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Abstract

Static analysis represents a powerful set of techniques for understanding the behavior and security
properties of software. However, pure static analysis of large and complex applications is challenging,
due both to scalability limitations of precise analyses, as well as the likely presence of dynamic
language features such as reflection. We thus propose to combine it with complementary dynamic
analysis, which obtains information from actually running the program. A major issue in dynamic
analysis involves directing the execution of the program towards all possible behaviors of interest
(see e.g. [96, 18]). One way to do this is by obtaining or generating a set of comprehensive program
tests or input samples that can drive the dynamic analysis. In this dissertation we examine these
issues in the context of application (or “app”) frameworks for mobile phones. We examine three
distinct research problems.

First, many precise whole-program static analysis techniques run into scalability, precision or
soundness limitations when required to analyze the code of the platform itself, due to the large
size of the platform’s code and dynamic features usually present in this type of code. The standard
solution is to construct manual models for the platform behavior. We show that we can mine explicit
information flow specifications! from concrete executions. Specification mining performs inference
from concrete execution data to produce models or specifications of the behavior of code that is
outside the scope of our static analysis. In particular, we use a dynamic analysis technique derived
from dynamic taint tracking, which “lifts” the taint flows observed to refer only to the arguments
and return value of each platform method. These specifications are then consumed by a static
analysis system for malware detection, replacing existing manual models. Our technique is able to
recover 96.36% of the manual specifications for the static analysis system, which were written over a
period of 2 years. It also discovers many more correct annotations that our manual models missed,
leading to new end-to-end information flow behaviors being detected by the original static analysis.
Although our technique can give rise to false positives, in practice it does so at a slightly lower rate
than the rate of manual errors in our hand-written models (99.63% vs 99.55% precision).

This specification mining technique relies on leveraging an existing comprehensive test suite to

Meaning those that capture the transfer of information through data-flow operations executed by the program,
rather than implicit information transfer caused by branching in the program’s control-flow or other side channels.
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obtain sufficient example executions to produce correct specifications. However, in many other cases
of interest, the requisite level of test coverage is usually unavailable. This leads us to propose the
following two black-box methods for approaching the problem of automated app exploration and
testing, which we hope will drive future dynamic analysis techniques.

Second, we present a novel approach for minimizing traces generated by random or recorded UI
interactions. This approach is a variant of the classic delta-debugging technique [117, 119], extended
to handle application non-determinism. Experimentally, we show that our technique can minimize
large GUI event traces reaching particular views of mobile applications, producing traces that are,
on average, less than 2% the size of the original traces.

Third, we automate the exploration of mobile applications through an agent that relies exclusively
on being able to take screenshots of the application under test, and send input events in response,
without need for static analysis or instrumentation. This agent partitions the screen into a grid and
keeps track of specific image patches at particular locations in this grid, which cause the application
to react when acted upon. An image patch is identified simply by the exact values of every pixel
within the small grid square representing the patch location (we use hashing as an optimization).
Visual changes to the screen are used as a proxy for application activity. Our tool is able to
outperform random GUI testing in method coverage while being robust to a large set of conditions
that can easily become limitations for more complex tools.

Our techniques are implemented and evaluated in the popular Android mobile OS. This environ-
ment presents significant challenges for static analysis, due to the fact that Android applications are
implemented as sets of components embedded into a coordinating runtime and a massive standard
API. Tt also presents an interesting environment for automated testing techniques, due to the large

variety of UI toolkits in active use, and the prevalence of application non-determinism.
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Chapter 1

Introduction

Static analysis is the collective name of a large set of techniques for determining properties of
computer programs by analyzing their static structure, as opposed to their runtime behavior during
specific executions [33]. This static structure can be the source code of the program or the binary
representation itself, as well as any intermediate representation used to convert between the two. In
contrast, dynamic analysis techniques look at the actions of the program at runtime. A significant
advantage of static analysis compared to dynamic analysis is that it can potentially reason about
all feasible executions and can in principle provide soundness guarantees that a program will always
satisfy a particular property over all possible executions.

Since static analysis must reason over a potentially unbounded number of executions, it can be
difficult to keep the analysis reasonably precise, meaning without a high number of false positives.
In general, sound static analysis works by over-approximating the program’s possible behavior, as
the analysis must account for every possible program behavior that can happen in some execution,
and it may include some additional behaviors that can never arise in any execution. Suppose there
is a subset of executions exhibiting behavior A, and a subset exhibiting behavior B. If the analysis
merges executions of these two subsets in its over-approximation, then it will not be able to rule
out the behavior A 4+ B as possible for some execution of the program, even if A and B are, in fact,
mutually exclusive. Thus, over-approximation can cause false positives: cases where the analysis
cannot prove the absence of violations of a property of interest even in cases where the property in
fact holds. The more code the analysis must reason about at a given time, the more limited the
compute budget for the analysis, and the more the program makes use of dynamic or polymorphic
programming language features (e.g. dynamic typing, reflection or eval statements), the less precise
the analysis must often become.

Software development in the last two decades has steadily moved from traditional processes run-

ning independently directly on top of a classic operating system, to applications developed as sets
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of components run by a runtime platform or framework. Within these modern application environ-
ments, programs interact with a large base of semantically complex platform APIs and communicate
heavily with other applications, as well as with a variety of network-based services for which code
is often unavailable for static analysis. Moreover, unlike traditional processes where execution is
chiefly controlled by the program’s own code, the components of platform-driven applications are
directly instantiated and run by the platform itself, based on external system events. Application
control flow thus cannot be understood without detailed knowledge of the platform’s code.

Examples of this kind of software system range from software built atop MVC (Model View
Controller [65, 68]), MVP (Model View Presenter [88]) or MVVM (Model View ViewModel [42])
frameworks, to Apache Struts [40] and Spring [101] applications. In particular, one of the most
prominent examples of this mode of development is mobile applications (also called apps) running
on the Android operating system. The Android OS is the world’s most popular mobile operating
system, with over 2 billion monthly active users worldwide [87, 77]. As such, it is a premier target of
interest for security research (e.g. [32, 113, 38]), general program analysis techniques (e.g. [8, 9, 12])
and automated testing methods (e.g. [74, 3, 53, 15]).

Given the prominence of such platforms, one would like to have available powerful and efficient
program analysis tools for applications running on them. However, given the way in which these
apps “dissolve” into the platform — both calling into platform code and having their own control-
flow be driven by it in turn via callbacks — any whole-program static analysis of platform-driven
applications entails analysis of the platform code as well. The case of Android apps and the Android
platform is illustrative of the general complexity of this task.

At least four problems make scaling most non-trivial analyses to the Android platform code chal-
lenging. First, a very precise analysis may not scale because the code-base in question is very large.
Second, Android platform code uses dynamic language features, such as reflection in Java, which
are difficult to analyze statically. Third, the platform includes non-code artifacts (e.g., configuration
files) that have special semantics that must be modeled for accurate results. Fourth, the platform is
built up in layers of abstractions written in lower-level languages, requiring a cross-language analysis
framework to carry out a full static analysis of all of the relevant code.

In addition to this hard-to-analyze platform, Android applications often depend heavily on server-
side code that posses even greater challenges for static analysis. This code is usually not directly
available to an analyst in either source or binary form, and as such it cannot be statically analyzed
at all. It can only be treated as missing code to the static analysis.

One popular approach to address the problem of missing code in a static analysis is to use
specifications (also called models). Writing models is also useful for dealing with hard-to-analyze
platform code. A specification substitutes for the missing code and reflects the subset of its effects on
the program state that are relevant to the analysis. The analysis can then use these specifications

instead of analyzing the platform code. Use of specifications can improve the scalability of an
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analysis dramatically because specifications are usually much smaller than the code they specify. In
addition to scalability, use of specifications can also improve the precision of the analysis because
specifications are also simpler (e.g., no dynamic language features or non-code artifacts) than the
corresponding code.

Such specifications are typically written manually in tandem with the construction of a static
analysis framework for a given platform. This is a time consuming effort, more so because the
specifications must be kept current and updated as the platform changes (as is the case between
different versions of the Android OS). As part of this dissertation, we present a technique to mine
a particular form of information flow specifications using dynamic analysis over concrete executions
of the platform code. To do so, we leverage a pre-existing comprehensive test suite to produce such
executions. These specifications match those expected by an existing static taint analysis system
for malware detection and improve the performance of that system as a whole when compared with
using human-written models.

In general, the idea of using concrete execution data and dynamic analysis to generate platform
specifications to be consumed by static analysis is a promising one. However, an important challenge
remains in obtaining sufficient example executions of the behavior of interest to be able to mine
correct specifications from those executions. In some cases, such as per-method information flow
specifications on the Android platform, a complete enough test suite may be available for this
purpose. However, in general, a way of systematically producing a set of executions that cover all
the relevant behavior for an application, including its usage of the platform, is desired.

We present two contributions to the problem of automated app exploration and testing. We
observe that the current state of the art in industry practice for application exploration is variations
of “monkey testing” [50]. Monkey tools, and in particular the industry standard tool called simply
“Monkey”, generate a long sequence of simulated user events sampled from a preset distribution.
Over a long enough period of time, this fully random testing is able to explore a significant portion of
an app’s behavior, and is sometimes compared favorably in practice to more sophisticated automated
testing techniques [22]. However, the traces generated by random exploration tend to be very large,
with the majority of the events in these traces being irrelevant to any behavior we might care about.
Due to their size, such traces are also time consuming to replay and not suitable for test suite
construction or specification mining.

We propose a technique, based on delta debugging, for minimizing such traces. An interesting
challenge, which our technique overcomes, is that of application GUI-level non-determinism, in
which the same application may behave differently under the same sequence of actions in different
runs. That is to say, the same action in the same app screen, reached along the same exploration
path, might trigger two or more different behaviors with some underlaying probability. Our trace
minimization technique deals with this issue by executing candidate traces multiple times during

the delta debugging process, and reducing the trace only when the new candidate subtrace triggers
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the behavior we care about with high enough probability. We keep the overhead of these multiple
executions under control by using one of two scheduling techniques: a custom heuristic and a method
based on modeling the candidate subtrace scheduling problem as a Markov Decision Process (MDP).
We compare both techniques.

Our second contribution involves an automated exploration agent, which, like Monkey, but unlike
the more involved automated testing tools, treats the application under test as a black box. Our agent
interacts with the Android application by alternately capturing a screenshot of the running app and
producing a new GUI action. The agent tries to determine, for specific actions in specific locations
of the screen, given its visual state before and after the action, whether that action triggered any
reaction from the app. It uses information about particular clickable and unclickable image patches
on the screen, to improve upon random exploration. At the same time, it requires no analysis or
instrumentation of the application code, preserving Monkey’s robustness to implementation details,
such as the programming languages, GUI toolkits, or display technologies, used by the application.

Our thesis is that program analysis of applications running inside a platform framework can be
improved by mining specifications for the platform behavior from concrete executions, and that, in
general, executions of interest for a dynamic analysis can be produced by automated exploration
tools. We present solutions to particular variations of the two sub-problems of specification mining
and trace generation, with implementations targeting the Android platform. Where appropriate, we
discuss the applicability and limits of execution trace generation and specification mining as general

techniques.

1.1 Contributions

As support for our thesis, this dissertation describes one technique for specification mining and two
for automated application testing and exploration in detail.

In Chapter 2, we present a technique to mine a particular form of information flow specifications
using dynamic analysis over concrete executions of the platform code. These specifications are
designed to be consumed by an existing static taint analysis system for malware detection, which we
will also briefly describe. We show that, in this setting, our technique is able to recover 96.36% of the
specifications previously encoded through extensive manual effort, produce many more specifications
that were never captured by manual modeling, and achieve a significant reduction of human effort
while having a slightly lower rate of incorrect specifications compared to human-written models.

In Chapter 3, we present a technique based on delta debugging for minimizing large random
GUI event traces while preserving some reachable behavior captured by the trace. We evaluate our
algorithm on many random traces generated for two sets of commercial and open-source Android
applications, showing that we can minimize large event traces reaching a particular application

activity. Our approach produces traces that are, on average, less than 2% the size of the original
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traces.

In Chapter 4, we present an automated app exploration agent, which relies on learning actionable
image patches from screenshots of the application under test. An actionable image patch is a portion
of the screen that responds to user actions on it, such as taps in our implementation. We evaluate this
agent on a dataset of 15 popular real-world Android applications, taken from the Google Play app
store, and show that our agent outperforms random exploration on 9 of those apps and performs at
least as well as random testing on the rest. This agent shares the robustness advantages of Android
Monkey, as it makes very few assumptions about the implementation of the app under test.

We discuss related work in Chapter 5, and state our conclusions in Chapter 6, briefly describing

the larger picture for our approach and possible paths for future research.

1.2 Collaborators and Publications

The work for this dissertation was in collaboration with Alex Aiken, Saswat Anand and Osbert
Bastani. A portion of it was only made possible by building on the STAMP static analysis system,
developed concurrently with this work by (in alphabetical order): Alex Aiken, Saswat Anand, Osbert
Bastani, Bryce Cronkite-Ratcliff, Yu Feng, Jason Franklin, Aravind Machiry, Ravi Mangal, John C.
Mitchell, Patrick Mutchler, Mayur Naik, Manolis Papadakis, Rahul Sharma, Xin Zhang, and the

author. The ideas discussed here appear in the following conference papers: [24, 25].



Chapter 2

Specification Mining from

Concrete Executions

The first contribution presented as part of this thesis is a process for mining platform specifications
from concrete executions. In particular, we present a technique which uses dynamic analysis to mine
explicit information flow specifications to be used by a static taint analysis system. Both the client
static analysis and our mining technique are implemented and evaluated on the Android mobile
platform.

We first give an overview of STAMP, the static analysis system that serves as the implemen-
tation platform for this work (Section 2.1). We start the section by motivating the use of explicit
information flow static analysis as a security tool for filtering potentially malicious or misbehaving
mobile applications, as well as the system’s requirement for platform specifications and their struc-
ture. After a brief foundational discussion of the technologies used to implement STAMP’s static
analysis components (2.1.1), we briefly describe the details of its points-to (2.1.2) and core explicit
taint (2.1.3) analysis components. We then discuss the concrete limitations of our static analysis,
particularly as they relate to analyzing code belonging to the Android platform itself (2.1.4). Fi-
nally, we revisit how the use of manually written models can help us manage those limitations when
analyzing Android apps (2.1.5).

Before we begin describing our specification mining technique, we take another look at those
manually written models, present the specification syntax and the particular class of specifications
(taint transfer annotations) that we mine automatically (Section 2.2).

We then present the architecture of our dynamic analysis system and discuss the instrumentation
strategy (Section 2.3). We proceed by detailing the specification mining algorithm itself, formulated
as a special execution semantics to be applied to recorded execution traces of Android platform
methods (Section 2.4).
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Finally, we present our evaluation and results (Section 2.5). We first compare our mined speci-
fications to existing manually written models for 309 methods across 51 classes, and show that our
technique is able to recover 96.36% of these manual specifications and produces many more correct
annotations that our manual models missed (2.5.1). Then we show that these new annotations
improve the end-to-end results of the STAMP analysis system, allowing it to find new true posi-
tive explicit information flow facts about real-world Android applications, compared with what can
be obtained using only the manual models (2.5.2). Finally, we control for the quality of the test
suite used to produce the executions which drive our specification mining technique, showing that

relatively few executions are needed to produce correct specifications for most methods (2.5.3).

2.1 STAMP: Static Taint Analysis for Mobile Programs

As part of a long term research project to improve malware detection techniques on mobile platforms,
our research group developed STAMP (see [38]). STAMP is a hybrid static/dynamic program
analysis platform for Android applications, combining multiple analysis methods. The core analysis
performed by STAMP is a static taint analysis that aims to detect privacy leaks. This is the analysis
we will describe in this section, as it is the most relevant to our specification mining technique.

Privacy leaks occur when applications take information from sensitive sources on the user’s
device and exfiltrate it without permission to external data sinks. For example, an app could scan
the phone’s contacts list and send it to a remote server without the user’s knowledge or permission.
Other sensitive sources include: device identifiers, photos and other files, geolocation information,
user names and passwords for other apps, among many more. The most common sinks are different
types of internet connections. However, the app can also exfiltrate data over SMS, Bluetooth, NFC
or any other data connection available on the phone.

The Android OS provides some protection against apps behaving maliciously in the form of
access permissions. To read data from a particular source within the device, the app must have
been granted the corresponding permission either at installation time or during execution [36, 45].
However, once access has been granted, no controls are enforced on how the app uses information
read from that source. This approach has long been considered too limited for practical security, with
users often ignoring or failing to understand the implications of permission prompts [37, 62]. Signals
based on the category and requested permissions of an app can sometimes be used to heuristically
estimate the risk associated with installing a particular application (e.g. [86]). However, many apps
have legitimate reasons to access significant private information from the device, but not to exfiltrate
it to the outside world. For example, a messaging app needs to be able to read and write to the
phone’s contact list, and must be able to send messages (either through the Internet or via SMS).
Yet there is no compelling reason why the app should be able to send phone number or address

information directly from the contact list as a message, especially without user permission.
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A better way to evaluate the potential data exfiltration dangers of a particular app would be to
produce a list of source-sink pairs. These pairs indicate all the potential combinations in which data
can be read from the given source and then subsequently sent to the corresponding sink. Then a
human auditor or a learning agent can use that information to decide whether or not the app, based
on a description of its use case or a security policy, is doing something unexpected.

A whole-program static taint analysis works by providing a list of sources and sinks to be consid-
ered, and then examining the full set of program statements to compute an over-approximation of
the potential runtime information flows from sources to sinks. In STAMP’s case, specific arguments
to Android platform API methods are annotated as sinks, while another set of API methods are
annotated so that their return values are considered sources. An argument to a method may also be
a source in the particular case in which the annotated method writes sensitive data from the system
into the fields of that argument.

The following listing shows the source annotation for the TelephonyManager.getLinel Number

method, which retrieves the phone number associated with the primary cellphone line of the device:

public class TelephonyManager {

QSTAMP( flows = {QFlow (from="‘‘$PHONENUM’’ ,to=‘‘Q@return’’)})
public String getLinelNumber () {

Similarly, the next listing shows a sink annotation for the SocketChannel. write method, which

sends information outside the device through a UNIX socket interface:

public class SocketChannel {

@STAMP( flows = {@Flow (from="‘‘arg#1’’, to="*‘/INTERNET’’)})
public abstract int write(ByteBuffer src) {

As mentioned in the introduction, several issues arise when performing whole-program static
analysis on the entire Android platform. We will further discuss these problems in Section 2.1.4,
after explaining our particular analysis in detail. To avoid these issues, we also require annotations
for API methods that are neither sources nor sinks, but through which information may flow at
runtime. Given these annotations, the analysis can restrict itself to looking at the application’s own
code, and any software libraries included with the app’s executable.

For example, the following two annotations correspond to the CharsetEncoder.encode and Char-

Buffer.put methods, both of which copy data from their first argument to their return value. In
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the second method’s case, the return argument is a reference to the CharBuffer itself, so we must

specify that the data also flows into the corresponding receiver object (this):
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public class CharsetEncoder {

@STAMP( flows = {@QFlow (from="‘‘arg#l1’’,to=‘‘Qreturn’’)})
public ByteBuffer encode(CharBuffer in) {

}

public class CharBuffer {

@STAMP( flows = {QFlow(from="‘‘arg#l’’ ,to=‘‘Qreturn’’),
Q@Flow (from=‘‘arg#1’’ ;to="‘‘!this’’),
@Flow (from="‘!this’’ ,to=‘‘Q@Qreturn’’)})

public CharBuffer put(String src, int start, int end) {

It is easy to see that, for a fully annotated Android platform codebase, annotations of this third
type, called transfer annotations, are the bulk of the total annotations. Hence, as we will see later in
this chapter, we can greatly reduce the manual annotation burden by automatically mining method
specifications that subsume transfer annotations. Note, however, that even in the manual case, the
annotations need only be written once per version of the Android platform API and can be provided
by the developers of tools like STAMP. Individual users of the system do not necessarily need to

write any annotations to make use of the tool to analyze new applications.

2.1.1 Datalog and the structure of the core analysis

The core suite of static analyses provided by STAMP is expressed as Datalog programs. Datalog
is a logic programming language used to construct deductive databases [106]. A Datalog program
consists of relations and rules over relations.

A relation can be conceptualized as a two-dimensional table. The columns are attributes, each of
which is associated with a domain, which defines the set of possible values for that attribute. Rows
are tuples of values taken from the domain of the corresponding attributes. If a tuple (zq, z1, ..., Zp)
is part of a relation R, we say R(zg,z1,...,Zy) is true. An example relation would be Edge(from :
Node, to : Node), describing a graph as a set of directed edges between elements of the Node domain.

A program could then be given an explicit list of edges as input, in a Datalog file such as the following;:
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A rule in Datalog is given in a prolog-like notation, in which a head relation is defined in terms
of a set of other relation predicates. Rules might contain concrete values for the elements in a
relation (surrounded by quotes), but by default use universally quantified variables instead. Thus,
any instance tuple of values which satisfies the right-hand predicates in a rule is taken to satisfy the
head relation as well (predicates may be simple relations, as well as negated relations). For example,
the following two rules define the Path relation in terms of the Edge relation and itself, giving the

set of all node pairs between which a path exists in the graph:

Path(z,y) : —Edge(z,y)

(2.2)
Path(z, z) : —Path(z,y), Edge(y, 2)

The first rule dictates that two nodes are in a Path relation whenever they are in an Fdge
relation. The second rule dictates that if any nodes x and y are in a Path relation (in that order),
and additionally y is in an Edge relation with any other node z, then x and z are in a path relation.
This is true for any x,y, z satisfying the given subrelations. In particular, following these rules and
using the tuples for the Edge given in equation 2.1, one can conclude, for example, that Path(A, E)
is true and Path(B, C) is false.

A Datalog engine is a system that evaluates a Datalog program, answering membership queries
for any of the program’s relations, including those derived via Datalog rules. Because Datalog rules
can produce relations that are far larger than the relations given explicitly as input, it is important
for Datalog engines to use a compact representation for relations. STAMP uses the bddbddb imple-
mentation of Datalog [109], an engine that translates Datalog programs into a representation using
BDDs (Binary Decision Diagrams).

We will now describe how Datalog is used to implement STAMP’s static points-to and taint
analysis algorithms, without focusing too much on how the underlaying engine computes or stores
the Datalog relations.

For its core analysis, STAMP reads the bytecode of Android applications (in Android’s standard
Dex[46] bytecode representation) and produces a series of input relations encoding the individual

bytecode instructions which constitute the app. Table 2.1 lists these relations, as well as example
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Table 2.1: STAMP’s Datalog Input Relations

Relation Example Bytecode

Assign(v:V,u:V) Assign(11$int@[meth _sig], 12$int@[meth_sig]) i: 11 =12

Alloc(v:V,h:H) Alloc(11$Object@[meth_sig], ©) i: 11 = new Object(...)
Load(y:V,x:V,i:F) Load(11$int@[meth_sig], 1280bject@[meth_sig], fsig) | ¢: 11 = 12.f_sig
Store(uw:V,f:F,v:V) Store(11$Object@[meth_sig], f_sig, 128int@[meth_sig]) | ¢: 11.f_sig = 12
LoadStat(y:V,i:F) Load(11$int@[meth_sig], {_sig) i:11 = f.sig
StoreStat(f:F,v:V) Store(f_sig, 11$int@[meth_sig)]) i: fsig = 11
IinvkArg(i:I,n:Z,v:V) IinvkArg(i, 7, aj) Vj i:11 = meth_sig2(ai, a2, ...
TinvkRet(i:I,v:V) IinvkRet(7, 11$int@[meth_sig]) i: 11 = meth_sig2(a1, a2, ...
MmethArg(m:M,z:Z,v:V) | MmethArg([meth_sig], j, p;) Vj i : public meth_sig(p1i, p2, ...
MmethRet(m:M,v:V) MmethRet([meth_sig], 11$int@[meth_sig]) i: return 11

chaIM (i:I,m:M) See below

elements and the corresponding bytecode. The domains being used are the following:

Z: (A program-dependent finite subset of the) Natural numbers.

M: Program methods. The elements of this domain represent each distinct method signature

in the application.
F: Program fields. As above, this contains all fields in the application.

V: Program variables. In the case of local variables, the elements of this domain distinguish
between similarly named variables across different methods in the program as well as the formal
parameters of a method. This domain also includes special elements for the this and return

values of each method.

I: Invocation instruction. This is an identifier for an individual bytecode statement in the

app’s code for an specific method callsite.

H: Object allocation location. This is an identifier for an individual bytecode statement in the

app’s code for an specific object allocation (new) operation.

C: Context. This represents a bounded abstract context, which we will discuss in more detail
in Section 2.1.2.

Encoding the basic instructions that make up the program into Datalog relations is the first

step for many Datalog-based static analyses. The specific encoding depends on the properties of

the code that are relevant for our analysis. For example, Table 2.1 omits the encoding of certain

language features, such as control-flow instructions, since our points-to analysis does not make use

of intra-procedural control-flow information. In other words, we present a flow-insensitive analysis.

The Assign relation encodes every assignment statement in the program, while Alloc does the

same for object allocation. The Load and Store relations deal with object field load and store

operations in Java, while LoadStat and StoreStat do the same for operations involving static fields.
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linvkArg and linvkRet record information about the actual arguments and return value of a method
at its call sites, while MmethArg and MmethRet do the same for the binding of the formal parameters
inside the callee and every local used in a return statement. For simplicity, we omit rules handling
Java primitive values in method arguments and return values, which are similar but are actually
distinguished in the STAMP analyses, due to handling of Java’s call-by-value semantics for primitive
types. This handling is straightforward. The final relation listed, chalM, is a bootstrapping callgraph
analysis based on class hierarchy information. As we will see in the next section, pointer analysis
and callgraph construction are intertwined. However, it is important to begin with some reasonable
over-approximation of the possible methods called at each callsite. We generate this first coarse
approximation by looking at the signature of the method at callsite ¢ and simply adding chaIM(,m)
for every method m which could satisfy the signature (i.e. its receiver is a subtype of the static type
on which the method is dispatched at the callsite).

2.1.2 Points to analysis

STAMP uses a field- and context-sensitive Andersen-style pointer analysis [7].

The general idea behind context-sensitivity is that a precise analysis should take into account
the context in which a method m is being executed to compute points-to information, because the
points-to information varies with the context. Here the context includes information such as the
call-site for the different methods in the call stack at the time m is being executed and, for non-static
methods, the receiver object of those methods. To understand why this is important, consider the

following example:

public static Object identity (Object o) {

return o;

}

public static void main() {

Object ol = new Object ();
Object 02 = new Object ();
Object 03 = identity (ol);
Object 04 = identity (02);

Suppose we are working with a context-insensitive analysis, meaning one that assigns a single set
of heap locations to each variable in the program’s text. This analysis will generate false positive
points-to facts for the code above, due to merging information from the two calls to the identity
function, in two different contexts.

We denote by v — h the fact that the analysis believes variable v may point to heap object
h, or, in Datalog notation: pt(v, h). In particular, let us name the two new heap locations created

by the two allocation statements in the code above h,1 and heg, in order of appearance (note that,
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regardless of the specifics of the analysis, main executes only once, so exactly two heap allocations
take place in this example program). Thus, after line 7 of the main method, ol < h,; and 02 < hs.

In a typical context-insensitive analysis, there is no way to distinguish different calls to the
identity method in the code above, so the argument o of this method will be assigned the union of
all points-to sets of every variable used in each call to the method. When the method return value
is examined, it will carry this inflated points-to set, creating spurious points-to facts for 03 and o4.

In particular, after the first call in line 8, the argument o of this method will be recorded as
potentially pointing to h,; and we will have 0 < h,; and 03 < h,1. Now, for the second call to
identity, the analysis will add the fact that o may point to h,s, and then propagate the points-to
set of o into o4, resulting in 04 < h,; and 04 — h,. Clearly, the first of those two points-to facts
is spurious, since when called from line 9, identity will never receive something pointing to h,; and
thus can’t return a reference to h,1. Yet, it is impossible to reconcile this fact with the requirement
of assigning to argument o in method identity a unique points-to set. In fact, if the points-to analysis
is also flow-insensitive (meaning, roughly, that it ignores the order in which statements may execute,
by disregarding the control-flow information encoded in the program), then it will also eventually
add the spurious points-to “fact” 03 < hys.

A conceptually trivial way to solve the above imprecision is by creating two copies of the identity
method, one for each call-site. Note that the following code can then be analyzed precisely by a

context-insensitive analysis:

public static Object identity_1(Object o) {

return o;

public static Object identity_2(Object o) {
return o;

}

public static void main() {
Object ol = new Object ()
Object 02 = new Object ()
(o

(o

)

Object 03 identity_1

);
Object 04 = identity_2 ;

1
2)

}

Of course, extending this approach to a larger program, with many more call-sites for each
method and deep copies to resolve nested methods, quickly becomes impractical. However, we can
do similarly well by merely keeping track of the context in which the method is being executed, and
adding it to our representation of points-to facts. Thus, we represent “variable v may point to heap
object h in context ¢” as v <. h or pt(c,v, h). If our context is merely the call-site of the method
to which v belongs, that is sufficient to get the following (precise) points-to facts for our original

example: 0l < hy1, 02 = ho2, 0 Fmain:s Rol, 03 = ho1, 0 “main:g hoz and 04 < ho.
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The context can incorporate multiple levels of call-sites to increase the precision of the points-
to analysis. However, due to recursion, the full call-stack-based context of a method may not be
possible to determine statically from the program text. Additionally, the cost in time and memory
of distinguishing a large number of contexts for each variable quickly becomes impractical. Most
context-sensitive analyses are properly termed bounded context-sensitive analyses, in which only the
most recent portion of the call-stack-based context is retained.

STAMP’s definition of bounded context-sensitivity is similar to the technique described in [61],
combining call-site sensitivity (kCFA) [78] and object-sensitivity based on allocation site [79]. Here,
kCFA is the approach we have described so far, in which the context is the k-tail of all call-sites in
the stack. The solution to our simple example, in which the two call-sites of the identity method
produced two different contexts for o, can be properly termed 1-CFA. Object-sensitivity is an ap-
proach based on the observation that, in the case of instance methods in object oriented programs,
it is often more useful to distinguish calls to method m by its receiver than by its call-site [61].
STAMP takes advantage of this fact by allowing the first element, and only the first element, of the
k-tuple representing the context to be an allocation instruction (new...) as opposed to a call-site.

Previous to the Datalog analysis, STAMP calculates a relatively imprecise call-graph for the
program, using a class hierarchy analysis [29], and populates the context domain C with all feasible k-
tuples (by default k = 2) representing the possible bounded contexts of every invocation or allocation
site in the program. That is, for example, if allocation statement i : v = newObject() and method
call j : 7 = v.m2(...) both occur inside method m, then for each feasible call-site [ of m the contexts
(I,7) and (I,j) are added to C. Since at this point call-site feasibility is being determined by the
coarse class hierarchy analysis, the domain C' will likely contain many contexts that are not truly
reachable in the analyzed program. STAMP filters those contexts out during the points-to analysis
itself, so we only care that the domain encompasses a superset of the reachable contexts. While

populating this domain, the analysis also explicitly enumerates the following relations:

o MV(m:M, v:V): v is a variable in method m.

CC(c:C, d:C): ¢ is the tail of context d, meaning the (k — 1) first elements of ¢ are the (k —1)

last elements of d. This only makes sense for k > 1.
o CI(c:C, i:): 7 is a call-site and the first element of context c.
e CH(o:C, h:H): h is an allocation site and the first element of context o.

e HT(h:H, t:T): h is an allocation site for objects of type t.

Figure 2.1 shows a simplified version of the Datalog rules for STAMP’s points-to analysis. It
omits rules dealing with static methods and fields, missing-code specifications (see the rest of this

chapter) and type reachability (reachableT).
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Figure 2.1: STAMP’s Datalog Points-to Analysis

# Points—to and Field—points—to relations:

pt(c,v,0) :— Assign(v,u), pt(c,u,0), typeFilter(v,o).
pt(c,v,0) :— Alloc(v,h), MV(m,v), reachableCM(c,m), CC(c,o0), CH(o,h).
fpt (ol,f,02) :— pt(c,v,02), Store(u,f,v), pt(c,u,ol).
pt(c,y,02) :— pt(c,x,0l), Load(y,x,f), fpt(ol,f,02).

pt(c,u,0) :— DVDV(c,u,d,v), pt(d,v,o), ipFilter(c,u,o0).

# Context feasibility and call—graph construction rules:
CIC(c¢,i,d) :— CC(c,d), CI(d,i).

DIC(c,i,0) :— linvkArg(i,0,v), pt(c,v,0).

ICM(i,o,m2) :— VirtIM(i,s), Dispatch(t,s,m2), HI'(h,t), CH(o,h).
CICM(c,i,o,m) :— reachableCI(c,i), DIC(c,i,o), ICM(i,o,m).
DVDV(d,u,c,v) :— CICM(c,i,d,m), MV(m,u), param(u,v,i).
DVDV(c,u,d,v) :— CICM(c,i,d,m), MV(m,v), return(u,v,i).
reachableCM (0,0) # main method

reachableCM (0,m) :— ClinitTM(t,m), reachableT (t).
reachableCM (¢ ,m) :— CICM(-,-,c,m).

reachableCI(c,i) :— MI(m,i), reachableCM(c,m).

For completeness, we briefly describe the rules defining the points-to relation itself. Flow-
insensitive, context-insensitive points-to analysis is an extremely well-studied problem and the anal-
ysis rules presented here are similar to many of the formulations in the literature [7]. The general
idea of these rules is to propagate the points-to sets of variables following the way the values them-
selves are copied through the program statements, disregarding the control-flow of the program, but
keeping track of the contexts we defined previously. Evaluating these rules to a fix-point assigns a
points-to set to each variable and context pair that is consistent with what we would observe if we
had duplicated the code of each method for every feasible context.

The first rule (line 2) ensures that references are copied by assignment statements, that is:
whenever v = u and u <. o, then v <. 0. Note that abstract heap locations themselves are
identified by the full context of their corresponding allocation site (i.e. o € C). The definition of
the relation typeFilter is omitted here, but its function is pruning some imprecise points-to facts
when we know for certain that a particular abstract heap location may not be assigned to v due
to type information. The second rule (line 3) handles allocation instructions, by specifying that if
h:v=newX() is a statement in method m, then for every valid context ¢ for m, v <. o, where o is
¢ extended by h. The next two rules (lines 4-5) deal straightforwardly with loads and stores, where
the new relation fpt(ol, f,02) means “field f of abstract heap location ol points-to abstract heap
location 02”. The last rule for the points-to relation (line 6) deals with method arguments and return
values. The relation DV DV (¢, u, d,v) matches the formal argument u of method m in context ¢ to
actual argument v in the calling context d. Thus if a call-site m4 (..., v, ...) in context d may dispatch
to method m(...,u,...) in context ¢ and v <4 o, then u <. o. Note that the method’s identity
(m) is implied by the identity of the formal argument wu, via the MV relation, and thus omitted

from the attributes of DV DV (recall that we assign a unique identifier to every local variable of the
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program, without duplicate identifiers across methods). The relation DV DV (¢, u,d, v) also matches
the formal and actual return values, but with the contexts ¢ and d reversed, so that if r = ma(...)
in context ¢ may dispatch to method ms in context d and v <4 o0 is a candidate for mg’s actual
return value, then r <. 0. The relation ipFilter is also a form of type-based assignment filtering
over method arguments, similar to the use of typeFilter for assignment instructions.

The second half of the program listed in Figure 2.1 gives the rules for constructing the final
call-graph, figuring context feasibility and computing the previously mentioned DV DV relation.
Note that, in an object oriented language, we must compute the call-graph together with the points-
to sets, since the method being called depends on the type of the receiver object due to dynamic
dispatch. The core idea for reachability is to begin by considering the main method' and the static
class initializers of every type being used in the program as reachable. Then, we recursively define
relation CICM (¢, 1,0, m) which says call-site ¢ in context ¢ can invoke method m in context o, but
only if (e, ) itself is reachable. CICM/c,i,0,m) decomposes into DIC(c,i,0) which means that
the receiver object at call-site ¢ in context ¢ may be the abstract heap context o, and ICM (i, 0,m)
which checks that the signature (s) of the method invocation at call-site ¢ matches o.m. The
relations VirtIM (i,s) and Dispatch(t,s, m2) are built by scanning the application bytecode: the
first matches call-sites to the method signature of the method being called, whereas the second maps
method signatures to concrete methods for specific types t. Given CICM, as well as the param and
return relations (easily derived from IinvkArg, MmethArg, IinvkRet and MmethRet from Table
2.1), constructing DV DV is straightforward.

2.1.3 Explicit taint analysis

Given a reasonably precise global points-to analysis, such as the one just described, as well as
the source, sink, and transfer annotations introduced at the beginning of this section, the actual
implementation of STAMP’s taint analysis is straightforward. The core relations used are tainted(o:
C, I: Label) and flow(src: Label, sink: Label). Here Label is the domain of source and sink labels
(e.g. “lINTERNET”), extracted from the corresponding source and sink annotations. The tainted
relation associates abstract heap locations (distinguished up to their points-to analysis context) with
zero or more labels. The flow relation list pairs of source (src) and sink (sink) labels, such that
a value might flow at runtime from a method argument or return annotated with src to a method
argument annotated with sink.

Figure 2.2 lists the main rules implementing STAMP’s taint analysis. Here the srcLabel, sinkLabel
and transfer relations are explicitly enumerated based on the Android platform annotations included

in STAMP, and the variables listed in them correspond to specific formal arguments (including the

LA reader familiar with Android development may note that Android applications do not have a main method,
but instead have multiple entry-point callbacks that are triggered by the Android OS’s event system. STAMP builds
a simple driver for every app, mocking the Android runtime and non-deterministically executing all available entry
points. The main method of this driver is used as the single entry-point for the static analysis.
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Figure 2.2: Simplified STAMP’s Datalog Taint Analysis

tainted (o,1) :— srcLabel(v,1), pt(c,v,0).

tainted (02,1) :— tainted (ol,1), transfer(v,u), pt(c,v,0l), pt(c,u,o02).
tainted (02,1) :— tainted (ol,1), fpt(ol,_,02).

flow (11 ,12) :— tainted(o,11), sinkLabel(v,12), pt(c,v,0).

receiver object) or the return value of the annotated methods. The first rule says that if an argument
or return value is annotated with a source label [, then the corresponding abstract heap location in the
points-to analysis is tainted with that label. We can then rely on the points-to analysis to propagate
the taint through the app’s code. Such propagation might be broken by passing through a platform
method, since our points-to analysis does not analyze platform code. The second rule handles this
case, by propagating taint across calls to platform methods, using the transfer annotations. The
third rule propagates taint up through field references. The reasoning is that if we ever pass an
object to a sink from which any sensitive data can be reached, then we can’t know for sure whether
or not the API method corresponding to such a sink will read that sensitive data. Finally, the
fourth rule detects when a tainted value reaches a method argument that is associated with a sink
annotation, producing the corresponding tuple in the flow relation.

This version of STAMP’s taint analysis is simplified in a few ways compared to the version
implemented in practice. First, we omit handling of primitive values and taint transfer for primitive
operations, restricting ourselves to the straightforward case of reference values. Second, STAMP
attempts to reconstruct feasible “trails” through the code that exemplify specific taint flows, and
the bookkeeping relations for this task are somewhat involved. We omit these features as they are
mostly out of scope for the work presented here, but note them for completeness.

We should also mention that the type of taint analysis performed by STAMP is explicit taint
analysis. We track only explicit taint flow, in which the app exfiltrates information through the
data flow of the program. A malicious application could also exfiltrate sensitive information through
manipulation of a program’s control flow, using loop counters or timing-based channels to copy a
value without a direct assignment, load or store statement involving the sensitive value. Exploiting
control flow to leak sensitive data is known as implicit information flow and is not currently handled

by STAMP or any other static malware detection tool of which we are aware.

2.1.4 Limitations of the core analysis

The analysis we have described so far is sound (does not miss any potential explicit taint flows)
when dealing with application code that has no missing or reflective method calls, and achieves
significant precision (low false-positive rate) when dealing with most applications. However, were
we to try to extend this analysis to cover the entirety of the Android platform codebase, instead of

using transfer annotations as described in the beginning of Section 2.1, we would quickly run into
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several limitations that make it unsuitable for the task.

The analysis we described processes only Java code, which means that all calls to native methods
must be treated as calls to missing code. In addition, we do not incorporate any significant string
analysis, which would be required to reasonably approximate the potential targets of reflective
method calls. The analysis further treats missing code optimistically, meaning it assumes calls
to missing code or reflective calls generate no new points-to facts and produce no taint transfer.
The alternative, treating missing code pessimistically (i.e. assuming it can generate points-to facts
and taint transfer between any abstract heap locations available to it), leads to an extremely large
number of false-positives. Since the Android platform makes extensive use of both reflection and
native methods, we would need transfer annotations for those uses, at least.

We would also quickly run into scalability issues when analyzing the Java portion of the platform
code. First, the Android platform is one or two orders of magnitude larger as a codebase than even
the largest apps, so it is likely we would have to significantly tweak our analysis to even get it to run
to completion on the entire Android platform. A second and subtler issue is that platform code tends
to be highly polymorphic with many levels of indirection for some common operations, making our
analysis choice of k = 2 call-sensitivity plus potential object-sensitivity not precise enough in many
cases. Increasing the level of context-sensitivity in any way would further reduce the scalability of
the analysis. Given that, and the fact that models for platform methods need to be updated only
in the relatively rare case that a method’s interface changes, we chose to put our annotations at the
boundary between application and platform code and replace the platform code with our models.

Finally, we should mention two other known limitations of our analysis, which affect platform
as well as application code. First, as we mentioned before, by design we detect only explicit taint
flows, and miss implicit information flows caused by the program’s control flow. This means that
adversarial programs can construct flows we don’t directly observe in our analysis, using control-
flow based side-channels. A number of patterns to do this, such as implicitly copying a string by
using a loop containing a switch over the string’s alphabet, are easy to detect via complementary
pattern-based static analyses, but the general case remains unsolved for our system or any other
Android malware detection tool of which we are aware. Second, we do not explicitly discriminate
array accesses by their index, nor do we precisely match accesses to other complex data structures
such as linked lists or hashmaps. This significantly reduces our precision when dealing with data
structures which mix sensitive and non-sensitive data. We have found these problems not to impede
practical analysis of Android applications, but would not be surprised to run into issues arising from

these limitations if analyzing platform code.

2.1.5 Manually written models

Due to the limitations described in the previous section, STAMP forgoes static analysis of the

Android platform’s code, relying instead on a set of models written manually. These models are
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a combination of simplified code implementations and annotations. The annotations are those
described in the beginning of Section 2.1: source, sink, and transfer annotations. The simplified
implementations are fragments of Java code, designed not to be run but to produce points-to facts
useful for our analysis.

For example, the following “implementations” of ArrayList.set and ArrayList.get are incorrect
as far as a running program is concerned, since instead of adding the value to a multi-element list
data-structure, set simply overrides a single object field. This same unique field is then returned by
get regardless of the index being requested. However, from the point of view of a flow-insensitive
path-insensitive static points-to analysis as implemented by STAMP, this is equivalent to the real
implementation, since we only care to say that, for the same ArrayList object, the second argument
to its set method may point to the return value of its get method. This is in addition to the included

transfer annotations?:

class ArrayList<E>

{

private E f;

@STAMP( flows = {QFlow(from="‘‘arg#2’’ ,to=‘‘this’’)})
public E set (int index, E object) {
this.f = object;

return this.f;

@STAMP( flows = {@Flow(from="‘‘this’’ ,to=‘‘Qreturn’’)})
public E get (int index)

{

return f;

Not all methods require annotations or simplified implementations. For example: methods that
write no information to their arguments, nor return a value beyond a status code, such as those used
by the Android UI toolkit, can cause no explicit taint flows and thus require no specifications. The
main API version targeted by STAMP was the Android 4.0.3 platform, which has a total of 46,559
public and protected methods. STAMP includes manual models for 1,116 of those methods, which
were written during 2 years of development in a demand-driven way. As we will see in the next
sections, automated specification mining can quickly recover most of the models written over the
years, surface errors on those manual models, and produce new and useful specifications for many

more methods our manual effort had missed.

2Which are potentially redundant in this example, but shown for completeness.
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// Set—up objects
SocketChannel socket = ...;
CharBuffer buffer = ...;
CharsetEncoder encoder =

Charset . forName (?UTF—8” ). newEncoder () ;
TelephonyManager tMgr = ...;
// Leak phone number:
String mPhoneNumber = tMgr. getLinelNumber ();
CharBuffer bl = buffer.put(mPhoneNumber,0,10);
ByteBuffer bytebuffer = encoder.encode(bl);
socket . write(bytebuffer);

Figure 2.3: Leak phone number to Internet

Table 2.2: Specifications for platform methods

TelephonyManager.getLinelNumber() | $PHONE_NUM — return
CharBuffer.put(String,int,int) | arg#1 — this
this — return
arg#1 — return
CharsetEncoder.encode(CharBuffer) | arg#1 — return
SocketChannel.write(ByteBuffer) | arg#1 — IINTERNET

2.2 Platform Specifications for Explicit Information Flow

Consider the example code fragment of Figure 2.3, corresponding to a portion of a (reachable)
method inside an Android application. Given that code — as well as the source, sink and transfer
annotations shown at the beginning of Section 2.1 — STAMP should be able to detect that sensitive
information regarding the device’s phone number (from TelephonyManager.getLinelNumber())
may flow out into the Internet (via SocketChannel.write). This flow involves the taint propagating
within the application code itself, as well as through two platform methods: CharBuffer.put and
CharsetEncoder.encode, for which we have transfer annotations.

In the code listings given in Section 2.1, we represented the source, sink and transfer annotations
directly as Java annotations, which are one of the formats in which STAMP can read such data. In
particular, this is the natural format to use when we wish to combine such taint transfer information
with code stubs to create maximally-expressive manual models. However, in the rest of this chapter,
we will use a different simplified format, which describes only the information flow specifications
for platform methods in isolation from any code-stub models. Table 2.2 shows the information flow
specifications for the four platform methods involved in the example of Figure 2.3, using this more

compact representation. The notation is as follows:

a — b indicates that there is a possible flow from a to b. Whatever information was accessible
from a before the call is now potentially accessible from b after the call. Recall from Section

2.1.3, that if a is a reference, the information accessible from a includes all objects transitively
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reachable through other object references in fields.
this is the instance object for the modeled method.
return is the return value of the method.

arg#i is the i-th positional argument of the method. For a static method, argument indices begin

at 0. For instance methods, arg#0 is an alias for this and positional arguments begin with
arg#1.

$SOURCE is a source of information flow and represents a resource, external to the program, from
which the API method reads some sensitive information (e.g. $CONTACTS, $LOCATION, $FILE).

ISINK is an information sink and represents a location outside of the program to which the infor-
mation flows (e.g. !'INTERNET, !FILE, !BLUETOOTH).

The specifications in Table 2.2, are sufficient for STAMP to track the flow of sensitive information
from $PHONE_NUM—through parameters and return values—to ! INTERNET, via static analysis of the
code in Figure 2.3.

Over a period of two years, we produced a large set of manually-written models. Generating
these models was a non-trivial task, as it required running STAMP on various Android applications,
discovering that tainted data flowed into platform methods without existing models, figuring out
the full set of platform methods involved in breaking the static flow path, and reading the Android
documentation before finally writing a model for each missing method. The majority of these models
required no code stubs and involved no new source or sink labels, but were instead explicit taint
transfer specifications, expressible in the format of Table 2.2 and involving only flows between the
parameters (this, arg#i) and return values of the specified method. In the rest of this chapter
we describe a technique for automatically mining such explicit information flow specifications for

arbitrary platform methods.

2.3 Overview of our specification mining system

The main contribution presented in this chapter is a process for mining platform specifications from
concrete executions. Now that we have described the client system for these specifications and the
form of the specifications themselves, we can begin presenting our technique.

Before delving into the specifics of our specification mining algorithm, we briefly describe the
architecture of our system, and the steps of the specification mining process. The source code for
our implementation and all related artifacts have been made public, and are available at [23].

Our approach works in four stages: First, we instrument the code corresponding to the An-

droid version for which we wish to mine specifications. Second, we run a large test suite on the
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Figure 2.4: Architecture of Droidrecord/Modelgen

instrumented platform, which causes the instrumentation to record execution traces. Third, we
process those traces off-line, to produce per-method explicit information-flow specifications. Finally,
we transform those specifications into a format equivalent to that of our existing STAMP platform
models and annotations.

Figure 2 shows an architecture diagram of our system. The first component, Droidrecord, takes
binary libraries (.jar) and application archives (.apk) in their compiled form as Android’s DEX
bytecode. Droidrecord inserts a special logger class into every executable. Using the Soot Java Op-
timization Framework [107] with its Dexpler [13] DEX frontend, Droidrecord modifies each method
to use this logger to record the results of every bytecode operation performed. We call each such
operation an event and the sequence of all events in the execution of a program is a trace.

Once instrumented, the modified Android libraries are put together into a full Android system
image that can be loaded into any standard Android emulator. For specification mining, we capture
the traces generated by running the test suite for the platform methods we wish to model. In
particular, we use the Android Compatibility Test Suite (CTS) [47]. We consider this kind of test
suite as a type of informal specification that is available for many cases of real world systems. Good
test suites include examples of method calls that capture the desired structure of the arguments and
exercise edge-cases, in a way that, say, executing the method with randomly selected arguments,
does not. In later chapters we will explore what can be done in cases where such a comprehensive
test suite is not available.

Running the instrumented tests over the instrumented system image produces a collection of
traces. Each trace consists of an ordered sequence of events. Each event in a trace describes a
feature of interest in the execution, such as a method call and its arguments (see below). The
component of our system that analyzes these traces off-line and generates explicit information flow
specifications is called Modelgen, and is the focus of most of the rest of this chapter. However, before

describing this analysis, we will briefly describe the instrumentation.
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2.3.1 Droidrecord Instrumentation

During the instrumented code’s execution, events are recorded to the device (or emulator) file system.
On mobile devices this file system often presents limited storage compared to the off-line analysis
environment, and thus it is important that the representation of events be compact. A compact
representation also reduces the slowdown resulting from performing many additional disk writes
as the instrumented code executes. Controlling this slowdown is important, since the Android
platform monitors processes for responsiveness and automatically terminates those that take too
long to respond [49].

To reduce the amount of data it must record at runtime, Droidrecord first generates a template
file (.template) containing all the information for each event that can be determined statically. The
instrumented code stores only a number identifying the event in the template file and those values of
the event that are only known at runtime. As an example, consider a single method call operation,

shown below in Soot’s internal bytecode format (slightly edited for brevity):

$r5 = v_invoke $r4.<StringBuilder.append(int)>(i0);

When encountering this instruction, Droidrecord outputs the following event template into its

.template file:

17533:[MethodCallRecord{Thread: _,
Name: <java.lang.StringBuilder .append(int)>,
At: [...],
Parameters: [obj:StringBuilder:_,int:_],
ParameterLocals: [$r4,i0],
Height: int:_}]

The event template includes a unique template identifier, followed by a long-form representation
of the event, where statically-unknown values are represented by placeholders. The bytecode is then

instrumented to record the identifier, followed by the runtime values of the method’s parameters:

staticinvoke <TraceRecorder.recordEvent (long)>(17533L);
staticinvoke <TraceRecorder.writeThreadId () >();
staticinvoke <TraceRecorder.writeObjectld (Object)>(rd);
staticinvoke <TraceRecorder.write (int)>(i0);

$r5 = v_invoke $r4.<StringBuilder.append (int)>(i0);

[}

When reading the trace, these values are plugged into the placeholder positions (‘2> above) of
the event template. For some events (e.g. literal value assignments) all the values can be inferred
statically as a simple function of the values of previous events. These events generate event templates
but incur no dynamic recording overhead.

We record the following events: new object creation, field load and store operations, method
call and return events, as well as thrown and caught exceptions. Additionally, the following byte-
code instructions produce event templates during our processing of the app’s DEX, but require no
instrumentation to be added around them: literal value assignments, variable copying, and direct
(arithmetic, boolean, or bitwise) operations. Section 2.4.1 goes into more detail about the structure

of our captured traces.
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2.3.2 Modelgen Trace Extraction

After tests are run and traces extracted from the emulator, they are first pre-processed and combined
with the static information in the .template file. The result is a sequential stream of events for each
method invocation; we write (m : ¢) for the ith invocation of method m. Calls made by (m : 7)
to other methods are included in this stream, together with all the events and corresponding calls
within those other method invocations. Spawning a new thread is an exception: events happening
in a different thread are absent from the stream for (m : i), but appear in the streams for enclosing
method invocations in the new thread. This separation may break flows that involve operations
of multiple threads and is a limitation of our implementation. We did not find any cases where a
more precise tracking of explicit information flow across threads would have made a difference in

our experimental results.

2.4 Specification Mining

To explain Modelgen’s core specification mining algorithm, we describe its behavior on a single
invocation subtrace T\(p,.;, which is the sequence of events in the trace corresponding to method
invocation (m : 7). The events in T{,,.;) include the invocation subtraces for all method invocations
called from m during invocation (m : i), including any recursive calls to m. We now describe
a simplified representation of T\,,.;) (Section 2.4.1) and give its natural semantics (Section 2.4.2),
that is, the meaning of each event in the subtrace with respect to the original program execution.
Modelgen analyzes an invocation subtrace by processing each event in order and updating its own
bookkeeping structures. We represent this process with a non-standard semantics: the modeling
semantics of the subtrace (Section 2.4.3). After Modelgen finishes scanning T{,,.;), interpreting it
under the modeling semantics, it saves the resulting specification which can then be combined with

the specifications for other invocations of m (Section 2.4.4).

2.4.1 Structure of a Trace

Figure 2.5 gives a grammar for the structure of traces, consisting of a sequence of events. Events
refer to constant primitive values, field or method labels, and variables. The symbol ¢ stands for
binary operations between primitive values. Objects are represented as records mapping field names
to values, which might be either addresses or primitive values. This grammar is similar to that
of a 3-address bytecode representing Java operations. However, it represents not static program
structure, but the sequence of operations occurring during a concrete program run, leading to the

following characteristics:

1. Conditional (if, switch) and loop (for, while) operations are omitted and unnecessary; the

events in T represent a single path through the program. The predicates inside conditionals
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Figure 2.5: Structure of a trace

are still evaluated, usually as binary operations.

2. The values of array indices in recorded array accesses are concrete, which allows us to treat
array accesses as we would object field loads and stores (e.g., a[i] becomes a.i, and note i is a

concrete value).

3. For each method call event 2 = m1(y) in T(,,.; there is a unique invocation subtrace of the
form T,,,.;y = fun(Z){var T;€ e;} where ey is a return or throw event and 7 is a list of all
variable names used locally within the invocation. Again, since we cover only one path through
m for each invocation, invocation subtraces may have at most one return event and must end

with a return or throw event.

We avoid modeling static fields explicitly by representing them as fields of a singleton object for

each class.

2.4.2 Natural Semantics of a Subtrace

Figure 2.6 gives a natural semantics for executing the program path represented by an invocation
subtrace. Understanding these standard semantics makes it easier to understand the custom se-
mantics used by Modelgen to mine specifications, which extend the natural semantics. The natural
semantics of a subtrace are similar but not identical to those of Java bytecode. The differences arise
from the fact that subtrace semantics represent a single execution path.

During subtrace evaluation, an environment p maps variable names to values. A heap h maps
memory addresses to object records. Given a tuple (h, p,e) representing event e under heap h and
environment p, the operator | represents the evaluation of e in the given context and produces a
new tuple (h’,p’) containing a new heap and a new environment. The operator | represents the
evaluation of a sequence of events which consists of evaluating each event (}) under the heap and
environment resulting from the evaluation of the previous event. The rules in Figure 2.6 describe
the behavior of | and | for different events and their necessary pre-conditions. We omit the rules

for handling exceptions since they do not add significant new ideas with respect to our specification
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Figure 2.6: Natural semantics

mining technique and exception propagation complicates both the natural and modeling semantics.
Our implementation does handle exceptions.
We now consider how the natural semantics represent the evaluation of the following example

subtrace fragment which increments a counter at x.f:
to=y=a.fiz=Lw=y+zz.f =w

Assuming x contains the address a (i.e., p(x) = a) of heap record r = {f : 0} (i.e., h(a) = 1),
LOAD gives us:

(hyp,y =z.f) L (h, ply — 0])

Applying LIT, BINOP and STORE, respectively, we get:
(hyply = 0],z =1) | (h,ply = 0;2 — 1])

(hyply = 0;2 = 1w =y +2) | (h,ply = 0;2 = L;w — 1])

(hy plewiw = U, f = w) | (hla— {f : 1}], ploiw — 1)
Using those evaluations for each expression, SEQ gives the full evaluation of the fragment as

<hap7 t)J,(h[a - {f : 1}],9[?/ =0z = Lw— 1]>
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Figure 2.7: Modeling semantics

where, in addition to some changes to the environment, field f of record r in the heap has been

incremented by one.

2.4.3 Modeling Semantics of a Subtrace

To obtain the information flow facts required to construct our specifications, not only are we inter-
ested in tracking information flow through the portion of the heap reachable from the arguments
and return value of m, but we also want to “lift” these flows so that they refer exclusively to the
method arguments and return value rather than intermediate heap locations. We perform both
tasks simultaneously, through the modeling semantics of the subtrace. Interpreting the subtrace

through its modeling semantics produces, as a side-effect of such interpretation, the specification
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giving the explicit information flow relations between the heap subgraphs rooted at each of the
method’s arguments, as well as its return value.

The modeling semantics augment the natural semantics by associating colors with every heap
location and primitive value. For subtrace T{,.;, each argument to m is initially assigned a sin-
gle unique color. The execution of T{;,,;) under the modeling semantics preserves the following

invariants:

Invariant I: Computed primitive values have all the colors of the argument values used to compute

them.

Invariant IT: At each point in the trace, if a heap location [ is accessed from an argument a using

a chain of dereferences that exists at method entry, then [ has the color of a.

Invariant ITI: At each point in the trace, every argument and the return value have all the colors

of heap locations reachable from that argument or return value.

These invariants are easily motivated. Invariant I is the standard notion of taint flow: the
result of an operation has the taint of the operands. Invariant II captures the granularity of our
specifications on entry to a method: all the locations reachable from an argument are part of
the taint class associated with that argument (recall the semantics of our specifications described
informally in Section 2.2, as well as STAMP’s analogous taint propagation along field dereferences
from Section 2.1.3). Similarly, Invariant ITI captures reachability on method exit. For example, if
part of the structure of arg#1 is inserted into the structure reachable from arg#2 by the execution of
the trace, then arg#2 will have the color of arg#1 on exit. At every step of the modeling semantics
these invariants are preserved for every computed value and heap location seen so far; the invariants
need not hold for heap locations and values that have not yet been referenced by any event in the
examined portion of the subtrace. In addition, reachability in Invariants IT and III applies only to
the paths through the heap actually accessed during subtrace execution.

The natural semantics differentiate between primitive values or addresses stored in variables of
p and objects stored in the heap h. Although this distinction is useful in representing the subtrace’s
execution, for specification mining we want to associate colors with both heap and primitive values.

4

For uniformity, we introduce a mapping ¢ which assigns a “virtual location” (VLoc) to every
variable, object and field based on origin (i.e., where the value was first created) rather than the kind
of value. Because virtual locations may be tainted with more than one color (recall Invariant I), we
introduce a map € : VLoc — 200007 from virtual locations to sets of colors. The modeling semantics
also use G : {(Color, Color)}, which is a relation on colors or, equivalently, a directed graph in which
nodes are colors, and D : (Address, Field) — Boolean, which stands for “destructively updated” and
maps object fields to a boolean value indicating that the field of that location has been written in
the current subtrace. At the start of the subtrace’s execution, G is initialized to the empty relation

and D defaults to False for all (address, field) pairs. We explain the use of G and D below.
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Figure 2.8: Effects of loads and stores in Modelgen’s Modeling Semantics

Figure 2.7 lists the modeling semantics corresponding to the natural semantics in Figure 2.6. We
now explain how the first 4 rules preserve Invariant I, as well as how MLOAD and MSTORE preserve
Invariants IT and III, respectively.

Rule MLIT models the assignment of literals to variables. A new literal value is essentially a
new information source within the subtrace and is assigned a new location with a new color. The
location is associated with the variable now holding the value, preserving Invariant I. Rule MNEW,
which models new object creation, is similar. Rule MASSIGN models an assignment x = y where x
and y are both variables in p and does not create a new location, but instead updates .Z(x) to be
the location of y, indicating that they are the same value, again preserving Invariant I.

Rule MBINOP gives the modeling semantics for binary operations. Assuming locations /; and Iy
for the operands, the rule adds a new location I3 to represent the result. Because of Invariant I, I3
must be assigned all the colors of I; and all the colors of Iy, thus C(l3) becomes C(l1) U C(l2).

Rules MLOAD and MSTORE deal with field locations. The virtual location of field a.f (denoted
Z(a, f)) is defined as either the location of the object stored at a.f, if the field is of reference type,
or as an identifier which depends on Z(a) and the name of f, if f is of primitive type.

Rule MLOAD models load events of the form x = y.f by assigning the location Iy = Z(y, f) to
2 and computing the color set for this location (which will be the colors for both  and y.f). There

are three cases to consider:

e If this is the first time the location Z(y, f) has been referenced within the subtrace T(,,.;,
then y.f has no color (all heap locations except the arguments start with the empty set of
colors in €). Furthermore, since this is the first access, y.f has not been previously written
in the subtrace, so D(p(y), f) = False. Therefore, I is assigned the colors C(l;) U C(l) where
l1 = Z(y). Since C(l3) = 0 before the load event, we end up with C(ls) = C(l1). If y.f is
reachable from a method argument through y, this establishes Invariant IT for y.f on its first

access.

e If /5 has been loaded previously in the trace but not previously overwritten, then C(lp) =
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C(l1)UC(l2), indicating that lo now has the colors of all of its previous accesses plus a possibly
new set of colors C(l;). This handles the case where a location is reachable from multiple

method arguments and preserves Invariant II.

e If y.f has been written previously then D(p(y), f) = True. In this case it is no longer true that
Z(y, f) was reachable from Z(y) on method entry and so it is not necessary to propagate the
color of Z(y) to Z(y, f) to preserve Invariant II and we omit it. Also, note that if y.f has
been written, that implies the value stored in y.f was loaded before the write and so y.f will

already have at least one color.

Figure 2.8a shows the effect of a single load operation from an argument to m, while Figure 2.8b
depicts the coloring of a set of the heap locations after multiple load events.

Rule MSTORE models store events of the form x.f = y. The rule updates D(p(z), f) = True since
it writes to x.f. We could satisfy Invariant III by implementing MSTORE in a way that traverses
the heap backwards from = to every argument of m that might reach x and associates every color of
y with those arguments (and possibly intermediate heap locations). As an optimization, we instead
use G to record an edge from each color ¢; of Z(y) to each color cp of Z(z.f) with the following
meaning: ¢; — co € G means every virtual location with color co has color ¢; as well. Figure
2.8c depicts the results of a store operation, while Figure 2.9 depicts how G serves to associate two
colored heap subgraphs.

Rule MINV implements standard method call semantics, mapping the virtual locations of argu-
ments and the return value between caller and callee. Rule MSEQ is the same as SEQ in the natural
semantics, adding .Z, C, G and D.

As a consequence of Invariants I and II, the modeling semantics associate the color of each
argument to every value and heap location that depends on the argument values on entry to m. Then,
because of Invariant III, when the execution reaches the end of subtrace T(,,.;) every argument and
the return value have all the colors of heap locations reachable from that argument or return value
(as represented by G). We construct our specifications by examining the colors of each argument a;

and the return value r after executing the subtrace: for every color of r (or a;) that corresponds to

ret = Qg . m (a1, az2)

Figure 2.9: Stores connect argument structures
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the initial color of a different argument ay, we add ap — r (ar — a;) to our model.

2.4.4 Combining Specifications

For each invocation subtrace T{,,.;), the process just outlined produces an underapproximation of
the specification for m, based on a single execution (m : 7). We combine the results from different
invocations of m by taking an upper bound on the set of argument-to-argument and argument-to-
return flows discovered for every execution, which is simply the union of the results of (m : i) for
every i.

For example, consider the method max(a,b) designed to return the larger of two numbers,
disregarding the smaller one. Suppose that we have two subtraces for this method: one for invocation
max(5,7), which returns 7 and produces the model My = {arg#2 — return} and one for invocation
max(9,2), which returns 9 and produces the model My = {arg#1 — return}. Clearly the desired
specification reflecting the potential explicit information flow of method max(a,b), with respect to
our path- and flow-insensitive client static analysis, is My U My = {arg#1 — return, arg#2 —
return}.

We should note that combining specifications in this way inherently introduces some impreci-
sion with respect to the possible flows on a given execution of the method. The effects of this
imprecision in our overall system depend on the characteristics of the static analysis that consumes
the specifications. For example, the above specification for max(a,b) would be strictly less pre-
cise than analyzing the corresponding code (assuming the natural implementation) with an ideal
path-sensitive analysis, since it merges two different control paths within the max function: one in
which the first argument is greater and one in which the second argument is greater. For context-
sensitive but path-insensitive analysis such as STAMP (see Section 2.1), loss of precision due to
combining specifications is less common, but still possible in theory. Consider a method do(a,b)
{ a.doImpl(b) } and two invocations of this method in which a has different types and each type
has its own implementation of a.doImpl(b). A context-sensitive analysis can tell which version of
doImpl is executed, but Modelgen simply merges the flows observed for every version of doImpl seen

in any trace of do(a,b).

2.4.5 Calls to Uninstrumented Code

Our approach to specification mining is based on instrumenting and executing as much of the
platform code as we can. Unfortunately recording the execution of every method in the Android
platform is challenging. In particular, any technique based on Java bytecode instrumentation cannot
capture the behavior of native methods and system calls. Since our inserted recorder class is itself
written in Java, we must also exclude from instrumentation some Java classes it depends upon to
avoid introducing an infinite recursion. Thus, traces are not always full traces but represent only

a part of a program’s execution. We need to deal with two problems during event interpretation:
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(1) How should Modelgen interpret calls to uninstrumented methods? (2) How can we detect that
a trace has called uninstrumented code?

For the first problem, Modelgen offers two separate solutions. The user can provide manually
written models for some methods in this smaller uninstrumented subset (as we do, for example, for
System.arraycopy and String.concat). If a user-supplied model is missing for a method, Modelgen
assumes a worst-case model in which information flows from every argument of the method to every
other argument and to its return value. In many cases, this worst-case model, although imprecise,
is good enough to allow us to synthesize precise specifications for its callers. Technically, these
“worst-case” models can also be unsound, due to values being persisted in static fields inside the
platform code. We didn’t find this to be a problem for the platform methods we performed our
evaluation on. Generally speaking, this sort of fully global mutable state inside library or platform
code is considered an anti-pattern and thus not prevalent. Note that the need for a set of manual
models for uninstrumented code does not negate the benefits of Modelgen, since this represents a
significantly smaller set of methods. For example, to produce 660 specifications from a subset of the
Android CTS (see Section 2.5.1) we needed only 70 base manual models.

The problem of detecting uninstrumented method calls inside traces is surprisingly subtle.
Droidrecord writes an event at the beginning of each method and before and after each method
call. In the simplest case we would observe these before-call and after-call markers adjacent to
each other, allowing us to conclude that we called an uninstrumented method. However, because
uninstrumented methods often call other methods which are instrumented, this simple approach
is not enough. A call inside instrumented code could be followed by the start of another instru-
mented method, distinct from the one that is directly called. Dynamic dispatch and complex class
hierarchies further complicate determining if the method we see start after a call instruction is the
instruction’s callee. The canonical example would be a class B which inherits from class A, and which
has an uninstrumented method B.m(. ..) which first calls instrumented method A.m(...) and then
performs some additional work. If instrumented code calls a.m(...) on an object a of static type A,
but dynamic type potentially B, then the trace will record a dispatch to A.m(...) followed by the
start of method A.m(...). Thus, the fact that uninstrumented method B.m(...) ran in between
those two events would be occluded from us when relying only on the method signatures observed.

Our solution for detecting holes in the trace due to invoking uninstrumented code is to record the
height of the call stack at the beginning of every method and before and after each call operation.
Since the stack grows for every method call, whether instrumented or not, we use its height to
determine when we have called into uninstrumented code. The usual pattern to get the stack height
(using a StackTrace object) is expensive. As an optimization, we modify the Dalvik VM to add a
shortcut method to get the stack height. Droidrecord will use the shortcut method when available,

and gracefully fall back to the more expensive implementation otherwise.
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Table 2.3: Comparing Modelgen specifications and manual models

Package Classes| Methody Missing|] Total | Modelgen| Manual | Modelgen| Manual
trace | correct| correct correct false errors
info. flows flows flows positives
java.nio.* 2 26 4 50 50 42 0 0
java.io.* 28 146 23 280 275 234 2 0
java.net.* 7 37 4 104 100 65 0 1
java.util.* 4 28 0 36 36 31 0 1
android.text.* 3 5 2 3 3 3 0 0
android.util.* 2 8 1 11 4 7 0 0
android.location.* 3 13 3 12 12 9 0 0
android.os.* 2 46 3 60 60 49 0 0
Total 51 309 40 556 540 440 2 2

2.5 FEvaluation

We perform three studies to evaluate the specifications generated by Modelgen. First, we compare
them directly against our existing manually-written models (Section 2.5.1). Second, we contrast the
results of running the STAMP static information-flow analysis system using these specifications as
input, against the results of the same system using the manual models (Section 2.5.2). Third, we

study the effect of test suite quality on the mined specifications (Section 2.5.3).

2.5.1 Comparison Against Manual Models

To evaluate Modelgen’s ability to replace the manual effort involved in writing models for STAMP
(see Section 2.1 and 2.2), we compare the specifications mined by Modelgen against existing manual
models for 309 Android platform methods.

We conducted all of our evaluations on the Android 4.0.3 platform, which has a total of 46,559
public and protected methods. STAMP includes manual models for 1,116 of those methods, of which
335 are inside the java.lang.* package which DroidRecord does not currently instrument (this is
due partly to performance reasons and partly to our instrumentation code depending on classes in
this package, this is not a limitation of the general technique), and 321 have only source or sink
annotations, leaving 460 methods for which Modelgen could infer comparable specifications.

For our evaluation, we obtained traces by running tests from the Android Compatibility Test
Suite (CTS) [47]. We restricted ourselves to a subset of the CTS purporting to test those classes
in the java.* and android.* packages, but outside of java.lang.*, for which we have manual
models (not counting simple source or sink annotations). For some packages for which we have
manual models, such as com.google.*, the CTS contains no tests.

Table 2.3 summarizes our findings, organized by Java package. For each package we list the
number of classes and methods for which we have manual specifications, as well as the total number
of correct individual flow annotations (e.g. arg#X — return) either from our manual specifications

or generated by Modelgen. We then list separately the flows discovered by Modelgen and those in our
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Table 2.4: Precision and Recall for Modelgen vs Manual Models

Package Modelgen| Manual | Modelgen
precision | precision recall
java.nio.* 100% 100% 100%
java.io.* 99.28% 100% 97.86%
java.net.* 100% 98.48% 93.85%
java.util.* 100% 96.88% 100%
android.text.* 100% 100% 100%
android.util. * 100% 100% 0%
android.location.* 100% 100% 100%
android.os.* 100% 100% 100%
Total 99.63% 99.55% 96.36%

manual specifications. We consider only those flows in methods for which we have manual models
and only those classes for which we ran any CTS tests, which gives us 309 methods to compare.
We evaluate Modelgen under two metrics: precision and recall. Precision relates to the true
positive rate of Modelgen, listing the percentage of Modelgen flow annotations which represent actual
possible information flows induced by the method. To determine which Modelgen annotations are
correct, we compared them with our manual models and, when the specification for a given method
differed between both approaches, we inspected the actual code of the method to see if the differing
annotations represented true positives or false positives for either technique. Thus, if FModelgen
is the set of flows discovered by Modelgen and TP the set of all flows we verified as true positives,

then Modelgen’s precision is defined as:

PModelgen = |FModelgen N TP |/|FModelgen |

Similarly the precision of the manual models is:

PManual = |FManual N TP |/|FManual |

Table 2.4 lists the precision of each approach for each package. Both Modelgen specifications
and manual models achieve an overall precision of over 99%.

The recall achieved by Modelgen with respect to the manual models is shown in Table 2.4 as
well. Recall measures how many of our manual models are also discovered by Modelgen, and is

calculated as:

Recall = |FModelgen N FManual |/|FManual |

As we can see, Modelgen finds over 96% of our manual specifications. The specifications Mod-
elgen misses were written to capture implicit flows, which is not surprising since Modelgen is de-
signed to detect only explicit flows. A prime example of this limitation is the row corresponding to

android.util, in which 7 of the 8 analyzed methods are part of the android.util.Base64 class,
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which performs base64 encoding and decoding of byte buffers via table lookups, inducing implicit
flows. Modelgen discovers four new correct flows for these methods, but misses all the implicit flows
encoded in the manual models. The last remaining method in this package is a native method.

We can similarly calculate Modelgen’s overall recall versus the total number of true positives

from both techniques, as well as the analogous metric for Manual:

|FModelgen N TP |/| TP | = 97.12%
|FManual N TP |/|TP | =79.14%

This shows that our technique discovers many additional correct specifications that our manual
models missed.

We found two false positives in Modelgen, both in the same method. Two spurious flow an-
notations were generated, due to a hole in the trace which Modelgen processes under worst-case
assumptions (recall Section 2.4.5). Notably, we also found two errors in the manual models: one
was a typo (arg#2 — arg#2 instead of arg#2 — return) and the other was a reversed annotation
(arg#1 — this instead of this — arg#1).

Our current implementation of Modelgen failed to produce traces for a few methods that have
manual annotations, listed under the column “Missing trace info.” of Table 2.3. Reasons for missing
traces include: the method for which we tried to generate a trace is a native method, the Android
CTS lacks tests for the given method, or an error occurred while instrumenting the class under test
or while running the tests. This last case often took the form of triggering internal responsiveness
timers inside the Android OS, known as ANR (Application Not Responding) [49]—because our
instrumentation results in a significant slowdown (about 20x), these timers are triggered more often
than they would be in uninstrumented runs. Since capturing the traces is a one-time activity, this
high overhead is otherwise acceptable.

These results suggest that Modelgen can be used to replace most of the effort involved in con-
structing manual models, since it reproduced almost all our manual flow annotations (96.38% recall)
and produced many new correct annotations that our existing models lacked. Although our evalua-
tion focuses on Java and Android, the results should generalize to any platform for which good test

suites exist.

2.5.2 Whole-System Evaluation of STAMP and Modelgen

The STAMP static analysis component is a bounded context-sensitive, flow- and path-insensitive
information flow analysis. A complete description of this system can be found in Section 4 of [38].
STAMP never analyzes platform code and treats platform methods for which it has no explicit model
under best-case assumptions. That is, platform methods without models are assumed to induce no

flows between their arguments or their return values. The alternative, analyzing under worst-case
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assumptions, produces an overwhelming number of false positives.

To evaluate the usefulness of our specifications in a full static analysis, we ran STAMP un-
der two configurations: base and augmented. In the base configuration, we used only the existing
manually-written models. In the augmented configuration, we included (1) all source and sink anno-
tations from the manual models (annotating sources and sinks is outside of the scope of Modelgen),
(2) the Modelgen specifications generated in the experiment of Section 2.5.1, and (3) the existing
manual models for those methods for which Modelgen did not construct any specifications (e.g.
the java.lang.* classes). The base and augmented configurations included 1215 and 2274 flow
annotations, respectively.

We compared the results of both configurations on 242 apps from the Google Play Store. These
apps were randomly selected among those for which STAMP was able to run with a budget of 8GB
of RAM and 1 hour time limit in both configurations. The average running time per app is around
7 minutes in either configuration.

STAMP finds a total of 746 (average 3.08 per app) and 986 (average 4.07) flows in the base and
augmented configuration, respectively. The union of the flows discovered in both configurations is
exactly 1000. In other words, STAMP finds 31% (254) new flows in the augmented configuration.
Like most static analysis systems, STAMP can produce false positives, even when given sound mod-
els. Additionally, Modelgen may produce unsound models for some methods (recall the discussions
in sections 2.4.4 and 2.4.5). Given this, we would like to know what proportion of these new flows
are true positives. To estimate the true positive rate of the new flows, we took 10 random apps from
the subset of our sample (109 of 242 apps) for which the augmented configuration finds any new
flows. We manually inspected these apps and marked those flows for which we could find a feasible
source-sink path, and for which control flow could reach such path, as true positives. Although this
sort of inspection is always susceptible to human error, we tried to be conservative in declaring flows
to be true positives. In most cases, the flows are contained in advertisement libraries and would
trigger as soon as the app started or a particular view within the app was displayed to the user.

Figure 2.10 shows the results of our manual inspection. The flows labeled as “Augmented config-
uration: Unknown” are those for which we could not find a source-sink path, but are not necessarily
false positives. The flows labeled “Augmented configuration: True Positives” represent a lower
bound on the number of new true positives that STAMP finds only in the augmented configuration.
The lower portion of the bar corresponds to those flows found in both configurations, without at-
tempting to distinguish whether they are false or true positives. For the 10 apps, the augmented
configuration produces 64% more flows than the base configuration, and at least 55% of these new
flows are true positives.

The recall of the augmented configuration, which is the percentage of all flows found in the base
configuration that were also found in the augmented configuration, is 98.12%. A flow found in the

base configuration could be missed in the augmented configuration if Modelgen infers a different
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Figure 2.10: Flows found with and without Modelgen models

specification for a method, which is relevant for the flow, than the manually-written model.

2.5.3 Controlling for Test Suite Quality

Specification mining based on concrete execution traces depends on having a representative set of
tests for each method for which we want to infer specifications. One threat to the validity of our
experiment is that it could be that our results are good only because the Android compatibility tests
are unusually thorough. In this section we attempt to control for the quality of the test suite.

We measure how strongly our specification mining technique depends on the available tests by
the number of method executions it needs to observe before it converges to the final specification.
Intuitively, if few executions of a method are needed to converge to a suitable specification of
the method’s behavior, then our specification mining technique is more robust that if it requires
many executions, and therefore many tests. Additionally, if a random small subset of the observed
executions is enough for our technique to discover the same specification as the full set of executions,
we can gain some confidence that observing additional executions won’t dramatically alter the results
of our specification mining.

We take all methods from Table 2.3 for which we are able to record traces and Modelgen produces
non-empty specifications, which are 264 methods in total. We restrict ourselves to those methods,
as opposed to the full set for which we have mined specifications, since we have examined them
and found them to be correct during the comparison of Section 2.5.1. For each such method m,
we consider the final specification produced by Modelgen (S,,) as well as the set $ of specifications
for each invocation subtrace of m. Starting with the empty specification we repeatedly add a
random specification chosen from $ until the model matches S,,,, recording how many such subtrace
specifications are used to recover S,,.

Figure 2.11 shows a log scale plot of the number of methods (vertical axis) that required n traces

(horizontal axis) to recover the full specification over each of 20 trials. That is, we sampled the
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Figure 2.11: Specification Convergence

executions of each method to recover its specification and then counted the number of methods that
needed one execution, the number that needed two, and so on, and then repeated this process 19
more times. The multiple points plotted for each number of executions give an idea of the variance
due to the random choices of method executions to include in the specification.

It is also useful to consider aggregate statistics over all method specification inferences. In our
experiment, 83.7% of the methods needed just one subtrace specification to recover the specification
and no method required more than an average of 9 random subtrace specifications. The maximum
number of subtraces needed to converge to a method specification (when taking the worst out of
20 iterations of the algorithm) was 13 for java.util.Vector.setElementAt(Object, int). The
average number of subtraces required to converge to a specification is 1.38. For comparison, the
specifications evaluated in Section 2.5.1 were inferred using a median of 4 traces (the average, 207,
is dominated by a few large outliers). We conclude that explicit information flow typically requires

few observations to produce useful specifications.



Chapter 3

Minimizing GUI Event Traces

Recall from the previous chapter that dynamic analysis is effective only when it is possible to trigger
representative executions that explore the relevant behavior of the program being analyzed. In the
case of our specification mining technique, we achieved this exploration of the Android platform
methods, by leveraging an existing comprehensive test suite. However, in general, obtaining a set
of executions thoroughly sampling the behavior of a program we care about is non-trivial. This
is particularly the case when we wish to sample the behavior of application code, or of a specific
application’s interaction with the platform code, since we rarely have access to any reasonable test
suite for third-party applications.

While we could write such a test suite ourselves, even for applications for which we are missing the
source code, this is a time consuming process and essentially amounts to indirectly writing an implicit
specification of the relevant application behavior in the form of our test suite. Ideally, we would like
to have a method to generate executions sampling relevant behavior for a given application, which
we can then use to either generate reproducible tests or to produce executions which can directly
drive a dynamic analysis system.

An additional benefit of any automatic exploration system is that it also helps first-party de-
velopers produce useful test suites for their applications. Test cases are time consuming to write,
especially for applications dealing with rich graphical user interfaces (GUIs). Many properties can
only be reliably tested once the program has reached a particular state, such as a specific screen or
view in its GUI. Part of the challenge of GUI testing is in creating a sequence of user interactions
that cause the program to reliably reach a target GUI state, under which the test one cares about
can be performed.

Automatically generating a sequence of GUI events to reach a particular point in the program is
a difficult problem to solve in general. In many cases, it is possible to reach the desired point in an
application by randomly generating GUI events until the right view is displayed, or by capturing and

replaying the GUI events generated by a user, or a human tester, interacting with the application.

40
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However, these randomly generated or tester-captured GUI event traces generally contain more
interactions than necessary to reach the desired state. Furthermore, traces generated by capture and
replay of concrete user interactions might not be robust in the face of application non-determinism,
and thus might break if the program changes behavior, even slightly, between executions. In modern
mobile and web apps, which often include internal A/B testing logic and personalization, GUI non-
determinism is a common obstacle for simple capture and replay systems.

In this chapter, we:

e Present an algorithm based on delta-debugging [117, 119] to minimize a trace of GUI events.
Our algorithm is robust to application non-determinism. When the application is deterministic,
the output trace is 1-minimal, meaning no element of the trace can be removed without

changing the behavior we care about [119].

e Minimization proceeds by checking whether subtraces of a trace still reach the desired state.
This problem is highly parallelizable, but it is not obvious how to take maximal advantage
of the information gained from each subtrace trial (see Section 3.3). We define the subtrace
selection problem and provide an efficient heuristic, as well as an optimal solution based on

the problem’s characterization as a Markov Decision Process (MDP).

e We show the effectiveness of the above techniques in minimizing randomly generated traces
for two representative datasets: one set of popular Android apps taken from the Google Play

Store, and a set of open-source apps from the F-droid application repository.

One advantage of our trace minimization technique is that it treats the application in a blackbox
manner, and thus is robust to implementation details such as the programming language, UI toolkit
or server/client distribution of the application logic. Our approach should be valid for any Android
app which can be tested using Monkey [50], a tool that generates random sequences of GUI events,
avoiding the relative fragility of research tools that rely on the application, for example, exposing
higher-level accessibility information or being amenable to whitebox analysis techniques.

Section 3.1 provides a brief overview of the problem of GUI trace minimization in the face of
application non-determinism, the relevant characteristics of the Android platform, and a motivating
example for our technique. Section 3.2 describes our trace minimization algorithm while Section 3.3
explores the problem of subtrace selection embedded in the algorithm’s inner loop, including the
characterization as a Markov Decision Process (3.3.3). Section 3.4 presents our results, contrasting

the performance of different solutions to the subtrace selection problem.

3.1 Problem Overview

The GUI (Graphical User Interface) of an Android application consists of a set of activities. Each

activity corresponds to a top-level view (e.g., a page or a screen) of the user interface. Additionally,
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each app has one main activity, which is the first one invoked when the app is launched. In the
course of interacting with an application’s GUI, the user commonly transitions between different
activities, as actions in one activity trigger another activity.

A GUI event trace is a sequence of user interface events such as screen taps, physical keyboard
key presses and complete multi-touch gestures. One way to obtain such a trace is to record the
actions of a user. Another option uses a random or programmatic input generation tool to generate
the trace without human involvement. In our experiments, we took the second approach, using
Monkey, a standard first-party random input generation tool for Android.

The standard way of running Monkey involves having it generate random events live on top of
a running app. However, we use an alternate mode, in which the full event trace is generated once
in the beginning, and then replayed any number of times on top of a target app. The input to
Monkey includes the number and distribution (i.e. the proportion for each type, such as taps versus
keyboard key presses) of desired events. Given such input, Monkey will generate a trace of random
events, which can then be replayed for a particular app. A GUI event trace is replayed by Monkey
sending each event in turn to the selected app, which runs on a connected device or emulator, and
pausing a configurable time interval between one event and the next.

By repeating this process and generating multiple large random traces for each app under test,
we are able to reach various activities within the app. These traces could conceivably serve as
system tests for the app, especially if augmented by state checks or log monitoring. However, using

automatically generated traces as tests can be problematic for the following reasons:

1. Because traces are randomly generated, the majority of the events do not trigger any interesting
app behavior (e.g. they are taps on inactive GUI elements), or trigger behavior unrelated to
the functionality we care about for a given test. Large random GUI event traces are hard for
humans to interpret, particularly if most of the trace is irrelevant for the desired behavior.

The traces produced by Monkey typically consist mostly of irrelevant events.

2. Replaying a large trace is a time consuming process, as a delay must be introduced before
sending each event to the app, to ensure previous events have been fully processed. In our
experiments, we set this delay to 4 seconds, which we found necessary to allow for events that
trigger network requests or other expensive operations to be fully handled by the app before
the next event is triggered. This threshold could be adjusted dynamically, but possibly not
without a more invasive (white-box) instrumentation of the running app’s code or the Android

platform itself.

Due to the above issues, given a large event trace, we would like to find a minimal subtrace that
triggers the same app behavior. In particular, we focus on subtraces that reach the same activity.
Specifically, if we assume that the app is deterministic in the sense that the same event trace always

visits the same activities in the same order, then the algorithm we shall give in Section 3.2 extracts,
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from a given event trace that reaches a particular activity, a 1-minimal subtrace that reaches that
activity. As we will show later in this section, Android applications often exhibit non-deterministic
behavior, and we will also formulate a notion of approximate 1-minimality that generalizes to non-
deterministic GUI behavior.

Note that we use activity reachability as a proxy for uncovering user triggered behavior in the
app. All the techniques and checks in this chapter apply just as well if the behavior we seek to trigger
involves reaching the execution point of a particular GUI widget callback or the point at which a
particular web request is sent. We only require that we have a small finite set of behaviors that
shall be triggered in the app, so that every system test is built on top of a minimal trace triggering
that behavior. In the rest of this chapter, we assume that we seek minimal GUI event traces that
cause a particular activity to be reached, but extending it to other notions of reachable behavior is
straightforward, so long as we have a way to test if the behavior is triggered or not, when running

a particular event trace.

3.1.1 Trace Minimization Example and Application Non-determinism

One of the apps we use for our experiments (see Section 3.4) is Yelp’s Eat24 (com.eat24.app.apk), a
popular commercial food delivery app. To generate minimized traces that reach this app’s activities,
we run the app on an Android emulator and use Monkey to generate multiple GUI event traces.
Each trace consists of 500 single-touch events at random coordinates within the app’s portion of
the screen. To capture non-determinism in the app, we replay each trace multiple times (we use 20
repetitions), clearing any local data or app state in the device between replays.

For a particular trace T we generated, the activity LoginActivity is always reached by replaying
T on this app. LoginActivity is a relatively easy to reach activity for this particular app, as there
are at least two ways to launch this activity immediately from the app’s main activity: either by
clicking on an item in the application’s menu or on the lower portion of the app’s home screen
(which displays recommendations if the user is already logged in). The second method requires only
a single GUI event: the click on the bottom of the screen. However, approximately 50% of the time
when the app is launched from a clean install, it shows a dialog asking for the user’s address and
zip code. This dialog blocks interaction with the main activity and, in our set-up, automatically
brings up Android’s software keyboard. Dismissing the dialog is as simple as clicking anywhere in
the screen outside the dialog and the virtual keyboard. However, this does not dismiss the keyboard
itself, so the state of the screen is different than if the dialog had never appeared. After dismissing
the dialog, it is still possible to navigate to the LoginActivity with one more click, but the area of
the screen that must be clicked is different than if the dialog had never appeared at all.

Suppose now we wanted to manually select, out of the 500 events T, a minimal subtrace T’ such
that replaying the events of T’ in order reaches the LoginActivity activity regardless of whether

the app shows the location dialog or not. This subtrace must exist, since the original trace always
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Figure 3.1: Reaching LoginActivity on com.eat24.app.apk

reaches LoginActivity (among other activities), in both cases. However, we cannot simply select
the single click subtrace that would launch LoginActivity if the dialog is not present, since it won’t
work when the dialog does appear. We have the same problem if we focus on picking the two clicks
when the dialog appears, as such a trace does not necessarily work when the dialog is absent. For
example, most clicks that would simply dismiss the dialog might also trigger different behavior if
the dialog is missing by clicking on active GUI widgets underneath the dialog.

This sort of behavior is not exclusive to the EAT24 app. In fact, many Android apps behave non-
deterministically, either because of internal A /B testing logic or just because of the non-determinism
of the app’s external environment. We could always manually write GUI testing scripts that are
aware of the app’s specific non-determinism and generate different GUI events when faced with
different app states. However, as we will show, it is possible to automatically generate small subtraces
that are robust against application non-determinism, while still treating the app itself as a black
box. We require only a way to run subtraces on top of the app from an initial state multiple times
and list the activities being reached.

Figure 3.1 shows the execution of a 3 event trace — the minimal subtrace obtained by the tech-
nique in this chapter — that accomplishes our goal without checking at any point the state of the
application’s GUI. If there is no location dialog, the first event in the trace triggers the direct tran-
sition to LoginActivity by clicking on the bottom of the screen. The second and third events
click inactive areas of the LoginActivity GUI layout, having no effect in this case. If the dialog
appears, the first click hits a portion of the virtual keyboard layout, typing a whitespace charac-
ter into the location dialog. The second click immediately dismisses the dialog without using the

whitespace character. Finally, the third click happens in the new location of the panel that launches
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LoginActivity, without dismissing the keyboard!. Thus, whether or not the dialog appears, the
script will reach LoginActivity and stop there. It is worth noting that at no point is our technique
aware of the dialog; it only knows that this script reaches LoginActivity with high probability over

multiple runs of the app.

3.2 Minimization Algorithm

In this section we present our trace minimization algorithm and discuss its basic properties. Our
algorithm is based on Zeller’s delta debugging algorithm (see [119]), reformulated for our problem
and augmented to deal with application non-determinism.

Intuitively, delta debugging starts with a large input sequence that passes a particular test oracle
and attempts to remove part of the sequence at every step, such that the remaining subsequence
still passes the oracle. This is repeated until we have a 1-minimal subsequence that is accepted by
the oracle. In general, a I-minimal subsequence with property P is one which satisfies P, but where
no subsequence which can be obtained from it by removing any single element satisfies P.

Our version of delta debugging takes as input an Android app A, a trace T' and a target activity
a within A. A trace is an ordered sequence T = {eg, €1, ...} of GUI events. A subtrace 77 of T is a
subsequence of T'. The algorithm has access to a test oracle O (A, T, a), which consists of starting a
new Android emulator, installing A, running trace T on A and verifying that a was launched during
that execution. The oracle returns either 0 (the target activity a was not reached) or 1 (activity
a was reached). Because of application non-determinism, our test oracle may accept a trace with
some probability p, and reject it with probability 1 — p. Fixing A and a, we define the probability
Pr = Pr[O (A, T,a) = 1], which is the trace’s underlying probability of reaching activity a when
run on app A.

Figure 3.2 shows the pseudo-code for the general form of our trace minimization algorithm
(ND3MIN). Besides A, T and a, the algorithm uses 4 global parameters: the oracle O, a starting
number n of subtrace candidates to test, a number of times to run each candidate (nr) and the
success threshold required to accept it (st).

For the algorithm to select a particular subtrace T” at the end of any minimization step, calling
O (A, T’,a) nr times results in the oracle returning 1 at least st times. This requirement is enforced
by function passes() in line 20. We say that a trace is successful if it passes the check in passes().
Function get_passing() in line 16 takes a set S of subtraces and selects a subtrace T, € S such
that passes(A,T,,a) returns true. It returns None iff no such subtrace exists in set S. Note that
get_passing() specifies no order in which traces are passed to passes(). We assume oracle calls
are expensive but we have the ability to make multiple oracle calls in parallel. In Section 3.3, we

use the flexibility in the definition of get_passing() to minimize the number of rounds of (parallel)

ITransitioning between activities does dismiss the keyboard, so we don’t need to do so explicitly.
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globals : O, n, nr, st
def ND3MIN(A,T,a):
return MinR(A4,T,a,n);
def MinR(A,T,a,k):
size « len(T)/k;
for ¢ in range(0,k):
T; < T[i * size : (i + 1) * size]; T; < T\ Ty;
Tsub < get_passing(A,{Vi € [0,k).T;},a);
if Tsu» # None:
return MinR (A, Tsyup,a,n);
Teompt + get_passing(A,{Vi € [0,k).T;},a);
if Teompt 7 None:
return MinR(A4,Tcompt,a,maz(k — 1,2));
if k < len(T):
return MinR (A, T,a,min(2k,len(T)));
return T’
def get_passing(A4,S,a):
if 3T, € S.passes (4,1, a):
return 7,;
return None;
def passes(A4,T,a):
s+ 0;
for i in range(0,nr):
s+ s+ 0O (AT, a);
return s > st;

Figure 3.2: ND3MIN: Non-Deterministic Delta Debugging MINimization.
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Figure 3.3: Delta Debugging: Cases

calls to O required by our algorithm.

Conceptually, we wish to mantain the invariant that the subtrace 7" at the end of any minimiza-
tion step succeeds st or nr times, in order to produce a reliable test trace at the end of the process,
which needs only be run a few times to reach the desired behavior. This requirement is sometimes in
opposition to that of producing a small minimized subtrace, and the values of st and nr regulate this
trade-off. As we see later in this chapter, even for relatively high success thresholds, the resulting
minimized traces are often quite small.

ND3MIN() calls the recursive function MinR () which uses the two helper functions described above
to implement our version of delta debugging. MinR() follows the classic structure of delta debugging.
First (lines 4-6), it partitions trace T in k subtraces T; of contiguous events of roughly equal size
(starting with & = n on the first recursive call). It also generates the complement of each subtrace
T;, defined as T < T'\ T;. It then proceeds in three alternating cases (depicted in Figure 3.3) and

a fourth terminal case:

Case #1: If any candidate subtrace T; is successful, according to get_passing(), the algorithm
selects that T; as its new current trace 7', and calls itself recursively with & = n (lines 7-9,

Figure 3.3a).

Case #2: Otherwise, if any complement subtrace Tj is successful, the algorithm selects that Tj to
be the next T. If £k > 3, k = k — 1 before the next recursive call, otherwise it is set to 2

(lines 10-12, Figure 3.3b). Reducing k by 1 ensures that the candidate subtraces T; generated
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in the next call will be a subset of those in this call, so the algorithm will keep reducing to
complement subtraces until k¥ = 2 or no 7Tj is successful. Note that when k& = 2, both the set

of candidate subtraces and that of complements are identical (Tp = T} and T} = Tp).

Case #3: If k is smaller than the number of events left in 7', we double the number of partitions,
up to k = len(T) (lines 13-14, Figure 3.3c). Note that when we reach k = len(T"), this implies

that on the next recursive call, every subtrace consists of a single event.

Case #4: Otherwise, return 7' as our minimized subtrace Ty, (line 15).

Note that Case #4 happens only when the number of partitions equals the size of the current
trace T, meaning each candidate subtrace is of size 1 (i.e. contains a single event). Additionally, it
can only be reached when no complement subtrace succeeds. In the deterministic case, this makes
Tonin l-minimal by definition: since we have observed it to succeed according to get_passing(),
it must be the case that it reaches the desired activity a when replayed on the app A and, at the
same time, we have tested every subtrace obtainable from T,,;, by removing a single element (the
complement subtraces) and found that it fails to reach a. On our non-deterministic setting, however,
things are slightly more complicated. In the next subsection we will briefly discuss what we can and

cannot say about ND3MIN in the cases where the app behaves non-deterministically.

3.2.1 Non-determinism and Properties of our Algorithm

Ideally, we would like to show that, given a probability (lower) bound py, if Pr > pp and Ty =
ND3MIN(A,T,a) then, with high probability, T}, is a 1-minimal subtrace of 1" such that Pr,_, > p.
Unfortunately, this is not possible. To see why, imagine 37" C Tyuin, Prr = pp — 0. As § — 0, the
number of checks required to distinguish 7’ from a subtrace which fulfills Py > p, grows without
bound. If T can be obtained from T,,;, by removing a single event, then testing T,;, for 1-

minimality must take unbounded time. We consider instead the following property:

Definition 1. A trace T is approximately 1-minimal with respect to the bound p, and distance e, if
Pr > py — €, and any subtrace T' which can be obtained by removing a single event from T is such

that Pr: < py.

We would like to bound the probability that ND3MIN returns an approximately 1-minimal trace
with bound p, = st/nr and distance e. We would first like to show that if Pr > p, and T, =
ND3MIN(A,T,a), then, with high probability, Pr, . > p,—e for a small e. Given a single independent

subtrace T”, if the check X = passes(A,T’,a) returns true, then the probability that Pr: > p,, for

a given p,, is:
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p=Pr[Pr > p, | X] (3.1)
1

= [ Pr[Pr >p. | X,Ppr =p|- fp.,x(p)dp (3.2)
0
1

= [ fr.x(p)dp (3.3)
pT

where fp_,x(p) is the probability density of Pr/ given X. Note that Pr[Pr/ > p, | Pps = p] is 1 if
D > pg, and 0 otherwise. By Bayes’ theorem:

[} PrIX | Pro=pl- fr,, (p)dp
Pr(X]

_ Sy, PrIX | Pro =] Jp, (p)dp

fol Pr(X | Pr =p|- fp,, (p)dp

ﬁ:

By definition of X = passes(A4,7",a):

nr
PriX | Pro=p| = "_’">.i1— nr—i .
e ==Y (7) ra-p (3.6)

Note that if we assume a discrete probability distribution, we can replace the integrals above
by sums over p, and the density functions fp_,(p) by probabilities Pr[Pps = p|. Using this ap-
proximation and plugging the parameters nr = 20 and st = 18, as well as the (discrete) prior
probability distribution Pr[Pr. = p] obtained experimentally (see Section 3.4), we have Pr[Pr >
0.85 | passes(A,T",a)] > 0.95. So, selecting p, = 0.9 and € = 0.05 would at first seem like an option
to prove a bound on the probability of Pr_. > p, —e. Unfortunately, most executions of our algo-
rithm perform a large number of calls to passes (), and the error accumulates rapidly. After just 20

calls, the naive bound on Pr[Pr,

min

> (0.85] in our example would become 0.95%° ~ 0.36. Bounding
the error in our algorithm more tightly is non-trivial. Instead, when running our experiments, we
perform a final independent check, calling passes(A,T},in,a) one last time on the final output of
our algorithm. In Section 3.4 we observe that this final check passes often. For the minimized traces
where this final check succeeds, we can indeed say that Pr, ,, > 0.85 with probability > 0.95, as per
the example above, which uses our experimental parameters.

We can now get a bound on the probability of the second requirement in the definition of

approximate 1-minimality:

Lemma 1. If T,,;,, = ND3MIN(A,T,a), then the probability p that there exists no subtrace T',
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obtained by removing a single event from Ty, such that P > py is:

nr l

[(=E 0 0-0) s

i=st

)
Il

nr

[ (-E 0 wa-p) snaie

1=st

where | is the number of events in Ty -

Proof. Consider only the last call to the recursive procedure MinR(), which returns T,;,. Note
that MinR() returns T;,;, only in Case #4 which executes only when cases #1 to #3 are not
satisfied. Thus, for the last execution of MinR(), Case #3 must have been skipped, which means
k > len(Tynin). Since k > len(Tpnin), the set {Vi € [0,k).T;} contains every subtrace which can be
obtained by removing a single event from 7;,;,. Because Case #2 was also not satisfied, we know
that calling get_passing() on this set at line 10 returns None. By definition, this is equivalent to
calling passes() on each T; and having it return false.

Taking Y; = —passes(A4,T;,a), we have:

PriY; | Pr=pl=1- Z (”ZT) pi(1 = p)rr (3.7)

i=st

And, using steps analogous to equations 3.1 to 3.5 above:

pi = Pr(Py > py | Yi] (3.8)
Jy PriYi| P =] fr(p)dp
Jo PrY; | Py =pl- fr(p)dp

i

which is the probability PT[PTj > py) for each T; given the behavior of passes() the algorithm must
have observed.

Finally, the probability that no T; is such that Pr > py is given by p = [[7(1 — p;) which
expands to the formula for p given in the lemma’s statement, since the formula for p; is the same

for every T;, and there are | = k = len(T},,;,,) such subtraces. O

3.3 Trace Selection

Recall that the method get_passing() takes a set S of subtraces of T, and must return a subtrace
T. € S such that calling the oracle O (A, T¢, a) nr times would succeed st times. If no such T, € S
exists, get_passing() must be able to determine that and return None. Calls to oracle O are

time consuming, so we wish to minimize the number of such calls that execute non-concurrently.
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We assume that we have a maximum of m instances of O which can be run in parallel. In our
implementation, these represent individual instances of the Android emulator.

For each call to get_passing(), we have a set of n traces S = {Tp,...,T,—1}. We define a
schedule as an array sch = [vo, ..., vp—1] such that Z;L;Ol v; < m. A step for get_passing() consists
on generating a new schedule sch, running v; oracle calls O (A,T},a) for each j € [0,n — 1] and
capturing the results. Since the total number of calls to O is at most m, the calls corresponding to
a single step of get_passing() can be executed in parallel. We accumulate the results of all steps
before the current one as pairs (s;, f;), where s; is the number of successes seen so far for T (i.e. 1
was returned by O (A4,Tj,a)) and f; the number of failures (0 was returned). We can see that given
the definition of get_passing(), we never gain anything from running a single 7; more than nr
times, so we forbid this, and thus Vj. s; + f; < nr. We seek to minimize the number of steps in each
call to get_passing() before we can either identify a T; which satisfies passes() (i.e. 3j.5; > st)
or we have concluded that no such Tj can exist. We note that, given the previous constraints, if
ever f; > nr— st, T; cannot be a trace that satisfies passes().

We give 3 strategies for minimizing the number of steps of get_passing(). Section 3.4 compares

them empirically.

3.3.1 Naive Scheduling

There are two obvious ways to generate the schedule sch at every step of get_passing(), which
depend very little on the observed pairs (sj, f;).

The first method is to schedule all nr executions for each trace one after the other, so at every
step v; = min(nr—s; — f;,m — EZ;]) vg). This strategy goes from j = 0 to n — 1 and greedily tries
to add another execution of T} to sch until doing so would either mean that more than nr executions
of T} have been scheduled over all steps of get_passing() or would push the schedule beyond the
limit of m calls to O. A common sense optimization is, at every step, to return immediately if a T}
with s; > st has been found, and ignore any 7} with f; > nr— st for scheduling. The worst-case for
this strategy happens when no trace in S satisfies passes(). The following is a particular example
of this greedy strategy in action with nr = 20, st = 18, n = 3 and m = 15. We represent each step
as a transition between two lists of pairs (sj, fj) Vj = 1,2, 3, representing the accumulated results
before and after the step. Each step is also annotated with the corresponding schedule sch:

[(0,0), (0, 0), (0,0)] 500 [(13,2), (0, 0), (0, 0)]

[(13,2), (0, 0), (0, 0)] S100° [(17,3), (3,7), (0, 0)]

[(17,3), (3,7), (0, 0)] o015 [(17,3), (3,7), (15, 0)]

117, 3),(3,7), (15, 0)] == [(17,3), (3, 7), (19, 1)]
,0,5

Another naive strategy is to schedule traces in a round-robin fashion. Each step scans j = 0 to
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n — 1 multiple times, adding an additional invocation of Tj if s; + f; + v; < nrand f; < nr— st.
It stops when the schedule is full (m calls scheduled) and proceeds to run sch. Again, we stop as
soon as there is nothing else to run or we have found a T; with s; > st. The worst-case for this
strategy happens when all traces succeed with high probability. We repeat the example above with
the round-robin strategy:

[(0,0), (0,0), (0, 0)] 555 [(4,1),(2,3), (5,0)]

[(4,1),(8,2),(5,0)] R [(11,2),(2,3), (12,0)]

[(11,2),(2,3),(12,0)] 7,0—8) [(17,3), (2, 3), (19, 1)]

Both of these naive strategies are similar in that they are likely to do plenty of unnecessary
work in the average case. We chose the round—-robin variant as our baseline for comparison, since it
performs better in the case in which is common for many of the traces in S to fail the oracle often

and st is close to nr (this matches our scenario).

3.3.2 Heuristic: Exploration Followed by Greedy

The naive algorithms don’t exploit all of the information contained in the pairs (s, f;) in deciding
what to do next. Clearly, if we have a trace T}, for which (s;,, f;,) = (5,0), and a trace T}, for which
(Sjss fin) = (3,2), then T}, is significantly more promising than T},, and we should try checking it
first. Conversely, it should be possible to discard T}, by scheduling it for execution only a few more
times; adding 15 copies of T}, to the next schedule, while allowed, would likely be a waste. We use
these observations to propose a heuristic that, at every step: a) tries to confirm traces that seem
likely to be successful, and b) tries to discard traces that seem likely to be unsuccessful, in that
order of priority.

Before scheduling the first step, we have Vj. (s;, f;) = (0,0). Since we have no information, we
simply schedule the traces in S in a round-robin fashion. This gives us at least some information
about every Tj. In every round after that, we follow the algorithm outlined in Figure 3.4.

We first compute p; = s;/(s; + f;) for each j, the empirical success probability of T; so far.
We sort S in descending order, first by p; and then by s;. Then we partition the sorted array S
into two sections: S, contains the traces such that p; > ¢ for a certain constant ¢ (¢ = 0.8 in our
implementation) and Sy the rest. We assume that traces in S, are likely to succeed after nr calls
to O, while traces in Sy are likely to fail, and we predict accordingly. While there are traces in S,
and our schedule is not full, we remove T} from S, in order. We compute zj in line 11, which is the
expected number of runs of T} needed to get to the point where s, = st. If we can schedule that
many runs, we do so (line 13). If we can’t schedule xy runs of T} in this step, but we can do it in
the next step, we move T to Sy, a list of ‘deferred’ traces from S.. We do this so that if we can

pack the expected number of runs for multiple traces in S. we do so, even if those aren’t the traces
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globals : ¢
def schedule(S,[(s;, fj)]):
Vj.v; = 0;
Vi.pj < sj/(sj + fi);
sort S by p;,s; desc;
Se « [Tj € S| pj > d;
Sd < @;
Sg [T €5 |pj <c]
while 3 v; <m:
if Sc # 0:
Ty < remove first(Se);
zp < min(nr — sg — fi, [(st — sx)/pr)]);
if xp, Sm—zjvj:
Vi < Tk,
elif z, < m:
Sq + Sa U [Tk];

else:
Vg M — 35 v
elif Sy # 0:
Schedule from S by round—robin.;
elif Sy # 0:

Ty, < remove_first(Sy));

Y 4 min(nr — sg — fi., [ STk,

v — min(y,m — 3 v5);
else:
Schedule from original S by round-robin.;

Figure 3.4: Trace Selection Heuristic.
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with the highest p;. If z} is too large to schedule in any single step, then we just schedule as many
copies of T}, as we can.

Only when S, is empty, we revisit the traces in S; and schedule them in round-robin fashion.
If there are no traces in Sg then we begin removing 7}, from Sy in order. We compute gy in line
22 for these traces, which is the expected number of runs of T} needed to get to the point where
fx = nr— st+ 1 (at which time we can declare that trace as failing passes()). We could run the
traces in Sy in order of increasing empirical success probability, which would allow us to discard some
of them more quickly, but this doesn’t reduce the expected number of steps for get_passing(), since
we need to discard all traces before we can return None. We run them in order of the decreasing
probability instead, as this will allow us to more quickly correct course in the rare case in which
we have misclassified a passing trace as being in Sy: after running a few more copies of the trace,
instead of discarding it, we would observe its empirical probability increasing, and we reclassify it
into S, on the next step.

If there is space left in the schedule after scheduling S, Sq and S as described, we add additional
runs of the traces in S in a round-robin fashion, that is, copies beyond the expected number of
executions required to ‘prove’ or ‘disprove’ each T}, but without running any 7; more than nr times.

We show the execution of our heuristic on our same example from the previous two techniques:

[(0,0), (0,0), (0, 0)] ———> [(4, 1), (2,3), (5, 0)]

[(4,1),(2,3),(5,0)] 2013 [(6,1),(2,3), (18, 0)]

3.3.3 Solving Trace Selection as an MDP

We can formulate the problem of trace selection as a Markov Decision Process (MDP), which allows
us to solve for the optimal strategy, for given values of the parameters n, m, nr, st.

A Markov Decision Process is a tuple (S, A, P,v, R), where: Sis a set of states, A is a set of actions
and P : Sx A — {Pr[S]} is a map from every state and action pair to a probability distribution over
possible state transitions. R :S — R is the reward function, which associates a value with reaching
each state. Finally, v € [0, 1] is called the discount factor.

To execute an MDP, we start from some initial state oy € S, then choose an action ag € A. The
MDP then transitions to a state o7 chosen at random over the probability distribution P(oyg,ag).
The process is then repeated, selecting a new a; for each o; and choosing 0,41 from the distribution
P(0i,a;). The value of the execution of the MDP is then Y, ~*R(0;), which is the reward of each
state visited, multiplied by v%. The discount factor v is used to decrease the reward of reaching
“good” states, in proportion to how late in the execution these states are reached.

Given a policy 7 : S — A, which is simply a mapping from states to actions, we calculate the
value of the policy as the expected value V™ (oq) = E[>_, 7' R(0;)] where oy is the initial state, and

for every ¢ > 0, a; = 7[o;] and 0,41 is chosen from P(0;,a;). Solving an MDP is equivalent to
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finding a policy 7 that maximizes V™ (oy).

We encode trace selection as an MDP as follows:

o S={[(s0,f0)s - (Sn—1, fn—1)]} is the set of possible combinations of observed values of (s;, f;)
for each T; € S. The initial state is oo = [(0,0), ..., (0,0)]

o A={[vg,...,vp_1] | Z?;Ol v; < m} is the set of possible schedules sch.

[ P(ai,a)[aj] where g; = [(31'07f10)7 ], a = [’Uo, ] and g5 = [(SjO;ij)a ] with Vk. (Sjk +fjk) -
(sik + fir) = vp is:

n—1
Uk‘ S Ve —S§
IS ()t =

k=0 p
with s; = s, — sik. P(oy,a)lo;] is 0 if 3k. (s + fin) — (sik + fir) # k.
e R(0’) is —1 for every state o/, and v =1

We make the reward negative and the discount factor 1, since we wish to find only a policy that
minimizes the number of reached states, which is equivalent to minimizing the number of steps in
get_passing(). Any state containing (s;, f;) with s; > st for any j, as well as any state where
f; > nr— st for every j, is a terminal state of the MDP: once such a state is reached, the execution
of the MDP ends.

Note too that the precise definition of P(o;,a)[o;] requires knowledge of Pr[Pp, = p| for each
subtrace T. But we have no way of precisely knowing this distribution. In practice, if we have a
prior (discrete) probability distribution Pr[Pr = p| over the set of all possible subtraces, we can

approximate:

PriPp =p|=>_ ((sk - fk)Ps’“(l p)fk) Pr[Pr = p|
P Sk

In Section 3.4, we approximate the prior by running ND3MIN() with naive round-robin trace
selection on a few (app, trace, activity) tuples. We use that experimentally discovered prior to
approximate P(o;,a)[o;].

There are methods for solving an MDP in the general case, but they require iterating multiple
times over the set S and calculating the expected value V7 (o’) of each state based on the value
of other states, until a fix-point is reached. In our formulation, the number of states, enumerated

naively, is:

k<nr n n
S/ = <Z(k+1)> - (L)

k=0
since we can construct k + 1 pairs (s;, f;) with s; + f; = k. For n =5 (nr= 20), this gives us over
6 x 10! states.
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We can significantly optimize our solution for this particular MDP in two ways, however: by
getting rid of the fix-point iteration requirement (changing it to a single pass over S), and by
reducing the size of S itself. As we will see in a moment, this single pass still produces the optimal
solution, since there is an indexing of the states in S such that the value of each state depends only
on the values of states with a higher index, and our single pass traverses the states in decreasing
order of their indices.

First, we observe that in our MDP we can never visit the same state twice. In fact, our MDP
is a DAG, where each state must transition to one in which the sum of the elements of the tuples
(s;, fj) has a higher value. This type of MDP is called a finite horizon MDP [60].

We now restrict all candidate policies 7 to include only schedules for which Z?:_Ol v; = m exactly,
except in the case in which doing so would violate the constraint Vj. s; 4+ f; < nr. In the latter case,
every 7 always chooses to schedule as many runs of each 7} as needed to reach nr. We note that
this last action must always lead to a final state.

Every state o’ = [(S0, f0), -+, (Sn—1, fn—1)] reachable from the initial state o following any 7 with
the above restrictions, is either a final state or is such that Z;:Ol(sj + f;) mod m = 0. We then
define I, the state’s iteration, such that I[o’] = (23:01 (s; + fj)) /m for every non-final state. I[o”]
is always an integer. We assign all final states to iteration I[o’] = [2222]. We note that for every
o; €S, m as above, and o; € P(0;,7[0;]) we have I[o;] > I[o;].

Given the partition of S into subsets S; = {o € S| I[o] = i} induced by I, we can solve the MDP
by visiting each S; once in reverse order of ¢ and computing the optimal 7[¢’] and V7 (¢’) for each

o’ €'S;. We do not need to iterate to reach a fix-point, since
V™(o') = R(o") + mazgen Z (P(o’,w[o"N]e"]) V™ (c")

depends only on the values V™ (") of states reachable from o’ by actions in 7. Since all such states
satisfy I[c”] > I[o’], their value has already been calculated when visiting a previous S;~;. The
time to solve the MDP by this method is O (JA|[S|). Note that within a single S;, the problem of
computing V™ (¢’) for the states in S; is highly parallelizable.

We can further reduce |S| by merging states which are isomorphic in our model. First, we can
coalesce all final states into two: a success state o, whenever s; > st for any j, and a failure
state oy when f; > nr— st for every j. Furthermore, if state ¢’ has f; > nr— st for any j, this is
equivalent (for the purposes of get_passing()) to the same state after replacing (s;, f;) with (X,Y)
with Y > nr— st. We pick a single state in this equivalence set as representative, taking care to
choose one which preserves the invariant Z;L;Ol sj+ f; mod m = 0 and falls into the latest possible
iteration. We can also reorder the tuples (s;, f;) in every state, since the order of the subtraces in
S does not affect the result of get_passing(), and the generated policy 7 will be identical, up to a

reordering of o’ = w[o’]. After applying all optimizations, for n = 5, m = 15, nr = 20 and st = 18,
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our algorithm must examine |S'| = 729, 709 states in order to compute the optimal strategy .
After pre-computing 7 for a particular set of parameters n, m, nr, st, we can use it to generate a
schedule sch at each step of the trace selection process. Section 3.4 compares the number of steps

required by get_passing() when using this strategy versus our heuristic from Section 3.3.2.

3.4 Results

This section presents our empirical evaluation and results. Section 3.4.1 describes our experimental
setup and presents the data discussed in the rest of the section. Section 3.4.2 explores the size of
the minimized subtraces and the number of calls to get_passing() performed by the algorithm.
Section 3.4.3 contrasts the performance of the different trace selection methods of Section 3.3.
Finally, Section 3.4.4 explores the prevalence of application non-determinism in our dataset.

Our tests were performed in an Amazon EC2 cloud environment, in which we ran m = 15
Android emulator instances, each on its own virtual machine, as our test oracles. As mentioned
before, the rest of the parameters used for ND3MIN() are n = 5, nr= 20 and st = 18.

3.4.1 Datasets

We evaluate our GUI event trace minimization approach on two different datasets: one composed
of 7 applications from the Google Play store selected among the top 20 most popular apps in
their category across different app categories (gplay), and another of 4 redistributable open-source
applications from the F-droid open-source application repository (fdroid). For each application,
we generated 10 random Monkey traces, of 500 events each, restricting ourselves to tap events
exclusively. Although our approach can potentially be used to minimize traces with any type of
events, reaching activities requiring events other than taps, such as structured keyboard input or
complex touch gestures, often produces an unfeasibly large original trace when performing random
testing alone.

We ran these traces on the corresponding application and recorded the activities reached during
their execution. For the Google Play apps, we arbitrarily selected an average of 4 such activities per
app, with the minimum being 3 activities. For the F-Droid dataset, we selected an average of 5.25
activities per app, with a minimum of 3. For each app A, and activity a, we took a trace T in our
10 generated traces which reached a with Pr > 0.9 (observed over 20 trace replays). In the cases
where many traces reached a with equal probability, we picked one at random.

We first ran ND3MIN() on nine activities from two apps (com.eat24.app and com.duolingo) of
the gplay set, using the naive (round-robin) trace selection strategy of Section 3.3.1. This produced
calls to our test oracle O with 402 distinct subtraces in total. We used the oracle responses obtained
from this preliminary experiment to generate a probability prior Pr[Pr = p] given an unknown 7"

and a probability p. We restricted ourselves to only two apps and nine activities for generating this
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Figure 3.5: Prior probability distribution of subtraces.

prior for two reasons. First, minimizing traces under the naive strategy is a time consuming process,
compared with either the heuristic or MDP methods. Second, we want to show that the prior
computed for a few apps generalizes over unrelated Android applications, meaning that computing
this prior is a one time cost, leading to a solution for the MDP model that can be applied without
changes to minimizing traces for unknown apps.

Figure 3.5 shows this prior probability distribution. As observed in Section 3.3.3, we can use
this prior to approximate the transition probabilities used in the MDP for computing the optimal
policy for trace selection. To check the quality of this prior, we also plot the probability distribution
as estimated by examining all queries to the test oracle performed by the rest of the experiments in
this section (from a total of 3490 subtraces). This distribution shows more traces as always failing
(Pr+ = 0) and fewer traces as having low but non-zero probability. Otherwise, the distribution looks
very similar to our prior, increasing our confidence in using said prior as our estimate of Pr[Pr = pl.

For each dataset (gplay and fdroid) we then ran ND3MIN() on each tuple (A, T, a) in the set,

under two different configurations for trace selection (see Section 3.3):

e One using the heuristic in Section 3.3.2 exclusively for every invocation of method get_passing().

e One using the pre-computed optimal policy (Section 3.3.3) when get_passing() receives a set
S with 2 to 5 subtraces (the values of n for which we are able to compute the optimal policy in
reasonable time?). In this configuration, get_passing() defaults to using the same heuristic

of the previous configuration, whenever get_passing() is passed n > 6 subtraces.

On average 66% of the steps executed in the MDP based trace selection case are steps in which
get_passing() was invoked with fewer than 6 subtraces, and thus uses the optimal policy, based
on solving the MDP. The remaining 34% fall back to using the same heuristic of Section 3.3.2.

Table 3.1 lists the apps and activities that constitute both of our datasets, and assigns a reference
key to each app-activity pair. We use those keys to refer to the corresponding trace minimization

experiments through the rest of this chapter.

2Solving the MDP using 4 2-vCPU EC2 VMs takes 8 min for n = 3, 43 min for n = 4 and 83 hours for n = 5.
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Table 3.1: Dataset Key: App-activity pairs

Google Play Apps F-Droid Apps
Key Application Activity Key Application Activity
-1 com.eat24.app SplashActivity 81 com.evancharlton.mileage Mileage
1-2 HomeActivity 8-2 VehicleStatisticsActivity
1-3 LoginActivity 8-3 TotalCostChart
1-4 CreateAccountActivity 8-4 FillupInfoActivity
2-1 com.duolingo LoginActivity 8-5 FillupActivity
2-2 HomeActivity 8-6 FillupListActivity
2-3 WelcomeFlowActivity 8-7 MinimumDistanceChart
2-4 SkillActivity 8-8 AverageFuelEconomyChart
2-5 LessonActivity 9-1 de.delusions.measure MeasureTabs
2-6 FacebookActivity 9-2 MeasureActivity
3-1 com.etsy.android HomescreenTabsActivity 9-3 BmiTableActivity
3-2 CoreActivity 9-4 BmiCalcActivity
3-3 DetailedImageActivity 10-1 org.liberty.android AnyMemo
4-1 com.ted.android SplashScreenActivity 10-2 .fantastischmemo OptionScreen
4-2 MainActivity 10-3 AlgorithmCustomizationScreen
4-3 TalkDetailActivity 10-4 StudyActivity
4-4 VideoActivity 10-5 CardEditor
4-5 BucketListInfoActivity 10-6 SpreadsheetListScreen
5-1 com.zhiliacapp.musically SignInActivity 11-1 org.totschnig.myexpenses CalculatorInput
5-2 OAuthActivity 11-2 MyExpenses
5-3 TermOfUsActivity 11-3 ExpenseEdit
6-1 com.pandora.android SignUpActivity
6-2 SignInActivity
6-3 ForgotPasswordActivity
7-1 com.google.android LicenseActivity
7-2 .apps.photos LicenseMenuActivity
7-3 SettingsActivity
7-4 PhotosAboutSettingsActivity

Table 3.2: Results for the Google Play apps

heuristic opt:mdp
Key events | steps time check | events | steps time check
1-1 0 4 4:34:01 20 (0.99/1.0) 0 4 4:17:47 20 (0.99/1.0)
1-2 0 4 3:45:04 20 (0.99/1.0) 0 4 5:48:18 20 (0.99/1.0)
1-3 3 18 | 13:27:12 | 20 (0.99/0.94) 3 17 | 12:22:16 | 20 (0.99/0.94)
1-4 5 51 | 35:17:52 | 19 (0.94/0.91) 5 45 | 32:33:16 | 19 (0.94/0.91)
2-1 0 4 3:34:23 20 (0.99/1.0) 0 4 4:19:35 20 (0.99/1.0)
2-2 2 21 | 11:11:34 | 20 (0.99/0.96) 2 15 | 12:51:19 0 (0.99/0.96)
2-3 2 18 | 12:06:37 20 (0.99/0.96) 2 16 | 13:11:39 0 (0.99/0.96)
2-4 19 73 | 40:46:06 8 (0.69/0.72) 16 62 | 51:01:40 | 12 (0.00/0.76)
2-5 25 87 | 50:16:46 11 (0.00/0.65) 23 110 | 87:56:06 (0.00/0.67)
2-6 2 64 | 52:14:13 | 20 (0.99/0.96) 7 85 | 48:02:17 0 (0.99/0.88)
3-1 0 4 3:18:15 20 (0.99/1.0) 0 4 3:27:18 20 (0.99/1.0)
3-2 3 28 | 21:27:39 | 20 (0.99/0.95) 3 71 | 43:27:56 | 20 (0.99/0.95)
3-3 8 50 | 38:55:17 | 15 (0.11/0.87) 7 35 | 26:31:25 7 (0.00/0.88)
4-1 0 4 5:27:51 20 (0.99/1.0) 0 4 4:11:50 20 (0.99/1.0)
4-2 1 13 8:28:01 0 (0.99/0.98) 1 10 7:04:49 0 (0.99/0.98)
4-3 7 31 | 17:45:40 9 (0.94/0.88) 7 24 | 15:59:37 0 (0.99/0.88)
4-4 15 57 | 39:02:54 9 (0.94/0.77) 11 32 | 22:27:27 8 (0.69/0.82)
4-5 5 13 | 13:45:54 0 (0.99/0.91) 5 11 | 10:26:14 9 (0.94/0.91)
5-1 2 16 | 13:52:34 | 20 (0.99/0.96) 2 16 | 15:04:38 | 20 (0.99/0.96)
5-2 1 13 | 14:32:24 | 20 (0.99/0.98) 1 14 | 13:55:28 | 20 (0.99/0.98)
5-3 1 12 | 12:53:04 | 20 (0.99/0.98) 1 13 | 12:44:12 | 20 (0.99/0.98)
6-1 1 18 | 21:12:14 | 20 (0.99/0.98) 1 14 | 16:38:10 | 20 (0.99/0.98)
6-2 1 13 | 18:32:25 | 20 (0.99/0.98) 1 14 | 15:48:11 | 20 (0.99/0.98)
6-3 8 72 | 61:41:23 | 18 (0.69/0.87) 3 49 | 47:00:46 | 17 (0.43/0.94)
7-1 6 46 | 51:34:31 | 20 (0.99/0.90) 5 47 | 40:44:01 | 18 (0.69/0.91)
7-2 5 50 | 51:35:34 | 19 (0.94/0.91) 5 46 | 39:18:00 | 18 (0.69/0.91)
7-3 3 27 | 34:18:45 | 20 (0.99/0.94) 2 36 | 31:02:26 | 20 (0.99/0.96)
7-4 3 34 | 32:21:50 | 20 (0.99/0.94) 4 34 | 28:26:12 | 20 (0.99/0.93)
Average 4.57 | 30.18 | 24:34:17 4.18 | 29.86 | 23:48:40
Median 2.5 19.5 | 18:09:03 2.5 16.5 | 15:53:54
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Table 3.3: Results for the F-Droid apps

heuristic opt:mdp
Key events | steps time check | events | steps time check
8-1 0 4 3:09:23 20 (0.99/1.0) 0 4 3:06:46 20 (0.99/1.0)
8-2 2 17 8:35:44 | 20 (0.99/0.96) 2 15 8:48:25 | 20 (0.99/0.96)
8-3 3 25 | 12:46:05 | 20 (0.99/0.95) 3 25 | 13:16:33 | 20 (0.99/0.95)
8-4 10 84 | 41:21:14 | 20 (0.99/0.84) 10 85 | 36:39:12 | 20 (0.99/0.84)
8-5 0 4 3:12:27 20 (0.99/1.0) 0 4 3:31:56 20 (0.99/1.0)
8-6 2 16 9:09:12 | 19 (0.94/0.96) 2 21 10:58:12 | 19 (0.94/0.96)
8-7 3 15 7:46:58 | 20 (0.99/0.95) 3 14 | 11:07:33 | 20 (0.99/0.95)
8-8 3 14 | 7:39:26 | 20 (0.99/0.95) 3 14 | 8:09:53 | 20 (0.99/0.95)
9-1 0 1| 33559 | 20 (0.99/1.0) 0 1| 323:09 | 20 (0.99/1.0)
9-2 0 4| 3:12:24 | 20 (0.99/1.0) 0 4| 2:56:53 | 20 (0.99/1.0)
9-3 2 17 8:52:07 | 20 (0.99/0.96) 2 26 | 11:32:35 | 20 (0.99/0.96)
9-4 4 48 | 22:47:29 | 20 (0.99/0.93) 3 27 | 13:01:08 | 20 (0.99/0.93)
10-1 0 4| 3:20:17 | 20 (0.99/1.0) 0 4| 3:12:32 | 20 (0.99/1.0)
10-2 3 16 8:18:16 | 20 (0.99/0.95) 3 14 8:06:41 | 20 (0.99/0.95)
10-3 5 61 | 36:57:50 | 20 (0.99/0.91) 5 51 | 30:44:08 | 20 (0.99/0.91)
10-4 2 17 | 10:29:14 | 20 (0.99/0.96) 2 17 9:40:59 | 20 (0.99/0.96)
10-5 6 49 | 24:30:42 | 18 (0.69/0.90) 6 35 | 16:52:17 | 20 (0.99/0.90)
10-6 3 29 | 19:02:10 | 20 (0.99/0.95) 3 40 | 24:33:01 | 20 (0.99/0.95)
111 0 4| 3:24:06 | 20 (0.99/1.0) 0 4| 3:19:23 | 20 (0.99/1.0)
11-2 3 52 | 26:12:57 | 20 (0.99/0.95) 3 43 | 21:40:33 | 20 (0.99/0.95)
11-3 13 70 | 32:22:06 | 16 (0.23/0.80) 11 66 | 36:05:57 | 17 (0.43/0.82)
Average 3.05 | 26.38 | 14:07:55 2.9 | 24.61 | 13:22:16
Median 3 17 8:52:07 3 17 | 10:58:12

For the applications in the Google Play dataset, Table 3.2 shows the size of the minimal subtrace
obtained by our minimization algorithm for each target activity, together with the number of steps
and wall-clock time that our algorithm took to extract it in each configuration. Table 3.3 shows the
analogous information for the F-Droid open-source apps. The performance of the naive method on

the 2 apps of the gplay set, used to compute the Py, priors, is listed in Table 3.4.

3.4.2 Size of Minimized Traces, Steps and Check

The column labeled events in our tables specifies the number of events in the minimized trace T},;y,
as generated by our algorithm. Recall that our input traces are 500 events long in each experiment.
The average length of the minimized traces is 4.57 for the gplay dataset using the heuristic trace
selection, 4.18 using the MDP-based version. For the fdroid dataset, these numbers are 3.05 and
2.9, respectively. The fact that only a few events are needed in each case to reach the desired activity
shows the value of minimization. Our minimized traces are smaller than the original Monkey traces
by an average factor of roughly 100x.

Perhaps another take away from these numbers is that running many rounds of random monkey
testing for a few events, or even systematically testing many small sequences sampled from a large
set of events, might prove at least as valuable for uncovering app behavior as a few much longer
monkey runs. However, note that there is a fixed cost in reseting the application or the emulator,

which quickly becomes the dominating factor when running small event traces. Additionally, true
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Table 3.4: Performance for naive trace selection

naive

Key # events | # steps | exec. time check
1-1 0 8 7:00:20 20 (0.99/1.0)
1-2 0 8 6:41:37 20 (0.99/1.0)
1-3 3 50 37:22:56 | 20 (0.99/0.95)
1-4 4 66 48:01:59 | 17 (0.43/0.93)
2-1 0 8 6:53:19 20 (0.99/1.0)
2-2 2 26 14:07:33 | 20 (0.99/0.96)
2-3 2 27 15:47:21 | 18 (0.69/0.96)
2-4 15 86 62:55:47 | 15 (0.11/0.77)
2-5 30 80 62:41:16 | 14 (0.04/0.59)
Average | 6.2 39.9 29:03:34

Median 2 27 15:47:21

exhaustive testing remains infeasible. Assuming 798 distinct events to chose from (a number based
on the automated testing system we shall discuss in Chapter 4), testing all 4 event sequences means
starting the app 798* = 405 x 10 times.

The column labeled steps counts the number of times the method get_passing() generated a
schedule and called our 15 test oracles in parallel. Equivalently, steps is the maximum number of
sequential calls to each of the test oracles required during our minimization algorithm. To make sure
the trace is suitable for minimization, our implementation first runs the original trace 7' 20 times,
and aborts running if the oracle doesn’t accept 7" in at least 15 of those calls. We include the two
steps required for this check in our count.

The column labeled check contains a triplet of the form ¢ (p;/p2). After our minimization
algorithm has finished, we run the resulting trace 20 additional times, and record as ¢ the number
> 0.85] and ps, the probability

that, if Pr_, > 0.85, then T,y is approximately 1-minimal, as defined by Lemma 1. For p;, we use

of times it succeeds. We use this number to calculate p; = Pr[Pr,

min

a formula analogous to that of Section 3.2, but taking into account the exact number of successful

oracle queries:

>pz0ss (¢) - p°(L—p)"“Pr(Pr = p]
3, (V) pe( = p)r=ePr{Pr = p]

For the probability prior required for these calculations, we use the same prior from Figure 3.5

p1 =

used by the MDP trace selection method. All probabilities in the tables are truncated, not rounded,
as we wish to obtain a lower bound. As observed in Section 3.2, since the error of passes()
can fall below py,
> 0.9,

accumulates through multiple trace reductions in our algorithm, our final Pr

min

so it is not always true that ¢ > 18. The vast majority of our minimized traces fulfill Pr,
and all but one succeed over 50% of the time.
Note that for the same (app, trace, activity) tuple, our algorithm sometimes produces minimized

traces of different sizes when using different trace selection strategies. This can happen for one
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of two reasons. First, different trace selection strategies cause delta debugging to pick different
subtraces during recursive invocations of the MinR () method, which can guide the algorithm towards
discovering different 1-minimal solutions. A 1-minimal solution does not imply the returned trace is
of minimum length among all possible successful subtraces, and an input trace can contain multiple
distinct 1-minimal subtraces that reach the desired activity and have different lengths. Because of
the probabilistic nature of our algorithm, it is also possible that the trace returned by ND3MIN() is
not truly 1-minimal, especially if it contains a subtrace which reaches the activity with a probability
very close to 0.9, which our algorithm might have trouble classifying either way.

We can observe this situation when contrasting the minimized traces discovered by the naive and
heuristic trace selection methods for CreateAccountActivity in com.eat24.app (experiment 1-4).
The heuristic method produces a 5 event minimized trace that passes 19 out of 20 oracle calls in its
final check, while the naive method returns a 4 event subtrace, which is actually a subtrace of the
one returned by the heuristic case, but which only passes 17/20 checks. We re-ran both traces 300
times, which suggests the underlaying probability of the 5 GUI event trace is ~ 0.89 and that of the
4 GUI event trace is ~ 0.84.

3.4.3 Performance Comparison

Figure 3.6 plots the number of steps and wall-clock time for each experiment, comparing the naive,
heuristic and MDP-based trace selection methods. We normalize in each experiment to the value
obtained in the heuristic case, since we only have the performance of the naive method for the limited
set of (app, trace, activity) tuples in Table 3.4. Thus the red line at 1 represents the performance
of our heuristic, and the bars represent the performance of the naive and MDP methods relative to
that of the heuristic. The dashed vertical line separates the experiments for which we have data on
the naive method from those for which we don’t.

We note that the configuration using the MDP policies doesn’t always outperform our heuristic.
This is not unreasonable, since: a) the MDP method only guarantees to minimize the number of
steps in get_passing(), but it might pick different subtraces than other methods, thus failing to
minimize the number of steps over the whole algorithm, b) even within a call to get_passing() we
are approximating the prior of Pr: based on previous experiments, which could lead to non-optimal
results if the distribution of underlying trace probabilities is very different in the particular app
under test, versus the set used to compute the prior, and ¢) since the oracle is non-deterministic, the
number of steps our algorithm must perform, even when using the same trace selection method, varies
across runs. Our results do indicate, however, that using the heuristic method for trace selection
is a reasonable option, which performs similarly to solving the MDP formulation and avoids the
expensive pre-computation for every value of n.

Two outliers in our plots bear explaining. In experiment 2-5, both our heuristic and the MDP

based method seem to under-perform the naive method on the number of steps. However, this is also
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a case in which the naive method produces a larger trace (30 events) than either the heuristic (25
events) or the MDP based method (23 events), so this outcome can be explained as the result of the
naive method having stopped the minimization process earlier than the other two. In experiment
3-2 the MDP based method performs much worse than our heuristic while producing a trace of
identical size. In this case, the heuristic found a trace consisting of 3 consecutive events of the
original trace, while the MDP based method found a trace of non-consecutive events. The structure
of delta debugging is such that it generally makes faster progress towards a contiguous subsequence
than towards a non-contiguous one.

The average running time of our minimization algorithm using the heuristic approach is 24:34
hours for the activities in the gplay set (median: 18:09 hours) and 14:08 hours for the fdroid set
(median: 8:52 hours). Using the MDP based method, we have an average of 23:49h and median of
15:54h for the gplay set, and an average of 13:22h and median of 10:58h for fdroid apps. Thus, our
approach fits comfortably in the time frame of software processes that can be run on a daily (i.e.,
overnight) or weekly basis.

We tested the sequence of time measurements for all apps (gplay and fdroid) under the Wilcoxon
Signed-Rank Test [110] and found a mean rank difference between the heuristic and MDP based
methods with p ~ 0.08, which is not quite enough to be considered statistically significant. We
do not have enough samples under the naive method to compare it against the other two under a
similar test, but it can be seen from Figure 3.6 that this method often significantly underperforms

compared to the other two.

3.4.4 Effects of Application Non-determinism

One final question regarding the trace minimization problem is on whether or not handling applica-
tion non-determinism is truly a significant problem. As we discussed in Section 3.1, some Android
applications present non-deterministic behavior under the same sequence of GUI events, motivating
the need for running each GUI event trace multiple times during minimization and estimating trace
probabilities. However, if this is a problem that occurs only rarely, it might be that the techniques
presented in this paper are not often required. We argue that application non-determinism is in
reality a common problem, as can already be somewhat discerned from the fact that the check
columns of tables 3.2 and 3.3 often show traces as succeeding in reaching the target activity less
than 20 times in 20 runs.

To explore the impact of application non-determinism for trace minimization, we took the output
minimized traces of our MDP condition for the gplay dataset, and attempted to further minimize
them by using traditional non-probabilistic delta-debugging (i.e. by following the algorithm in [119]
or, equivalently, by running ND3MIN() with nr = st = 1). In 8 out of 28 cases (29%), this produced

a further reduced trace. We then ran each of these resulting traces an additional 20 times. Table
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Table 3.5: Effect of application non-determinism in our dataset
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Application Key | Activity non-deterministic mdp | + deterministic DD
# events check | # events check

com.eat24.app 1-3 LoginActivity 3 20/20 2 6/20
1-4 | CreateAccountActivity 5 19/20 3 15/20

com.duolingo 2-4 SkillActivity 16 12/20 11 4/20
2-5 LessonActivity 23 11/20 15 1/20

com.etsy.android 3-2 CoreActivity 3 20/20 2 12/20
com.ted.android 4-4 | VideoActivity 11 18/20 10 1/20
com.google.android | 7-2 LicenseMenuActivity 5 18/20 4 18/20
.apps.photos 7-4 PhotosAboutSettingsActivity 4 20/20 3 18/20

[ Average [ 875 [ 17.25/20 | 6.25 [ 9.38/20 |

3.5 contrasts the size and reliability of the traces minimized under the original MDP based non-

determinism aware condition, with that of the result of further applying traditional delta debugging

to these traces. As we can see, these resulting traces succeed in reaching the target activity much

less frequently than the originally minimized traces. Thus, it is clear that for traces that succeed

non-deterministically, it is important to take into account their corresponding success probabilities

during minimization. This likely becomes more significant the more steps delta debugging takes, as

we can see by looking at the cases of the table above in which the minimal trace obtained by the

MDP strategy is larger than 5 events.



Chapter 4

Automated GUI Exploration based

on Image Differences

In the previous chapter, we examined the problem of minimizing GUI event traces generated by an
automated testing tool such as Android’s Monkey. We noted that fully random app exploration,
such as that performed by Monkey, produces large sequences of events, most of which do not play a
part in triggering any interesting behavior (e.g. taps on inactive portions of the screen). To facilitate
trace minimization, and in general to improve the performance of automated GUI testing, a smarter
monkey — one which learns which input events to produce and which to avoid based on the current
application state — is desirable.

There has been significant work in developing these more intelligent automated testing agents.
These tools leverage approaches such as better detection of relevant system events [74], model-based
testing [2, 3, 91, 115, 21, 11], concolic testing [6], evolutionary algorithms [75] and static analysis
with application rewriting [15]. However, a recent survey paper by Choudhary et al. [22], which
compares many of the tools above, seems to suggest that the standard Android Monkey remains
competitive with regards to code coverage in a limited time, for a number of real world apps. One
reason for this discrepancy might simply be the difference between the robustness expected from an
industry standard tool and that of research prototypes. However, we believe that Monkey also gains
two important advantages from its simplicity: the speed at which it can generate events, and its
independence from the implementation details of the app under test. In this chapter, we introduce
a technique for improving on pure random testing, while preserving this second advantage.

We implemented a different sort of intelligent monkey tool, which aims to be as insensitive to
the app’s implementation as possible. Unlike automated testing tools that rely on static or dynamic
analysis of the application code, or on inspecting the running app using tools like the Android

accessibility API, our approach interacts with the app under test exclusively by sending UI events
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and taking screenshots of the current application state as would be visible to a human user. This
approach is agnostic to any GUI toolkit, programing language or implementation technique used
by the application. We should note that, for the purposes of our evaluation, we do instrument the
apps to obtain method coverage information, which allows us to compare our approach against pure
random testing. However, the tool itself requires no instrumentation to run on any existing app.
The tool generates taps on particular points of the screen, learning to avoid tapping on inactive
areas. It remembers the appearance of a small screen patch around the tapped area and exploits
regularities across space and time in the app’s visual representation. Namely, it assumes that the
same exact screen patch in the same location, at two different screen states or two different points
in time, is likely to respond similarly to interaction. It also assumes that large portions of the screen
that are visually identical will likely also share behavior. The tool determines whether the app reacts
to a tap in a particular portion of the screen, the way a human user would, by observing whether
or not the screen itself changes in response to such action. As we discuss later in this chapter,
this approach has some advantages over looking at presumably more direct metrics of application
activity, such as code execution. We focus exclusively on taps in our prototype, but, as with trace

minimization, the approach can be extended to other GUI events.

4.1 Interaction Model

Figure 4.1 shows, at a high level, the way our tool interacts with the application under test, and
the internal state it keeps. To the left, we show a particular screenshot of the app under test (this
particular example uses a screen from com.duolingo.app). To the right, we show a representation
of the state of the agent’s memory.

The screen of the app under test is divided into a grid of squares of 50 x 50 pixels, and the agent
has 21 x 38 = 798 actions available to it, corresponding to taps in the center of each of the 798
squares'. A semi-transparent overlay shows how our agent regards the expected likelihood of a tap in
each square resulting in a response from the application: squares overlaid in dark gray are expected
to be inactive, whereas squares overlaid in bright green are known to be active. Some squares have
colors in between those two extremes, representing actions our agent is less confident about. The
portions of the screen without any overlaid color are areas our agent considers unexplored. The
faint blue dot on top of the “START” button represents the center of the square in which the agent
intends to tap next. We selected 50 x 50 pixels squares, since any smaller targets in a mobile GUI
would represent too small a tap target for a user operating a touch screen.

For each square in the grid that divides the screen, the agent’s memory stores a list of 50 x 50
pixels image patches corresponding to what screen state it has seen in that particular position in the

grid, associated with a confidence value that such square is clickable. To avoid unbounded memory

1For an app running on an emulator with 1080x1920 resolution.



CHAPTER 4. AUTOMATED GUI EXPLORATION BASED ON IMAGE DIFFERENCES 68

3.evaluate

.95 |.02 |.05 |.93

Screen State

Memory

Figure 4.1: Overview of the tool’s interaction model

usage, this list is limited to store no more than 200 versions of each square in the grid (corresponding
to different screens within the app), evicting older squares if necessary. This proved to be enough
in our experiments. Note that, although the diagram depicts actual image patches being stored in
the memory, in reality we store only a hash of the corresponding image instead.

At the highest possible level, our agent operates by repeating a four step sequence: First, it
observes the state of the screen and determines if the last action it took resulted in any response
from the app. Second, it updates the expected response probability of the last square it tapped
based on whether the app reacted to the action or not, recording that information into its internal
memory. Third, it evaluates the available actions based on the state of the screen and its own
memory, separating the possible squares into unexplored and explored squares, and assigning a
probability of being clickable to those in the second group, in a manner similar to the screen state
overlay in Figure 4.1. Finally, it chooses a particular square, and acts by tapping on the center of

the square. After that, the agent goes back to the observation step.
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4.1.1 Observe and record

At the beginning of every cycle, the agent checks if the screen state has changed in response to its
previous action. If it has, it looks into its memory for the image patch corresponding to the square
of the screen it tapped last. If no such image patch exists, it adds the patch to its memory with an
initial probability of being clickable in the future, based on whether or not it was clickable this time:
p = 0.85 if it was, p = 0.15 if it wasn’t. If a record already exists in memory for this patch, then it
is updated based on the following formula, where p’ is the current probability of being clickable for
that image patch in the same screen position, ¢ = 1 if the square was clickable this time and ¢ = 0

otherwise:

p=05xc+0.5%p

Note that in these calculations, the image patches that get updated are always those corre-
sponding to the screen state from before the corresponding action was performed, meaning those
corresponding to the screen state in the previous iteration of the agent’s four step cycle, rather than
the current screen state.

A vital optimization to the scheme above is that we perform flood filling of adjacent and identical
screen patches after an action. That is, whenever the agent taps into a square and receives a
response (clickable or non-clickable), it updates its internal memory with that response not only
for that particular square, but also for each of the four adjacent squares (left, right, above and
below), as long as the image patch in those squares is identical to that of the tapped square. Then,
it recursively performs this propagation on the neighbors of those four squares as well. Figure 4.2
shows the effect of flood filling after clicking on the inactive background of a particular app screen.
Besides background detection, this optimization also exploits regularities in the appearance of large
widgets (such as the edges of buttons) to increase the amount of screen state that the tool can

consider explored with the same number of observe-update-evaluate-act cycles.

4.1.2 Evaluate and act

After updating its internal memory, the agent must decide on the next action to perform, namely,
which of the 798 available squares of the screen to tap on. One question that naturally arises from
this set up is when should the agent tap on an already explored square versus an unexplored one.
Clearly, if our aim is to uncover novel behavior at the app level, then at least in the beginning
we should always prefer new actions to those already tried, even those which we know get us a
response from the app, since it is likely a response we have already seen. However, at the same
time, tapping on known-active regions of the screen allows the agent to navigate around in the app,
switching between different screens, which have different unexplored actions to be tried. To solve

this problem, we actually allow the agent to automatically adjust its preference between the two
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Figure 4.2: Flood-fill propagation of clickability info

depending on which approach is currently better at uncovering new behavior in the app at that
particular point in time, based on new code coverage.

The agent keeps track of two values F,, and E., the time weighted sum of new coverage obtained
by a tap on an unexplored or clickable square, respectively. Every time the agent performs an
action that results in code coverage increasing (measured as method coverage in our experiments),
it updates the corresponding value as follows, where cov_new is a value quantifying the coverage

increase:

FE, = covonew + v * E, or
FE. = cov_new + v x F,

Here, 7 is an adjustable discount parameter. In our experiments, v = 0.75.

While E, > E., the agent will elect to click on unexplored squares every time, as long as any
unexplored area remains. However, when E, < E., the agent will instead always click on known-
clickable squares. Over time, if no new coverage is being found using either a “tap on unexplored” or
“tap on known-clickable” strategy, then its corresponding weighted sum value will decrease relative
to the other and the agent will switch its approach. Note that if the agent doesn’t have access to
code coverage information, we can use a different metric, such as the frequency with which tapping
on an unexplored square results on finding a new clickable square, to decide when to switch between
testing unexplored squares in the current screen, versus exercising known app behavior.

After the agent has decided between an unexplored or a known-clickable square, it must still
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decide on the specific square to tap on within that category. We have no information to distinguish
unexplored squares, so in that case we simply pick a square at random. When deciding to tap on a
known-clickable square, however, we have different estimates on the probability of each such square
actually resulting on a response from the app. We could sample squares at random, test them
against a value generated uniformly at random between 0 and 1 and choose them as our next action
if their estimated p is above said value. However, because of the way we update our clickability
estimates, most squares, including those in the screen’s background, will have some p > 0, and the
standard situation is a screen with a few regions with values of p close to 1 and large swaths of
screen real estate with values of p € [0.05,0.15] which are usually fully unclickable. Because the
low p regions are vast, most of the squares we test will end up coming from these regions. If we
generate a new acceptance threshold for each square we examine and sample the squares at random,
at the end of the process we are more likely to end up with one of the abundant low p squares rather
than a square with a high probability of being clickable. Instead, we select an acceptance threshold
pt € [0,1] (uniformly at random) first, then we chose at random between the set of squares with
D 2 Pt

Once a square to tap has been selected, the agent uses standard Android tools to send a tap
event to the coordinates corresponding to the square, waits a brief interval for the screen to update,

and goes back to the beginning of the cycle.

4.1.3 Putting it all together

To recap, listing 4.3 shows the simplified pseudo-code for the agent’s behavior.

After some initialization, the agent runs in a continuous loop. Line 9 takes a screenshot of the
app under test, performing the observation step. The recording step (lines 12-23) covers checking if
the screen changed and updating the internal state of the agent. Lines 13-18 update the p associated
with the square tapped in the previous application screen, as well as those squares in its “flood fill
neighborhood”, as defined in Section 4.1.1. Note that here last_action represents the index associated
with the tapped square, while action ranges over the indices of squares in the neighborhood, and
memory acts as a two level map, indexed first by this action index, and then by a hash of the
particular image patch whose value p it retains. Similarly, lines 1923 look at whether the last
action executed resulted in any new application coverage, and adjust the expected rewards E, and
FE., depending on whether the last tap was in an unexplored or known clickable square.

The evaluation step is represented by lines 25-35. First, the agent decides whether to pick an
unexplored or known clickable action, based on whether F, or E. is higher. If unexplored, it picks
the specific square uniformly at random (lines 26-27). If known clickable, it first selects a random
pt € [0,1] and then, if there are any available actions in its current view of the screen with p > py, it
selects at random among those. If no such action exist, it selects a new, smaller, p; and tries again
(lines 28-35).
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last_action <~ None;
last_action_type < None;
last_screenshot <— None;
E, < 0;
E. + 0;
memory < {};
while true:
// 1. Observe;
screenshot < take_screenshot();
// 2. Record;
if last_action:
v < (screen_changed(screenshot) 7 1 : 0);
for (action, img_patch) < flood_fill_neighborhood(last_screenshot,last_action):
! <+ memory[action];
if hash(img-patch) € I
l[hash(img_patch)] < 0.5 X v + 0.5 x [[hash(img_patch)];
else:
l[hash(img_patch)] < 0.7 x v + 0.15;
cov_new = get_last_event_coverage();
if last_action_type = UNEXPLORED:
Ey, = covnew + v * Ey;
else:
E. = cov_new + v * E¢;
// 3. Evaluate;
if By > Eo:
action < random({a € memory | screenshot[a] ¢ memory/[a]});
last_action_type +— UNEXPLORED;
else:
valid_acts = {};
pt < 15
while empty(valid_acts):
pt < random({0, pt});
valid_acts = {a € memory | screenshot[a] € memory[a] A memory][a][hash(screenshot[a])]
> pe};
action < random(valid_acts);
last_action_type +— CLICKABLE;
// 4. Act;
send_to_emulator(action);
last_action < action;
last_screenshot < screenshot;

Figure 4.3: Agent’s operation
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Figure 4.4: Automatically changing application screen state

Finally, the agent acts by performing the tap action on the selected square in the emulator (line

37), and sets aside the current action and screenshot for the next iteration of its loop.

4.2 Detecting application activity

In the previous section, we mentioned that our agent detects whether its last action produced any
effect on the app under test by observing whether the image on the screen changed after the action.
The basic way we detect this is by comparing the screenshot taken after the previous action to that
taken after the current action, by subtracting the pixel values of the first to those of the second.
However, some care must be taken to make sure any difference is indeed due to the action just
executed.

First of all, we must introduce a delay between actions, to allow the application to respond to the
previous action. Otherwise, if we feed the application multiple taps in quick succession and observe
a change in the screen, we might not be able to differentiate which action caused the change. In
our prototype, we introduce a four second delay between actions, which we found necessary when
running apps on top of the default Android emulator inside an Amazon EC2 VM. This means that
our agent has a lower throughput of GUI events compared to a tool like Android Monkey, which can
produce events at a significantly faster rate, often ignoring their effects on the app until a crash or
a particular response is observed. However, note that the need to delay between actions is shared
by any automated testing tool which must examine the state of the application after every action,
and treat its internal operation in a purely blackbox manner. Relaxing this requirement via some
form of lightweight and robust runtime inspection would be an useful refinement for this technique

as a whole.
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Second, there are a number of cases in which two screenshots of the same app, taken a few
seconds apart, will be different, even if no user event has induced a changed in the application state.
Apps include GUI widgets that change appearance constantly, without user intervention, such as
animations, spinners, or even the system’s clock. Figure 4.4 shows a few example screens before and
after a tap in an inactive portion of the screen, where nonetheless the screen state has changed.

To compensate for this case, we actually take two screenshots between every two actions, one
at the exact midpoint S,, and one right at the end of the interval, before the next action, S..
We first look at the difference between S’, the end screenshot from the previous interval, right
before the current action a, and S, to determine whether the screen changed in response to a,
but subtract squares of the screen we know to be changing without GUI actions. We keep track of
such automatically changing portions of the screen by looking at the differences between S, and S,
marking those 50 x 50 squares (as in the tap grid of the agent) as changing without GUI actions.
Since the portions of the screen that are animated change over time, we decay this information slowly.
We keep two maps of constantly changing screen squares, only writing newly found changing squares
to the first, but acknowledging also those marked in the second. Every ten cycles of the agent, we
discard the second map, promote the first to the position of the second and create a new empty map
(meaning no square is considered automatically changing within it) for the first. Additionally, if the
maps would ever result in more than 70% of the screen being ignored as constantly changing, we
clear both immediately. This heuristic deals with the fact that splash screens and slow transitions
between app screens sometimes cause the entire screen to be marked as changing.

We selected image difference after trying a number of metrics related to method activity on the
app under test. One such alternative was to look at the number of methods, regardless of whether
they had been covered before or not, which executed soon after the point in time at which the agent
performed an action. Besides avoiding the requirement for application instrumentation, we chose
image difference because we found it to be less noisy in practice than method-execution based metrics.
We found that many real world apps perform significant computation in the background, unrelated
to user-triggered GUI events. The noise from this sort of computation was variable enough to drown
a signal derived from looking only at the number of app method invocations per second. Although
we could have tried to discriminate between background methods and GUI-triggered methods by
using an analogous technique to that which we use to detect autonomously changing screen state, we
found image difference to be in general a less noisy alternative to begin with, compared to method

execution, as a metric of the app’s response to GUI actions.

4.3 Evaluation

In this section, we evaluate the performance of the agent described in this chapter. We compare

it against a baseline version of the agent that produces taps uniformly at random in the same
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grid positions of the screen that the agent considers as valid actions. In Section 4.3.1 we present
three separate simulated applications that reward the agent for reaching distinct screens within the
simulated app, and compare both agents on the reward they are able to achieve over a certain
number of actions. In Section 4.3.2 we compare both agents on a set of real world applications taken
from the Google Play store. Our evaluation set-up instruments the apps under test using the Ella [5]
tool, to produce continuous method coverage information. We compare the agents based on method
coverage achieved over number of actions for these apps.

Finally, in Section 4.3.3, we discuss a few additional metrics related to our agent, such as the
number of distinct image patches it remembers by the end of the experiments of Section 4.3.2, for

each app.

4.3.1 Simulated apps

We compare our agent against the baseline randomly clicking agent on three separate simulated apps.
Each simulation is designed so that the agent receives a reward signal with value 10, interpreted
as method coverage, whenever a never before visited screen is reached. Each app is restarted after
200 consecutive actions from the agent, but the agent gets to keep its internal state and knowledge,
allowing it to explore states from the beginning.

The first app (Figure 4.5) is a series of distinct screens, each with two buttons in identical
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Figure 4.7: Simulated App 3: Binary tree

positions. The screens are ordered in series, such that clicking on the first button of each screen
transitions the app to the next screen, and the second button takes the app to the previous screen.
The first screen has no second (back) button, whereas the last has no button in the first (forward)
position. Figure 4.8a plots the performance of our agent against the random agent on an instance
of this simulated app with 50 distinct screens. We note that random exploration quickly gets stuck,
and over 500 actions it spends all of its time exploring the first 10 screens. This limitation is reached
even before the simulated app is reset to the initial screen at the 200 actions mark. The reason is
that, in every screen, besides a high chance of clicking on the background, the random agent has
exactly the same chance of hitting the next or the back button. Although our proposed agent has
no notion of which screen it is in, it will quickly recognize and avoid the background and, given the
choice, will prefer clicking on a button it hasn’t clicked on before, rather than one it has. This is
enough to allow it to greatly outperform random in this synthetic app.

The second simulated app (Figure 4.6) is composed of a series of pairs of screens. Each pair
is composed of two screens with eight buttons each, a click on each button takes the app to the
opposite screen of the pair, except from a single button on the second screen of the pair (selected
at random) which, when clicked, takes the simulated app to the next pair of screens. We built a
simulation formed by six such pairs of screens, and compared the performance of our agent against
the random agent on them. Figure 4.8b plots the results. Once again, our agent efficiently explores
the app, trying each button and finding all the screens within the first 400 actions. The random
agent, on the other hand, has not yet found the sixth pair after 2000 actions.

Finally, Figure 4.7 depicts the third simulated application: A binary tree of screens where each
screen has one button going directly to the root of the tree, one button each for each of the two
screens along each branch of the tree, and a final button that goes to the parent, or previous, screen.
Figure 4.8c plots the performance of our agent against the random agent over 5000 events on this
simulated app. Although this simulation is slightly tougher than the last two for our agent, it still
manages to significantly outperform random clicking.

We show these results on artificial navigation challenges to put into context the more challenging

task of exploring real applications, and to show that our agent is able to explore relatively complex
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Figure 4.8: Agent vs Random on simulated apps

flows without any explicit model of the apps’ navigational structure.

4.3.2 Google Play apps

We now describe the results of comparing our agent against the random agent on 15 real world
applications taken from the Google Play Store.

To select this dataset of popular real world Android applications, on May 8, 2016, we scraped the
Play store’s top 10 free apps lists for each of the following 22 different application categories: books
& references, business, comics, communication, education, entertainment, finance, health & fitness,
lifestyle, media & video, medical, music & audio, news & magazines, photography, productivity,
shopping, social, sports, tools, transportation, travel & local, and weather. These were are all
the Android app categories listed at the time in the Play store, excluding games, wallpapers and
Android Wear applications. We omitted the later three categories from consideration, since they have
markedly different Ul and user interaction patterns from other applications and are thus extreme
outliers for our approach. This gave us a list of 220 applications in total. We downloaded the
binaries for those 220 apps from the Play store between May 8, 2016 and Jan 17, 2017.

Due to limitations of the E11la tool, many of those binary apps (.apk files) could not be properly
instrumented to provide real time method coverage feedback, which we use as a metric in our
evaluation, and had to be discarded. This is not a limitation on our agent, which can exercise any
app which we can run in our emulator as long as we can take screenshots from it and send back
GUTI actions. It is instead a limitation of our evaluation methodology and the tools we use to gather
coverage information as part of that evaluation. Additionally, we had trouble downloading a few
apps from the Play store?, and a few of the apk’s we did manage to download and instrument would
not run on our Android emulator or would crash upon launch. Out of the original 220 apps: 39
(18%) failed to download, 126 (57%) failed to instrument and 9 (4%) failed to run (instrumented or

2The Play store, among other things, tries to limit downloads of apps that are not compatible with the devices
registered to a particular user’s Google account
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Table 4.1: Dataset of Apps

# | Package name Category | Rank | shalsum

1 com.indeed.android.jobsearch business 1st | bfle0f91{f5837c774d02cad4ab3a7b645e58569
2 com.duolingo.app education 1st | 06668905e29b98c970ad2f9721e5184a59423cb0
3 com.creditkarma.mobile finance 1st | ac997d182alead3dabc634d30097c0d26ee67c8a
4 com.goodrx medical 1st | 4b26cbaeb371cd280e275e77{8c552aeab67796e
5 com.surpax.ledflashlight.panel productivity 1st | 93cc38d0f37f06e3aebc94e6cd9Ib0a829b098cd6
6 com.snapchat.android social 1st | ca8bc8ea770cchb8e7cb4d80d6bbbc46974ef066f
7 com.yelp.android travel&local 1st | 900d23bf94c2e286a00fbab587ef5836157e95cf6

8 com.marvel.comics comics 2nd | Oca52ead4026a495569d361a9a65c01c7ccd822e
9 com.adpmobile.android business 3rd | 4cd44d2bb9c5{9631ce40f9258fb45dd5fd46£80
10 | com.instagram.android social 3rd | 60c795170a6aefc98f8bf0cc0d3del317bc64abs
11 | com.duapps.cleaner tools 3rd | 2e8b01c90a610b9c231£7228f57€9c91cbb4bb6d
12 | com.squareup business 4th | 67053bfb213f5d5c93bdfc5ddfc3b49d946¢2563
13 | com.happy2.bbmanga comics 4th | e4137b99b83771591e1d7497{7b8fc5ad538da7f
14 | com.wf.wellsfargomobile finance 4th | 8a439b8177ae60880b489afd56dabb2a3df1a740
15 | com.cvs.launchers.cvs health&fitness 4th | ¢8839592ff9fcb{f83e7b66{2340e17967e¢53703

not), leaving 46 (21%) for our experiments.

Due to time and resource limitations, we restricted ourselves to the topmost 15 of those remaining
apps, defined as follows: We went over the original 220 apps, looking first at the top app from each
category, followed by the top two app from each category, and so on and so forth, in a round-robin
fashion, until we had 15 apps which could be downloaded, instrumented and would run without
issue. Table 4.1 lists those apps by package name, category, rank within the category and SHA1
hash of the .apk file for the specific version we tested. The experiments described in this section and
the next were performed on this final set.

Figure 4.9 shows the coverage achieved by running both our agent and the random agent on each
of the 15 apps for 5000 actions, averaged over four runs for each condition. The x-axis represents the
cumulative number of actions (taps on the screen) performed by each agent. The y-axis represents
the cumulative method coverage (the number of distinct methods executed) at that point, with the
left y-axis showing the total number, and the right y-axis showing it as a percentage of the total
number of methods inside the app’s APK file. Note that the method coverage shown in the figures
does not start at 0, since some portion of the code for each app is executed at installation or when
starting up the application’s initial screen, before any action by the agent.

We use method coverage since Google Play applications do not have enough debug information
to recover line coverage metrics. Please note that since APK files include all third-party libraries
used by the app, other than the standard Android libraries, these apps can contain large portions
of unreachable code which skews the coverage percentage metric to be fairly low, even if we could
achieve perfect exploration of the application behavior. An additional source of uncovered code is
due to some of the apps having significant functionally behind a log-in or sign-up screen, or requiring
complex set up to enable some of their functionality. However, this limitation applies equally to our
agent and the random agent in their present form, allowing for a fair comparison.

For both our agent and the random agent, we had the app under test reset after every 200 actions
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of the agent. To ensure that the app properly reset to the same initial state each time, we didn’t
merely restart the app, but fully restored the emulator to a system snapshot taken before the app
was installed, and then installed the corresponding APK again, after every 200 action “episode”.
Additionally, if the app or emulator crashed, for any reason, we reset the app before the agent’s next
observation. In both cases, the internal state of our agent was not cleared or reset in any way, only
the state of the app under test.

To control for the agent’s randomness and application non-determinism, we ran each condition
four times for each app, all of the numbers and plots in this section and the next are from taking
the average of those four runs in each case.

We can see in Figure 4.9, that our agent clearly outperforms random in 9 out of 15 apps (4.9b,
4.9e, 4.9f, 4.9¢, 4.9h, 4.9, 4.9m, 4.9n and 4.90), either in total method coverage achieved or the
number of actions required to reach such coverage. For no app does our agent under-perform with
respect to the random agent. Additionally, a few of the apps (4.9¢, 4.9d and 4.91) are such that
either agent usually achieves close to full coverage during the first fifth of our runs, in which case
our agent has not had much time to learn from previously seen screenshots.

Of the remaining three apps, they each exhibit one or two of the following three properties, which
make it harder for our agent to learn to explore them. First, 4.9a and 4.9j quickly run into the log-in
or sign-up screen wall, meaning most of the exploration has to go around the main flow (e.g. by
testing the password reset feature, or by finding menu options that are available without log-in).
Second, the app might have particularly cluttered screens, where our agent’s flood fill technique
is rendered useless by large groups of visually irregular widgets packed together with almost no
background squares. App 4.9a exhibits this problem due to a large number of forms, which are
also hard to explore in general, while app 4.9k runs into this issue due to a substantial number of
embedded ads taking over otherwise unused screen real state. Finally, app 4.9j has a dynamically
changing background which, on the main log-in screen, takes over 70% of the screen, breaking our
heuristic for detecting constantly changing portions of the screen. Figure 4.10 shows this screen at
three different times, note that not only the color of the background is different every time, but it
is also a gradient background, which our current implementation of flood fill does not handle well.

In general, the following improvements should help our agent deal with cases like the ones we
just discussed: improve our similarity metric for flood fill to detect visually similar areas that are not
made of identical single color squares, and allow our agent to select higher-level actions in addition

to taps, such as “type email”, to get around sign up forms.

4.3.3 Memory depth

Another interesting dimension on which to evaluate our approach is the depth and total size of
the agent’s memory. As described back in Section 4.1 and shown in Figure 4.1, our agent keeps a

memory of seen image patches as a map associating each position in the grid of squares defining
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English (United States) v English (United States) v English (United States) v

Instagrom Jnstagrom Instagram

Sign up to see photos and videos Sign up to see photos and videos Sign up to see photos and videos
from your friends. from your friends from your friends.

3 Log in with Facebook 3 Log in with Facebook 3 Log in with Facebook
OR OR OR
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you agree to our Terms & Privacy Policy. ‘erms & Privacy Policy By si to our Terms & Privacy Policy.

Already have an account? Log in. Already int? 3 Already have an account? Log in.

Figure 4.10: com.instagram.android’s always changing background

available actions with a list of pairs. Each pair matches a seen image patch with a value p indicating
how likely the agent thinks that such a patch in that grid location will be clickable in the app.
Figure 4.2 gives the depth and size of this data structure by the end of the 5000 actions for each
Google Play app in our experiments. As in the previous section, all the numbers are averages over
four runs, explaining the fractional numbers of pairs.

The depth number is interesting, as it reflects the maximum number of distinct image patches
found by the agent for a single grid location at the end of the run. Given that this number is some-
times over 100 different image patches, and most apps do not have a hundred different underlying
activities, this is additional evidence that a similarity metric other than equality would work better
to let the agent know whether or not it should treat a previously unseen patch as clickable, given
the p calculated for other “similar” patches in that same grid location. Such an extension is left for
future work.

Additionally, the total size of the agent memory is significant as a measure of its resource con-
sumption. We find that, when storing only a hash of the image patch in question as an integer value
and the float value p, the size of the memory in bytes is actually fairly small, on the order of tens
or hundreds of KB for most apps, even after sampling 5000 screenshots. At that size, the memory
usage of our agent is actually dominated by the space required to process the current screenshot for
each cycle, rather than the persistent agent memory. Some of our earliest versions of the agent used
to store an actual representation of the image patch in question rather than a hash, requiring about
7,504 bytes per pair in the agent memory. For com.indeed.android. jobsearch, for example, this
would have meant that the agent would use > 142 MB of RAM to store the memory data structures.

The numbers above indicate that, using hashes to encode the image patches seen previously,
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Table 4.2: Depth and Total Size of the Agent’s Memory

# Package name Memory depth (in pairs) | Memory size (in pairs) | Memory size (in KB)
1 com.indeed.android.jobsearch 43.5 18962.25 | 151.7 KB
2 com.duolingo.app 89 18721.25 | 149.8 KB
3 com.creditkarma.mobile 93.25 4324.5 | 34.6 KB
4 com.goodrx 32.5 15047.75 | 120.4 KB
5 com.surpax.ledflashlight.panel 13.5 1866.75 | 14.9 KB
6 com.snapchat.android 136.75 8327 | 66.6 KB
7 com.yelp.android 80 12770.75 | 102.1 KB
8 com.marvel.comics 61.75 6143.25 | 49.1 KB
9 com.adpmobile.android 22 8699.5 | 69.6 KB
10 com.instagram.android 41.5 13831.75 | 110.7 KB
11 com.duapps.cleaner 41 12657 | 101.3 KB
12 com.squareup 128 5367.25 | 42.9 KB
13 com.happy2.bbmanga 63.25 9574.5 | 76.6 KB
14 com.wf.wellsfargomobile 40.5 10211.75 | 81.7 KB
15 com.cvs.launchers.cvs 80682 14562 | 116.5 KB
Average 5437.9 10737.8 | 85.9 KB
Median 61.75 10211.75 | 81.7 KB

our agent is quite reasonable in terms of memory requirements. This is true even over a long app

exploration session. Thus, it is practical to consider our agent as a replacement for Android monkey

or other fully-random exploration agents, which use essentially constant memory.




Chapter 5

Related Work

This chapter briefly describes some of the most significant work related to the problems and tech-
niques explored in the previous chapters.

We began the present work by describing the problem of obtaining platform specifications to be
consumed by a whole-program static analysis system targeting applications embedded in a complex
framework. Section 5.1 briefly describes other such static analysis systems, their use of specifications,
and a complementary technique to our own for specification mining.

In Chapter 2, we presented a technique to automatically mine such specifications using dynamic
analysis. Section 5.2 explores other approaches to dynamic specification mining. Section 5.3 gives
a brief overview of dynamic taint tracking analysis techniques that are similar to the base taint
tracking technique used in our specification mining. Section 5.4 notes a few tools which can be used
for tracing executions, similar to DroidRecord.

Two other contributions of this work, described in Chapters 3 and 4, are forms of automated
app exploration and testing. Section 5.5 describes alternative approaches to mobile GUI testing and
gives an overview of that area. Section 5.6 mentions relevant work related to Delta Debugging and
MDPs, both of which we used as part of the technique for minimizing random GUI event traces
described in Chapter 3.

5.1 Whole-program static taint analysis and its specifications

A number of techniques and tools [30, 54, 81, 70, 105] have been developed for whole-program
taint analysis. See [94] for a survey of work in this field. For applications that run inside complex
application frameworks these analyses often must include some knowledge of the framework itself.
F4F [102] is a scheme for encoding framework-specific knowledge in a way that can be processed by
a general static analysis. In F4F, any models for framework methods must be written manually. In

contrast, we are most interested in techniques that produce framework models automatically, with
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minimal human effort. The trade-off is that, for the time being, FAF models, and those of other
general manual framework modeling languages, are potentially more expressive than the kinds of
specifications we are able to mine using Modelgen.

Flowdroid [8] is a context-, flow- and object-sensitive static taint analysis system for Android
applications, which can analyze Android platform code directly. By default, it uses models or ‘short-
cuts’ for a few platform methods as a performance optimization and to deal with hard-to-analyze
code. Flowdroid’s shortcuts are also information-flow specifications of a slightly more restrictive
form than that used by Modelgen. Thus, it seems likely the FlowDroid shortcuts could also be
mined successfully from tests.

The technique presented in [14] uses static analysis to infer specifications of framework methods
such that those specifications complete information flow paths from sources to sinks. Since this
technique does not analyze the code of the framework methods, it can and does suggest spurious
models, which must be filtered by a human analyst. This technique is complementary to the one
we described in Chapter 2; DroidRecord can be used to validate models inferred by this technique.
There has also been some previous work on identifying sources and sinks in the Android platform
based on the information implicitly provided by permission checks inside API code [36, 9, 12] or
by applying machine learning to some of the method’s static features [90]. This work could be
combined with our method for inferring specifications to enable fully automatic explicit information

flow analysis (i.e., with no manual annotations).

5.2 Dynamic techniques for creating API specifications

Many schemes have been proposed for extracting different kinds of specifications of API methods or
classes from traces of concrete executions. Closest to the work presented in this dissertation is work
on producing dynamic dependence summaries of methods as a way to improve the performance of
whole-program dynamic dependence analysis [85]. Dependence analysis of some form is a prerequisite
for explicit information flow analysis, since it involves determining which program values at which
point in the execution are used to compute every new program value. Although our use case, and
thus evaluation, is very different than that of [85], the specifications produced are somewhat related.
In [85], a specification that a flows to b means literally that a location named by a is used to compute
a value in a location named by b. In our framework, a specification that a flows to b means that
some value reachable from a is used to compute some value reachable from b. Thus, the major
difference is that we “lift” the heap-location level flows to abstract flows between method arguments
and between arguments and the return value of the method, as described in 2.4.3. This lifting step
requires additional infrastructure to maintain colors in the dynamic analysis, an issue that does not
arise in dynamic dependence analysis. The added abstraction reduces the size of the summaries and

allows us to generalize from fewer traces, though with a potential loss in precision, a trade-off which
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our results suggest is justified.

Using dynamic analysis to compute specifications consumed by static analysis has also been heav-
ily explored. However, most such specifications focus on describing control-flow related properties
of the code being modeled. A large body of work (e.g. [16, 4, 108, 71, 114, 112, 27, 41, 73, 72, 66])
constructs Finite State Automata (FSA) encoding transitions between abstract program states.

Other approaches focus on inferring program invariants from dynamic executions, such as method
pre- and post-conditions (Daikon [84, 34, 35]), array invariants [83] and algebraic “axioms” [55].
Data from dynamic executions has also been used to guide sound automated equivalence checking
of loops [100]. Another relevant work infers static types for Ruby programs based on the observed
run-time types over multiple executions [57]. Finally, program synthesis techniques have been used
to construct simplified versions of API methods that agree with a set of given traces on their input

and output pairs [89].

5.3 Dynamic taint tracking and related analyses

Dynamic taint tracking uses instrumentation and run-time monitoring to observe or confine the
information flow of an application. Many schemes have been proposed for dynamic taint tracking
[51, 26, 31, 10]. An exploration of the design space for such schemes appears in [96]. Dytan [26] is a
generic framework capable of expressing various types of dynamic taint analyses. Our technique for
modeling API methods is similar to dynamic taint tracking, and could in principle be reformulated to
target Dytan or some similar general dynamic taint tracking framework. However, heap-reachability
and all of our analysis would have to be performed online, as the program runs, which might
exacerbate timing dependent issues with the Android platform.

As mentioned previously, dependence analysis is also related to information flow analysis, and
the large body of work in dynamic dependence analysis is therefore also relevant to our own (e.g.
[104, 56] and references therein).

5.4 Tools for tracing dynamic executions

Query languages such as PTQL [43] and PQL [76] can be used to formulate questions about program
executions in a high-level DSL, while tools like JavaMaC [63], Tracematches [1], Hawk [28] and
JavaMOP [59] permit using automata and formal logics for the same purpose. Frameworks like
RoadRunner [39] and Sofya [64] allow analyses to subscribe to a stream of events representing the

program execution as it runs.
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5.5 Automated GUI testing tools for mobile applications

Many tools exist for generating GUI event traces to drive Android apps. These tools, sometimes
collectively called ‘monkeys’, are commonly used to automatically generate coverage of an app’s
behavior or to drive app execution as part of a dynamic analysis system.

Dynodroid [74] improves on the standard Android Monkey by automatically detecting when the
application registers for system events and triggering those events as well as standard GUI events.
It also provides multiple event generation strategies which take the app context into account and it
allows the user to manually provide inputs when exploration is stalled (e.g. at a login screen). Tools
such as GUIRipper [2]/ MobiGUITAR [3], AppsPlayground [91], ORBIT [115], SwiftHand [21],
and A3E [11] dynamically crawl each app while building a model which records observed states,
allowed events in each state, and state transitions. The generated model is used to systematically
explore the app. PUMA [53] provides a general framework over which different model-based GUI
exploration strategies can be implemented. ACTEve [6] is a concolic-testing framework for Android,
which symbolically tracks events from the point in the framework where they are generated, up
to the point at which the app handles them. EvoDroid [75] generates Android input events using
evolutionary algorithms, with a fitness function designed to maximize coverage. Brahmastra [15] is
another tool for driving the execution of Android apps, which uses static analysis and app rewriting
to reach specific components deep within the app. Application rewriting can bypass many difficulties
related to GUI exploration, but may produce execution traces which are not truly possible in the
unmodified app.

A recent survey paper by Choudhary et al. [22] compares many of the tools above and seems to
suggest that the standard Android Monkey is competitive in coverage achieved in a limited time.
One explanation is that Monkey compensates for what it lacks in sophistication by maintaining a
higher rate of event generation. Of course, this result could also be the effect of comparing research
prototypes against an industry standard tool, which performs more robustly even while using less
sophisticated techniques. A third explanation is that Monkey’s robustness, and therefore efficacy,
comes from the fact that it treats apps under test in a strong black box manner, and is thus less
sensitive to implementation details of the application (e.g. programing language, UI framework or
server vs client side code partitioning) compared to the more sophisticated tools. In either case, the
effectiveness of the standard Monkey to achieve high coverage, along with the relative noisiness of
the traces produced, justifies our focus on trace minimization.

In addition to general test input generation tools for Android, many dynamic analysis tools
include components that drive exploration of the app being analyzed (e.g. [67, 82, 69, 92]). Input
fuzzers have been used to generate some types of application inputs for mobile apps, such as inter-
app communication messages [95] or structured input to test for invalid data handling [116]. To
our knowledge, fuzzers haven’t been explored in the context of generating GUI event traces or GUI

exploration in general.
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In addition to minimizing traces generated by Monkey-style tools, our approach is also applicable
to minimizing recorded user-interaction traces. Tools such as RERAN [44], Mosaic [52] and VALERA
[58] could be used to record the actions of a human tester as an input event trace for our method.

Besides automated input generation tools, GUl-aware tests for Android applications tend to be
encoded as testing scripts in frameworks such as Selendroid [99], Robotium [93], Calabash [111] or
Espresso [48]. These frameworks allow scripting specific interaction scenarios with an Android app
and adding checks to generate an effective application test suite. A promising line of future work is
to automatically transform automatically-generated and minimized execution traces into test scripts

expressed in any of these frameworks, as a way to provide a starting point for test suite writers.

5.6 Delta debugging and MDPs

The core of our event trace minimization algorithm from Chapter 3 is based on delta debugging.
Delta debugging is a family of algorithms for sequence minimization and fault isolation, described
originally by Zeller et al. [117, 119]. The technique has been extended to many scenarios [118, 20,
80, 17].

The work by Scott et al. [98, 97], extends delta debugging to minimize execution traces which
trigger bugs within non-deterministic distributed systems. They run standard delta debugging over
the traces of external (user triggerable) events. Then, to check each subtrace of external events,
they instrument the system under test and explore the space of possible interleavings of internal
events. By contrast, we treat non-deterministic Android applications in a black box manner and
rely on modeling the probability of success of traces of external events, independently of the internal
workings of the system being tested. For the specific case of minimizing GUI event traces in Android
applications, an important source of non-determinism turns out to be responses from network services
outside our control, justifying the need for a blackbox approach. In other scenarios, the tradeoff
between both approaches likely depends on the complexity of the internals of the system being tested
and the ‘success’ probability of the original trace to be minimized.

A Markov Decision Process is a standard model within the reinforcement learning literature (see
e.g. [60, 103]). MDPs are used to solve a variety of problems across multiple domains, including
optimizing resource consumption in mobile phones [19]. To the best of our knowledge, we are the

first to apply MDPs to the problem of trace minimization in testing.



Chapter 6

Conclusion

Mobile apps, like many modern applications, exist embedded inside a large and complex platform.
Static analysis of these apps then entails analysis or modeling of the platform. Since these platforms
often pose significant challenges to whole-program static analysis techniques, the usual approach
is to provide specifications of the platform methods, which depend on the type of static analysis
being performed. We presented a technique for mining a particular class of specifications, those to
be consumed by a whole-program static explicit information flow analysis system, using dynamic
analysis techniques over a set of collected concrete program executions. We instantiated this tech-
nique in Modelgen, a tool targeting the Android platform and a concrete existing static analysis
system (STAMP). Modelgen specifications are highly precise and provide high recall with respect to
our existing manual models. They also allow our static analysis to find true flows it misses despite
years of manual model construction effort. Furthermore, such specifications can be inferred from a
relatively small set of execution traces.

We propose that similar techniques, based on dynamic analysis, can be used to construct different
types of specifications for other kinds of static analysis clients. As we mention in Chapter 5, such
techniques exist for mining specifications as diverse as: source and sink annotations, method pre- and
post- conditions, and FSA-based encodings of program state transitions. We observe that automatic
mining of specifications from concrete executions is an effective way to significantly reduce the manual
effort involved in modeling the platform inside which the apps to be analyzed run, and that we expect
the types of specifications covered by similar approaches to increase over time.

At the same time, producing the executions that trigger the full range of behaviors required
to infer useful specifications requires either a comprehensive test suite or a way to systematically
explore the app or platform behavior. If the corresponding test cases or executions must be manually
generated, then we have merely transfered the required human effort from writing specifications to
writing tests. The manually written test cases, for example, act as an implicit specification of the

platform behaviors. We thus also explored the problem of automated testing of mobile applications.
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Figure 6.1: Combining specification mining and automated testing

First, we presented a technique for minimizing random GUI event traces, generated by tools such
as Monkey. As mentioned in Chapter 5, this is a useful technique, since others have observed that
Monkey performs surprisingly well in practice in terms of the coverage obtained and its robustness
to new real-world apps. Our GUI event trace minimization technique in particular is based on a
delta debugging extension. It handles non-determinism, which we have shown is a pervasive issue in
app behavior. We have also presented two strategies for efficient trace selection: a custom heuristic
and one based on modeling the problem as an MDP. Evaluation of our trace minimization method
shows that the resulting traces are 100x smaller while still reaching the same activity with high
probability.

Second, we presented a new tool for automated app exploration, which preserves Monkey’s
robustness by treating the app’s code as a black box and reacting exclusively to changes being
shown on the screen in response to the tool’s actions. We show that this tool outperforms random
testing for many real world apps, and doesn’t seem to be at a disadvantage for any particular app.
Although our method for evaluating the effectiveness of this agent required app instrumentation,
preventing us from including some real world apps in our evaluation, the tool itself does not need
any changes to the APKs it takes as input and is insensitive to details of the app internals, such
as programming language, Ul toolkit, webview/OpenGL/Native view rendering, or our ability to
instrument or analyze the code.

It is important to note that automated testing methods in general, and our techniques in par-
ticular, aim to generate relevant executions or test cases using only the executable application itself
as input. This means that, in combination with specification mining techniques that take concrete
executions as input, we can significantly reduce, and might be able to eventually eliminate, the
manual effort involved in modeling the platform as part of a whole-program static analysis system.

We believe future work on both mining new and more expressive kinds of specifications, as well
as on faster and more comprehensive automated testing, will eventually lead us to systems like
the one pictured in Figure 6.1. Here, the application itself is fed to an automated testing module,
which generates the required test cases or execution traces to drive a specification mining module.
This later module generates specifications of the platform or environment on which the application

runs, which are then fed to a static analysis system, together with the original application, which
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produces some useful information about the application. This information can be used for detecting
potentially malicious behavior, as STAMP does, bug finding, or other tasks such as automatically

generating documentation about the application’s behavior.
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