two distinct direct memory
addresses (cO and c1). Because we use the symbolic constants cO and c1 as both
values of immediate operands and memory addresses, we capture optimizations in-

volving the transformation of indirect memory accesses to direct memory accesses.
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Figure 2.4: Pattern of register usage of harvested instruction sequences in SPEC
CINT2000 benchmarks.

Figure 2.5 shows examples of opcodes of different types and the instructions gen-

erated by them.

2.3.2 Reducing the Search Space

Once the enumerable instruction set is fixed, the enumerator’s search space is expo-
nential in the length of the instruction sequence. We use two techniques to reduce

the size of the search space.

e We enumerate only canonical instruction sequences. While this decision reduces
the size of the enumerated set of sequences, it does cause a blow-up in the size

of the fingerprint hashtable (recall Section 2.2.2).

e We prune the search space by identifying and eliminating instructions that are

functionally equivalent to other cheaper instructions.

For simple cost functions, it is possible to further prune the search space by
observing that all subsequences of a length n instruction sequence must be
optimal—if any subsequence is not optimal, then it can be replaced by a cheaper
sequence and hence the sequence is not optimal. This is always true when we
are optimizing for codesize, since the cost function is simply the sum of individ-

ual instruction lengths. For runtime optimizations, this is not true in general
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not, <register>

not r0
not rl
not r2
not r3

dec <memory location> ‘

dec (r0)
dec (rl)
dec (r2)
dec (r3)
dec (c0)
dec (cl)

add <mem-indirect>, <immediate>
add (r0), 0
add (r0), 1
add (r0), c0
add (r0), cl
add (r0), c0+1
add (r0), c0-1
add (r0), c0+cl

add (r0), c0-cl
and repetition of the above for rl, r2, ...

Figure 2.5: Examples of instructions generated by opcodes taking different operand-
types in the x86 instruction set.

because running time is also dependent on the combination and order of instruc-
tions in the sequence. In our experiments, we employed this aggressive pruning
strategy only when optimizing for codesize. Pruning the search space at smaller
instruction sequence lengths provides a significant benefit for longer instruction
sequences. This idea was first proposed by Massalin [23|. We currently check
that all subsequences of length 2 are optimal using a table that lists all length

2 optimal sequences, when optimizing for codesize.

Table 2.1 lists the size of the set of enumerated instruction sequences with and without
canonicalization and pruning. While canonicalization provides the biggest reduction,

the effect is cumulative and using both techniques we achieve over 50x improvement
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in the size of the search space for instruction sequences of length 3 on the x86 ar-
chitecture. In Table 2.1, the reduction due to pruning is only due to elimination of
single instructions that are equivalent to other single instructions. For the codesize
cost function, where we can employ the more aggressive pruning strategy, we get a

total improvement of 60x (20% more) in the size of the search space at length 3.

Length | Original After After | Reduction
Search Canoni- Prun- | Factor
Space calization | ing
1 5,453 997 644 8.5
29 m 2.49 m 1.2m | 247
3 162.1 b 8.6 b 3.11b | 52.1

Table 2.1: The size of the search space for x86 instruction sequences of length 1 to 3.
The last column shows the reduction in search space achieved through pruning and
canonicalization.

Many of the enumerated sequences are redundant and it is tempting to avoid
enumerating them by placing checks in the enumerator. For example, it is possible
to check for instruction sequences of the form {mov r0, r1l; mov r0, ri} and avoid
fingerprinting them. However, such checks in the inner loop of the enumerator result
in an overall slowdown. In the interest of speed, we let the system weed out such
special cases automatically through fingerprinting and equivalence checks.

The enumerator stores enumerable instructions in a table with information about
the registers and constants used to help the enumerator generate only canonical in-
struction sequences. The table is sorted in an order to make enumeration fast. Using
the fast fingerprint technique, about 500, 000 instruction sequences per second can be

enumerated and fingerprinted on a single processor.

2.3.3 Searching the Fingerprint Hashtable

Each enumerated instruction sequence is fingerprinted as described in Section 2.2.2.
The fingerprint is computed for all possible sets of live registers. The fingerprint

value and the corresponding set of live registers is then used to look up any matching
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target instruction sequence in the fingerprint hashtable. If there is a match, we
have found a candidate optimization and proceed with the equivalence test described
in Section 2.4.1. If there is no match in the fingerprint hashtable, the enumerated

instruction sequence is simply discarded.

Recall that while we enumerate only canonical instruction sequences, the finger-
print hashtable contains instruction sequences in both canonical and non-canonical
forms. This is important, because it is possible to optimize a canonical instruction
sequence with a non-canonical instruction sequence and vice-versa. For example, a
canonical length 2 instruction sequence 7' {mov r0, rl; mov rl, r2} can be opti-
mized using a non-canonical length 1 instruction sequence O {mov r0, r2} (assum-
ing r1 is not live). To catch this optimization, we keep all renamings of 7" in the
fingerprint hashtable and enumerate only the canonical version of O. In this exam-
ple, the non-canonical renaming of 7" {mov r0, r2; mov r2, ri} in the fingerprint

hashtable is optimized by the canonical enumerated sequence {mov r0, ri}.

2.4 Learning an Optimization

Once a match is found in the fingerprint hashtable for an enumerated instruction
sequence, an equivalence test is performed. If the target instruction sequence and
the candidate instruction sequence are found to be equivalent, and the cost of the
candidate instruction sequence is lower than the target (or a previously discovered
optimization for that target), the optimization is stored in the optimization database.

Each of these steps is described in the following subsections.

2.4.1 Equivalence Test

The equivalence test proceeds in two steps a fast but incomplete execution test and

a slower but exact boolean test.
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Execution Test

Our fast execution test is similar to fingerprinting. We run the two sequences over
a set of testvectors and observe if they yield the same output on each test. In our
experiments, we use a total of 18 testvectors: one is all zeros, one is all ones and in
the remaining 16, each bit is set randomly.

Contrary to Massalin’s experience [23|, we found a number of pairs of instruction
sequences that passed the execution test and failed the boolean test.? This situa-
tion arises due to a variety of reasons, almost all involving loss of bits during the
computation. For example, an equality comparison of two computed registers on
the testvectors is likely to always return false. Similarly, memory addresses are al-
most never aliased by execution tests, while a boolean deterministic test catches all

inconsistencies due to the possibility of memory aliasing.

Boolean Test

The boolean verification test represents an instruction sequence by a boolean formula
and expresses the equivalence relation as a satisfiability constraint. The satisfiability
constraint is tested using a SAT solver.

A machine state is represented by a finite set of registers and a model of the full
memory and stack. Registers are represented as bitvectors. Memory is modeled by
a map from address expressions to data bits. The first use of a memory location is
encoded by fresh boolean variables representing the data bits at that address. Boolean
clauses are used to encode the relationship between the data bits and address bits.
e.g., for a sequence performing two memory reads at addresses addr; and addr,, and
returning data bytes data; and datay respectively, the following clause captures their

aliasing relationship:
(addry = addry) = (data; = datasy)

All memory writes are stored in a table in order of their occurrence. For a memory

?Massalin did not implement a complete test, relying on humans to confirm that candidate
optimizations that passed an execution test were correct in all circumstances.
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read occurring after memory writes, the read-address needs to be compared with
the address expressions of the writes. Each read-access R is checked for address-
equivalence with each of the preceding write accesses W, in decreasing order of i,
where W; is the ¢’th write access by the instruction sequence. The following clause
encodes this relationship between the data of the read access datar and the data of

one of the preceding write accesses datayy,.

\/(addr r 7 addry,) A addrg = addry, = datar = datayw,

Jj=zi
For each pair of memory accesses, a boolean clause is generated to capture the pos-
sibility of their address expressions aliasing with each other. Where information is
not available, we conservatively assume that two memory addresses may alias. The
equivalence of two memory states is checked by reading the bits at each address lo-
cation for both states and checking them for boolean equivalence. The model of the
stack is identical to that of memory, with additional bits representing the stack and
frame pointers.

Instructions are encoded as boolean circuits transforming an input machine state
to an output machine state. Branch instructions are handled by predicating the
execution of instructions on the true and false paths with the branch condition or
its negation. The program counter is modeled to indicate if a branch to a target
outside the instruction sequence was taken. The input state is shared between the two
instruction sequences being checked for equivalence. Two instruction sequences are
equivalent iff the registers, memory and stack expressions obtained in the final state
are equivalent. The equivalence relation of the output machine states is expressed as

a satisfiability constraint before giving it to the SAT solver.

2.4.2 Optimization Database

The optimization database records all optimizations discovered by the superoptimizer.
The database is indexed by the original instruction sequence (in its canonical form)

and the set of live registers, and returns the corresponding optimal sequence if one
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exists. Because instruction sequences stored in the fingerprint hashtable need not be
canonical, they must be canonicalized (and their optimal versions renamed) before
storing them in the optimization database.

The operation of optimizing a binary executable is fast: it involves only harvesting
a target sequence, canonicalizing it, and searching the indexed optimization database.
Multiple optimization passes are performed on the executable until no further opti-

mizations are found.

2.5 Experimental Results

Our implementation of the optimizer is written in C++ and O’Caml [22|. We use the
Diablo link-time rewriting framework [1, 27| to compute liveness information for an
x86 executable binary. We use zChaff |25, 38| as our backend SAT solver because of
its performance and incremental SAT solving capabilities. It took around two weeks
to write formulas modeling the opcodes of the Intel Pentium instruction set for the
boolean test. We compared our optimizer on executables compiled using gcc version
3.2.3. The default optimization level used was -02.

Our experiments were done using a Linux machine with a single Intel Pentium
3.0GHz processor and 100 Gigabytes local storage. We limited the peephole size to
instruction sequences of length 3, which were not too time consuming to enumerate.
Given more resources, we can easily scale the system to length 4 instruction sequences,
which we believe, would produce even better results. Going beyond length 4 instruc-
tion sequences requires additional techniques to further reduce the search space of
the enumerator. Although, we enumerate only up to length 3 instruction sequences,
we optimized windows of up to length 6 instruction sequences in our experiments.

We use two different cost functions, one capturing runtime and the other codesize.
The codesize cost function simply considers the size of the executable binary code of
a sequence as its cost. The runtime cost function is more involved. It first takes
into account the number of memory accesses and branch instructions in the sequence.
Then, the approximate cycle costs of the instruction are considered, as obtained from

the technical manuals on Intel architectures. In case of a tie, the number of registers
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used and the code length are used as tie-breakers. 3

In our first set of experiments, we took some kernels operating on arrays of in-
teger elements. All the kernels were written in C. A description of each of the ker-
nels is given in Table 2.3. These kernels were compiled using architecture specific
(-march=pentium4, -mmmx and -msse) optimization options in gcc, with the loops
unrolled 8 times.

Figure 2.6 plots the runtime improvements our superoptimizer obtained in the
different kernels over gcc. We achieved improvements of between 1.7 and 10 times over
already-optimized code. Some (but not all) of the large improvements in running time
are because the superoptimizer finds clever ways to use the SIMD (single instruction
multiple data) instructions available in the Intel architecture. The problem of emitting
efficient SIMD code has confounded compiler-authors for many years; gcc at least
does not appear to attempt to use SIMD instructions. Most code involving the use of
complex instructions is currently hand-coded by expert assembly programmers. Our
results show that an automatically generated optimizer is at least a partial solution

to this problem.

12
10 —

Factor of Improvement
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sum image-diff ~ compare min xor sprite-copy
Kernel Name

Figure 2.6: Speedups for the kernels in Table 2.3.

Next, we applied the superoptimizer to applications from the SPEC CINT2000

3We tried using Pentium performance counters to estimate the runtime of an instruction sequence.
In our experience, that was not useful for short sequences due to the large variance in the numbers
obtained across different runs.
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benchmarks [17|. The number of optimizations performed and the corresponding im-
provements over gcc are shown in Table 2.4. As one would expect, the improvements
are much less dramatic for full applications than for compute-intensive kernels. We
found speedups of 0-5% with these improvements, though we found that speedup
varied across different runs and machine configurations. We saw improvements in

code size of 1-6% over executables already optimized for size using -0s.

We also ran our optimizer on SPEC executables compiled using the architecture
specific Intel C++ compiler icc [18]. For the SPEC benchmarks, the speedups ob-
tained on icc optimized executables were less than 1%, but we found that the codesize
of these executables reduced by 2.5-4% with no performance penalty. On the kernels,

our optimizer achieved speedups over icc comparable to the results with gcc.

A sample of some interesting optimizations performed on binaries that had been
already optimized using gcc are given in Table 2.5. The system found a range of
optimizations, from ones that are well-known (constant folding, redundant load elim-
ination, strength-reduction) to very architecture specific optimizations (the use of the
xchg instruction to swap registers, and various uses of the SIMD instructions). We
discuss two discovered optimizations in detail. In Example 1 of Table 2.5, the super-
optimizer finds a three-instruction sequence to compute the sum of eight unsigned
byte integers using the 64 bit registers available on the x86 platform. It first zeros out
one of the 64 bit registers (mm0) by subtracting it from itself. It then uses the psadbw
instruction, which computes the sum of absolute differences of two 64-bit values.
Since one of the registers in this sequence is zero, this amounts to the computation of
the sum of the eight bytes in the other operand. The third instruction then stores the
computed sum to the memory location sum. In Example 5, the destination (register
esi) is intended to be zeroed out only if the comparison flag in the machine is set;
here gcc produces clever code to avoid a branch instruction. The target sequence
emitted by gce reads the flag to a register eax, decrements it (causing it to be either
0 or —1) and then computes the bitwise-and of eax and esi. Since —1 is represented
by all 1s in two’s complement, this effectively sets esi to zero only if the comparison
flag was set. The superoptimizer proposes the use of a simple conditional-move cmov

instruction to achieve the same result.
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A total of around 3000 codesize optimizations and 2100 runtime optimizations
were learnt after training the optimizer on a diverse set of integer programs. One
metric of importance is the frequency of use of these optimizations. We found a
tremendous amount of re-use. Table 2.2 presents a profile of the optimizations that
were applied to the SPEC integer benchmarks. Five optimizations were used more
than 1,000 times each; in total over 600 distinct optimizations were used at least once
each on these benchmarks. To further study the re-use of optimizations, we trained
the optimizer on one set of executables and optimized another set of executables.
We found that most optimizations are captured even though the executable being
optimized was not a part of the training set. For example, 97% of the optimizations
were captured when we ran the optimizer on the popular internet browser firefox

after training it only on the SPEC benchmarks.

Frequency | Number of | Number  of
Of Use Optimiza- Applications
tions

> 1000 8 18679

201 — 1000 7 4098

51 — 200 33 2823

11 - 50 82 1737
1—10 474 1256

Table 2.2: Profile of the number of optimizations and the number of times they were
applied on SPEC CINT2000 benchmarks.

The process of optimizing a full binary using the optimization database is very
fast, completing in less than two seconds on these benchmarks. A prototype of our

system is available online at |33].

2.6 Discussion

In this section, we show in detail how our system optimizes a simple loop; the purpose
is to illustrate what our techniques can, and cannot, do using a small but fairly realistic

example. Consider the following C program to traverse a linked list of integers,
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Kernel Description Pseudo-code
Name
sum Calculate the sum of unsigned | sum += ali

byte-integers in an array
image-diff Calculate the sum of absolute dif- | sum += ABS (ali| - bli|)
ferences of image pixels
comparison | Compare each element of two ar- | c|i| = (ali]| < bli]) ? ¢0: ¢l
rays
min Find the minimum of each ele- | c|i| = (ali] < bli]) 7 ali] : bl
ment of two arrays
xor Computes exclusive-OR over two | c[i| = bli] & ali]
arrays
sprite-copy | Rendering sprite graphics (Game | c|i| = (ali| == 0) ? bli| : ali
Programming)

Table 2.3: Superoptimized kernels, operating on arrays of 4 million elements.

multiplying each element by 2:

struct node
{
int val;
struct node *next;

};

void traverse (struct node *head)

{
while (head)
{
head->val *= 2;
head = head->next;
}
}

The following assembly code is generated by gcc without optimizations for the loop

body of traverse() (eax, edx are machine registers, ebp is the register holding the
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Runtime Codesize
Program| Description Number of | Instructiond Number of | Codesize
Optimiza- | Elimi- Optimiza- | Improve-
tions nated tions ment
gzip Data Compression | 621 4.16% 402 3.95%
Utility
mcf Minimum Cost | 381 3.73% 335 5.86%
Network Flow
Solver
crafty | Chess Program 1074 2.19% 758 1.711%
bzip2 | Data Compression | 396 4.11% 301 4.58%
Utility
gcce C compiler 10326 2.44% 2996 1.12%
parser | Natural Language | 1123 3.84% 582 3.06%
Processing
twolf | Place and Route | 1125 2.17% 619 1.47%
Simulator

Table 2.4: Results of running the optimizer on SPEC CINT2000 benchmark appli-
cations. The runtime improvements are shown over ‘gee -O2’ optimization. The
codesize improvements are shown over ‘gcc -Os’.

frame pointer).

1 : movl 8(%ebp), %edx  #edx := head

2 : movl 8(%ebp), %eax  #eax := head

3 : movl (Jeax), %eax #eax := head->val

4 : sall Yeax #left-shift eax by 1
5 : movl Y%eax, (Y%edx) #head->val := eax

6 : movl 8(%ebp), %eax  #eax := head

7 : movl 4(%eax), %eax #teax = head->next
8 : movl %eax, 8(%ebp) #head := eax

9 : cmpl $0, 8(%ebp) #head == null?

The superoptimizer first replaces instruction 2 with

2':movl %edx, Y%eax
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Description Target Sequence Optimal Sequence Live
Registers
1. | Sum of sum += ali psubb %mmo0, %mm0 | sum
byte-integers sum +— afi+1] psadbw &ali], %mm0
in an array . movd %mm0, sum
sum +— afi+7]
2. | eax « sub %eax, %ecx notl %eax eax
ecx - eax - 1 mov %ecx, Yeax add %ecx, %eax
dec %eax
3. | Elimination of sub %eax, %ecx sub %eax, %ecx eax,
Branch test %ecx, Yecx cmovne %edx, %ebx | ecx,
Instructions je .END ebx,
mov %edx, %ebx ebx
.END:
4. | Swap two mov %eax, %ecx xchg %eax, %edx eax,
registers mov %edx, %eax edx
mov %ecx, Y%edx
5. | Use of setg %al mov $0, %eax esi
Conditional movzbl %al, Y%eax cmovg Y%eax, %esi
Move dec Yeax
Instruction and %eax, %esi
6. | Constant mov $8, %eax mov $7, %eax eax,
Folding sub %ecx, %eax sub %ecx, %eax
dec Y%eax ecx
7. | Elimination of mov %eax, -20(%ebp) | mov %eax, -20(%ebp) | ecx

Redundant
Loads

mov -20(%ebp), %ecx

mov %eax, %ecx

Table 2.5: Examples of runtime optimizations performed by the superoptimizer on
gce-optimized executables.
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and instruction 9 with

9:cmpl $0, %eax

eliminating two redundant loads. Then, the instruction sequence 2’,3,4,5 is replaced
with a single instruction

3:sall (%edx)

taking advantage of the fact that eax is not live at the end of instruction 5. It is
inferred that locations 8 (%ebp) and (%edx) in instructions 1 and 3’ cannot alias with
each other by comparing the types of instruction operands. Hence, in the third step,

the instruction sequence 1,36 is replaced by the sequence 1,3’,6" with
6':movl %edx, %eax
eliminating another redundant load. Instructions 6’ and 7 are replaced by
7'movl 4(%edx), %eax

eliminating a register copy and finally the use of register eax is eliminated in in-
structions 7/, 8 and 9’ by replacing it with edx in all three instructions. After these

optimizations, the assembly code is:

1 : movl 8(%ebp), %edx #edx := head

37: sall (Yedx) #left-shift head->val by 1
7°: movl 4(%edx), %edx #edx = head->next

8’: movl %edx, 8(%ebp)  #head := edx

9’: cmpl $0x0, %edx #edx == null?

A standard optimizing compiler produces the following code (eax holds the value of

head before entering the loop body):

1 : sall (%eax) #left-shift head->val by 1
2 : movl 4(%eax), %eax #teax := head->next

3 : testl %eax, Yeax #eax == null?
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In this example, our automatically generated optimizer performs all but one of the
optimizations performed by a standard optimizing compiler. The optimization that is
missed involves the iteration variable (instructions 1 and 8). Because dataflow analysis
gives the standard compiler a global view of the loop’s behavior across all iterations,
the standard compiler can cache the iteration variable (head) in a register avoiding
loads and stores at loop boundaries. Our rule-based system cannot currently find this
optimization because it does not understand loop-carried dependencies. Unrolling the
loop a few times would mitigate this limitation since the intermediate loads can still

be eliminated by pattern-matching on short sequences of instructions.

2.7 Related Work

Superoptimization of code sequences was first proposed nearly 20 years ago, but we
are aware of just three efforts that have developed the idea. Massalin first described
an exhaustive-search based approach using a fast probabilistic test to discover short
optimal programs|23]. By constraining the set of instructions to a few register-register
operations, Massalin was able to scale the length of enumerated programs to 12 in-
structions. For the probabilistic test, Massalin’s superoptimizer chose a set of carefully
chosen inputs for the program being optimized. In the first stage, the probabilistic
test used 3 hand-chosen input vectors; if the two programs produced identical output
on all 3 inputs, the second stage compared the two programs on many more randomly
selected inputs. Massalin also used a pruning strategy to eliminate sub-optimal sub-
sequences at every intermediate step. He filtered out instruction sequences that are
known not to occur in any optimal program, using the property that any subsequence
of an optimal program must also be optimal. To enable this pruning, he used manu-
ally coded equivalences between shorter programs. Although Massalin proposes and
describes a boolean verifier to determine program equivalences in his paper, his pro-
totype implementation used only a probabilistic test. He used manual inspection to
further ascertain equivalence of program pairs. Massalin’s superoptimizer was able
to test 50,000 programs per second.

We have adopted the same basic approach to searching (enumerating) instruction
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sequences, with the addition of simultaneously optimizing many target sequences and
reducing the search space using canonicalized instruction sequences. While Mas-
salin was interested in computing optimal programs for mathematical functions (e.g.
signum), our interest is in computing optimal versions of small instruction sequences
found in commonly executed code. Our probabilistic test and pruning strategy are
very similar to those proposed by Massalin. We have enhanced the equivalence checker
by supporting a large set of instructions (including those accessing memory) and an
efficient SAT-based implementation of a boolean equivalence checker. Because we
aim to superoptimize several sequences simultaneously, a boolean checker becomes
essential to remove false positives produced by the probabilistic test. Massalin’s work
reported on the optimization of relatively long sequences (12 instructions), at least
compared to ours. To achieve such lengths it was necessary to restrict the enumer-
able instructions to a very small set of 10-15 hand-chosen opcodes. We deal with
roughly 300 opcodes, and so the number of instruction sequences for us grows much
more rapidly with length. Even though our optimizer can test many more instruction

sequences (500,000 per second), our optimizer scales to only length-3 sequences.

The GNU Superoptimizer (GSO) [15] learns optimizations involving elimination of
branch instructions for the RS/6000 processor, for later use with the GNU C Compiler
(GCC). They use exhaustive search to find the fastest straight-line code computing
a goal function. In particular, they find optimal versions of the computation of
comparison operators (A rel-op B). This work is perhaps the closest to ours in its goals;
we are both interested in learning peephole optimizations. GSO has a large manual
component, as a user is required to specify the goal function and if an optimization is
found, add it to GCC. Our approach is completely automatic. While GSO has been
used to learn a few tens of optimizations, our system has learned thousands and there

is no reason the algorithms should not scale to millions of optimizations.

One of GSO’s primary goals is to ensure portability across architectures and they
achieve it using instruction simulation. We instead choose to directly execute instruc-
tions on hardware for speed. Therefore, our optimizer can run only on the target
architecture. GSO generates only register-register operations where the output and

inputs of the goal functions are assumed to be in specific registers. They prune the



36 CHAPTER 2. PEEPHOLE SUPEROPTIMIZERS

search by trying only operands that are either inputs or have been generated by pre-
vious instructions. For three-operand architectures, the destination of each operation
is assumed to be the next available register; for two-operand machines, one of the
operands is used as the destination. For commutative operations, only one ordering
of operands is tried. Using such optimizations, GSO restricts their branching factor
to between 100 and 1000. The longest sequence reported in their examples is four
instructions long. Unlike GSO, we are interested in optimizing arbitrary sequences
including those that modify multiple registers and memory locations. For this reason,
our branching factor is bigger (around 2000-3000). Similarly, while GSO’s equivalence
checker needs to compare only one pair of values (the last generated value and the tar-
get function’s value), our equivalence checker needs to compare the full representation

of the machine state.

Another interesting approach to superoptimization is proposed in a system called
Denali [19]. Denali is targeted primarily at optimizing performance-critical inner
loops. They divide the problem of finding the optimal sequence into two steps: in the
first step, a search procedure finds the space of programs equivalent to the program
being searched; and in the second step, they decide the optimal program in the space
of equivalent programs. To determine equivalence, Denali requires a set of axioms
expressed in first order logic, capturing mathematical operators and the instruction
set of the architecture. For example, an axiom could express the fact that integer
addition is associative, or that the leftshift instruction multiplies its operand by
2. The system then proceeds by matching the program constructs with the corre-
sponding axioms to find all possible ways to compute a goal function and formulates
a satisfiability constraint, the solution to which expresses the fastest among all possi-
ble equivalent instruction sequences. Because Denali uses goal-directed search, it can
find much longer sequences than we can currently generate using exhaustive search.
However, Denali has two drawbacks that led us to prefer exhaustive search. First,
Denali is dependent on having enough rules (axioms) to cover all interesting cases;
we didn’t want to rule out optimizations simply because we hadn’t thought of them.
Second, it is unclear how this approach can be used to optimize several instruction

sequences simultaneously; we gain significant efficiency by amortizing the cost of a
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single exhaustive enumeration of instruction sequences over the optimization of many
target sequences.

Peephole optimizers, apart from their typical use in the final optimization pass,
have also been used to perform code selection at link time to generate highly portable
compilers [6, 9, 10, 11, 21]. In these systems, peephole optimization through pattern-
matching is a primary method to perform code optimization. For example, the “very
portable optimizer” (VPO) in |6] uses peephole optimization to reduce the volume
of intermediate code by a factor of two to three. These systems share our goal of
automatically and systematically discovering peephole optimizations. The primary
differences with our work are that our equivalence test based on SAT is more general
(able to detect more equivalent sequences) and works for longer sequences than pre-
vious systems. Discovering each optimization is also more expensive in our approach;
however, by partitioning the work into an off-line learning phase that computes a
database of optimizations and an actual optimization phase that simply looks up
transformations in the database, our optimization phase can be as fast or faster than

traditional peephole optimizers.

2.8 Conclusions and Summary of Contributions

We have described the construction of a system to automatically generate a peephole
superoptimizer for a target architecture. The system is capable of automatically
learning thousands of peephole optimization rules, each replacing the target sequence
with the corresponding optimal sequence. Our superoptimization-based approach
is capable of generating efficient code involving SIMD instructions. It is also useful
approach to automatically discover many different classes of optimizations in already-

compiled code.



Chapter 3

Binary Translation Using Peephole

Superoptimizers

In this chapter, we discuss the use of peephole superoptimizers to perform efficient
binary translation. We begin with a discussion on the recent applications of binary
translation (Section 3.1). We then provide a necessarily brief overview of peephole
superoptimizers followed by a discussion on how we employ them for binary trans-
lation (Section 3.2). We discuss other relevant issues involved in binary translation
(Section 3.3) and go on to discuss our prototype implementation (Section 3.4). We
then present our experimental results (Section 3.5), discuss related work (Section 3.6),

and finally conclude (Section 3.7).

3.1 Applications of Binary Translation

Before describing our binary translation system, we give a brief overview of a range
of applications for binary translation. Traditionally, binary translation has been used
to emulate legacy architectures on recent machines. With improved performance, it
is now also seen as an acceptable portability solution.

Binary translation is also useful to hardware designers for ensuring software avail-
ability for their new architectures. While the design and production of new archi-

tecture chips complete within a few years, it can take a long time for software to be

38
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available on the new machines. To deal with this situation and ensure early adoption
of their new designs, computer architects often turn to software solutions like virtual

machines and binary translation|§].

Another interesting application of binary translation for hardware vendors is back-
ward and forward compatibility of their architecture generations. To run software
written for older generations, newer generations are forced to support backward com-
patibility. On the flip side, it is often not possible to run newer generation software on
older machines. Both of these problems create compatibility headaches for computer
architects and huge management overheads for software developers. It is not hard to
imagine the use of a good binary-translation based solution to solve both problems

in the future.

Binary translation is also being used for machine and application virtualization.
Leading virtualization companies are now considering support for allowing the execu-
tion of virtual machines from multiple architectures on a single host architecture|31].
Hardware vendors are also developing virtualization platforms that allow people to
run popular applications written for other architectures on their machines|26]. Server
farms and data centers can use binary translation to consolidate their servers, thus

cutting their power and management costs.

People have also used binary translation to improve performance and reduce power
consumption in hardware. Transmeta Crusoe [20| employs on-the-fly hardware binary
translation to execute x86 instructions on a VLIW architecture thereby cutting power
costs[16]. Similarly, in software, many Java virtual machines perform on-the-fly bi-
nary translation from Java bytecode to the host machine instructions|37] to improve

execution performance.
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3.2 Binary Translation Using Peephole Superopti-

mizers

In this section we give a necessarily brief overview of the design and functionality of
peephole superoptimizers, focusing on the aspects that are important in the adapta-

tion to binary translation, which is discussed in Section 3.2.

3.2.1 Peephole Superoptimizers

r— =
X
L
- ]
a.out &
| 2
<
o I——
Training — Indexed table of
Programs L] Objective Sequence

Figure 3.1: In the first phase, the harvester extracts instruction sequences from a
set of training executable binaries and constructs an indexed data structure of target
sequences

Peephole superoptimizers are an unusual type of compiler optimizer |5, 15|, and
for brevity we usually refer to a peephole superoptimizer as simply an optimizer.

Constructing a peephole superoptimizers has three phases:

1. A module called the harvester extracts target instruction sequences from a set
of training programs (see Figure 3.1). These instruction sequences are the ones

we seek to optimize.

2. A module called the enumerator enumerates all possible instruction sequences
up to a certain length. Each enumerated instruction sequence s is checked to see
if it is equivalent to any target instruction sequence ¢. If s is equivalent to some

target sequence t and s is cheaper according to a cost function (e.g., estimated
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execution time or code size) than any other sequence known to be equivalent to
t (including t itself), then s is recorded as the best known replacement for ¢ (see

Figure 3.2). A few sample peephole optimization rules are shown in Table 3.1.

3. The learned (target sequence, optimal sequence) pairs are organized into a

lookup table indexed by target instruction sequence.

Once constructed the optimizer is applied to an executable by simply looking up
target sequences in the executable for a known better replacement (see Figure 3.3).
The purpose of using harvested instruction sequences is to focus the search for opti-
mizations on the code sequences (usually generated by other compilers) that appear
in actual programs. Typically all instruction sequences up to length 5 or 6 are har-
vested, and the enumerator tries all instruction sequences up to length 3 or 4. Even at
these lengths, there are billions of enumerated instruction sequences to consider, and
techniques for pruning the search space are very important [5]. Thus, the construction
of the peephole optimizer is time-consuming, requiring a few processor-days. In con-
trast, actually applying the peephole optimizations to a program typically completes

within a few seconds.

Check
Objective

Sequences
for match

Enumerate all
candidate sequences
upto a certain length

Add to Peephole Tabl

Figure 3.2: In the second phase, the enumerator enumerates all instruction sequences
up to a certain length, checking each of them with any of the target sequences for a
match. If a suitable match is found, the corresponding replacement rule is added to
the peephole table.

The enumerator’s equivalence test is performed in two stages: a fast execution
test and a slower boolean test. The execution test is implemented by executing
the target sequence and the enumerated sequence on hardware and comparing their

outputs on random inputs. If the execution test does not prove that the two sequences
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are different (i.e., because they produce different outputs on some tested input), the
boolean test is used. The equivalence of the two instruction sequences is expressed
as boolean formula: each bit of machine state touched by either sequence is encoded
as a boolean variable, and the semantics of instructions is encoded using standard
logical connectives. A SAT solver is then used to test the formula for satisfiability,

which decides whether the two sequences are equal.

Live Equivalent
Target Sequence )
Registers | Enumerated Sequence

movl (%eax), %ecx
movl %ecx, (%eax)
sub %eax, Y%ecx
mov %ecx, %eax eax
dec %eax

sub %eax, Y%ecx
test %ecx, hecx
je .END

mov %edx, %ebx
.END:

eax,ecx movl (Yeax), %ecx

not %eax
add %ecx, ‘%eax

eax, ecx,| sub %eax, %ecx
edx, ebx | cmovne %edx, %ebx

Table 3.1: Examples of peephole rules generated by a superoptimizer for x86 executa-
bles

Using these techniques, alllength-3 x86 instruction sequences have previously been
enumerated on a single processor in less than two days|5|. This particular superop-
timizer is capable of handling opcodes involving flag operations, memory accesses
and branches, which on most architectures covers almost all opcodes. Equivalence of
instruction sequences involving memory accesses is correctly computed by account-
ing for the possibility of aliasing. The optimizer also takes into account live register
information, allowing it to find many more optimizations because correctness only
requires that optimizations preserve live registers (note the live register information

qualifying the peephole rules in Table 3.1).
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Apply
Peephole
Optimizations

a.out b.out

Figure 3.3: In the final phase, the optimizations in the peephole table are applied to
the target executable.

3.2.2 Binary Translation

Here, we discuss how we use a peephole superoptimizer to perform efficient binary
translation. The approach is similar to that discussed in Section 3.2.1, except that
now our target sequences belong to the source architecture while the enumerated

sequences belong to the destination architecture.

The binary translator’s harvester first extracts target sequences from a training
set of source-architecture applications. The enumerator then enumerates instruction
sequences on the destination architecture checking them for equivalence with any of
the target sequences. A key issue is that the definition of equivalence must change
in this new setting with different machine architectures. Now, equivalence is mean-
ingful only with respect to a register map showing which memory locations on the
destination machine, and in particular registers, emulate which memory locations on
the source machine. Some valid register maps are shown in Table 3.2. A register
in the source architecture could be mapped to a register or a memory location in
the destination architecture. It is also possible for a memory location in the source
architecture to be mapped to a register in the destination architecture. The choice of
the register determines the renaming of registers in performing a translation from a
source sequence to an equivalent target sequence.

During enumeration, all possible register maps are enumerated and a correspond-
ing target sequence searched. We reduce the search space by observing that having
once considered a register map, we need never consider a register map that is equal

up to a consistent register renaming. In case a match is found, the corresponding
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Register Map | Description

rl—eax Maps PowerPC register to
x86 register

ri—M Maps PowerPC register to a
memory location

M;—eax Maps a memory location in

source code to a register in
the translated code

i;:iii Invalid.  Cannot map two
PowerPC registers to the
same x86 register

M,—M,; Maps one memory location

to another (e.g.  address
space translation)

Table 3.2: Some valid (and invalid) register maps from PowerPC-x86 translation (M;
refers to a memory location).

peephole rule is added to the translation table. The peephole rule now has an extra
field specifying the register map under which it is valid. Some examples of peephole

translation rules are shown in Table 3.3.

Once the binary translator is constructed, using it is relatively simple. The
translation rules are applied to the source-architecture code to obtain destination-
architecture code. The application of translation rules is more involved than the
application of optimization rules. Now, we also need to select the register map for
each code point before generating the corresponding translated code. The right choice
of register maps can make a visible difference to the performance of generated code.

We discuss the selection of optimal register maps at translation time in Section 3.3.2.

3.3 Other Issues in Binary Translation

In this section, we discuss the main issues relevant to our approach to binary trans-

lation.
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PowerPC Live State x86 Instruction

Sequence Registers | Map Sequence
rl—eax

mr rl,r2 rl,r2 movl %ecx,’eax
r2—ecx
rl—eax

mr rl,r2 rl,r2 movl M;,%eax
I'2—>M1

rl—eax |movl (Yecx),%eax

1 1’ 2 1’ 2 y
wz rl,(r2) |rl,r r2—ecx | bswap heax

1
lwz r1,(xr2) |rl,r2, iQ:Zii movl (%ecx),%eax
stw rl,(r3) |r3 movl Y%eax, (%edx)
r3—edx
1
mflr ril rl,1lr riTeax movl %ecx,’eax
lr—ecx

Table 3.3: Examples of peephole translation rules from PowerPC to x86.

3.3.1 Static vs Dynamic Translation

Binary translation can either be performed statically (compile-time) or dynamically
(runtime). Most existing tools perform binary translation dynamically for its primary
advantage of having a complete view of the current machine state. Moreover, dynamic
binary translation provides additional opportunities for runtime optimizations. The
drawback of dynamic translation is the overhead of performing translation and book-
keeping at runtime, which is especially visible while running small user-interactive
applications that are invoked multiple times, such as many desktop applications. A
static translator translates programs offline and can apply more extensive (and poten-
tially whole program) optimizations. However, performing faithful static translation
is a slightly harder problem since no assumptions can be made about the runtime

state of the process.

Our binary translator is static, though we have avoided including anything in
our implementation that would make it impractical to develop a dynamic translator
(e.g., whole-program analysis or optimizations) using the same algorithms. Most of
the techniques we discuss are equally applicable in both settings and when they are

not, we discuss the two separately.
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3.3.2 Register Maps

While translating code from one architecture to another, we need to choose which
registers (or memory locations) on the destination machine will emulate which regis-
ters on the source machine. Choosing a good register map is crucial to the quality of
translation, and moreover the best code may require changing the register map from
one code point to the next. Thus, the best register map is the one that minimizes
the cost of the peephole translation rule (generates the fastest code) plus any cost of
switching register maps from the previous program point—because switching register
maps requires adding register move instructions to the generated code to realize the

switch at run-time, switching register maps is not free.

We formulate a dynamic programming problem to choose a minimum cost register
map at each program point in a given code region. At each code point all feasible
register maps are enumerated. For each enumerated register map M, the peephole
translation table is queried for a matching translation rule 7" and the corresponding
translation cost is recorded. Assume for simplicity that the code point under consid-
eration has only one predecessor, and the possible register maps at the predecessor
are Py,..., P,. The best cost register map is the one P; that minimizes the cost of

switching from P; to M, the cost of T', and, recursively, the cost of P;:
cost(M) = cost(T') + min;(cost(P;) + switch(P;, M))

We solve the recurrence in a standard fashion. Beginning at start of a code region
(e.g., a function body), the cost of the preceding register map is initially 0. Work-
ing forwards through the code region, the cost of each enumerated register map is
computed and stored before moving to the next program point and repeating the
computation. When the end of the code region is reached, the register map with the
lowest cost is chosen and its decisions are backtracked to decide the register maps at
all preceding program points. For program points having multiple predecessors, we
use a weighted sum of the switching costs from each predecessor. The weights as a
proxy for profiling or other hints that would tell us how frequently each code path is

taken. To handle loops, we perform two iterations of this computation.
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An Example

We use an example to further explain our algorithm. Consider a function foo with

three PowerPC instructions:

foo:
mr r2, ril
mr rl, r3
mr r3, r2

blr

foo swaps the registers r1 and r3 using register r2 as a temporary store. For sim-
plicity, we assume that all three registers (namely rl, r2 and r3) are live at the
end of the function. In Table 3.4, we show the peephole translation rules relevant
to this example. A row in the table represents that a PowerPC instruction sequence
in Column 1 can be translated to the x86 instruction sequence in Column 3 if the
registers at that program point are mapped according to Column 2. For example,
the first rule states that the instruction mr r1, r2 can be translated to mov M, R if
PowerPC registers r1 and r2 are mapped to the x86 register R and memory location
M respectively. The cost of using a peephole translation rule (column 4) is the cost of
the corresponding x86 instruction sequence; our cost function captures the approx-
imate runtime of the x86 sequence. The other significant component of the cost is
the cost of switching register assignments. Table 3.5 gives the switching costs for a
single PowerPC register. The table represents that the cost of switching from either
register to memory or vice versa has the cost of a memory access (which is 10 in our
cost model), while the cost to remain in the same state is 0.

We now describe the solution of our dynamic programming formulation for a
straight line sequence of PowerPC code. At each step in our algorithm, w move for-
ward by one PowerPC instruction. At the end of each step, we would have computed
the best possible translation and it’s associated cost for each register map.

In our example, we start with cost 0 at function entry foo. At this point all
registers are assumed to be in memory. At Step 1, we consider all possible ways to

translate the first instruction. There are three valid possibilities (depending on the
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‘ PowerPC Sequence | Map ‘ x86 Sequence ‘ Cost ‘
1 R
mr rl, r2 r - mov M, R 10
r2 — M
1 M
mr rl, r2 r - mov R, M 10
r2 — R
ril — Rl
mr rl, r2 r2 — Ry mov R;, Rso 1
mr rl, r2 ril — M nov Ry M
mr r2, r3 r2 — Ry <ch ;’ R 11
mr r3, ril r3 — Rs & f2, W

Table 3.4: An example table of peephole translation rules.

Transition | Cost
R—M 10
M—R 10
R—R 0
M—M 0

Table 3.5: Switching Costs

register map used):

e Use peephole rule 1 with r1+<R and r2+M. The peephole rule cost in this case
is 10 while the switching cost from the previous program point (where both

PowerPC registers were in memory) is 10, totalling to 20.

e Use peephole rule 2 with r1+M and r2«R. This is identical to the first case,
with a total cost of 20.

e Use peephole rule 3 with r1<-R; and r2+R,. In this case, the peephole rule
cost is 1, while the switching cost is 20 since it involves bringing two PowerPC

registers from memory to x86 registers.

At this point, the minimum cost translation for the first instruction is 20, obtained
by using either one of peephole rules 1 and 2. We store all these three possibilities to

compute the best translations at the next step.
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At Step 2, we search for the minimum cost translation for the first two instructions.
In this case, there are 6 possibilities for register maps at instruction 2, three of which

we discuss below. (The other three possibilities are very similar to the ones discussed).

e Use peephole rule 1 with r1+R, r2«M; and r3«M,. The lowest cost translation
is achieved by using the register map ri1<R at the previous instruction. The
total cost in this case is 30 = 20 + 10 where 20 is the cost of the previous
translation and 10 is the cost the peephole rule. The switching cost in this case

is 0.

e Use peephole rule 3 with r1<R;, r2+M and r3«<R,. In this case, the lowest
cost translation is achieved by using the register map (r1«<R, r2<M) at the
previous instruction. The total cost in this case is 31 = 20 4 10 + 1 where 20 is
the cost of the previous translation, 10 is the switching cost of bringing r3 into

an x86 register and 1 is the cost of the peephole rule.

e Use peephole rule 3 with all three registers r1, r2 and r3 mapped to x86 registers
Ri, Ry and R3 respectively. At this point, the best register map at the previous
instruction is (r1«Ry, r2<Ry). The total cost in this case is 32 = 21 + 10 + 1,
where 21 is the cost of the previous translation, 10 is the switching cost from

the previous register map to this one, and 1 is the cost of the peephole rule.

Next, we attempt to match the instruction sequence formed by the first two instruc-
tions to one of the rules in the peephole table. In this case, no matches exist and
so, we move on to the next instruction. We would like to point out that since the
optimal register map at a program point does not depend on the register maps at
program points before the predecessor program point, it suffices to store only the
current register maps and their optimal costs.

At Step 3, a similar procedure is used to compute the costs of the possible register
maps at the third instruction. The final costs at the end of the third instruction
are shown in Figure 3.4 for each register map. As seen in the figure, the minimum
cost achieved by considering all single instruction matches is 33. Next, we attempt

to match the instruction sequence formed by the second and third instructions with
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rl r2 ri,r2

SN

ri1,r3 | ri,r2 r1, r2 r3

mr rl,r3 ——=[20+0+10 20+10++———~ 21 +10 + ]

r1,r2,r3 rl,r3 rl,r2

mr r3,r2 ———=32+0+1—— 31+0+16 31+0+10

Figure 3.4: The enumerated register maps for the example. Each box represents an
enumerated register map. The top label on the box indicates the PowerPC registers
that are mapped to x86 registers (the other PowerPC registers are in memory). The
value in the box is the minimum cost of using that register map at that program point.
The cost is represented as (predecessor-cost + switching-cost + peephole-rule-cost).
The dotted lines indicate the predecessor used to obtain the minimum cost.

a rule in the peephole table. We find no match in this case. Finally, we attempt to
match the sequence formed by all three instructions. In this case, peephole rule 4
matches the three instructions with ri«M, r2«<—R; and r3«<-R, with a total cost of

31 =20+ 11 (here, 20 is the cost of switching and 11 is the cost of the peephole rule).

At the end of the three instructions, the minimum cost achieved is 31 by using

peephole rule 4, and that is used as the final translation of the function.

This procedure of enumerating all register maps and then solving a dynamic pro-
gramming problem is computationally intensive and, if not done properly, can sig-

nificantly increase translation time. While the cost of finding the best register map
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for every code point is not a problem for a static translator, it would add significant
overhead to a dynamic translator. To bound the computation time, we prune the set
of enumerated register maps at each program point. We retain only the n lowest-cost
register maps before moving to the next program point. We allow the value of n to be
tunable and refer to it as the prune size. We also have the flexibility to trade compu-
tation time for lower quality solutions. For example, for code that is not performance
critical we can consider code regions of size one (e.g., a single instruction) or even
use a fixed register map. In Section 3.5 we show that the cost of computing the best
register maps for frequently executed instructions is very small for our benchmarks.

We also discuss the performance sensitivity of our benchmarks to the prune size.

3.3.3 Endianness

If the source and destination architectures have different endianness we convert all
memory reads to destination endianness and all memory writes to source endianness.
This policy ensures that memory is always in source endianness while registers have
destination endianness. The extra byte-swap instructions needed to maintain this
invariant are only needed on memory accesses; in particular, we avoid the additional

overhead of shuffling bytes on register operations.

While dealing with source-destination architecture pairs with different endianness,
special care is required in handling OS-related data structures. In particular, all ex-
ecutable headers, environment variables and program arguments in the program’s
address space need to be converted from destination endianness to source endianness
before transferring control to the translated program. This step is necessary because
the source program assumes source endianness for everything while the OS writes the
data structures believing that the program assumes destination endianness. In a dy-
namic translator, these conversions are performed inside the translator at startup. In
a static translator, special initialization code is emitted to perform these conversions

at runtime.
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3.3.4 Control Flow Instructions

Like all other opcodes, control flow instructions are also translated using peephole
rules. Direct jumps in the source are translated to direct jumps in the translated
code, with the jump destination in being appropriately adjusted to point to the cor-
responding translated code. To handle conditional jumps, the condition codes of
the source architecture need to be faithfully represented in the destination architec-
ture. Handling condition codes correctly is one of the more involved aspects of binary
translation because of the divergent condition-code representations used by different
architectures. We discuss our approach to handling condition codes in the context
of our PowerPC-x86 binary translator; see Section 3.4.3. The handling of indirect
jumps is more involved and is done differently for static and dynamic translators. We

discuss this in detail in Section 3.4.4.

3.3.5 System Calls

When translating across two different operating systems, each source OS system call
needs to be emulated on the destination OS. Even when translating across the same
operating system on different architectures, many system calls require special han-
dling. For example, some system calls are only implemented for specific architectures.
Also, if the two architectures have different endianness, proper endianness conversions

are required for all memory locations that the system call could read or write.

There are other relevant issues to binary translation. For example, different issues
exist in full system emulation vs user-level emulation. A full system emulator needs
to also emulate the chipset and other peripherals of the source architecture, while a
user level emulation can abstract these issues at system-call interface. Other examples
include precise exceptions, misaligned memory accesses, interprocess communication,
signal handling, etc. These problems are orthogonal to the issues in peephole binary
translation and our solutions to these issues are standard. In this work, our focus is

primarily on efficient code-generation.
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3.4 Implementation

We have implemented a binary translator that allows PowerPC/Linux executables
to run in an x86/Linux environment. The translator is capable of handling almost
all PowerPC opcodes (around 180 in all). We have tested our implementation on a
variety of different executables and libraries.

The translator has been implemented in C/C++ and O’Caml [22|. Our superop-
timizer is capable of automatically inferring peephole translation rules from PowerPC
to x86. To test equivalence of instruction sequences, we use zChaff |25, 38] as our
backend SAT solver. We have translated most, but not all, Linux PowerPC system
calls. We present our results using the static translator that produces an x86 ELF 32-
bit binary executable from a PowerPC ELF 32-bit binary. Because we used the static
peephole superoptimizer described in [5] as our starting point, our binary translator
is also static, though as discussed previously our techniques could also be applied in
a dynamic translator. A consequence of our current implementation is that we can

also translate all dynamically linked libraries used by the PowerPC program.

3.4.1 Endianness

PowerPC is a big-endian architecture while x86 is a little-endian architecture, which
we handle using the scheme outlined in Section 3.3.3. For integer operations, there
exist three operand sizes in PowerPC: 1, 2 and 4 bytes. Depending on the operand size,
the appropriate conversion code is required when reading from or writing to memory.

We employ the convenient bswap x86 instruction to generate efficient conversion code.

3.4.2 Stack and Heap

On Linux, the stack is initialized with envp, argc and argv and the stack pointer is
saved to a canonical register at load time. On x86, the canonical register storing the
stack pointer is esp; on PowerPC, it is r1. When the translated executable is loaded
in an x86 environment (in the case of dynamic translation, when the translator is

loaded), the esp register is initialized to the stack pointer by the operating system
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while the emulated r1 register is left uninitialized. To make the stack visible to the
translated PowerPC code, we copy the esp register to the emulated r1 register at
startup. In dynamic translation, this is done by the translator; in static translation,
this is done by the initialization code. The handling of the heap requires no special
effort since the brk Linux system call used to allocate heap space is identical on both
x86 and PowerPC.

3.4.3 Condition Codes

Condition codes are bits representing quantities such as carry, overflow, parity, less,
greater, equal, etc. PowerPC and x86 handle condition codes very differently. Figures
3.5 and 3.6 show how condition codes are represented in PowerPC and x86 respec-
tively.

While PowerPC condition codes are written using separate instructions, x86 con-
dition codes are overwritten by almost all x86 instructions. Moreover, while PowerPC
compare instructions explicitly state whether they are doing a signed or an unsigned
comparison and store only one result in their flags, x86 compare instructions perform
both signed and unsigned comparisons and store both results in their condition bits.
On x86, the branch instruction then specifies which comparison it is interested in

(signed or unsigned). We handle these differences by allowing the PowerPC condi-

CRO| CR1 CRZ CR3 CR4 CR5 CR6 CR7
0 34 78 111215 16 19 20 23 227 28 3

CRn | LT | GT | EQ| SO

Figure 3.5: PowerPC architecture has support for eight independent sets of condition
codes CRO-CR7. Each 4-bit CRn register uses one bit each to represent less than (LT),
greater (GT), equal (EQ) and overflow-summary (S0). Explicit instructions are required
to read /write the condition code bits.

tion registers (cr0-cr7) to be mapped to x86 flags in the register map. For example,
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O S|z C

EFLAGS = == F
31 11 76 0

OF: Signed Overflow SF: Sign Flag

CF: Unsigned Overflow ZF: Zero Flag

Figure 3.6: The x86 architecture supports only a single set of condition codes repre-
sented as bits in a 32-bit EFLAGS register. Almost all x86 instructions overwrite these
condition codes.

an entry crO—SF in the register map specifies that, at that program point, the con-
tents of register cr0 are encoded in the x86 signed flags (SF). The translation of a
branch instruction then depends on whether the condition register being used (cr;)

is mapped to signed (SF) or unsigned (UF) flags.

3.4.4 Indirect Jumps

Jumping to an address in a register (or a memory location) is an indirect jump.
Function pointers, dynamic loading, and case statements are all handled using indirect
jumps. Since an indirect jump could jump almost anywhere in the executable, it
requires careful handling. Moreover, since the destination of the indirect jump could
assume a different register-map than the current one, the appropriate conversion needs
to be performed before jumping to the destination . Different approaches for dealing
with indirect jumps are needed in static and dynamic binary translators.

Handling an indirect jump in a dynamic translator is simpler. Here, on encoun-
tering an indirect jump, we relinquish control to the translator. The translator then
performs the register map conversion before transferring control to the (translated)
destination address.

Handling an indirect jump in a static translator is more involved. We first iden-
tify all instructions that can be possible indirect jump targets. Since almost all
well-formed executables use indirect jumps in only a few different code paradigms,
it is possible to identify possible indirect jump targets by scanning the executable.
We scan the read-only data sections, global offset tables and instruction immedi-

ate operands and use a set of pattern matching rules to identify possible indirect
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Peephole Translation JTAB
Table 0 code to convert to
destination state ma
ppc x86 7 P

‘movl I, tmp /¥41234 & jmp <destination>

bir 'lea .JTAB(tmp), t
| jmp *(tmp) /ITLra

“The lookup table stores a pointer to
the state—map conversion code, which t|
jumps to the final destination address

Figure 3.7: Handling of indirect jumps in a static binary translator. An indirect jump
is translated to a table lookup and a jump to the corresponding address. The lookup
table stores a pointer to a code fragment that first performs state-map conversion
before jumping to the translated code.

jump targets. A lookup table is then constructed to map these jump targets (which
are source architecture addresses) to their corresponding destination architecture ad-
dresses. However, as we need to perform register map conversion before jumping to
the destination address at runtime, we replace the destination addresses in the lookup
table with the address of a code fragment that performs the register-map conversion
before jumping to the destination address. We illustrate this scheme in Figure 3.7.

The translation of an indirect jump involves a table lookup and some register-map
conversion code. While the table lookup is fast, the register-map conversion may
involve multiple memory accesses. Hence, an indirect jump is usually an expensive
operation.

Although the pattern matching rules we use to identify possible indirect jump
targets have worked extremely well in practice, they are heuristics and particularly
are prone to adversarial attacks. It would not be difficult to construct an executable
that exploits these rules to cause a valid PowerPC program to crash on x86. Hence,
in an adversarial scenario, it would be wise to assume that all code addresses are
possible indirect jump targets. Doing so results in a larger lookup table and more

conversion code fragments, increasing the overall size of the executable, but will have
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ppc ‘ x86 ‘ Comparison

bl | call | bl (branch-and-link) saves the
instruction pointer to register
1r while call pushes it to
stack

blr | ret | blr (branch-to-link-register)
jumps to the address pointed-
to by 1r, while ret pops the
instruction pointer from the
stack and jumps to it

Table 3.6: Function call and return instructions in PowerPC and x86 architectures

no effect on running time apart from possible cache effects.

3.4.5 Function Calls and Returns

Function calls and returns are handled in very different ways in PowerPC and x86.
Table 3.6 lists the instructions and registers used in function calls and returns for
both architectures.

We implement function calls of the PowerPC architecture by simply emulating
the link-register(1r) like any other PowerPC register. On a function call (bl), the
link register is updated with the value of the next PowerPC instruction pointer. A
function return (blr) is treated just like an indirect jump to the link register.

The biggest advantage of using this scheme is its simplicity. However, it is possi-
ble to improve the translation of the blr instruction by exploiting the fact that blr
is always used to return from a function. For this reason, it is straightforward to
predict the possible jump targets of blr at translation time (it will be the instruc-
tion following the function call bl). This information can be used to avoid the extra
memory reads and writes required for register map conversion in an indirect jump.
We have implemented this optimization; while this optimization provides significant
improvements while translating small recursive benchmarks (e.g., recursive computa-
tion of the fibonacci series), it is not very effective for larger benchmarks (e.g., SPEC
CINT2000).
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Opcode ‘ Registers ‘ Description

mul reg32 eax, edx | Multiplies reg32
with eax and stores
the 64-bit result in
edx:eax.

div reg32 eax, edx | Divides edx:eax by
reg32 and stores re-
sult in eax.

eax, ebx

8-bit operations can
ecx, edx

only be performed
on these four regis-
ters.

any 8-bit insn

Table 3.7: Examples of x86 instructions that operate only on certain fixed registers.

3.4.6 Register Name Constraints

Another interesting challenge while translating from PowerPC to x86 is dealing with
instructions that operate only on specific registers. Such instructions are present on
both PowerPC and x86. Table 3.7 shows some such x86 instructions.

To be able to generate peephole translations involving these special instructions,
the superoptimizer is made aware of the constraints on their operands during enumer-
ation. If a translation is found by the superoptimizer involving these special instruc-
tions, the generated peephole rule encodes the name constraints on the operands as
register name constraints. These constraints are then used by the translator at code

generation time.

3.4.7 Self-Referential and Self-Modifying Code

We handle self-referential code by leaving a copy of the source architecture code in
its original address range for the translated version. To deal with self-modifying code
and dynamic loading, we invalidate the translation of a code fragment on observing
any modification to that code region. We achieve this by trapping any writes to code

regions and performing the corresponding invalidation and re-translation. For a static
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Number of Reason
Additions
2 Overflow /underflow semantics
of the divide instruction (div)
2 Overflow semantics of srawi

shift instruction

The rotate instruction rlwinm

The cntlzw instruction

The mfcr instruction

Indirect jumps referencing the
jumptable

O = =] =

Table 3.8: The distribution of the manual translation rules we added to the peephole
translation table.

translator, this involves making the translator available as a shared library.

3.4.8 Untranslated Opcodes

For 16 PowerPC opcodes our translator failed to find a short equivalent x86 sequence
of instructions automatically. In such cases, we allow manual additions to the peep-
hole table. Table 3.8 describes the number and types hand additions: 9 are due to
instructions involving indirect jumps and 7 are due to complex PowerPC instruc-
tions that cannot be emulated using a bounded length straight-line sequence of x86
instructions. For some more complex instructions mostly involving interrupts and
other system-related tasks, we used the slow but simple approach of emulation using
C-code.

3.4.9 Compiler Optimizations

An interesting observation while doing our experiments was that certain compiler op-
timizations often have an adverse effect on the performance of our binary translator.
For example, an optimized PowerPC executable attempts to use all the 8 condition-

registers (cr0-cr7). However, since x86 has only one set of flags, other condition
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registers need to be emulated using x86 registers causing extra register pressure. An-
other example of an unfriendly compiler optimization is instruction scheduling. An
optimizing PowerPC compiler separates two instructions involving a data dependency
in order to minimize pipeline stalls, while our binary translator would like the data-
dependent instructions to be together to allow the superoptimizer to suggest more
aggressive optimizations. To alleviate this issue, we re-order the instructions in a
basic block to cluster data-dependent instructions together. In our experiments, we

discuss the advantage of using this optimization.

Finally, we would like to point out that while there exist these architecture-specific
issues, the vast bulk of the translation and optimization complexity is still hidden by

the superoptimizer.

3.5 Experimental Results

We performed our experiments using a Linux machine with a single Intel Pentium
4 3.0GHz processor, IMB cache and 4GB of memory. We used gcc version 4.0.1
and glibc version 2.3.6 to compile the executables on both Intel and PowerPC plat-
forms. To produce identical compilers, we built the compilers from their source tree
using exactly the same configuration options for both architectures. While compiling
our benchmarks, we used the -msoft-float flag in gcc to emulate floating point
operations in software; our translator currently does not translate floating point in-
structions. For all our benchmarks except one, emulating floating point in software
makes no difference in performance. All the executables were linked statically and
hence, the libraries were also converted from PowerPC to x86 at translation time. To
emulate some system-level PowerPC instructions, we borrowed C-code from the open
source emulator Qemu|28|.

In our experiments, we compare the executable produced by our translator to a
natively-compiled executable. The experimental setup is shown in Figure 3.8. We

compile from the C source for both PowerPC and x86 platforms using gcc. The
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.C

source file

gee <options> -arch=ppc gee <options> -arch=x86

PowerPC x86

Executable Executable

Peephole Binary Translation

l Compare

x86

Executable

Figure 3.8: Experimental Setup. The translated binary executable is compared with
the natively-compiled x86 executable. While comparing, the same compiler optimiza-
tion options are used on both branches.

same compiler optimization options are used for both platforms. The PowerPC ex-
ecutable is then translated using our binary translator to an x86 executable. And
finally, the translated x86 executable is compared with the natively-compiled one for

performance.

One would expect the performance of the translated executable to be strictly
lower than that of the natively-compiled executable. To get an idea of the state-of-
the-art in binary translation, we discuss two existing binary translators. A general-
purpose open-source emulator, Qemu|28|, provides 10-20% (i.e., 5-10x slowdown) of
the performance of a natively-compiled executable. A recent commercially available
tool by Transitive Corporation|34] claims “typically about 70-80%” of the performance
of a natively-compiled executable on their website[29]. Both Qemu and Transitive are

dynamic binary translators.
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Benchmark Description -00 -02 -02+

emptyloop | A bounded for-loop do- 98.56 % 128.72 % 127 %
ing nothing

fibo Compute first few Fi- 118.90 % 319.13 % 127.78 %
bonacci numbers

quicksort | Quicksort on 64-bit in- 81.36 % 92.61 % 90.23 %
tegers

mergesort | Mergesort on 64-bit in- 83.22 % 91.54 % 84.35 %
tegers

bubblesort| Bubble-sort on 64-bit 75.12 % 70.92 % 64.86 %
integers

hanoil Towers of Hanoi Algo- 84.83 % 70.03 % 61.96 %
rithm 1

hanoi?2 Towers of Hanoi Algo- 107.14 % 139.64 % 143.69 %
rithm 2

hanoi3 Towers of Hanoi Algo- 81.04 % 90.14 % 80.15 %
rithm 3

traverse | Traverse a linked list 69.06 % 67.67 % 67.15 %

binsearch | Perform binary search 65.38 % 61.24 % 62.15 %
on a sorted array

Table 3.9: Performance of the binary translator on some compute-intensive mi-
crobenchmarks. The columns represent the optimization options given to gcc. ‘-02+’
expands to ‘-02 -fomit-frame-pointer’. ‘-02+" omits storing the frame pointer on
x86. On PowerPC, ‘-02+’ is identical to ‘-02’. The performance is shown relative to
a natively compiled application (the performance of a natively compiled application
is 100%).

Table 3.9 shows the performance of our binary translator on small compute-
intensive microbenchmarks. Our microbenchmarks use three well-known sorting al-
gorithms, three different algorithms to solve the towers of hanoi problem, one bench-
mark that computes the Fibonacci sequence, a link-list traversal, a binary search on
a sorted array, and an empty for-loop. All these programs are written in C. They
are all highly compute intensive and hence designed to stress-test the performance of
binary translation.

The translated executables perform roughly at 90% of the performance of a

natively-compiled executable on average. Some benchmarks perform as low as 64%
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00 02

x86 | peep | gemu | rosetta | peep | x86 | peep | gemu | rosetta | peep
() | (&) | o) | (%) | (B) | (s | (8) | () | (%) | (%)
bzip2 | 311 | 470 | 185 |65.3 66.2 | 195 | 265 | 25.0 | 54.0 73.7
gap 165 | 313 | - - 02.5 | 87 205 | 15.7 |- 42.5
gzip | 264 | 398 | 153 | 58.7 66.3 | 178 | 315 |20.9 | 52.5 26.5
mct 193 | 221 | 46.5 | 84.8 8§7.3 | 175 | 184 | 64.7 | 8l.5 94.7
parser| 305 | 520 | 16.9 | 544 08.7 | 228 | 338 |22.5 |49.0 67.3
twolf | 2184 | 1306 | 55.6 | - 167.2 | 1783 | 1165 | 59.1 | - 153
vortex| 193 | 463 | 11.3 | 43.1 41.7 | 161 | - - 38.0 -

Table 3.10: Performance of the binary translator on SPEC CINT2000 benchmark
applications. The x86 column represents the performance of a natively compiled
application. The percentage(%) fields represent performance relative to the x86 per-
formance (the performance of a natively compiled application is 100%).‘-" entries
represent failed translations. peep columns represent the performance of our transla-
tor. gemu and rosetta represent Qemu and Apple Rosetta respectively.

of native performance and many benchmarks outperform the natively compiled exe-
cutable. The latter result is a bit surprising. For unoptimized executables, the binary
translator often outperforms the natively compiled executable, because the superop-
timizer performs optimizations that are not seen in an unoptimized natively compiled
executable. The bigger surprise occurs when the translated executable outperforms
an already optimized executable (columns -02 and -02+) indicating that even mature
optimizing compilers today are not producing the best possible code. When compared
with Apple Rosetta, our translator consistently performs better than Rosetta on all
these microbenchmarks. On average, our translator is 170% faster than Apple Rosetta

on these small programs.

A striking result is the performance of the fibo benchmark in the -02 col-
umn where the translated executable is almost three times faster than the natively-
compiled and optimized executable. On closer inspection, we found that this is be-
cause gcc, on x86, uses one dedicated register to store the frame pointer by de-
fault. Since the binary translator makes no such reservation for the frame pointer,

it effectively has one extra register. In the case of fibo, the extra register avoids
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a memory spill present in the natively compiled code causing the huge perfor-
mance difference. Hence, for a more equal comparison, we also compare with the

‘-fomit-frame-pointer’ gcc option on x86 (-02+ column).

Table 3.10 gives the results for seven of the SPEC integer benchmarks. (The other
benchmarks failed to compile correctly due to the lack of complete support for all
Linux system calls in our translator). For comparison, we show the performance of two
other binary translators — Apple Rosetta|2| and Qemu|28|. In our comparisons with
Qemu, we used the same PowerPC and x86 executables as used for our own translator.
For comparisons with Rosetta, we could not use the same executables as Rosetta
supports only Mac executables while our translator supports only Linux executables.
Therefore, to compare, we recompiled the benchmarks on Mac to measure Rosetta
performance. To ensure a fair comparison, we used exactly the same compiler version
(gcc 4.0.1) on the two platforms (Mac and Linux). We ran our Rosetta experiments on
a Mac Mini Intel Core 2 Duo 1.83GHz processor, 32KB L1-Icache, 32KB L1-Dcache,
2MB L2-cache and 2GB of memory.

Our peephole translator fails on vortex when it is compiled using the -02 flag.
Similarly, Rosetta fails on twolf for both optimization options. These failures are
most likely due to bugs in the translators. We could not obtain performance num-
bers for Rosetta on gap because we could not successfully build gap on Mac OS X.
Our peephole translator achieves a performance of 42-164% of the natively compiled
executable. Comparing with Qemu, our translator achieves 1.3-4x improvement in
performance. When compared with Apple Rosetta, our translator performs 12%
better (average) on the executables compiled with -02 flag and 3% better on the
executables compiled with -00 flag. Our system performs as well or better than
Rosetta on almost all our benchmarks, the only exceptions being -00 for vortex
where the peephole translator produces code 1.4% slower than Rosetta, and -02 for
vortex, which the peephole translator fails to translate. The median performance of

the translator on these compute-intensive benchmarks is 67% of native code.
A very surprising result is the performance of the twolf benchmark where the
performance of our translator is significantly better than the performance of natively

compiled code. On further investigation, we found that twolf, when compiled with
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the -msoft-float flag, spends a significant fraction of time in the floating point
emulation library (which is a part of glibc). It turns out that our translator generates
faster code for the floating point emulation library than the native compiler leading
to better overall performance for twolf. We attribute this performance difference in
floating point emulation code to the availability of an extra frame pointer register,
similar to what we observed in fibo microbenchmark. We do not see this effect in
all our other benchmarks as they spend an insignificant fraction of time in floating
point emulation. We present the detailed characteristics of the benchmarks (such as
actual running times and percentage of times spent in floating point emulation) in
Appendix A.
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Figure 3.9: Performance comparison on -00 executables by toggling optimization
flags in the peephole translator.

Next, we consider the performance of our translator on SPEC benchmarks by
toggling some of the optimizations. The purpose of these experiments is to obtain
insight into the performance impact of these optimizations. We consider two variants

of our translator:

1. No-Reorder: Recall that, by default, we cluster data-dependent instructions
inside a basic block for better translation (refer Section 3.4.9). In this variant,

we turn off the re-ordering of instructions.

2. With-Profile: In this variant, we profile our executables in a separate offline
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Figure 3.10: Performance comparison on -02 executables by toggling optimization
flags in the peephole translator.

run and record the profiling data. Then, we use this data to determine appro-
priate weights of predecessors and successors during register map selection (see
Section 3.3.2).

Figure 3.9 and Figure 3.10 show the comparisons of the two variants relative to the

default configuration for executables compiled using -00 and -02 respectively. We

make two key observations:

The re-ordering of instructions inside a basic block has a significant perfor-
mance impact on executables compiled with -02. The PowerPC optimizing
compiler separates data-dependent instructions to minimize data stalls. To
produce efficient translated code, it helps to “de-optimize” the code by bringing
data-dependent instructions back together. On average, the performance gain
by re-ordering instructions inside a basic block is 6.9% for -02 executables. For
-00 executables, the performance impact of re-ordering instructions is negligi-
ble, except twolf where a significant fraction of time is spent in precompiled

optimized libraries.

From our results, we think that profiling information can result in small but
notable improvements in performance. In our experiments, the average im-

provement obtained by using profiling information is 1.4% for -02 executables
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and 0.56% for -00 executables. We believe, our translator can exploit such

runtime profiling information in a dynamic binary translation scenario.

Our superoptimizer uses a peephole size of at most 2 PowerPC instructions. The
x86 instruction sequence in a peephole rule can be larger and is typically 1-3 in-
structions long. Each peephole rule is associated with a cost which captures the
approximate cycle cost of the x86 instruction sequence.

We compute the peephole table offline only once for every source-destination ar-
chitecture pair. The computation of the peephole table can take up to a week on
a single processor. On the other hand, applying the peephole table to translate an
executable is fast (see Section 3.5.1). For these experiments, the peephole table con-
sisted of approximately 750 translation rules. Given more time and resources, it is
straightforward to scale the number of peephole rules by running the superoptimizer
on longer length sequences. More peephole rules are likely to give better performance
results.

The size of the translated executable is roughly 5-6x larger than the source Pow-
erPC executable. Of the total size of the translated executable, roughly 40% is
occupied by the translated code, 20% by the code and data sections of the original
executable, 25% by the indirect jump lookup table and the remaining 15% by other

management code and data.

3.5.1 Translation Time

Translation time is a significant component of the runtime overhead for dynamic
binary translators. As our prototype translator is static, we do not account for this
overhead in the experiments in Section 3.5. In this section we analyze the time
consumed by our translator and how it would fit in a dynamic setting.

Our static translator takes 2-6 minutes to translate an executable with around
100K instructions, which includes the time to disassemble a PowerPC executable,
compute register liveness information for each function, perform the actual translation
including computing the register map for each program point (see Section 3.3.2), build

the indirect jump table and then write the translated executable back to disk. Of
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these various phases, computing the translation and register maps accounts for the

vast majority of time.

A dynamic translator, on the other hand, typically translates instructions as they
(and only when they) are executed. Thus, no time is spent translating instructions
that are never executed. Because most applications use only a small portion of their
extensive underlying libraries, in practice dynamic translators only translate a small
part of the program. Moreover, dynamic translators often trade translation time for
code quality, spending more translation time and generating better code for hot code
regions.

To understand the execution characteristics of a typical executable, we study our
translator’s performance on bzip2 in detail. (Because all of our applications build
on the same standard libraries, which form the overwhelming majority of the code,
the behavior of the other applications is similar to bzip2.) Of the 100K instructions
in bzip2, only around 8-10K instructions are ever executed in the benchmark runs.
Of these, only around 2K instructions (hot regions) account for more than 99.99% of
the execution time. Figure 3.11 shows the time spent in translating the hot regions

of code using our translator.

We plot the translation time with varying prune sizes; because computing the
translation and register maps is the dominant cost, the most effective way for our
system to trade code quality for translation speed is by adjusting the prune size
(recall Section 3.3.2). We also plot the performance of the translated executable at
these prune sizes. At prune size 0, an arbitrary register map is chosen where all
PowerPC registers are mapped to memory. At this point, the translation time of the
hot regions is very small (less than 0.1 seconds) at the cost of the execution time of
the translated executable. At prune size 1 however, the translation time increases
to 8 seconds and the performance already reaches 74% of native. At higher prune
sizes, the translation overhead increases significantly with only a small improvement
in runtime (for bzip2, the runtime improvement is 2%). This indicates that even at

a small prune size (and hence a low translation time), we obtain good performance.

Finally, we point out that while the translation cost reported in Figure 3.11 ac-

counts for only the translation of hot code regions, we can use a fast and naive
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Figure 3.11: Translation time overhead with varying prune size for bzip2.

translation for the cold regions. In particular, we can use an arbitrary register map
(prune size of 0) for the rarely executed instructions to produce fast translations of
the remaining code; for bzip2 it takes less than 1 second to translate the cold regions
using this approach. Thus we estimate that a dynamic translator based on our tech-
niques would require under 10 seconds in total to translate bzip2, or less than 4% of

the 265 seconds of run-time reported in Table 3.10.

3.6 Related Work

Binary translation first became popular in the late 1980s as a technique to improve
the performance of existing emulation tools. Some of the early commercial binary

translators were those by Hewlett-Packard to migrate their customers from its HP
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3000 line to the new Precision architecture (1987), by Digital Equipment Corporation
to migrate users of VAX, MIPS, SPARC and x86 to Alpha (1992), and by Apple
Computers to run Motorola 68000 programs on their PowerMAC machines(1994).

By the mid-1990’s more binary translators had appeared: IBM’s DAISY [13] used
hardware support to translate popular architectures to VLIW architectures, Digital’s
FX!32 ran x86/WinNT applications on Alpha/WinNT [8|, Ardi’s Executor|14| ran
old Macintosh applications on PCs, Sun’s Wabi [32] executed Microsoft Windows
applications in UNIX environments and Embra [36], a machine simulator, simulated
the processors, caches and other memory systems of uniprocessors and cache-coherent
multiprocessors using binary translation. A common feature in all these tools is that
they were all designed to solve a specific problem and were tightly coupled to the
source and/or destination architectures and operating systems. For this reason, no

meaningful performance comparisons exist among these tools.

More recently, the moral equivalent of binary translation is used extensively in
Java just-in-time (JIT) compilers to translate Java bytecode to the host machine
instructions. This approach is seen as an efficient solution to deal with the problem
of portability. In fact, some recent architectures especially cater to Java applications

as these applications are likely to be their first adopters|3].

An early attempt to build a general purpose binary translator was the UQBT
framework|35| that described the design of a machine-adaptable dynamic binary
translator. The design of the UQBT framework is shown in Figure 3.12. The transla-
tor works by first decoding the machine-specific binary instructions to a higher level
RTL-like language (RTL stands for register transfer lists). The RTLs are optimized
using a machine-independent optimizer, and finally machine code is generated for
the destination architecture from the RTLs. Using this approach, UQBT had up
tp a 6x slowdown in their first implementation. A similar approach has been taken
by a commercial tool being developed at Transitive Corporation|34|. Transitive first
disassembles and decodes the source instructions to an intermediate language, per-
forms optimizations on the intermediate code and finally assembles it back to the

destination architecture. In their current offerings, Transitive supports SPARC-x86,
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PowerPC-x86, SPARC-x86/64-bit and SPARC-x86 /Itanium source-destination archi-

tecture pairs.
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Figure 3.12: The framework used in UQBT binary translation. A similar approach
is taken by Transitive Corporation.

A weakness in the approach used by UQBT and Transitive is the reliance on a
well-designed intermediate RTL language. A universal RTL language would need
to capture the peculiarities of all different machine architectures. Moreover, the
optimizer would need to understand these different language features and be able to
exploit them. It is a daunting task to first design a good and universal intermediate
language and then write an optimizer for it, and we believe using a single intermediate
language is hard to scale beyond a few architectures. Our comparisons with Apple
Rosetta (Transitive’s PowerPC-x86 binary translator) suggest that superoptimization

is a viable alternative and likely to be easier to scale to many machine pairs.
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In recent years, binary translation has been used in various other settings. Intel’s
[A-32 framework provides a software layer to allow running 32-bit x86 applications on
[A-64 machines without any hardware support. Qemu|28| uses binary translation to
emulate multiple source-destination architecture pairs. Qemu avoids dealing with the
complexity of different instruction sets by encoding each instruction as a series of op-
erations in C. This allows Qemu to support many source-destination pairs at the cost
of performance (typically 5-10x slowdown). Transmeta Crusoe|20]| uses on-chip hard-
ware to translate x86 CISC instructions to RISC operations on-the-fly. This allows
them to achieve comparable performance to Intel chips at lower power consumption.
Dynamo and Dynamo-RIO [4, 7| use dynamic binary translation and optimization
to provide security guarantees, perform runtime optimizations and extract program
trace information. Strata[30] provides a software dynamic translation infrastructure

to implement runtime monitoring and safety checking.

3.7 Conclusions and Summary of Contributions

We present an efficient and portable scheme to perform effective binary transla-
tion. We achieve this using a superoptimizer that automatically learns translations
from one architecture to another. We demonstrate through experiments that our
superoptimization-based approach results in competitive performance while eliminat-

ing the complexity of building a high performance translator by hand.



Chapter 4

Goal-Directed Superoptimization
Using Meet-in-the-Middle

In this chapter, we discuss a technique to reduce the search space for goal-directed
superoptimization. We begin by providing an overview of our approach (Section 4.1),
describe the details of the technique (Section 4.2-4.3), present experimental results

(Section 4.4) and finally conclude (Section 4.5).

4.1 Introduction

Our superoptimizer exhaustively enumerates and executes all instruction sequences
on a fixed initial machine state. An optimization is possible only if one of the objective
sequences produces the same machine state as one of the enumerated sequences. A
picture showing this approach is shown in Figure 4.1. The runtime complexity of
this simple technique is O(b") where b is the size of the instruction set and n is the
maximum length of the enumerated instruction sequence.

In this chapter, we observe that it is possible to reduce this runtime complexity
by pruning the search space. We do this by using information about the goal states
we are interested in. Many enumerated instruction sub-sequences can be eliminated
as they cannot possibly lead to the goal state. For example, if we are searching for

the optimal equivalent sequence for the following sequence

73
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Figure 4.1: Finding a candidate instruction sequence for a target machine state using
a brute-force exhaustive search

#(swap rl and r2)
mov rl, r3
mov r2, ri

mov r3, r2
any sequence which begins with
mov rl, r2

is not useful. It would be wasteful to enumerate a length-2 sequence beginning with
the mov r1, r2 instruction. To capture this, we need to determine at an interme-
diate step, if the current sequence can eventually lead to the goal function. To do
so, we work backwards from the goal function to enumerate only those intermediate
subsequences that can eventually lead to sequences that are equivalent to the goal
function. An intermediate subsequence that does not meet this criteria can be dis-

carded. Using this approach, it is possible to work forwards from the initial state and
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backwards from the goal state to prune large portions of the search space. We model
our algorithm on this observation and call our approach the meet-in-the-middle strat-
egy. The term meet-in-the middle is borrowed from a cryptographic attack|12| which
uses a similar technique to decipher encryption keys. In this section, we describe our

meet-in-the-middle approach and it’s implementation.

Figure 4.2 illustrates the meet-in-the-middle superoptimization strategy. Our goal
is to superoptimize a given instruction sequence which we call the target instruction
sequence. We begin with an initial machine state which is a randomly generated
vector of Os and 1s. At the first step, we execute the target instruction sequence on
the initial machine state to obtain a machine state which we call the target machine
state. Our goal is to find the cheapest instruction sequence that, if executed on the

initial machine state, yields the target machine state.

In the next step (Step 2), all possible length-n instruction sequences are exhaus-
tively enumerated starting from the initial machine state and the resulting machine
states are converted to bit strings and stored in a 1-bit prefix tree. A prefix tree (also
called a trie) is an ordered tree data structure where all the descendants of any one
node have a common prefix of the string associated with that node. A trie is generally
used for storing dictionaries; in our algorithm, a trie is an efficient data structure to

store, retrieve and match machine states.

In the final step (Step 3), instruction sequences of length-m are exhaustively
enumerated and executed backwards from the target machine state. Recall from
Section 4.1 that a backward execution of an instruction sequence involves undoing
the operations of the sequence. The machine states obtained by backward execution
of length-m sequences are the states that can reach the target state in m instructions.
It is possible to reach the target machine state from the initial machine state in n+m
instructions only if one of the machine states enumerated in Step 2 matches one of
the machine states enumerated in Step 3. We call the machine states enumerated in
Step 2, the forward-enumerated machine states because they are enumerated forwards
from the initial machine state; similarly we call the states enumerated in Step 3, the

backward-enumerated machine states.
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Each backward-enumerated machine state is compared against all the forward-
enumerated machine states. The trie data structure enables efficient matching at
this step. If a match is found, we have found a n + m length sequence potentially
equivalent to the target sequence. If no match is found, the backward-enumerated

state is simply discarded.

h N
MATCH
memory - - memory
\_ N \_ /
Initial Machine State Target Machine State
Enumerate all length-n sequences Enumerate all length—m inverse seque

Figure 4.2: Finding a candidate instruction sequence for a target machine state using
meet-in-the-middle approach. If done exhaustively, this approach searches the space
of all length-n + m sequences.

It is not always possible to precisely undo an instruction, and hence a backward
execution may not always produce a unique machine state. We can only reproduce
some of the bits by backward execution and for all others, we use the don’t-know
character. We use the character d to denote the don’t-know character akin to the
don’t-care bit used in digital hardware design|24].

The inverse of an instruction is an instruction sequence that undoes the operations
performed by that instruction. The inverse attempts to reverse the execution of the
instruction on a machine state to reproduce the original machine state as closely as
possible. The bits that cannot be reproduced are represented using don’t-know bits.

We discuss instruction inverses and don’t-know bits in more detail in Section 4.2.
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The matching of forward-enumerated machine states and backward-enumerated
machine states is done using a 1-bit trie. The trie stores the prefix bits in its in-
ternal nodes and the forward-enumerated machine states at the leaf nodes. For
each backward-enumerated machine state, we search the trie for a matching forward-
enumerated machine state. We discuss this step of our algorithm in detail in Sec-
tion 4.3.

We have implemented the meet-in-the-middle strategy in two systems: in our
own superoptimizer which we described in Chapter 2 and the publicly available GNU
Superoptimizer[15]. We present results obtained in both these systems in Section 4.4

and finally discuss future work in this direction in Section 4.5.

4.2 Instruction Inverses and Don’t-Know Bits

The inverse of an instruction I is a sequence of instructions that undo the operations

performed by I. In other words, for a given machine state s, I=! is defined such that
I7(I(s)) = s

It is not always possible to recover the original machine state s completely using 171
Instead, I~! recovers as much of state s as possible using don’t-know bits for bits
that cannot be recovered. We discuss instruction inverses and don’t-know bits in

more detail in the following subsections.

4.2.1 Inverse of an Instruction

Since it is not always possible to invert an instruction, the inverse aims to recover a
tight approximation of the original state (Figure 4.3). In this section, we define an
instruction and its inverse more precisely.

Let M represent the set of machine states. A machine state s € M comprises of

registers, status flags and memory. An instruction ¢ can be expressed as a function
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Figure 4.3: The inverse of an instruction.

i: M — M transforming one machine state (say sg) to another (say s).
’i(So) = 51

An instruction sequence I can then be expressed as a composition of individual in-

structions. Notice that we consider only straight-line sequences with no branches.
I:’iooiloig...’in
In other words,

I(S : ./\/l) = ’in(’in_l(’in_g N iQ(S) .. ))

The inverse of an instruction i1 : M — M is defined as:

1 t if 3t € M, s.t. i(t) = s
i (s M) =

undef otherwise

This definition of inverse provides the following useful property:

i(i7'(s)) = s if i71(s) is defined



4.2. INSTRUCTION INVERSES AND DoON'T-KNOW BITS 79

While every instruction always has an inverse, the inverse may not be unique. Let us

look at an example of an instruction and construct its inverse.

Let 7444 represent the x86 add instruction,

lgqqa = 1add r0, ri}.

The semantics of 7,44 on the x86 architecture are:

r0 «— r0 + r1. flags « f(r0,r1)

This instruction adds the contents of rl to r0 and writes the result to register r0.

The flags modified by this x86 instruction are the carry, overflow, parity, sign, zero

and the auxiliary flag. The flags are a function of the original values of r0 and r1. It is

also possible to express the flags as a function of the new value of r0 and r1, such that
flags < £’ (r0,ey,rl)

Functionally, this operation can be expressed as

Gadd(8) = S[r0pew < T0+rl; flags « f7(r0,ey,rl)],

where s[...] denotes s modified by the expression inside the square brackets.

Notice that not every machine state can result from an add instruction. A ma-
chine state obtained after executing the add instruction must have its status flags set
in accordance with the contents of register r0. In particular, the flags should obey

flags = £’ (x0,r1).

Constructing the inverse of an add instruction first involves checking the register
r0 and flags to see if they agree. If not, this means that this state could not have
been a result of executing i,459. Hence, the inverse cannot be defined. We use the
symbol undef to denote an undefined inverse. On the other hand, if the flags agree

with r0 and ri1, ! inverts the addition operation by using a subtract instruction.
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This can be expressed as

. B isup(s) if flags = £’ (r0,rl)
Iaqq(8) =
undef otherwise

where,
isup = {sub r0, ri}

Notice that the inverse of 7,44 is not unique. Some other valid inverses are

{sub r0, ri1; clc}
{add r0, r2; sub r0, rl; sub r0, r2}

Notice that the inverse of a single instruction could be a sequence of multiple instruc-
tions. In this case, each inverse sequence uses the second instruction to set the status

flags differently.

The definition of the inverse of an instruction sequence [ is identical to that of

the inverse of an instruction:

s M) t if 3t e M, st. I(t) =s

undef otherwise

For an instruction sequence

]:iOO’ilO...’in,

its inverse 1s

-1 -1 1 .1
I =i, o1, ,0...14

If any of iy'...4;! produce undef on a state s, ! produces undef on s. The
bits in the inverted machine state that cannot be recovered are represented using

don’t-know bits.
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4.2.2 Don’t-Know Bits

We use the don’t-know character ‘d’ to represent any bit that is not recoverable after
inverse computation. To use our previous example of the add instruction .44, it is
not possible to recover the status flags prior the execution of 7,44. For this reason, we
denote the status flags by d bits.

Using d bits, it is possible to represent the inverse of an instruction uniquely. The

inverse of 7,44 can be uniquely represented as:

s[r0 «— r0 — r1,flags < d] if flags = £(r0)

undef otherwise

Table 4.1 gives some examples of instruction inverses for the x86 architecture.

Instruction Inverse

add r0, rl sub r0,rl flags « d
add r0, r0 shr r0; r0[31] «— d flags < d
mov 10, rl 10 «— d

and r0, $010110 r0 «— r0 & d1d11d flags < d
or 10, $010110 r0) < r0 | 040dd0 flags < d
xor 10, rl xor 10, rl flags «— d
xchg 0, rl xchg 10, rl

shr r0, $3 shl r0, $3; r0[0..2] < d flags < d
ror 10, $3 rol 10, $3

inc 10 dec 10 flags <+ d
neg r0 neg 10 flags « d
not r0 not r(

Table 4.1: Examples of x86 instruction inverses.

4.2.3 Inverse Execution Constraints

Not every machine can be inverted on any instruction. For example, to invert a

. . 1 . . .
machine state s using i_,, in the previous example, the flags of s must agree with



82 CHAPTER 4. MEET-IN-THE-MIDDLE SUPEROPTIMIZATION

register 0 and r1. We call this constraint on s, the inverse execution constraint for
1aqq- Therefore, to invert a machine state on instruction ¢, the state must obey the
inverse execution constraints of . Table 4.2 lists some examples of inverse execution

constraints for x86 instructions.

Instruction Inverse Execution Constraint
mov 10, rl r0 = rl

add r0, r1 flags must agree with r0, rl
and r0, $010110 bits 0,3 and 5 must be 0

or 10, $010110 bits 1,2 and 4 must be 1

shr r0, $3 three MSBs must be zero
xor 10, rl flags must agree with r0, rl
inc 10 flags must agree with r0

dec 10 flags must agree with r0

Table 4.2: Examples of x86 instruction inverse constraints.

Inverse execution constraints are very helpful in pruning the search space during
backward enumeration. If an inverse execution constraint is not satisfied by a machine

state, all inverse sequences beginning with that instruction are pruned away.

4.3 Matching forward-enumerated and

backward-enumerated states

The final step in the meet-in-the-middle strategy is matching the forward-enumerated
machine states with the backwards-enumerated machine states. The forward-
enumerated states are stored in a 1-bit trie data structure. The trie represents all
machine states that can be obtained by executing a length-n instruction sequence
on the initial machine state. Each length-m instruction sequence is then enumerated
backwards from the goal state. The backwards-enumerated machine state is then
searched in the trie for a match. In this section, we explain the construction and
retrieval in a trie in more detail.

To insert a machine state in a trie, the machine state is first converted into a bit-

string (Figure 4.4). At each level in the trie, the corresponding bit of the bit-string is
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used to determine the appropriate branch to follow. The machine states themselves
are stored at the leaf nodes.

Matching of backward-enumerated machine states is very similar to retrieving a
machine state from the trie. When searching for a match for a backward-enumerated
machine state, the trie is traversed using the bits in the machine state, i.e., a 0-branch
(1-branch respectively) is followed if the machine state has a 0-bit (1-bit respectively)
at that position. A backward-enumerated machine state may also have d bits. During
the traversal of a trie, if we encounter a d-bit in the machine state, both branches
of the trie are followed to search for a match. We illustrate this operation using the

following pseudo-code.

bool search(trie_node *root, machine_state bwd_enumerated, int bitpos)

{
if (root == NULL)

return false;

if (isLeafNode(root))

return true;

if (bwd->state[bitpos] == 0)

return search(root->left, bwd_enumerated, bitpos+1);

if (bwd->state[bitpos] == 1)

return search(root->right, bwd_enumerated, bitpos+1);
if (bwd->statel[bitpos] == ’d’)

return ( search(root->left, bwd_enumerated, bitpos+1)

||  search(root->right, bwd_enumerated, bitpos+1));

If a match is found, we have found a candidate sequence of length (n+m) (formed by
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the forward-enumerated n-length sequence stored in the trie and m-length backward-
enumerated sequence) that could be equivalent to the target sequence. We then
proceed with the equivalence test. If no match is found, the backward-enumerated
instruction sequence is discarded.

Assuming the height of the trie is A and the number of forward-enumerated states
in the trie are IV, the time taken to search for a match for an backwards-enumerated
state can vary from O(h) (when there are no d bits in the backwards-enumerated
state) to O(N = h) (when all bits in the backwards-enumerated state are d). Using a
compressed trie, where nodes having only one child are coalesced, the average height
of the trie can be reduced to h = O(logaN).

4 N
[Eererers] ro
1l geggs 011000111000110011 1
r fl 100101000110001001
3 ags _ 111001011110010110———=
r 110000100111110000
AAAAA r4 111001110001111110 0 1
memory
\_ J
Machine State Bit String Trie of Machine States

Figure 4.4: All machine states obtained by forward enumeration of instruction se-
quences are indexed using a trie-like data structure. The trie is then searched to
match states obtained by inverse execution from the goal state.

The construction of the trie completes in O(N * logsN) time. Since the forward-
execution trie needs to be constructed only once, the cost of its construction is amor-
tized over the optimization of several goal sequences. The time complexity of ex-
haustively searching a space of n +m-length instruction sequences using meet-in-the-
middle approach is O(I™.log, I™ + I"™.1log, I"™) in the best case, and O(I"™logyI™)
in the worst case. The complexity depends heavily on the number of d bits in the
backward-enumerated machine states. It also depends on the pruning achieved by

inverse execution constraints during inverse execution. We discuss the improvements
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and these metrics empirically in our experimental results.

4.4 Experimental Results

We have implemented the meet-in-the-middle strategy in two superoptimization-
based systems : our x86 peephole optimizer and the publicly available GNU
Superoptimizer|15|. For the x86 peephole optimizer, we specified instruction inverses,
don’t-know bits and instruction inverse constraints for each x86 instruction. We con-
structed a trie on the forward-enumerated sequences, and then matched the machine
states obtained by backwards execution against it. If a match was found, we per-
formed a complete equivalence test to find an optimization.

Of the 5322 distinct instructions we used in the optimizer’s x86 instruction set,
we found that 477 were perfectly invertible, i.e. no d bits were produced on inverting
these instructions. We would like to point out that invertibility depends both on the
opcode and the operands. We show the distribution of the don’t-know bits produced
by the instructions in Figure 4.5. The x-axis represents the number of don’t-know
bits and the y-axis represents the number of instructions that produced that number
of don’t-know bits. For example, 1938 instructions produce 6 don’t-know bits. The
majority of the instructions produced less than 16 don’t-know bits. We observed that
a lot of instructions produce either 6 or 32 don’t-know bits. Instructions producing 6
don’t-know bits are usually the ones where it is possible to recover the contents of the
operands but not the flags — in which case, we represent the flags by don’t-know bits.
The instructions producing 32 don’t-know bits are usually instructions that clobber
one of their operands.

We studied the advantage of using a meet-in-the-middle approach over our previ-
ous approach of using only forward enumeration. We use the n+m notation, where n
represents the length of the forward enumerated instruction sequences and m repre-
sents the length of the backward enumerated instruction sequences. We first enumer-
ated length-3 sequences using 3 = 2 + 1 (length-2 forwards and length-1 backwards).
Using this, we were able to find many optimizations involving length-3 sequences in

only a few minutes (as opposed to 2 days in our previous experiments). Next, we
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Figure 4.5: The distribution of don’t-know bits produced by the instructions in our
instruction set.

tried length-4 sequences using 4 = 2 + 2. In this case, while some of our target
sequences were optimized in only a few minutes, some target sequences took over
a day of computation without finishing. Through these experiments, we concluded
that while the meet-in-the-middle strategy can produce significant improvements in
the superoptimizer’s running time in some cases (2 days to few minutes), it does not
always yield significant improvement. This approach fails whenever the number of d
bits produced by backwards execution becomes too large.

Next, we discuss the results obtained by implementing the meet-in-the-middle
strategy in the GNU Superoptimizer (GS0)[15]. We specified the instruction inverses,
don’t-know bits and inverse instruction checks for all x86 instructions inside GS0. With
a maximum sequence length of 4, we computed the optimal sequences for the goal
functions used in GSO. There are 246 unique goal functions specified in GSO. For all the
goal functions, we obtained the same results for the optimal sequences. Once again, we
found that for some goal functions, the improvement in the superoptimizer’s running
time was significant; while for others, there was no improvement. For 22% of the goal
functions, the runtime of the superoptimizer was improved by using the meet-in-the-
middle strategy. The maximum improvement was a factor of 10,000x for one of the

goal functions while the minimum improvement was 1.62x. The median improvement
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in the goal functions that improved was 7x. For 41% of the goal functions, the meet-in-
the-middle strategy performed as well as the forwards-only strategy, i.e. we observed
neither speedup nor slowdown. This was mostly because the optimal sequence in
these cases was only one or two instructions long, and hence both strategies returned
a result very quickly. For 37% of the goal functions, we observed slowdowns. In these
cases, the overhead of trie construction and matching exceeded the benefit of pruning

the search space.

4.5 Conclusions and Future Directions

To be able to scale the superoptimizer to longer lengths, we need more techniques to
prune it’s search space. Our meet-in-the-middle approach is an attempt in this direc-
tion, and we find that it is useful in many cases. One of the important considerations
in devising new ways to prune the search space of a superoptimizer is the overhead
of the pruning strategy. As we observed in our experiments, the advantage obtained

by pruning must significantly outweigh it’s overhead for the strategy to be practical.



Chapter 5
Conclusions and Future Work

This dissertation describes methods to perform efficient code generation and opti-
mization by using superoptimization techniques. We describe two peephole superop-
timizers an automatically generated peephole optimizer (Chapter 2) and a binary
translator (Chapter 3). In the third part of the thesis (Chapter 4), we present a
scheme to lower the computational complexity of goal-directed brute-force superop-

timization.

In the first part of the thesis, we describe a design to automatically generate a
peephole optimizer using superoptimization techniques. The optimizer first infers
thousands of optimizations automatically in an offline phase. The optimizations are
organized into a lookup table, mapping original sequences to their optimized coun-
terparts. Optimization of a compiler’s generated code is then done efficiently as a
normal peephole optimizer, simply using the precomputed rules. The optimizer ex-
haustively enumerates all length-3 instruction sequences and generates many useful
optimizations that would traditionally be implemented algorithmically (Table 2.4).
We also find that the automatically generated optimizer is capable of generating

efficient SIMD code, at least in some simple situations (Figure 2.6).

The second part of this thesis describes a design to perform efficient binary transla-
tion using a peephole superoptimizer. Our translator automatically infers equivalence

relations between sequences of the source architecture and the target architecture
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(also called peephole translation rules). These equivalence relations are defined un-
der a map of registers between the two architectures. A successful translation can be
performed if each source instruction appears in at least one translation rule. Using
this approach to binary translation, we find that many optimizations, that would
otherwise require manual codification, are automatically inferred. Our PowerPC-x86
binary translator adaptively selects a register map at each program point to max-
imize efficiency of the generated code. We find that the translated code generated
by our binary translator can sometimes outperform natively compiled code on the
destination architecture (Table 3.9). Our comparisons with state-of-the-art binary
translation tools show the benefits of using this approach (Table 3.10).

Allowing the superoptimizer to scale to longer instruction sequences is likely to
produce more optimizations. In the third part of the thesis, we describe a scheme
to lower the computational complexity of brute-force search for goal-directed super-
optimization. We present the improvements obtained by implementing meet-in-the-
middle superoptimization both in our superoptimizer and the publicly available GNU
Superoptimizer|15].

In future work, there is potential to further develop peephole superoptimization as
a code generation technique. Peephole optimizers have previously been used to per-
form code selection at link time to produce highly portable compilers|6, 9, 10, 11, 21|.
More compute power and advances in SAT solving capabilities present interesting op-
portunities and challenges in this direction. The most promising opportunity lies in
scaling this technique to longer instruction sequences and millions of peephole trans-
formations. One can imagine an architecture quite similar to that of a search engine,
where thousands of machines work in the background to infer peephole optimizations,
which are presented as an efficient lookup table to be used over the network.

Another interesting application of peephole superoptimizers is binary translation.
In our experience, peephole superoptimizers lend themselves as a compelling solution
to the problem of efficient and portable binary translation. While we have demon-
strated a binary translator from PowerPC to Intel x86, we hope this approach is

adopted to perform binary translation across other architecture pairs.



Appendix A

Runtime Characteristics of SPEC

Benchmarks
00
Benchmark x86 peep gemu x86 | rosetta
Linux Linux Linux Mac Mac
bzip2 310.79 | 469.85 | 1727.50 | 398.77 | 610.70
gap 164.54 | 313.40 | 1395.18 - -
gzip 263.94 | 398.36 | 1771.11 | 334.55 | 570.34
mcf 193.18 | 221.18 | 402.28 | 188.25 | 221.91
parser 305.23 | 520.16 | 1889.61 | 379.48 | 697.15
twolf 2184.14 | 1306.41 | 3918.79 - -
vortex 193.31 | 463.48 | 1766.75 | 249.71 | 578.97

Table A.1: Runtimes of the SPEC benchmarks (in seconds) used in Section 3.5 com-
piled using -00 on all the different platforms. The entries in x86 columns are runtimes
of executables compiled natively for the x86 platform. The peep, gemu and rosetta
columns contain runtimes of executables translated using the peephole translator,
Qemu and Apple Rosetta respectively. The Linux runtimes are recorded on an Intel
Pentium 4 3.0 GHz processor, IMB cache and 4GB of memory. The Mac runtimes are
recorded on a Mac Mini with Intel Core 2 Duo 1.83GHz processor, 32KB L1-Icache,
32KB L1-Dcache, 2MB L2-cache and 2GB of memory. ‘-’ entries represent failed
runs.
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02
Benchmark x86 peep gemu x86 | rosetta
Linux Linux Linux Mac Mac

bzip2 195.45 | 265.28 | 792.54 | 221.96 | 410.95
gap 87.27 205.47 | 661.49 - -

gzip 177.81 | 314.66 | 816.83 | 205.28 | 391.17
mcf 174.68 | 184.44 | 272.69 | 154.72 | 189.95
parser 227.72 | 338.47 | 1082.26 | 236.50 | 482.95
twolf 1782.62 | 1164.88 | 3011.40 - -

vortex - - - 187.17 | 492.21

Table A.2: Runtimes of the SPEC benchmarks (in seconds) used in Section 3.5 com-
piled using -02 on all the different platforms. The entries in x86 columns are runtimes
of executables compiled natively for the x86 platform. The peep, gemu and rosetta
columns contain runtimes of executables translated using the peephole translator,
Qemu and Apple Rosetta respectively. The Linux runtimes are recorded on an Intel
Pentium 4 3.0 GHz processor, IMB cache and 4GB of memory. The Mac runtimes are
recorded on a Mac Mini with Intel Core 2 Duo 1.83GHz processor, 32KB L1-Icache,
32KB L1-Dcache, 2MB L2-cache and 2GB of memory. ‘-’ entries represent failed
runs.

00 02
bzip2 | 0.00 | 0.00
gap 0.00 | 0.00
gzip 0.00 | 0.00
mcf 0.00 | 0.00
parser | 0.00 | 0.00
twolf | 42.69 | 51.12
vortex | 0.00 | 0.00

Table A.3: Percentage of time spent in floating point emulation by the SPEC bench-
marks used in Section 3.5 for -00 and -02 flags on x86 platforms. Except twolf, all
other benchmarks spend negligible time in floating point emulation.
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