Measuring Empirical Computational Complexity
by

Simon Fredrick Goldsmith

B.S. (Carnegie Mellon University) 2001

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alex Aiken, Co-chair
Professor Koushik Sen, Co-chair

Professor Rastislav Bodik
Professor Dor Abrahamson

Fall 2008

The dissertation of Simon Fredrick Goldsmith is approved:

Co-chair Date

Co-chair Date
Date
Date

University of California, Berkeley

Fall 2008

Measuring Empirical Computational Complexity

Copyright 2008
by

Simon Fredrick Goldsmith

Abstract

Measuring Empirical Computational Complexity

by

Simon Fredrick Goldsmith

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alex Aiken, Co-chair

Professor Koushik Sen, Co-chair

Scalability is a fundamental problem in computer science. Computer scientists
often describe the scalability of algorithms in the language of theoretical computational
complexity, bounding the number of operations an algorithm performs as a function of the
size of its input. The main contribution of this dissertation is to provide an analogous
description of the scalability of actual software implementations run on realistic workloads.

We propose a method for describing the asymptotic behavior of programs in prac-
tice by measuring their empirical computational complexity. Our method involves running a
program on workloads spanning several orders of magnitude in size, measuring their perfor-
mance, and fitting these observations to a model that predicts performance as a function of
workload size. Comparing these models to the programmer’s expectations or to theoretical

asymptotic bounds can reveal performance bugs or confirm that a program’s performance

scales as expected.

We develop our methodology for constructing these models of empirical complexity
as we describe and evaluate two techniques. Our first technique, BB-TRENDPROF, con-
structs models that predict how many times each basic block runs as a linear (y = a + bx)
or a powerlaw (y = az’) function of user-specified features of the program’s workloads. To
present output succinctly and focus attention on scalability-critical code, BB-TRENDPROF
groups and ranks program locations based on these models. We demonstrate the power of
BB-TRENDPROF compared to existing tools by running it on several large programs and
reporting cases where its models show (1) an implementation of a complex algorithm scal-
ing as expected, (2) two complex algorithms beating their worst-case theoretical complexity
bounds when run on realistic inputs, and (3) a performance bug.

Our second technique, CF-TRENDPROF, models performance of loops and func-
tions both per-function-invocation and per-workload. It improves upon the precision of
BB-TRENDPROF’s models by using control flow to generate candidates from a richer fam-
ily of models and a novel model selection criteria to select among these candidates. We
show that CF-TRENDPROF’s improvements to model generation and selection allow it to
correctly characterize or closely approximate the empirical scalability of several well-known
algorithms and data structures and to diagnose several synthetic, but realistic, scalabil-
ity problems without observing an egregiously expensive workload. We also show that
CF-TRENDPROF deals with multiple workload features better than BB-TRENDPROF. We
qualitatively compare the output of BB-TRENDPROF and CF-TRENDPROF and discuss

their relative strengths and weaknesses.

Professor Alex Aiken, Co-chair

Professor Koushik Sen, Co-chair

Dedication

To my wife Lili for her patience, love, and support.

Contents

1 Introduction

2 Basic Block TrendProf

2.1 Measuring Empirical Computational Complexity
2.1.1 Execution Counts
2.1.2 Other Notions of Location

2.2 AnExample.

2.3 Implementation of BB-TRENDPROF
2.3.1 Summarizing with Clusters
2.3.2 Powerlaw Fits Measure Scalability

2.4 Results. e
2.4.1 Programs Have Few Clusters
2.4.2 Simple Programs Have Simple Profiles
2.4.3 Confirming Expected Performance of the

Implementation of a Complex Algorithm

2.4.4 Quantifying the Improvement of Heuristic Optimizations
2.4.5 'This List Traversalisa Bug
2.4.6 Focusing on Scalability-Critical Code
2.4.7 An Empirical Measure of GLR Performance
2.4.8 This List Traversal sNot aBug

2.5 Assessment of BB-TRENDPROF

Control Flow TrendProf

3.1 Overview e

3.2 Example oL

3.3 Gathering Data
3.3.1 Measuring Performance,
3.3.2 Workload Data

3.4 From Data to Models
3.4.1 Direct Models
3.4.2 Derived Models
3.4.3 Choosing the Best Model

10
11
12
13
13
14
14
17
20
22
22

23
25
26
27
27
28
30

3.4.4 Interleaving Computation of Derived Models and Best Models .
3.4.5 Output
3.5 Micro-benchmarks L L
3.5.1 An Exact Bound for Square Matrix Multiply
3.5.2 Tiled Matrix Multiply is Cubic
3.5.3 Amortized Analysis of Doubling Lists
3.5.4 Empirical Performance of a Hash Table
3.5.5 Insertion Sort’s Cost Depends on More Than Input Size
3.5.6 Approximating the Cost of Quicksort
3.5.7 Dijkstra’s Algorithm Using a Fibonacci Heap
3.6 Diagnosing Data Structure Problems
3.6.1 Deterministic Quicksort Pivot L.
3.6.2 Bad Hash Function
3.6.3 Overfull Hash Table
3.7 Large Benchmarks
3.7.1 Workloads and Experimental Setup
3.7.2 Precise Models in Terms of Multiple Features
3.7.3 Following Cost through the Call Graph
3.7.4 Performance of Complex Algorithms in Large Programs
3.7.5 Performance Trends Depend on Workload Distribution
3.8 Count versus Time
3.9 Comparing CF-TRENDPROF with BB-TRENDPROF
3.10 Future Work e
3.10.1 Combining Strengths of BB-TRENDPROF and CF-TRENDPROF . .
3.10.2 What Is the Distribution of The Error Terms?
3.10.3 A More Robust Class of Models
3.10.4 Inferring Contexts
3.10.5 Improved Handling of Recursion
3.10.6 Toward Modeling Time
3.10.7 Outliers and the Program as a Feature Detector for Workloads . . .

Threats to Validity
4.1 The Importance of Workloads
4.2 Performance Is Not Always
a Function of Workload Features
4.3 Inability to Find the Right Model To Fit
4.3.1 Limitations of the Powerlaw Fit.
4.3.2 Limitations of CF-TRENDPROF’s Model Selection

Related Work

5.1 Profilers L

5.2 Empirical Performance Models L.
5.2.1 Modeling Micro-architecture Parameters

5.3 Performance Models by Simulation,
5.3.1 Simulation of Distributed System Performance

iii

62
66
68
69
71
74
77
80
85
88
96
97
99
100
105
108
112
117
125
132
135
136
144
144
145
146
147
148
148
149

150
151

153
154
155
157

5.3.2 Simulation of Embedded System Performance
5.3.3 Statistical Models Versus Simulation
5.4 Performance Models from Static Analysis
5.4.1 Analyzing Data Structures

6 Conclusion

A Regression

A.1 Model Construction with Regression

A.1.1 Linear Models
A.1.2 Constant Models . . .
A.1.3 Powerlaw Models . . .
A.1.4 Numerical Stability . .

A.1.5 How good is a model?
B Proof of Cluster Theorem

Bibliography

iv

172

175
175
175
176
176
176
177

179

181

Acknowledgments

I would like to thank the following people, in no particular order. Johnathon
Jamison and Armando Solar-Lezama for trying TRENDPROF; Karl Chen for trying and
helping debug TRENDPROF, a great help; John Kodumal for feedback about banshee;
Scott McPeak for feedback about elsa; Adam Chlipala, Robert Johnson, Matt Harren and
Jeremy Condit for feedback on early drafts of a paper about this work; Jimmy Su, Jonathan
Traupman, and Joseph Dale for useful discussions; Daniel Wilkerson for our collaboration
and for good advice; Alex Aiken for all the good stuff that advisers do; the Open Source
Quality group at Berkeley for listening to and helping me improve many half-baked talks;
the people who helped make grad school fun including Matt Harren, Jeremy Condit, John
Kodumal, Tachio Terauchi, Wes Weimer, Scott McPeak, and Daniel Wilkerson; my wife
and family for their support and encouragement.

Parts of this dissertation were previously published in the Proceedings of the the
6th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering [GAWO07]. Chapters 2 and 4, as
well as Appendices A and B are derived from material that appeared in that paper. That
publication and thus those sections arose from joint work with Daniel S. Wilkerson and
my adviser Alex Aiken. Daniel Wilkerson suggested powerlaw fitting and assisted with the

architecture and implementation of BB-TRENDPROF.

Chapter 1

Introduction

Scalability is a fundamental problem in computer science. Recent trends towards
more information, more computational units, richer media, smaller devices, and larger sys-
tems (with more potential for unanticipated component interactions) push issues of scal-
ability to greater prominence. Unfortunately, scalability problems often do not manifest
themselves until a program is run at scale: on large workloads, at heavy load, or on many
nodes.

Computer scientists often describe the scalability of algorithms in the language
of theoretical computational complexity, bounding the number of operations an algorithm
performs as a function of the size of its input. The main contribution of this dissertation
is to provide an analogous description of the scalability of actual software implementations
run on realistic workloads.

We propose a method for describing the asymptotic behavior of programs in prac-

tice by measuring their empirical computational complexity. Our method involves running

a program on workloads spanning several orders of magnitude in size, measuring their per-
formance, and fitting these observations to a model that predicts performance as a function
of workload size. We rely on the user to provide workloads and describe them with features,
some quantity upon which performance depends — for example, size in bytes, number of
abstract syntax tree nodes, or number of edges in a graph. As we run the program on
these workloads, we measure the number of operations performed by each location (e.g.,
basic block, loop, function) in the program. Finally, for every location, we automatically
construct statistical models that predict number of operations as a function of workload fea-
tures. Comparing these models to the programmer’s expectations or to theoretical asymp-
totic bounds can reveal performance bugs or confirm that a program’s performance scales
as expected.

This work combines strengths of theoretical asymptotic analysis of algorithms
with strengths of empirical profiling to yield a methodology that complements both. The
strength of theoretical asymptotic analysis is its ability to reason about algorithms as the
size of the problem on which they operate becomes large. However, how an algorithm
fits into the context of a larger program and how the program’s actual workloads exercise
this algorithm are harder questions to approach analytically. In contrast, the strength of
profilers like gprof [GKMS82] is their ability to focus on an actual workload and account for
how much of that workload’s cost is attributable to which program locations. What profilers
miss, though, is a sense of how the cost of a location changes as workloads change — they
say nothing about workloads on which the program was not run. This dissertation’s models

of empirical computational complexity seek to combine the empiricism of a profiler with the

generality of a big-O bound: we focus on actual workloads and consider the performance of
each location in the context of the rest of the program while creating performance models
that predict performance on novel workloads.

According to a careful study that measured a large system [AKLWO02], only a small
portion of the input space tends to account for much of the work a program does. They

offer the following scenario based on their experience.

[T]he theoretical size of the input space might be 105, but even after record-
ing every input that occurred during a 12 month period, the number of distinct
inputs that were actually observed numbered only in the tens of thousands. Fur-
thermore, it is not uncommon for only several thousand inputs to correspond to
more than 99% of the probability mass associated with the input space.

Their observation underscores one of the recurring themes in this dissertation: that perfor-
mance depends on the empirical distribution of workloads and that this distribution need
not be uniform nor cause performance to conform to theoretical bounds. Indeed, we show
several examples of complex algorithms whose empirical performance ranges from sometimes

different to entirely different from its big-O bounds (Sections 3.5.5, 3.5.7, 2.4.4, 2.4.7).

Example

The following code illustrates how our combination of empiricism with generality

leads to a useful, novel perspective.

node * last_node(node *n) {
if (!n) return NULL;
while (n->next) n = n->next;
return n;

From a performance perspective, this programming idiom looks suspicious: it is finding the

last element in a list in time linear in the list’s length. Adding a pointer directly to the

last element in the list would admit an obvious constant time implementation. Of course,
if the list’s size is a small constant, the performance impact of the linear search is likely
negligible, and adding the pointer might not be worth the cost in space or code complexity.
On the other hand, if the lists tend to be long, and especially if their length increases with
the size of the program input, then use of this idiom constitutes a performance bug.

The crucial information is how this list is used in the context of the rest of the
program and how the workloads of the program exercise it. The code above is from a C
parser used in a program analysis system [KA05] and is called from a list append function
to construct lists of compound initializers. In practice the sizes of the lists increase as inputs
grow larger, but unless an input makes extensive use of compound initializers, last_node
will not be particularly high on the list of what a typical, gprof-style profiler reports. On
a workload with lots of long compound initializers, however, the unreasonable performance
of this little function suddenly becomes apparent. We call this phenomenon a performance
surprise. In contrast, we found a similar linear-time list append in a C and C++ front-
end [MNO04] that turned out to be benign: the lists are so small in practice (and depend on a
quantity that is unlikely to be large) that use of this idiom does not substantially contribute
to the overall performance of the system. Our technique automatically distinguishes these

two different situations.

Core Assumptions

Our approach to modeling empirical computational complexity makes the following
assumptions about the programs we profile. To the extent to which these assumptions do

not hold, this work is not applicable.

o Workloads exist. The user can provide discrete workloads on which to run their
program. As few as thirty workloads are enough to characterize programs with well-
behaved performance or find the general trends in more difficult programs. However,
given the lack of guarantees in this space and the often noisy relationships of perfor-
mance to workload features, we generally opt for several hundred workloads ranging

in size from small to large.

e The workloads are representative of the distribution of all interesting workloads for
the program. The assumption is not trivial [AKLWO02], but any serious investigation
of program’s performance must be grounded in an understanding of the distribution

of its workloads.

o Workload features exist. The user can provide some quantities that describe a work-

load and are easy to compute.

Design Constraints

There are two design constraints that bear mentioning since they rule out many

techniques for constructing models.

e Models must be interpretable. A human must be able to grasp what a model says

about code’s performance and relate it to her understanding of her code.

e Model building must be automatic. Our technique must build thousands of models

without human intervention.

The ultimate consumers of our models of empirical computational complexity are
humans. As we show, the utility of our models is in their ability to describe the empirical
performance trends of actual implementations on realistic workloads and enable a human
user to compare these descriptions to her expectations. Thus, we are unwilling to consider
statistical techniques that do not yield interpretable models.

Our experiments involve using our technique to build performance models for tens
of thousands of locations (e.g., basic blocks, functions, loops) in a program and considering
hundreds of thousands of models in all. Clearly, our technique cannot function at this
scale if it relies on human intervention to adjust models, interpret statistical test results, or
transform data. Instead we must use automatic approaches to building models and provide

the user with enough data to assess the validity of each model should she wish to do so.

Core Hypotheses

Throughout this dissertation we investigate several core hypotheses; these have a

direct bearing on the utility and applicability of our technique.

e The given workload features predict performance. There is some functional relationship

between workload features and performance.

e Our models are valid: they capture the relationship, if any, between workload features
and performance. If there is no relationship, our selected models decline to model

performance as a function of this workload feature.

Contributions

In Chapter 2 we develop the idea of measuring empirical computational com-
plexity and elaborate on our decision to use execution count in our models of scalability
(Section 2.1). We go on to describe our first technique, BB-TRENDPROF, to measure empir-
ical computational complexity (Section 2.3). BB-TRENDPROF models the total execution
count of clusters of basic blocks whose performance varies together (Section 2.3.1) as linear
(y = a + bx) and powerlaw (y = ax®) functions of workload features (Section 2.3.2). Al-
though the user interface is not the focus of this work, we discuss several techniques that
we have found useful for presenting scalability information for large (tens of thousands of
lines of code) programs.

Section 2.4 establishes the utility of models of empirical computational complex-
ity with experiments on several large programs. We show that BB-TRENDPROF reports

simple results for programs with simple performance behavior (Section 2.4.2), confirm that

desired performance behavior is realized in practice (Section 2.4.3), measure the empirical
performance of complex algorithms (Sections 2.4.3, 2.4.4, and 2.4.7), and find a scalability
bug (Section 2.4.5). We argue that BB-TRENDPROF reports the empirical computational
complexity of a program succinctly (Section 2.4.1) and that it helps focus attention on
performance and scalability critical code (Section 2.4.6).

Chapter 3 develops our second technique, CF-TRENDPROF. In essence, CF-
TRENDPROF seeks to describe the relationship between program performance and workload
features more precisely than BB-TRENDPROF by using the program’s control flow to sug-
gest more complex and potentially more precise models. In order to gather information
about control flow for its model generation process, CF-TRENDPROF models empirical
computational complexity at the granularity of loops and functions not only per-workload,
but also per-function-invocation. In general, CF-TRENDPROF considers multiple models
for each location and picks a best one based on a novel model selection criteria. Section 3.3
describes CF-TRENDPROF’s measurements, annotations the user can add to their program
to improve CF-TRENDPROF’s precision; Section 3.4 describes its model generation and
model selection procedures.

We evaluate CF-TRENDPROF by considering how its models characterize the per-
formance of well-understood algorithms and data structures like matrix multiply, doubling
lists, Dijkstra’s algorithm, Fibonacci heaps, insertion sort, quicksort, and hash tables (Sec-
tion 3.5). We further show CF-TRENDPROF’s use in diagnosing data structure problems in
situations where a troubling super-linear trend is apparent in its output, but no workload

necessarily exhibits glaringly obvious performance problems (Section 3.6). Further experi-

ments on larger programs (Section 3.7) demonstrate CF-TRENDPROF’s ability to identify
functions that are crucial to scalability.

Although CF-TRENDPROF’s call tree organization of performance is more verbose
than BB-TRENDPROF’s clusters, it makes the overall structure of the program’s perfor-
mance and scalability clearer. Furthermore, CF-TRENDPROF finds more precise perfor-
mance models than BB-TRENDPROF and chooses more effectively among models in terms
of different workload features. On the other hand, BB-TRENDPROF’s clusters and log-log
scatter plots are valuable tools for managing large programs with difficult to characterize
performance. We compare our two techniques in Section 3.9.

Throughout this dissertation, we use TRENDPROF when we are discussing issues
common to BB-TRENDPROF, CF-TRENDPROF, and any other tool modeling performance
as a function of workload features. We specify BB-TRENDPROF or CF-TRENDPROF when
our discussion applies to one and not the other.

Chapter 4 reviews threats to the validity of TRENDPROF’s models and features
of TRENDPROF that mitigate them; our understanding of these threats has informed the

design of TRENDPROF. Chapter 5 discusses related work.

10

Chapter 2

Basic Block TrendProf

In this chapter we develop a technique, BB-TRENDPROF, for building models of
empirical computational complexity that predict how many times a basic block executes as
a function of workload features. The work in this chapter initially appeared as a separate

paper [GAWO07]. Our technique is as follows.
e Choose a program to profile.

Choose workloads {w1, . .., wy} for the program.

Describe the workloads with numeric features (f1,..., fx),(g1,...,9%), for example

the number of bytes in an input file or the number of nodes in a graph.

Measure program performance; run the program on each workload and record the cost

of each each basic block, £, as a k-vector: (ye1,...,Yek)-

Group basic blocks whose performance is correlated into clusters.

11

e BB-TRENDPROF predicts performance in terms of features, fitting the performance
measurements, y, to features of the program’s input, f. We use linear models,

y = a + bf, and powerlaw models, y = af®.

2.1 Measuring Empirical Computational Complexity

In describing models of empirical computational complexity in general, we use the
term location to refer to the parts of the program (e.g., basic blocks) and cost to refer to a
location’s performance (for instance, its execution count). We discuss our choice of counting
the number of times each basic block executes as a measure of performance in Section 2.1.1.

After running and measuring k& workloads, we have a k-vector of costs for each
location (one measurement per workload) and a k-vector for each feature (one value of
the feature per workload); these k-vectors are rows in the matrix below. Profilers such as
gprof [GKMS82] report results for one column of this matrix. In contrast, we predict the
costs of locations in terms of features; i.e., we construct models to predict one row in terms
of another. For example, we might predict the number of compares a bubble sort does in

terms of a feature like the number of elements to be sorted.

workloads
w1 w2 PN W
2 Yl Y2 - Y1,k

_ Lo Y21 Y22 .- Y2,k
locations)))

Yn,1l Yn2 ... Yn k

Ly
features {f h f2 Fr
g g1 g2 gk

12

2.1.1 Execution Counts

Our focus on modeling scalability rather than exact running time led to our choice
of execution counts as a measure of performance. The amount of time (or number of clock
cycles) each basic block takes is another measure, but we chose basic block counts because

of the following advantages:

e AccURACY: Block counts are exact: issues of insufficient timer resolution do not

apply.

e REPEATABILITY: If a program is deterministic, so is its measure. Our measurements
do not depend on the operating system or architecture if the program’s control flow

does not.

e LACK OF BIAS: The mechanism of measurement does not affect its result. In contrast,
the mechanism of measuring time distorts its own result. We do not sample, so there

is no sampling bias.

e Low OVERHEAD: Counting basic block executions by computing control-flow edge

coverage [BL94] is cheap (Section 2.4).

e PORTABILITY: We rely only on gcc’s coverage mechanism [GCO] and not on platform-
specific performance registers. Furthermore, because execution counts (in general) do
not depend on architecture, results measured on one machine should generalize to

others.

13
2.1.2 Other Notions of Location

Our notion of basic blocks as locations is useful, but is not the only sort of loca-
tion we might measure. For instance, CF-TRENDPROF (see Chapter 3) models both the
amount of work a function does in its own code and the transitive work that its callees
do. Furthermore, it allows the user to distinguish invocations of the same function with
different data parameters — effectively attributing these invocations to different locations.
Also, the work of Ammons et al. [ACGS04] (see discussion in Section 5.1) measures the

work of a sequence of nested function calls.

2.2 An Example

Before exploring our methodology in detail, we illustrate the use of BB-

TRENDPROF with the following simple sorting code.

// pre: The memory at arr[0..n-1] is an array of ints.
// post: arr[0..n-1] is sorted in place from least to greatest.
void bsort(int n, int *arr) {
int i=0;
while (i<n) {
int j=i+1;
while (j<n) {
if (arr[j] < arr[il) //compare
swap (&arr[i], &arr[jl);

~NOo o WwN e

Jjt+;
8: i++;

}

This code has eight locations (each of which happens to be exactly one line of

code), numbered one through eight above. Each workload for bsort consists of an array

of n integers. The size, n, is a feature of the workload. We ran bsort on 30 workloads: 3

14

arrays of random integers at each of the following sizes 60, 200, 500, 1000, 2000, 4000, 8000,
15000, 30000, 60000. We chose these sizes because they span a wide range, their logarithms
span a wide range, and the smallest size is large enough that the high order terms dominate
all other terms. We find that including very small workloads, for instance an array with 3
integers, serves only to add noise to the left of the plot. In subsequent sections we show the

output of BB-TRENDPROF on this example.

2.3 Implementation of BB-TrendProf

We describe how BB-TRENDPROF builds and ranks clusters and how it models

the performance of these clusters.

2.3.1 Summarizing with Clusters

Studying the performance variation of the thousands of basic blocks in a large
program would be overwhelming. Fortunately, doing so is unnecessary for understanding
the performance and scalability of a program. In practice, large groups of locations have
executions counts that are very well correlated with each other: on a run of bsort where
line 2 executes many times, lines 3 and 8 will also execute many times; when line 2 executes
only a few times, lines 3 and 8 execute few times.

This observation leads us to divide the locations in a program into clusters of
locations that vary linearly together. A cluster consists of one location, called the cluster
representative, together with the set of locations that linearly fit the representative with

R? > 1 — a, where R? is a measure of goodness of fit (see Appendix A.1.5) and « is a

15

small constant such that 0 < o < 0.5. Every location belongs to at least one, and possibly
multiple, clusters.

BB-TRENDPROF computes the set of cluster representatives together with com-
puting cluster membership. Initially the set of cluster representatives is the set of user-
specified features. We consider locations in descending order of variance (0?) and add
location ¢ to all clusters whose representative it fits. If £ fits no existing cluster repre-
sentatives, £ becomes the cluster representative for a new cluster. Thus, when the cluster
representative is a location and not a feature, it has higher variance than any other location
in the cluster.

The choice of a value for « is a trade-off between how many clusters BB-
TRENDPROF finds and how well the locations in these clusters fit each other. Lower values
of o produce more, but tighter clusters. In this work we use o = 0.02. This choice is some-
what arbitrary, but it is informed by the following intuition. As we show in Appendix B,
this choice guarantees that all the locations in a cluster fit each other better than R? > 0.92;
note that the converse does not hold. In our experience, many fits with R? < 0.90 do not
convincingly demonstrate the sameness of the locations being fit. In choosing «, we err on
the side of having a strong guarantee about the locations in a cluster at the cost of having
more clusters.

We discard data for locations executing a constant number of times or showing
very little variation (oy < 10) as they contain little information: for example, we would

discard a location whose cost is always between 100 and 120.

16

The Meaning of Clusters

Clustering organizes the mass of information without compromising the ability to
point to specific places in the code since the costs of locations in the same cluster vary
together. The following theorem gives us a simple guarantee about what it means for a
location to be in a cluster: if « is 0.02 and location x is in the same cluster as location
y, then the performance of x is linearly related to the performance of y with an R? better

than 0.92.

THEOREM: Ifz, y, and p are vectors of length k such that x and y both fit p with R?> > 1 —«

and 0 < o < 0.5, then z fits y with R? > 1 — 4a(1 — a).

PROOF: See Appendix B.

Example

In the bsort example, BB-TRENDPROF breaks the locations in this code into

three clusters we call COMPARES, SWAPS, and SIZE.
e COMPARES’s representative is line 4; it contains lines {4, 5, 7}.
e swAPS’s representative and only location is line 6.
e SIZE's representative is line 2; it contains lines {2, 3, 8}.

If we specify the size of the input array, n, as a feature of the workloads, then BB-
TRENDPROF uses the feature n as the representative for the cluster size.
Notice that although lines 5 and 7 execute 0.5n% — 0.5n times and line 4 executes

0.51n2+0.5n times, these lines are all in the same cluster. This behavior is desirable since for

17

Cluster Max Fit with n | R2
COMPARES | 1.1x10'0 | 3.0 209 1.00
SWAPS 2.6x10° | 3.1n'9 0.99
SIZE 1.3x106 | 22 nt00 1.00
1e+12 T T TTT T T T TTTT
le+10 [~ 2T
1le4+08 [.
1le4+06 [n
10000 size T T
size
i compares T]
100 compares °
| swaps |
swaps *
1 111111 ‘ I ‘ | 1 1111 ‘ 1 | | |
10 100 1000 10000 100000

Figure 2.1: The table (top) shows powerlaw models predicting cluster costs for the Bubble
Sort example. The graph (bottom) shows three powerlaw best-fit plots showing observed
cluster costs for COMPARES, swaPs, and SIZE (y axis) versus n (x axis) with their lines of
best fit.

the values of n in our workloads, the quadratic term is the only important one for describing

scalability.

2.3.2 Powerlaw Fits Measure Scalability

We define the cost of a cluster as the sum of the costs of all the locations in
the cluster. BB-TRENDPROF measures the scalability of each cluster with respect to each
feature, f, by powerlaw-fitting the cost of the cluster, C, to f; that is, BB-TRENDPROF
finds @ and b to fit C' = af?. The expression, af® gives a concise, quantitative model of how

the cost of the cluster increases as f increases. The summary output of BB-TRENDPROF

18

also includes the following for each feature/cluster pair.

e The R? goodness-of-fit statistic for the fit.

e The best-fit plot: a scatter plot of feature values versus cluster costs (f;, C;) on log-log
axes with the line of best fit af?. Recall that a true powerlaw looks like a line on

log-log axes.

o The residuals plot: a scatter plot of f (x axis, log scale) versus the residuals log af® —
log C' (y axis, linear scale). The residuals plot is random if the powerlaw explains
the data. Extra variation that the powerlaw does not account for, like a logarithmic
factor or a lower order term, are often clearer in the residuals plot than the best-fit

plot.

e Predicted cost at values of f larger than any actually measured. Define fgg as the
95th percentile value for f; that is if we have 1000 workloads and we sort the values
for f, fgg is the 950th largest value. We show the model’s predictions for 2 fgg and

10 fg5 with a 95% confidence interval for each.
e A 95% confidence interval for a, the coeflicient.

e A 95% confidence interval for b, the exponent.

We compute the confidence intervals mentioned above by means of a general sta-
tistical technique called the bootstrap percentile method [Ric06]. A detailed discussion of the
bootstrap is beyond the scope of this thesis. In outline the bootstrap estimates the stability
(such as the standard deviation or, in our case, confidence interval) of a function of the

distribution of a random variable (such as median or mean or, in our case, the regression

19

coefficients or other predictions of our model). Bootstrap does this by 1) generating many
“example” data sets, not from the distribution (which we do not know) but from the actual
data set by repeatedly sampling with replacement, 2) computing the function in question on
each example data set and collecting those results into a “function value” set and 3) simply
measuring the stability of function value set (such as by throwing out the top and bottom
2.5% and calling the result the 95% confidence interval). The strength of the bootstrap
method is that it makes no assumptions about any underlying distribution of the random
variable (in our case, the regression coefficients). In BB-TRENDPROF we use one thousand
iterations of the bootstrap.

A cluster that scales super-linearly (that is, has an exponent greater than one)
has the potential to overtake higher ranked clusters on larger workloads. Thus, BB-
TRENDPROF predicts situations where a cluster accounting for a modest portion of the
cost of a program on medium sized workloads comes to dominate the performance cost on
larger workloads.

The primary output of BB-TRENDPROF shows a list of clusters ranked by the
maximum (over all workloads) cost of the cluster. This ranking draws attention to the
clusters that cost the most on BB-TRENDPROF’s workloads. Code that does not scale well
and may cause performance problems is likely to be high on this list.

Since the logarithm of zero is not defined, BB-TRENDPROF ignores points where
the observed execution count is zero when fitting to a powerlaw (the number of ignored
points is reported). Thus, the models produced predict how many times a location is

executed if it is executed at all. BB-TRENDPROF may be configured to suppress the display

20

Program Description Workloads
bzip2 1.0.3 [BZ2] Compresses files Tarballs of prepro-
cessed source code
banshee Computes Andersen’s alias | Preprocessed C pro-
2005.10.07 [KAO5] analysis [And94] on a C pro- | grams
gram
elsa [MNO4] Parses, type-checks, and elabo- | Preprocessed CH++
rates C and C++ programs programs
maximus Ukkonen’s suffix tree algo- | C source code
rithm [Ukk90] for finding
common substrings

Figure 2.2: We ran BB-TRENDPROF on these programs with workloads as described above.

Program | Workloads Min - Max | Overhead | Time (h)
bzip 1000 | 3x107 — 2x 10! 22% | 19 4+ 0.1
banshee 277 | 4x105 — 1x1010 18% | 0.7 + 1.1
maximus 910 | 3x10* — 8x10? 10% | 3.7 + 0.1
elsa 785 | 9x10° — 4x10° 103% | 3.3 + 7.4

Figure 2.3: Number of workloads, costs of the cheapest (Min) and most expensive (Max)
workload (measured in number of basic block executions), geometric mean of overhead
of edge profiling (Overhead), and BB-TRENDPROF’s time in hours to run workloads and
post-process data (Time).

of models constructed with few data points as such models are unlikely to make accurate
predictions.
Example

In the bsort example we have only one feature, n, but it powerlaw-fits all cluster

totals well. Figure 2.1 shows the scatter plot and lines of best fit for these powerlaws.

2.4 Results

We ran BB-TRENDPROF on the programs listed in Figure 2.2 with workloads as

described in Figure 2.3. Figure 2.3 also mentions the average (geometric mean) overhead of

Basic Varylng Costly Reduction
Program Basic Clusters

Blocks Clusters Factor

Blocks

bzip 1,032 721 23 10 103
maximus 1,220 496 13 9 136
elsa 33,647 22,382 1489 30 1122
banshee 13,308 11,891 859 26 512

21

Figure 2.4: For each benchmark we list number of basic blocks, number of basic blocks
with o > 10, number of clusters, number of clusters whose cost is ever more than 2% of the
workload’s total cost, and the ratio of Basic Blocks to Costly Clusters.

Cluster Rep Max Fit R? | Prediction
BYTES 35 | 77 Byres!®1 | 1.00 | (470, 480)
blocksort.c 459 | 22 | 50 ByTEs!?3 | 0.95 | (420, 580)
blocksort.c 416 | 16 | 34 Bytes™?l | 0.99 | (210, 240)
blocksort.c 492 13 | 24 ByTtrs'?* | 0.94 | (230, 340)
compress.c 241 3 | 4.0 Byres! Ol | 0.98 | (23, 28)

Figure 2.5: The cluster representatives for the top clusters for bzip, the maximum observed
cost of the cluster (in billions of basic block executions), the powerlaw fit of the cost of the
cluster to ByTEs, R? of this fit, a 95% confidence interval for predicted cluster cost (in
billions of basic block executions) for a 5 GB workload.

running a workload with edge profiling enabled versus having it disabled (Overhead) and
the total time in hours that our straightforward Perl implementation of BB-TRENDPROF
takes to create a report on each program (Time). The Time column is broken down into
two components: the first (left) time includes running the instrumented workloads and
some minimal per-workload post-processing; the second (right) time includes the rest of
BB-TRENDPROF’s post-processing including clustering, model-fitting, and generation of
plots and results pages. Once BB-TRENDPROF generates its results, they are browseable

interactively.

22

2.4.1 Programs Have Few Clusters

For each of our benchmark programs, Figure 2.4 shows the number of basic blocks
in the benchmarked program (Basic Blocks), the number of basic blocks whose standard de-
viation is greater than ten (Varying Basic Blocks), the number of clusters BB-TRENDPROF
finds (Clusters), the number of clusters whose cost on any workload is more than 2% of the
workload’s total cost (Costly Clusters), and the ratio of basic blocks to costly clusters (Re-
duction Factor). These numbers illustrate a fundamental empirical fact about programs:

that there are orders of magnitude fewer costly clusters than locations.

2.4.2 Simple Programs Have Simple Profiles

Running BB-TRENDPROF on bzip reveals that it scales linearly in the size of its
input and that most of the locations vary together. Figure 2.5 shows the top several clusters
of locations for bzip. The first cluster contains those basic blocks that linearly fit BYTES,
the number of bytes in the input, very well. The next several clusters all powerlaw-fit BYTES
very well with exponents very close to 1.0. Together these clusters account for 86% of the
basic blocks in the program and (taking the geometric mean across all the workloads) more
than 99% of the total number of basic block executions. Taken together, this output shows
the number of bytes in the input is an excellent predictor of performance, that bzip scales
nearly linearly in the size of its input, and that none of the code scales particularly worse
than the rest. With BB-TRENDPROF a program with simple performance has a simple

profile.

23

2.4.3 Confirming Expected Performance of the

Implementation of a Complex Algorithm

Measuring the empirical computational complexity of a program using BB-
TRENDPROF can verify that it scales as expected. Ukkonen’s algorithm [Ukk90] finds
common substrings in a string by constructing a data structure called a suffiz tree. When
implemented correctly, Ukkonen’s algorithm creates a linear number of suffix tree nodes
and edges. Faulty implementations of this tricky algorithm can cause performance with
quadratic or worse scalability.

We ran BB-TRENDPROF on an implementation of Ukkonen’s algorithm in a tool
called maximus. A workload for maximus consists of a string. For each workload we specified
three features: cHars, the number of characters in the input string; NODES, the number of
nodes in the suffix tree; and EDGES, the number of edges in the suffix tree. Feature cHARrs
is an easily measurable property of an input to maximus; after execution, maximus outputs
NODES and EDGES and BB-TRENDPROF incorporates these features into its calculations.
As expected, NODEs and EDGES both linearly fit cHARS and thus wind up in its cluster.
Figure 2.6 shows the relevant scatter plots and lines of best fit; cHARS is on the z axis and
the two different styles of points and lines show NODES and EDGES.

The suffix tree representation of common substrings in a string is too compact to
be comprehensible to a human, so maximus expands it to produce output. Operationally,
for certain nodes in the suffix tree, the output routine must print something for each of
the node’s leaves and then recursively do the same thing for each of its children. This

super-linearity is obvious in BB-TRENDPROF’s output. The top ranked cluster scales as

24

Te+06
Ge+06 - o
5e+06 .
4e+06 7
3e+06 7
26406 A
le+06 nodes ¢ 7
nodes ~~777-
0 edges °]
| | | edges -
-1le+06
0 le+06 2e+4-06 3e+06 4e+06 5e+06

Figure 2.6: These two linear best-fit plots for maximus show that the number of suffix
tree nodes and edges (y axis) grows linearly with the number of characters (z axis) in the
workload.

1e+10 F T T T T T =

le+09

le+08

le+07

le+06

100000

10000

output cluster

power law‘ fit

1000

100

1000

10000 100000

le+06

le+07

Figure 2.7: The crisp powerlaw fit in this best-fit plot for maximus’s output routines
shows that their cost grows super-linearly in the number of characters in the input

(§ = 11cnars’?Y).

25

Cluster Rep | Max Fit R? | Prediction
AST.c 34| 800 | 0.9 Byres'?! | 0.95 | (400, 700)
regions.c 94 | 600 | 140 ByTes™?! | 0.99 | (1900, 2100)
dhash.c 74 | 500 4 Bytest® | 0.98 | (100, 200)
ufind.c 101 | 500 | 0.6 ByTES™!® | 0.88 | (200, 300)
BYTES 200 50 ByTes'O! | 1.00 | (700, 700)
AST.c 147 | 200 40 ByTEs' 92 | 1.00 | (600, 700)
setif-sort.c 256 | 100 | 0.02 ByTES!'?® | 0.86 (20, 40)
dhash.c 118 | 40| 0.2 BYTES!? | 0.95 (4, 7)
dhash.c 151 | 40 6 ByTES:?3 | 0.99 | (100, 100)
types.c 452 | 40 3 ByTes™® | 0.98 | (100, 100)
hashset.c 113 | 20 | 1079 ByTes'™ | 0.87 | (20, 60)
hashset.c 98 6 | 1077 ByTes'? | 0.77 | (20, 50)

Figure 2.8: The top clusters for banshee with powerlaw fits and R2. The maximum observed
cost of each cluster and the 95% confidence interval for the model’s prediction on a 128 MB
workload are given in tens of millions of basic block executions.

11cuarst?Y(R? = 0.99) and includes the output routines; Figure 2.7 shows the relevant
best-fit plot.

The author of maximus was happy at the confirmation that the core of his im-
plementation of this complex algorithm was in fact linear. Not being the object of his
attention he was surprised at the super-linearity of the output routine; though obvious to

him in retrospect, the use of BB-TRENDPROF was still required to find it.

2.4.4 Quantifying the Improvement of Heuristic Optimizations

At the core of our banshee benchmark is an implementation of Andersen’s points-
to analysis. Although this algorithm is cubic in the worst case, the workloads we measured
scaled much better than that: no cluster scaled worse than n?; Figure 2.8 shows the top
several clusters. Realistic inputs often need not result in worst-case behavior; our measure-

ments quantify the extent to which banshee’s optimizations take advantage of this fact.

26

le+10
le+08
le+06
10000

el cparser/AST.c 34.1 |

100 - lastnode iterations © |

e other cluster ﬁts ”””
i | ! ! ! | | | |
10000 100000 1le+06 le+07 le+08 le+09

Figure 2.9: Powerlaw best-fit plot for the loop body of the performance bug in banshee
(9 = 0.87 BYTES'2!). We show lines of best fit for other cluster costs for reference.

2.4.5 This List Traversal is a Bug

As mentioned in earlier, we found a scalability bug in the C parser used by banshee.
BB-TRENDPROF predicts that the last_node function (see below) is called roughly linearly
in BYTES, the number of bytes in the input, and that the cost of the loop body scales as
BYTES'2. These predictions suggest the average size of these lists grows as ByTEs"? and also
that the three locations in this cluster account for more than 10% of the program’s cost for
inputs of 128 MB. Clearly, a pointer to the last node in the list is called for. Figure 2.9
shows the scatter plot of and powerlaw fit for this cluster together with the powerlaw fits

for other top clusters (dotted lines) shown for comparison.

node * last_node(node *n) {
if (!'n) return NULL;
while (n->next) n = n->next;
return n;

27

2.4.6 Focusing on Scalability-Critical Code

The elsa benchmark is a parser, type-checker, and elaborator for C and C++
code. Running BB-TRENDPROF on elsa with C++ programs as input divides the roughly
33,000 basic blocks of elsa into fewer than 1500 clusters. Figure 2.10 shows the top several
clusters and a few farther down the list with higher exponents along with their powerlaw fits
to AsT, the number of nodes in the abstract syntax tree for the workload, and 95% confidence
intervals for our extrapolations when AsT is 10 times larger than the 95th percentile value of
AST for the workloads. Other features, notably BYTES, the number of bytes in an input, fit
the cluster costs about as well as AsT. The top several clusters contain code that is critical

to the performance and scalability of elsa for large workloads.

2.4.7 An Empirical Measure of GLR Performance

Figure 2.11 shows the powerlaw fit and residuals plot for one of elsa’s top clusters
(elkhound /glr.cc, line 362). Based on the scatter plot and residuals plot, the powerlaw fit
with AsT is a reasonable model for this cluster’s cost. The 95% confidence interval for the
exponent is (1.11, 1.15), and so it appears that the code in this cluster scales super-linearly
with the number of AST nodes in the input. This cluster is largely concerned with GLR
parsing and tracking and resolving ambiguous parse trees. As we would expect from a
mostly unambiguous grammar and a well optimized parser generator [MNO04], the measured
empirical computational complexity is substantially better than the cubic worst case com-
plexity of GLR parsing. Nonetheless, the slight super-linearity and the large coefficient

suggest that this code is crucial to performance.

28

Cluster Rep Max Fit R? | Prediction
hashtbl.cc 44 | 100 | 6500 (asT)?7® | 0.93 | (40, 50)
ARGEXPR 70 | 260 (asT)!t | 0.97 | (300, 300)
glr.cc 362 | 70| 200 (asT)M'3 | 0.95 | (300, 300)
cc_flags.h 139 | 70| 490 (asT)?8%5 | 0.84 | (10, 20)
sobjset.h 28 | 60 65 (asT)%997 | 0.84 | (10, 20)
STMT 20 | 260 (asT):%2 [0.99 | (70, 80)
hashtbl.cc 67 | 20| 280 (asT)"833 | 0.90 (4, 6)
lookupset.cc 154 4 | 0.008 (asT)3 | 0.65 | (0.2, 0.5)

Figure 2.10: The top clusters for elsa with power law fits and R?. We show the maximum
observed cost of each cluster and a 95% confidence interval for the model’s prediction on
a two hundred thousand AST-node workload in tens of millions of basic block executions.
The cluster representatives ARGEXPR and sTMT are features that count particular kinds of
AST nodes.

2.4.8 This List Traversal Is Not a Bug

The cost of the cluster whose representative is line 154 of elsa/lookupset.cc fits
AST with the notably high exponent of 1.35. Figure 2.12 shows the scatter plot and powerlaw
fit for this cluster’s cost; it also shows the powerlaw fit for another top cluster whose
representative is elkhound/glr.cc line 362 (also shown in Figure 2.11) for comparison.
There is a lot of variance in the data and thus the fit is somewhat dubious, but two things
are clear. For at least some kinds of inputs, this cluster’s cost increases sharply as input
size gets large. However, even if we follow the upper edge of the points, this cluster’s cost
will not overtake the cost of the other cluster for any reasonably sized input (recall that
the y axis is on a logarithmic scale and that a factor of 100 is not particularly tall). We
conclude that the code in this cluster is not crucial to performance.

The code in the aforementioned cluster consists of a function to add an object to
a list in time linear in the length of the list. This pattern is exactly the sort of code that

was a performance bug in the banshee benchmark, but here BB-TRENDPROF provided us

le+09

le+08

le+07

le+06 £

100000 F

10000

1000

power law fit
opservation§ © .

100

1000

10000 100000 1le+06

residuals]

o —

10

100

1000

10000

100000

le+06

29

Figure 2.11: A powerlaw best-fit plot showing the slight super-linearity of elsa’s GLR
parsing (§ = 195 ast!13 R? = 0.95) (top) and the corresponding residuals plot (bottom).

30

le+09 F ‘ \ w T 5
le+08 | =
e+ - P -]
le+07 B .
1e+06 1
100000 - .
10000 E
1000 [=
100 F -
00 F power law fit i
10 E observations ¢
il fit f(?r a top cluster —=77 i
1 | ‘ | ‘ | | | | | ‘ |
100 1000 10000 100000 le+06 le+07

Figure 2.12: There is no clear relationship between feature Ast and these points. Thus,
the line of best fit (solid) is dubious. Nonetheless, comparing to the powerlaw fit from
Figure 2.11 (dotted line) suggests that this cluster is not a scalability problem.

with enough information to conclude that it is not a serious scalability problem. The code

is as follows.

void LookupSet::add(Variable *v) {
for each w in this {
if (sameEntity(v, w)) return;
}

prepend (v) ;

2.5 Assessment of BB-TrendProf

Given a program and workloads for it, BB-TRENDPROF 1) builds models of basic
block execution count in terms of user-specified workload features and 2) provides the means
to assess the plausibility and applicability of these models. By grouping related locations
into clusters and modelling the performance of these clusters, TRENDPROF summarizes the

performance of tens of thousands of lines of code with a few dozen of these models.

31

We cluster locations (and features) that vary together linearly; conversely, loca-
tions that vary somewhat independently end up in different clusters. For several programs
and associated sets of workloads, we have empirically measured that there are many fewer
clusters than locations; that is, empirically there is much linear correlation between execu-
tion counts of locations. Clustering dramatically reduces the number of degrees of freedom
of the overall performance model; that is, clustering simplifies our presentation of program
performance by dramatically reducing the number of program components whose costs we
model. With only the clustered view of performance, however, it can be difficult to follow
the control flow of the program or figure out how performance is distributed through the
dynamic call graph.

BB-TRENDPROF fits each cluster’s per-workload cost to a powerlaw. These models
are not always accurate, but they often capture the general trend in the data as input size
grows large. Managing multiple features is somewhat of a problem for BB-TRENDPROF:
its powerlaw fits only support one feature and they are often not precise enough to really
justify choosing one feature over another to describe a given cluster’s performance. In the
next chapter, we develop a technique that aims to relate performance more closely to the
program’s call graph and to increase model accuracy by trying a richer family of models

that we generate based on the structure of the program’s call graph and control flow.

32

Chapter 3

Control Flow TrendProf

3.1 Overview

Chapter 2 describes a technique and a tool, BB-TRENDPROF, for measuring em-
pirical computational complexity by modeling the execution count of basic blocks as a
function of workload features. This chapter presents a new technique and tool, Control
Flow TRENDPROF (CF-TRENDPROF) that models program performance at the granular-
ity of loops and functions. CF-TRENDPROF explores a different part of design space than

BB-TRENDPROF and improves upon it in several ways as follows.

e CF-TRENDPROF models performance both per program run (like BB-TRENDPROF)

and per function invocation.

e CF-TRENDPROF uses hints from the program’s control flow and call graph to suggest
performance models that are potentially more precise than BB-TRENDPROF’s linear

and powerlaw models (Section 3.4.2).

33

e CF-TRENDPROF considers many models for each location, including models in terms
of multiple features; choosing the best from among these models (Section 3.4.3) po-

tentially improves the precision of CF-TRENDPROF’s models.

Section 3.9 contains a more thorough comparison of BB-TRENDPROF with CF-

TRENDPROF.

A New Approach

Like BB-TRENDPROF, CF-TRENDPROF measures performance in terms of ex-
ecution counts. Instead of modelling basic block executions, though, CF-TRENDPROF
measures and models the costs of loops and functions. CF-TRENDPROF charges one unit
of performance for either entering a function or going once around a loop. In addition to
the per-workload view of performance inherent in BB-TRENDPROF, CF-TRENDPROF also
measures and models performance per function invocation. Furthermore, CF-TRENDPROF
models not just the per-invocation self-cost of each function (cost of the function excluding
callees’ costs), but also the per-invocation transitive-cost (cost of the function including
callees’ costs), and the per-workload total-self-cost and total-transitive-cost (computed as
sums over all invocations). A single run of the program can potentially provide many
per-invocation data points. Section 3.3.2 discusses the performance quantities that CF-
TRENDPROF gathers.

Like BB-TRENDPROF, CF-TRENDPROF models the cost of a location (for ex-
ample, a function’s self-cost), by fitting measurements of that location’s cost directly to

workload features (Section 3.4.1); we call these BB-TRENDPROF-style models direct mod-

34

els. However CF-TRENDPROF also models performance more precisely with derived models
that it forms by symbolically adding and multiplying other models based on hints from
the program’s control flow and call graph. The quantities CF-TRENDPROF measures and
models are carefully chosen to enable computation of these derived models. Section 3.4.2
discusses the how CF-TRENDPROF builds derived models. This technique for deriving mod-
els allows CF-TRENDPROF’s performance models to increase in complexity as the program
they model increases in complexity.

One useful example of a derived model allows CF-TRENDPROF to model a func-
tion’s self-cost by symbolically adding the models for the loops in the function. A function’s
self-cost is the sum of the costs of the loops in the function plus one for entering the func-
tion. CF-TRENDPROF measures the cost of each loop in the function and constructs direct
models for these costs. By symbolically adding the models that it has constructed for each
loop in the function (and adding 1 for entering the function), CF-TRENDPROF constructs
a derived model for the function’s self-cost.

This process of generating direct and derived models results in several candidate
models for each performance quantity (e.g., self-cost, transitive-cost, total-transitive-cost,
etc.). Section 3.4.3 discusses the process of choosing the best model from among the can-
didates based on a trade-off of model complexity versus model precision. The overall goal
of CF-TRENDPROF’s enhancements to the model selection procedure is to increase the
precision of its performance models by considering (in a principled way) more complex

performance models in terms of multiple features.

35

Multiple Views

The overall organization of CF-TRENDPROF’s performance models differs from
that of BB-TRENDPROF. While BB-TRENDPROF organizes its per-workload basic block
models into clusters, CF-TRENDPROF models each function’s per-invocation self-cost and
transitive-cost, as well as its per-workload total-self-cost, total-transitive-cost, and call-
count. Thus CF-TRENDPROF provides a view of performance for different chunks (self-cost
versus transitive-cost) of a program at different levels of granularity (per-workload versus
per-invocation). For example, considering the per-invocation transitive-cost of inserting an
element into a doubling list (Section 3.5.3) is not enlightening, but considering the per-
workload total-transitive-cost shows the linear trend: inserting n elements scales linearly
in n. Section 3.5.7 illustrates another example. We consider the empirical scalability of
Dijkstra’s breadth first search (BFS) algorithm when it uses a Fibonacci heap as a priority
queue. While the cost of each loop and helper function call is interesting to the developer
of the Fibonacci heap and Dijkstra’s algorithm, the bottom line for a consumer of this
algorithm is what the entire breadth first search costs on some input graph. This cost is
represented as a transitive-cost of the dijkstra function (Figure 3.27) and the cost of all
BFS calls per workload is modeled as the total-transitive-cost of the dijkstra function.
These views onto performance aim to capture the common decompositions programmers use
to reason about program performance. If CF-TRENDPROF’s decomposition of performance

is insufficient, the user can add annotations to improve it (Section 3.3.1).

36

Evaluation

As with BB-TRENDPROF, CF-TRENDPROF is successful to the extent that it
accurately models the performance of a program and facilitates a comparison of observed
performance to expected performance. We evaluate CF-TRENDPROF by considering how
its models characterize the performance of well-understood algorithms and data structures
such as matrix multiply, doubling lists, Dijkstra’s algorithm, Fibonacci heaps, insertion
sort, quicksort, and hash tables in limited scenarios (Section 3.5). These micro-benchmarks
show strengths and weakness of CF-TRENDPROF that we summarize below. As with BB-
TRENDPROF, CF-TRENDPROF’s models are about measured performance of a particular
implementation run on a particular set of workloads; this focus can point to interesting
trends in program inputs or faulty implementations of algorithms. In many cases, CF-
TRENDPROF’s models are more precise than any model BB-TRENDPROF can deduce. Ex-
pected case analysis and amortized analysis are powerful theoretical tools for characterizing
asymptotic performance, but can be hard to apply to actual implementations and real-world
workloads; CF-TRENDPROF effectively applies these techniques to the empirical distribu-
tion of workloads. On the other hand, CF-TRENDPROF’s view is limited to an expected
case view: its models do not provide upper or lower bounds.

Section 3.7 evaluates CF-TRENDPROF based on the insight it yields into larger
programs. In general, the organization of CF-TRENDPROF’s output based on the dynamic
call tree allows one to follow the cost of a workload through the call tree. Many func-
tions have moderate to good models that show that their cost scales linearly with workload

features; absent concerns about other resources (which are beyond the scope of this disser-

37

tation) these functions can be safely ignored. Other functions scale super-linearly and are
thus likely to be important to the scalability of the program.

Both the small and large benchmarks demonstrate CF-TRENDPROF’s ability
model performance precisely, sometimes perfectly, as a function of one or multiple workload
features. In many cases, CF-TRENDPROF’s model improves upon the precision of BB-
TRENDPROF’s. However, as we demonstrate in Section 3.5.5 and see again in Section 3.7.4,
sometimes performance is not a simple function of workload features. The latter part of
our evaluation of CF-TRENDPROF describes how it mitigates this issue and compares CF'-

TRENDPROF’s approach to BB-TRENDPROF’s. Section 3.9 summarizes this comparison.

3.2 Example

Interspersed with our discussion of the CF-TRENDPROF technique in Sections 3.3
and 3.4, we describe CF-TRENDPROF’S measurements, processing, intermediate results,
and output on a simple sorting algorithm, bsort, shown in Figure 3.1. The data we present

is simplified and stylized for clarity of presentation, but the substance is not altered.

Workloads A workload for this simple example consists of an array, arr, full of n ints.
The size of the array, n, is a workload feature: CF-TRENDPROF will model performance of
bsort and its loops in terms of n. For a more complex program, however, we might choose
to make n an invocation feature (Section 3.3.1), recording its (potentially different) value

for each call to bsort and modeling the per-invocation performance of bsort in terms of n.

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

// pre: The memory at arr[0..n-1] is
// an array of ints.
// post: The ints in arr[0..n-1] are
// sorted in place from least to greatest.
void bsort(int n, int *arr) {
int i=0;
while (i<n) {
int j=i+1;
while (j<n) {
if (arr[j] < arr[i]) //compare
swap(&arr[i], &arr[jl);

~NOoO ok WwN e

j++;

b
8: i++;

}

int main() {
int n=..., *arr=..., i=-1;
while (++i < n) arr([i] = ...
bsort(n, arr);
return O;

Figure 3.1: Code for the bsort example.

38

39

Function self-cost transitive-cost | call-count
main n+11]0.7n%+ 1.5n+2 1
bsort 0.5n%2 +0.5n+1 | 0.7n% +0.5n + 1 1
swap 1 1 0.2n?
Function total-self-cost | total-transitive-cost
main n+1 0.7n° + 1.5n + 2
bsort 0.5n% +0.5n + 1 0.7n% +0.5n + 1
swap 0.2n? 0.2n2

Figure 3.2: Expected output of CF-TRENDPROF for the bsort example.

Loops This code has two loops: an outer loop at line 2, £,, and an inner loop at line 4,
£;. With some thought we can see that ¢, goes around exactly n times per call and that ¢;

goes around %n(n — 1) times per call.

Functions This code has three functions main, bsort, and swap. Characterizing the
performance of main and bsort is easy, swap is harder because its total cost varies based on
subtle properties (sortedness) of the input. Although it can vary widely, assume (as is the
case for inputs generated uniformly at random) for the purposes of our example that swap
is called about 0.2n? times to sort an array of size n. Figure 3.2 summarizes the output we

would expect from CF-TRENDPROF in this situation.

3.3 Gathering Data

The steps for using CF-TRENDPROF to measure empirical computational com-

plexity are as follows:

e Choose a program to profile.

40

e Annotate the program with invocation features and contexts as necessary (Sec-

tion 3.3.1).
e Choose workloads {w1,...,wy} for the program.
e Describe the workloads with numerical features (f1,..., fx),(g1,...,9x), for example

the number of bytes in an input file or the number of nodes in a graph.

o Measure program performance; run the program on each workload and record the

loops costs, functions costs, and other measures (Sections 3.3.1, 3.3.2).

e Build direct models by fitting the performance measurements, y, to features of the
program’s input, f (Section 3.4.1). We use constant models, y = a, linear models,

y = a+ bf, and powerlaw models, y = af®.
e Generate derived models for loop and function costs (Section 3.4.2).

e Choose the best model for each loop and function cost from among the direct and

derived models (Section 3.4.3).

In our prototype implementation of CF-TRENDPROF, the last two steps are carefully in-
terleaved to keep the working set small (Section 3.4.4). The following discussion proceeds

in the order that CF-TRENDPROF processes its data.

3.3.1 Measuring Performance

In order to gather the performance data it requires, CF-TRENDPROF instruments
the program to emit a program trace as it runs. The user may annotate the program to

identify performance-relevant quantities or to distinguish calls of a function that ought to be

41

modeled separately. Running a workload yields a program trace that CF-TRENDPROF post-
processes to extract the performance data it needs for subsequent analysis (Section 3.3.2).
The details of the instrumentation and of the program trace are engineering concerns specific
to our prototype implementation of CF-TRENDPROF: their goal is to obtain the data
described in Section 3.3.2; other approaches are possible. For the purposes of a research
prototype though, our clean separation of the program tracing and the data extraction has

simplified our implementation efforts.

Preparing the Program to be Measured

Before instrumenting the program, CF-TRENDPROF assigns a unique ID to each
function and each loop. It also records (for later stages) each loop’s outer loop (if any)
and the function in which each loop resides. As the instrumented program runs, CF-

TRENDPROF’s instrumentation does the following:

1. At the start of the main function, open a file to contain the trace.

2. At the start of a function, emit a start-of-function record that contains the function

ID.

3. At the start of a function, reserve space for a counter for each loop and initialize these

to zero.

4. Every time a loop goes around, increment its counter.

5. Before a function returns, emit an end-of-function record that contains the function

ID and the counts for each loop.

42

User Annotations

The user may enhance the results of CF-TRENDPROF by adding annotations.
Operationally, these annotations call CF-TRENDPROF helper functions that emit data into

the program trace.

Workload features describe workloads. The user can specify them in a con-
figuration file that associates workload features with workloads or they can call
tpRuntimeWorkloadFeature with a name and a value. Essentially, if the easiest way to
measure a feature of a workload is to have the program do it, this CF-TRENDPROF call

saves the user some mechanism.

Contexts allow the user to partition the calls to a function. CF-TRENDPROF models
the performance of the calls in each context separately, as if they were calls to separate
functions that happen to have identical source code. The user identifies the context of a
call by calling tpRuntimeSetContext with a context specifier and a flag to designate what
is to be annotated. The context is a string the user provides, the function’s caller, the
entire call stack, or the currently executing (active) function. The context annotates either
the active function, its immediate callees, or all the functions it calls transitively. Contexts
are useful for apportioning performance cost of a library to different callers or even costs of

data structure operations to different instances of the data structure.

Invocation features allow the user to identify a quantity that CF-TRENDPROF will use
to predict performance of a function invocation by calling tpRuntimeInvocationFeature

with a name and a value. For example, one might specify the size of a linked list as an

43

invocation feature to linked list operations. As we describe below, CF-TRENDPROF uses
invocation features to predict all the quantities (loop counts, function costs, etc.) in the

scope of the function.

3.3.2 Workload Data

Once the instrumented program has been run on a workload, CF-TRENDPROF is
left with a program trace. In one pass over the trace, CF-TRENDPROF extracts data about
the cost of the workload and the cost of each function invocation that happened during the
workload. We refer to each of these quantities as performance variables or just variables
when there is no potential for confusion.

For each invocation of function F, CF-TRENDPROF computes the following from

the program trace.

e invocation features in F’s scope

e loop count for each loop in F

inner loop count
outer loop count

e average count of each inner loop (in F) per iteration of its outer loop:

e F’s self-cost: one plus the sum of the loop counts of all the loops in F

e call-count for each direct callee

e transitive-cost for each direct callee, G: the sum of the transitive-costs of all calls to G

during this invocation of F

e F’s pure-transitive-cost: the sum of the transitive-costs of all direct callees

44
e F’s transitive-cost: self-cost plus pure-transitive-cost

Once CF-TRENDPROF has read the end-of-function record in the program trace,
it has enough information to compute all of the above for that invocation. After computing
the function F’s transitive-cost, CF-TRENDPROF charges F’s caller for the cost of the call to
F. It is by this mechanism of direct callees charging callers that CF-TRENDPROF computes
per-direct-callee call-count and transitive-cost. We refer to this collection of data for a
function invocation as a frame.

Even for modestly sized programs, this per-invocation data gathering leads to a
massive number of frames. Attaining reasonable performance for CF-TRENDPROF requires
that we compress these frames.

Subsequent steps of CF-TRENDPROF require that we be able to match, for exam-
ple, an invocation feature to a loop count from the same invocation. However, the order of
frames is not important; all the data we need to know about an invocation is recorded in
its frame. Thus we may not split frames, but we may re-order them.

Empirically, there are many duplicate frames. Our compression strategy is to hash
the frames and keep count of the occurrences of each frame—essentially re-ordering them to
group duplicates. For convenience in subsequent steps, we output this data as a run-length
encoded list of points for each variable in the frame (loop count, self-cost, etc.). Re-ordering

h

by frame instead of treating each variable separately means that the it point in the list

of data points for a function’s self-cost and the ith

point in the list of data points for an
invocation feature for that function refer to the same invocation in the same workload.

In addition to per-invocation data, CF-TRENDPROF gathers per-workload data

45

from the program trace as follows.

total loop count for each loop: computed by summing over all invocations

total inner loop count
total outer loop count

average count of each inner loop per iteration of its outer loop:

total-self-cost for each function: computed by summing over all invocations

total-transitive-cost for each function: computed by summing over all invocations,

taking care to avoid double-counting recursive calls to the same function

call-count for each function

Example

Figure 3.3 shows the content of the program trace for a run of our bsort example
for a workload with » = 10. In our actual implementation, the program trace is more
terse, but we use names and labels here for clarity of presentation. Figure 3.4 shows the
entire data record that CF-TRENDPROF extracts from the program traces after running
workloads with n = 10,n = 20,n = 1000. The notation 1r23 is run-length encoding for
1 repeated 23 times. Since main and bsort are only called once each, their total (per-
workload) figures are no different than their per-invocation figures. Since swap is called

many times per workload, it has many data points in each column.

3.4 From Data to Models

CF-TRENDPROF’s goal (like BB-TRENDPROF’s) is to predict program perfor-

mance as a function of workload features or invocation features. Recall that we refer to

46

start main
start bsort
start swap
end swap
start swap
end swap

end bsort, outer_loop_count=10, inner_loop_count=45
end main, main_loop_count=10

Figure 3.3: The program trace for the bsort example when n = 10. For clarity, we replace
numerical IDs with function and loop names and annotate the fields of records.

these functions as models. Thus we can restate CF-TRENDPROF’s goal more operationally:
CF-TRENDPROF seeks to choose a sensible model (for example, a + bz + cz? or ax®) and
then fit its observations to this model (that is, choose values for coefficients a, b and ¢ that
minimize some measure of error on our training data). The topic of the next few sections
is choosing sensible models; Appendix A.1 discusses fitting observations to them.

There is absolutely no theoretical or practical reason why any code’s performance
must have anything to do with any easily discernible feature of the workload. Thus, if we
are to fit code’s performance to some model (such as a polynomial function of workload fea-
tures), we must have some justification for doing so: either some prior belief that programs
ought to behave as the model predicts, some hint from the structure of the program itself,
or some pattern in the observed data. Simply having low error on the training data is insuf-
ficient: fitting a degree 6 polynomial to some program’s performance may have reasonably
low error, but why should we believe that this model will adequately predict performance
for other workloads? Indeed, a degree 7 polynomial is almost guaranteed to produce lower

error.

Figure 3.4:

Variable n=10 | n=20 | n = 1000
self-cost of swap 1r23 | 1r100 | 1r257808
pure-transitive-cost of swap 0r23 | 0r100 | 0r257808
transitive-cost of swap 1r23 | 1r100 | 1r257808
call-count of swap 23 100 257808
total-self-cost of swap 23 100 257808
total-transitive-cost of swap 23 100 257808
bsort inner loop count 45 190 499500
bsort outer loop count 10 20 1000
bsort gisct 4.5 9.5 499.5
total bsort inner loop count 45 190 499500
total bsort outer loop count 10 20 1000
bsort fotal inner 45 9.5 499.5
total outer
self-cost of bsort 56 211 500501
transitive-cost of bsort calling swap 23 100 257808
call-count of bsort calling swap 23 100 257808
pure-transitive-cost of bsort 23 100 257808
transitive-cost of bsort 79 311 758309
call-count of bsort 1 1 1
total-self-cost of bsort 56 211 500501
total-transitive-cost of bsort 79 311 758309
main loop count 10 20 1000
total main loop count 10 20 1000
self-cost of main 12 22 1002
transitive-cost of main calling bsort 79 311 758309
call-count of main calling bsort 1 1 1
pure-transitive-cost of main 79 311 758309
transitive-cost of main 91 333 759311
call-count of main 1 1 1
total-self-cost of main 12 22 1002
total-transitive-cost of main 91 333 759311

47

Data records for the bsort example for several workloads. The notation 1r23
is run-length encoding for 1 repeated 23 times.

48

Thus, there is a crucial question to answer: which models shall we consider and
why those models and not others? The next few sections address this question as we describe

our technique for choosing a model.

3.4.1 Direct Models

As a starting point, we are willing to entertain the notion that any loop’s or func-
tion’s performance grows as a linear or powerlaw function of some workload feature or invo-
cation feature. Thus, we fit our observations for every variable (y) to linear (g(x) = a + bx)
and powerlaw (j(z) = az®) models of every workload feature and invocation feature (z).
We discuss the details of finding the coefficients of regression (a,b) for these models in
Appendix A.1. Recall that our finding these coefficients for a model says nothing about
the suitability of that model — assuming the model is a true description of the data, the
values of a and b that we find minimize some measure of error, but the model may be utter
nonsense.

It may be, however, that none of the features that the user provides is particularly
useful for predicting performance. To cater to this case we consider a constant model for
every variable. The constant model’s prediction for a variable’s value is just the mean of
the observed data. Furthermore, in addition to the models already mentioned, we are also
willing to predict the performance of an inner loop as a linear or powerlaw function of its
outer loop’s performance. A model in terms of an outer loop’s count is not as informative as
a model in terms of features, but such models can serve to explain several difficult variables
in terms of one difficult variable.

We refer to these models as direct models since they directly fit performance mea-

49

surements to features. In the next section we discuss how CF-TRENDPROF uses evidence
from the structure of the program to posit more complex, derived models. We discuss the
process of model selection: choosing the “best” model from among many candidates in

Section 3.4.3.

Fitting Workload Features to Per-Invocation Variables

To fit a workload feature (one performance measurement point per workload) to
a per-invocation variable (one performance measurement per invocation—zero or more per
workload), we pair the workload feature with every measurement for the variable on the
corresponding workload. For example if a function’s self-cost is measured at {5,6} on a
workload with feature n = 2 and {11,12,12} on a workload with feature n = 4, then we
would treat the data set as {(2,5),(2,6), (4,11), (4,12), (4,12)} for the purposes of fitting

this function’s self-cost to workload feature n.

Example

Figure 3.5 shows some of the direct models for some of the variables for our bsort
example. For brevity we show only the best direct model for each variable in this table.
As we will see, some of these direct models are the best model for their variable, but

CF-TRENDPROF replaces others with superior derived models.

3.4.2 Derived Models

As we saw in Chapter 2, direct models can do a reasonable job of predicting per-

formance, but they are not always particularly accurate. This section considers a technique

50

Variable Direct Model
self-cost of swap 1
call-count of swap 0.2n?
total-self-cost of swap 0.2n?
bsort inner loop count 0.45n202
bsort outer loop count n
bsort gg%g 0.5n — 0.5
self-cost of bsort 0.56n1%8
transitive-cost of bsort calling swap 0.2n?
call-count of bsort calling swap 0.2n?
pure-transitive-cost of bsort 0.2n?
transitive-cost of bsort 0.8n 19
call-count of bsort 1
main loop count n
self-cost of main n+1
transitive-cost of main calling bsort 0.93n197
call-count of main calling bsort 1
transitive-cost of main 0.93n 197
call-count of main 1

Figure 3.5: Some direct models for the bsort example.

for deriving more precise models based on hints in the program’s control flow. For example,
if we can model the loops in a function, we can symbolically add these models to form a
model for the function’s self-cost; similarly if we can model the costs of a function’s callees,
we can symbolically add these models to form a models for the function’s transitive-cost.
This general intuition gives rise to several rules for constructing derived models.

This way of deriving models based on the program’s control flow and call graph
has several advantages. Most importantly, it gives us a principled way of considering com-
plex models to explain the performance of complex programs; as the program grows more
complex, the models we are willing to consider also grow more complex. Furthermore, gen-
erating many models (some simple, some complex) to explain the performance of a variable

(for example, a function’s self-cost) allows us to trade off model simplicity for model pre-

o1

cision; in essence we only choose complex models when their complexity is paid for with

extra precision.

Example

Consider the problem of finding a good model for the self-cost of function F with
two loops K and L. Let (l1,...,0,) , (k1,...,kyn), and (y1,...,y,) be the data points we
measured for L’s iteration count, K’s iteration count, and F’s self-cost on all the workloads;
let (w1,...,w,) be the points for a workload feature in terms of which we’d like to predict
F’s self-cost. Recall that by our definition of self-cost, ¥; defy +li+kiforallie{1,...,n}
indeed, this formula is how we compute self-cost from our program trace. Now suppose that
we have (recursively) computed a best model for L, L(w), and a best model for X, K (w).
Now we can form a derived model for F’s self-cost by symbolically adding these models:
gw)) = 1 + L(w;)) + K(w;). Thus we have arrived at a model for F’s self-cost by
combining best models for its sub-components L and K. As we shall see, this intuition allows
to model the self-cost of bsort perfectly (see Figure 3.8 and Figure 3.11) as the sum of one,

its outer loop’s cost, and its inner loop’s cost:
self-cost of bsort i~ 1+ (n) + (0.5n* — 0.5n) = 0.5n% 4+ 0.5n + 1

If F had more loops, we would add more terms to our derived model for its self-
cost. By construction this algorithm for computing a derived model for F’s self-cost results
in models whose size is bounded by the number of loops in F. In more general terms, the
complexity of the model for F’s self-cost is bounded by the number of sub-components of F’s

self-cost. Of course like terms in L(w;) and K (w;) may combine; for example, if L(w;) and

52

K (w;) are both linear models in some feature w, then the derived model (1+L(w;)+ K (w;))
is just a linear model in w. In general, though, Land K may be in terms of different features;
for example, we might model L’s cost with features v and w and model K’s cost with features
w and x, thus yielding the following derived model for y (F’s self-cost) in terms of all three
features: g(v;, w;, ;) =1+ ﬁ(vi,wi) + f((wl,xl)

The general procedure we use to create derived models is as follows. First, de-
compose a variable (y;) into a function of its sub-components (y; = 1 + I; + k;). Then
model each sub-component separately (find L(v;, w;) and K (w;, x;)). Finally, reverse the
decomposition by symbolically combining these models to yield a model of the variable

(9(vi, wi, x;) = 14 L(vi, w;) + K (w;, ;).

Rules for Deriving Models

Figures 3.6 and 3.7 list the specific rules CF-TRENDPROF uses to create derived
models. These rules use a different notation than the example above, defined as follows. In
these lists of derived models we denote a model for variable v as [v]; we denote symbolic
addition and multiplication of models for variables z and y with [z] @ [y] and [z] ® [y]
respectively; we indicate that some expression, e over this language is a derived model for
v with the notation [v] < e. We show the derived models for function F that calls functions
{G1,...,Gp} and hasloops {¢1,...,¢}. Each of the variables for which we compute derived
models are variables that CF-TRENDPROF measures directly and for which it constructs
direct models (recall that we list these variables in Section 3.3.2). We use only direct models

to explain variables that do not appear on the left of any of our derivation rules (for example,

93

i 1 t
[inner loop count] < [outer loop count] ® TN 00p Cotn (3.1)
outer loop count
k
[self-cost of F] < 1@ @ [per-invocation cost of 4] (3.2)
i=1
[transitive-cost of F] < [self-cost of F| @ [pure-transitive-cost of F (3.3)

k

[total-self-cost of F] < [call-count of F] & @ [per-workload cost of ¢;] (3.4)
i=1

[total-self-cost of F] < [call-count of F] ® [self-cost of F] (3.5)

[total-transitive-cost of F| < [total-self-cost of F] (3.6)

Figure 3.6: Rules for generating derived models. CF-TRENDPROF derives these models on
its first pass through the functions.

inner loop count)

pure-transitive-cost of F, outer loop counts, and
outer loop count

Derived model 3.1 models the cost of an inner loop as a product of the cost of
the outer loop and the average number of iterations of the inner loop per iteration of the
outer loop. CF-TRENDPROF records and models these average iteration counts specifically
for this derived model. The multiplication in this derived model allows inner loops to have
models of higher degree than their outer loops. CF-TRENDPROF uses this rule for both
per-invocation and per-workload loop counts. Notice that our bsort example uses this rule
(Figure 3.8).

Derived model 3.2 is the one we developed in our example above. The self-cost of
a function is one plus the sum of the costs of its loops.

Derived model 3.3 models the transitive-cost of a function by lumping the costs of
all its callees into one quantity (pure-transitive-cost) that it models directly. Other derived

models for transitive-cost rely on a finer decomposition of sub-components. This derived

54

[transitive-cost of F calling G] < [call-count of G per invocation of F|

® [transitive-cost of G] (3.7)

[transitive-cost of F] < [self-cost] ® @ [transitive-cost of F' calling G;] (3.8)
i=1

[total-transitive-cost of F| < [call-count of F'] ® [transitive-cost of F] (3.9)

Figure 3.7: Rules for generating derived models. CF-TRENDPROF derives these models on
its second pass through the functions.

model caters to the case where these models for sub-components are not very good; instead
of a complex mess, we get one derived model that approximates some complex behavior.
Indeed, the other decompositions may not be a useful view onto performance where this one
may be. Essentially this model (and others like it) gives the model generation procedure a
certain resilience: more complex derived models (that may contain bad sub-models) must
compete with simpler derived models like this one and even simpler direct models; we can
thus discard useless or counter-productive complex models in favor of simpler ones.

Derived model 3.4 is the per-workload analogue to derived model 3.2. It models
total-self-cost of a function as the sum of the function’s call-count (corresponding to the
1 in the self-cost’s definition) and the per-workload sums of its loops. Derived model 3.5
models the total-self-cost of a function as its call-count times self-cost.

Derived model 3.6 guesses that a function’s total-transitive-cost is the same as its
total-self-cost. This guess is right if the function transitively makes no calls except to itself.

This model goes against the established pattern in that it is more of a guess (that may be

95

wildly wrong) than a decomposition. Since it will be compared against other models, both
direct and derived, this potential inaccuracy is not a particular problem: this model will be
chosen as the best only if it is appropriate.

Derived model 3.7 is concerned with modeling the cost of all calls to G during
a single invocation of F'; it does so by multiplying the number of times F' calls G (again
per-invocation of F') by the transitive-cost model for G.

Derived model 3.8 decomposes the transitive-cost of a function as its self-
cost plus the sum of the contributions of each callee. We model this per-callee term
([transitive-cost of F' calling G]) both directly and with derived model 3.7 above. The fact
that we also model this variable ([transitive-cost of F' calling G]) directly gives this derived
model resilience against bad or missing (see Section 3.4.4) transitive-cost models.

Derived model 3.9, analogous to derived model 3.5, models the total-transitive-cost

of a function as its call-count times its transitive-cost.

Discussion

To be sure, these rules for generating derived models can create odd-looking models
such as 3220 + 9219, or as we see in Section 3.7.2 and Figure 3.43, 0.24n%% 4+ 30n17 +
3319n — 22912. These models are not the standard fare of algorithms textbooks, but they
are no less interpretable. Indeed, they convey more information: the terms arise as a
consequence of the program’s structure and so reflect behavior of inner loops or callees.
The former model can only arise if there are two loops (or two callees) whose empirical
scalability is similar but not identical; the 92 term dominates until = 3'° ~ 60000

when the 3220 term takes over. Furthermore, as we will see in the next section, models

56

Variable Derived Model
[bsort inner loop count] [bsort outer loop count] ® {bsort gg%ggJ
[self-cost of bsort] 1 @ [bsort inner loop count] @ [bsort outer loop count]
[transitive-cost of bsort] [pure-transitive-cost of bsort] @ [self-cost of bsort]

Figure 3.8: Some derived models for the bsort example.

such as the former that consist of a sum of terms with similar exponents must compete
against direct powerlaw models; if the extra terms do not add extra precision, we discard
the model in favor of a simpler one. The latter model arises based on the behavior of two
distinct callees. If we were to “round” the latter model to a cubic polynomial or a powerlaw,

249 while the other scales more

we would discard the information that one callee scales as n
slowly.

Of course performance need not decompose along the lines of control flow and the
decompositions built into our derived models are not guaranteed to be the right ones to
understand all programs’ performance. However, CF-TRENDPROF is designed to try many
feasible possibilities and can recover from bad decompositions at a higher level of the call
tree, at the per-workload rather than per-invocation level, by using derivation rules such as

derived models 3.3, 3.8, and 3.4. In any event, CF-TRENDPROF is an improvement upon

any approach that chooses models from a small, a priori bounded family.

Example

Figure 3.8 shows some of the more useful derived models for some of the variables
for our bsort example. Computing these derived models requires that we have computed

the best model for sub-components.

o7

3.4.3 Choosing the Best Model

So far we have seen that CF-TRENDPROF generates a set of candidate models for
every variable. It considers direct models for all variables. Furthermore, it builds derived
models for a variable based on the structure of the program and the best models for the
variable’s subcomponents (such as loops inside a function or callees).

There are two fundamental concerns to balance when choosing models: model
precision, as measured by training set error, and model complexity. We would like a model
with low error. As we argued before, more complex models with more terms have the
potential to decrease error on the training data. However, there is a danger that if we
allow our models to grow gratuitously complex, that they will overfit the training data and
not generalize to other data. Put another way, the principle of Occam’s razor says that
we should pick a simple model absent evidence for a more complex one. Since any of our
candidate models may be nonsense, we insist that any complexity in the model be justified
by a sufficient decrease in training set error: derived models must exhibit lower error than
direct models which must in turn exhibit lower error than constant models if they are to be
chosen as the best model.

For every performance variable, CF-TRENDPROF chooses a best model from
among the direct and derived models it produces by assigning each model a score (smaller
is better) based on its standard error (Appendix A.1.5), and its complexity (see below).
The model with the lowest score is the best model.

The following formula gives the score for a model, §(z), that explains ob-

servations from n workloads, vi,...,yn, in terms of n vectors of k features each

o8

(@11, T1k) -5 (Tn1,- -, Tnk); We define g; as the model’s estimate on workload i,

(that is, y; def 9(xi1,...,xk)) ; ¥ is the sample mean of the observations %Z?:l y; and Sy

n ~ 2
is the standard error of the model M (see Appendix A.1.5).

n—

0 g(z) is a simple linear model

f
¢4
1 otherwise
2 x; is a workload feature
def
V= Z 3 x; is an invocation feature
i=1
20 x; is a loop count

t 20.01 x (the number of terms in the model)

a %1111

def IOOSy

model score = +0+V +t

a+y

This formula is ad hoc, but each term has a purpose. The units of the score formula
are percentage points of deviation from the mean, 7, of the observations; the idea is that
performance deviations in the thousands are serious when overall performance is, on average,
in the ten thousands, but not so serious if overall performance is in the billions. The o > 0
sets a threshold of performance that is too small to bother modeling precisely; when 7 is
small compared to « (that is, performance just does not get very high), we prefer simpler
models: the error term matters less and the complexity terms (¢, V, and t) matter more.
The V term penalizes for extra independent variables; it causes CF-TRENDPROF to prefer
workload features to invocation features and to penalize loop counts so seriously that models

that include them must offer dramatic improvements over those with more interpretable

99

features. The ¢ term chooses a linear fit over other types when the errors are similar. The
t term penalizes models with extra terms; its small magnitude means that ¢ acts as a third
tie breaker if the other terms are quite similar. In essence, this formula trades off precision
(low standard error relative to g) for model simplicity (fewer terms and features involved,
constant is simpler than linear is simpler than powerlaw).

Nonetheless, this formula is mostly about error. The other terms only matter
when two models are very close in error or when 3 and error are both very small and the «

term causes the error part of the formula to be very small.

Which Models and Why

Earlier (Section 3.4), we posed the question of which models we will consider to
explain the performance of a variable and why we are justified in considering them; we can
now answer this question as follows. We consider direct (linear and powerlaw) models for
every variable; these models are justified by our assumption that they may be reasonable
and by the fact that they must compete with a constant model. For variables with more
structure, such as a function’s self-cost or an inner loop’s count, we consider derived models
whose complexity is bounded by the structure of what they are modeling; these models are
justified by the structure of the program and furthermore by the fact that must compete
with direct and constant models. All of the degrees of freedom in our models arise from
apparent degrees of freedom in the program and each new term or feature in a model must

prove its worth by reducing error sufficiently.

60

Comparison to Other Ways of Selecting Models

There is no best solution to the problem of model selection in general. A typical
first-principles look at fitting [Ric06] and selecting [JB03] models to explain data begins with
some assumptions about the nature of the data and the nature of any deviations from the
model’s prediction. For instance, the exposition of linear regression, adapted to our setting,
is as follows. Suppose that we have a set of n workloads, {wi,...,w,} annotated with
workload features {x1,...,x,} and as we run each workload, w;, we measure some variable,
y; (for instance, the total-self-cost of function F) for each workload. We might consider the
hypothesis that the values we observe for y are based on a linear function of plus some noise
that is beyond our model’s explanatory power (e;): ¢;(z;) = a+ bx; + ;. If we assume that
the e; are independent, have equal variance, and have some known distribution we can reason
about the probability of observing some particular set of data points {(x1,41),- .., (Zn,yn)}
conditioned on the model being accurate. One approach to model selection hypothesizes a
model with an extra term, say c:c?, and then does statistical tests [Ric06] on the hypothesis
that ¢ = 0. Brewer [Bre94|, for instance, starts his models with many terms, computes
coefficients for each term and confidence intervals for the coefficients; if any coefficient’s
confidence interval contains zero, he drops a term and re-assigns coefficients to those that
remain. Alternately we could follow Jaynes’s [JB03] Bayesian approach and assume some
prior probability distribution for regression coefficients a and b and compare the odds of one
model being true (conditioned on data and priors) to another model being true (conditioned
on data and priors) — though the math for these comparisons is rather involved for even

the case of comparing two simple models.

61

Unfortunately, it is not clear that our observations have equal variance; in many
of our best-fit plots, residuals increase with features. For total-self-costs, the independence
assumption seems reasonable, but for self-costs during the same program run, it seems ill-
motivated. It is not at all clear what probability distributions to assign to either the errors
or the model parameters; the normal distribution (with a mean of zero for the error terms)
is standard, but again, residuals plots suggest that the sort of errors our approach must
tolerate are anything but normally distributed. For instance, the models in Figures 3.15,
3.18, 3.22, 3.31, 3.32, and 3.43 are useful, but their errors are probably not independent,
nor equal variance, nor normally distributed). Figures 3.9 and 3.10 show normal probability
plots to evaluate the hypothesis that the residuals of several of CF-TRENDPROF’s models
are normally distributed; a detailed discussion of these plots is beyond the scope of this
dissertation, but it suffices to understand that the residuals are normally distributed to
the extent that the points in the normal probability plots form lines. Simply put, these
residuals are not normally distributed.

Neither of these sources discuss a general framework for comparing multiple mod-
els. Furthermore, it is not clear how to incorporate, as our approach does, evidence from
program structure into the model selection process.

Thus, deriving a model selection algorithm for our setting from statistical first prin-
ciples would seem to involve several ill-motivated assumptions or difficult decisions about
distributions and priors. We have opted instead to use domain knowledge (the structure
of the program) and explicit, reasonable assumptions (constant, linear, powerlaw models

explain performance) to generate plausible models and a special-purpose model selection

62

criterion to trade off model simplicity for low model error on training data.

As we have seen, model selection is a difficult problem. We have settled on a rea-
sonable approach, but more work, both theoretical and empirical, remains. In Section 3.10.2
and Section 3.10.3 we consider some future directions for inquiry into selecting models for

program performance.

Example

Figure 3.11 shows CF-TRENDPROF’s best models for some of the variables in our
bsort example. The rightmost “Source” column says “Direct” for direct models or shows

the models symbolically combined to form derived models.

3.4.4 Interleaving Computation of Derived Models and Best Models

Derived models (for example, for self-cost) require models for sub-components (for
example, loop counts). Since considering k£ models each for each of n subcomponents would
entail considering n* models, CF-TRENDPROF considers only the best model for each sub-
component while constructing derived models. Once all the direct and derived models for
a variable are known, we can compute the best model for that variable.

In implementing our prototype of CF-TRENDPROF, we carefully manage the order
in which we compute direct fits, derived fits, and best fits for each variable so that all the
pieces (best models for other variables) we need are available for constructing derived models
and best models with good locality. CF-TRENDPROF proceeds in two passes. Both passes
process one function at a time in reverse topological order of the call graph (that is, leaf

functions first and other functions only after all of their callees). When processing a function

63

Normal Q—Q Plot

0O
@]
| —
L
Nej

w0 LO

2 @]

E=R

g <

j —

C o

: %-
]

g N

= _

N]
]
+ —
<]
< o}

Theoretical Quantiles
Normal Q—Q Plot

o
S
S
S
Ne)

&

—]

-

= O

= x

<

2 g

& 3

= 5

N |
]
]
]
]
Q? [[[[[

Theoretical Quantiles

Figure 3.9: Normal probability plots comparing residuals for the models in Figure 3.15
(top) and Figure 3.18 (bottom) to quantiles of the normal distribution. To the extent that
the points form a line, the residuals are normally distributed.

64

Normal Q—Q Plot

o
O —]
kS
T g
£
<2
3
= _
z 8
wn O
2 3
=&
i 00
[[[[[[[
-3 —2 —1 0 1 2 3
Theoretical Quantiles
Normal Q—Q Plot
o
o -
@]
@]
@]
@]
(@]
i

Sample Quantiles
0

—1500000

Theoretical Quantiles

Figure 3.10: Normal probability plots comparing residuals for the models in Figure 3.31
(top) and Figure 3.43 (bottom) to quantiles of the normal distribution. To the extent that
the points form a line, the residuals are normally distributed.

65

Variable Best Model Source

self-cost of swap 1 Direct

call-count of swap 0.2n? Direct
total-self-cost of swap 0.2n? Direct

bsort inner loop count 0.5n% — 0.5n (n) ® (0.5n — 0.5)
bsort outer loop count n Direct

bsort gg%gi 0.5n — 0.5 Direct

self-cost of bsort 0.5n% +0.5n + 1 (0.5n% —0.5n) @ (n) & 1
pure-transitive-cost of bsort 0.2n? Direct
transitive-cost of bsort 0.7n% +0.5n + 1 (0.5n2 + 0.5n + 1) @ (0.2n?)
call-count of bsort 1 Direct

main loop count n Direct

self-cost of main n+1 Direct
transitive-cost of main 072 +1.5n+2 | (n+1)® (1 ® (0.7n2 +0.5n + 1))
call-count of main 1 Direct

Figure 3.11: Best models for some variables in the bsort example.

on the first pass, CF-TRENDPROF finds the best models in the following order: loop counts
(outer loops first), total loop counts, self-costs, transitive costs, call counts, total self-cost,
total transitive-cost; this order allows CF-TRENDPROF to compute all the derived models
in Figure 3.6 for each of these variables. On the second pass, CF-TRENDPROF computes all
the derived models in Figure 3.7; these models concern transitive-cost and total-transitive-
cost.

The purpose computing best models in two passes instead of one is to handle a
particular case that arises in the presence of recursion. Notice derived model 3.7 presupposes
best models for the transitive-cost of each of a function’s callees. On the first pass through
all the variables, we compute a best-so-far model for every function’s transitive-cost that
encompasses direct models and all the derived models in Figure 3.6. Generally, the reverse
topological order in which we process functions ensures that the derived models in Figure 3.6

are computed for callees as well. In the event of a recursive cycle in the call graph, though,

66

the first function we process from a connected component has only a best-so-far transitive-
cost model for any of its callees from that component; in particular, its callees have not yet

considered derived models from Figure 3.7.

Handling Recursive Functions

We have found it useful to manually annotate (using tpRuntimeSetContext) all
recursive functions to be caller-sensitive. Clearly this annotation could be automated. The
sensitivity means that CF-TRENDPROF is modeling the call-count, self-cost and transitive-
cost of the initial invocation of the function (or entrance into the recursive component)
separately from the subsequent recursive calls.

We emphasize, however, the resilience of derived models 3.7 and 3.8 in Figure 3.7.
Suppose, for illustration, that F calls G and H. For every invocation of F, recall that CF-
TRENDPROF measures the transitive-cost of F accounted for by its calls to G and similarly
for H; CF-TRENDPROF considers both direct and derived models (derived model 3.7) for this
quantity. Thus, even if CF-TRENDPROF’s best model for G’s transitive-cost is complicated
by recursion (or is otherwise bad), G’s cost when called from F can be captured with a
direct model. Derived model 3.8 takes advantage of this per-callee modeling by deriving a
model for F’s transitive-cost as the best model for F’s self-cost plus the best model for the
portion of F’s transitive-cost accounted for by G plus the best model for the portion of F’s

transitive-cost accounted for by H.

3.4.5 Output

CF-TRENDPROF’s output organizes all of a program’s functions according to their

67

dynamic call graph. It presents the best fits for each function’s self-cost, transitive-cost, call-
count, total-self-cost, and total-transitive-cost. For each variable, there is a more detailed
view showing best-fit scatter plots and residuals scatter plots of all models for the variable
(much like the output of BB-TRENDPROF) with standard errors and a breakdown of their
score (used for computing the best fit).

For models that predict a variable in terms of more than one feature, we show a
best-fit scatter plot that shows the predictions (z axis) versus the observed performance
(y axis); in these plots the fit is good to the extent that the points lie on the line y = z.
We also show a scatter plot of predictions (z axis) versus residuals (y axis) and a scatter
plot for each feature that shows the feature (z axis) versus residuals (y axis).

In order to give a sense of the magnitude of each function’s performance contri-
bution, CF-TRENDPROF lists each function’s maximum (over all workloads) total-self-cost
and total-transitive-cost; we find that this maximum cost helps put scalability models and
standard errors into perspective and is a useful tool for finding the important (and discard-
ing the unimportant) parts of the call graph. Two alternate top-level output pages show all
functions sorted by their maximum (over all workloads) total-transitive-cost, and maximum
(over all workloads) total-self-cost respectively; these views quickly focus attention on the
most expensive subtrees of the call graph and the most expensive functions respectively.

We report two measures of error for each model. The standard error (see Sec-
tion A.1.5) gives a measure of the absolute magnitude of the deviations of observed values
from predicted values; it is similar to the standard deviation, but with the model as a

baseline instead of the mean. In order to give a sense of the error of the model relative

68

to magnitude of the data that it is modeling, we also report the standard error divided by
the mean of the observed execution counts; we report this value as a percentage (0 % is a
perfect model, 100 % means the standard error is equal to the mean, higher numbers are

worse).

3.5 Micro-benchmarks

In this section we demonstrate both the power of CF-TRENDPROF and some of its
limitations in a number of small, but realistic scenarios that focus on its analysis of several
well understood algorithms and data structures. In each of these scenarios we have a clear
hypothesis about how we expect performance to scale as a function of workload features.
We evaluate CF-TRENDPROF by how clearly it supplies evidence to support or refute these
hypotheses.

On a simple nested loop matrix multiply algorithm, CF-TRENDPROF derives an
exact performance function (Section 3.5.1). Tiled matrix multiply is more complex, but
CF-TRENDPROF derives a cubic model for its performance (Section 3.5.2). A look at
doubling lists shows how amortized analysis is built in to CF-TRENDPROF’s notions of
total-self-cost and total-transitive-cost (Section 3.5.3). Similarly, our hash table benchmark
shows how CF-TRENDPROF’s measurement of real workload data serves the same purpose
as an expected case analysis, not over a careful constructed theoretical distribution, but over
the distribution of workloads that the user provides (Section 3.5.4). Insertion sort’s cost
and scalability depends on a deeper property of its input than its size (Section 3.5.5); this

example illustrates a mixed blessing of the TRENDPROF technique that recurs throughout

69

this thesis: TRENDPROF’s models intimately depend on the implementation’s behavior
given the empirical distribution of workloads that the user provides.

Establishing the scalability of Dijkstra’s algorithm using a Fibonacci heap as a
priority queue requires sophisticated analysis, but CF-TRENDPROF’s models are a good
approximation—they approximate a O (nlogn) factor with a linear model (Section 3.5.7).
Our quicksort benchmark (Section 3.5.6) combines several ideas from above: it has a com-
plex theoretical performance analysis, CF-TRENDPROF approximates its expected case
O (nlogn) complexity with a linear model, and its performance ultimately depends on a
deeper property than the size of its input. We also consider the problem of a quicksort al-
gorithm with a deterministic choice of pivot and how CF-TRENDPROF finds the scalability
problems this coding error can cause (Section 3.6.1) on certain distributions of workloads.

We show that CF-TRENDPROF is useful in diagnosing improperly implemented
or improperly used hash tables. We consider the case of a subtly bad hash function (Sec-
tion 3.6.2) and that of an overfull hash table (Section 3.6.3), two situations that are not

hard to imagine occurring in the wild.

3.5.1 An Exact Bound for Square Matrix Multiply

Figure 3.12 shows code for multiplying two n by n square matrices, A and B, and
storing the result in a third n by n square matrix, C. A workload consists of values for A
and B. We specify n as the only workload feature. This code is clearly © (ng)

CF-TRENDPROF derives the exact performance function, n3 +n? +n + 1, for the
matmult function. Figure 3.13 shows the best-fit plot (top) and residuals plot (bottom)

for CF-TRENDPROF’s model of the matmult function’s cost. The residuals plot shows that

70

// C=Ax%B
void matmult(int *A, int *B, int *C, int n) {

int i,j,k;

memset (C, 0, n*n);

for (i=0; i<m; ++i)

for (j=0; j<n; ++j)
for (k=0; k<n; ++k)
Cln*i+j] += A[n*i+k] * B[nxk+j];

return;
}
Figure 3.12: Code for matrix multiply.
2.5e+08
D
2e+08 [~
1.5e+08 [~
1e4+08 [~
5e+07 [~ model
(= ol?servation§ B
0 100 200 300 400 500 600
1 F I I _]
residuals O
057 m
ANNVERY VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR /)
0 N\ _/ _/ _/ _/ N N N N N _/ \d
-0.5 m
-1 \ \ \ \ \]
0 100 200 300 400 500 600

Figure 3.13: The best-fit plot (top) and residuals plot (bottom) for the cost of the
matmult function for matrix multiplication. These plots show a perfect fit (self-cost :=
n®+n?+n+1).

71

CF-TRENDPROF’s model is a perfect fit to the observed performance.

This benchmark shows an ideal case for CF-TRENDPROF. Each loop’s cost de-
pends only on its outer loop and known workload features. To the extent that we can isolate
contexts where loops cost roughly the same every time and provide workload features or

invocation features that explain these costs, CF-TRENDPROF explains performance well.

3.5.2 Tiled Matrix Multiply is Cubic

Figure 3.14 shows an implementation of tiled n by n square matrix multiply. A
workload consists of two n by n matrices, A and B, which tmatmult multiplies, yielding a
third n by n matrix, C. We specify n as a workload features.

The complexity of this code is still © (n3), but the exact performance cost of
this code is more difficult to characterize than that of the simple matrix multiply code
we saw previously. The gist of the algorithm is to compute the matrix multiplication by
breaking A and B into TileSize by TileSize tiles and considering one pair of tiles at a time
(resulting in better cache locality). The details are tedious, but for our purposes it suffices
to understand that when the size of the matrix is not an integer multiple of the size of the
tiles, there are fragments on the bottom and right of the matrix that do not fill a tile; for
these fragments, at least one of M, N, and K is less than TileSize and the inner three loops

have a different cost than the usual case when all three are equal to TileSize.

72

// C+=A x B

void tmatmult (int n, int *A, int *B, int *C) {
int ntiles = n / TileSize + (n%TileSize? 1 : 0);
int bi, bj, bk;

for (bi = 0; bi < ntiles; ++bi) {
int i = bi * TileSize;

for (bj = 0; bj < ntiles; ++bj) {
int j = bj * TileSize;

for (bk = 0; bk < ntiles; ++bk) {

int k = bk * TileSize;

int M = (i+TileSize > n? n-i : TileSize);
int N = (j+TileSize > n? n-j : TileSize);
int K = (k+TileSize > n? n-k : TileSize);

int* AA = A + i + k*n;
int* BB = B + k + j*n;
int* CC = C + i + j*n;
int ii, jj, kk;
for (ii = 0; ii < M; ++ii) {
for (jj = 0; jj < N; ++jj) {

int ciijj = *(CC + jj*n + ii);

for (kk = 0; kk < K; ++kk) {

int aa = *(AA + ii + kk*n);
int bb = *(BB + jj*n + kk);
ciijj += aa * bb;

b //kk

*(CC + jj*n + ii) = ciijj;

} /733
}//7id
} //bk
} //v]

} //bi

Figure 3.14: Code for tiled matrix multiply. The details of the traversal of A, B, and C are
tedious, but fortunately unimportant for our discussion.

73

3.5e+08 \ \

36408 [model O

observations
2.5e+08 - m
2e+408 |~ m
1.5e+08 - 7
le+08 [~ m

5e+07 [~ n

| B6-6-6-9 -
0 100 200 300 400 500 600 700

le+06 \

500000 [~ - @ @ @ 7

-500000 [~ m
r‘esiduals | O

\ \ \ \
0 100 200 300 400 500 600 700

-1le+06

Figure 3.15: The best-fit plot (top) and residuals plot (bottom) for tiled matrix multiply as
implemented in the tmatmult function (self-cost :~ n3 4 0.11 * n?91 4 0.10n2 4 0.97n + 4.2,
SE = 2.11 x 10°). Notice that the scale of the residuals is substantially less than that of
the performance.

74

CF-TRENDPROF arrives at a good approximation of tmatmult’s cost, n3 4 0.11 %
n291 4+ 0.10n% 4 0.97n + 4.2. Figure 3.15 shows the best-fit plot (top) and residuals plot
(bottom) for CF-TRENDPROF’s model of tmatmult’s cost. The standard error (2.11 x 10°)
and residuals are small relative to the overall cost of the function. The fit is not exact
(indeed it seems to have missed a quadratic term), but it is a good approximation that gets
the overall cubic scalability right. This derived model beats the less precise, but simpler
powerlaw model, 1.1n>% standard error = 2.84 x 10°. Despite the fact that the loops
in tmatmult do not always iterate the same number of times, CF-TRENDPROF finds the

performance trend.

3.5.3 Amortized Analysis of Doubling Lists

Perhaps the simplest example of amortized analysis is in the analysis of a doubling
array list. Figure 3.16 shows an example implementation. Additions to the list usually take
constant-time, but every once in a while the entire list must be moved to a larger array. A
workload for this benchmark consists of n integers to pass to insert; n is the only workload
feature. By an amortized analysis [CLR90], the insert operation takes amortized constant
time; that is, n inserts take O (n) time.

The self-cost of insert, shown in Figure 3.17 varies even at the same input size;
there is some pattern, but the overall trend is unclear. However, CF-TRENDPROF predicts
growth linear in n for the total-self-cost of insert: 4n — 2600 (SE = 26900) for n inserts.
Figure 3.18 shows the best-fit and residuals plot for this model.

It is not unequivocally clear from the best-fit plot that this implementation is

amortized constant, but CF-TRENDPROF supplies evidence to support this hypothesis: the

int *list =

NULL;

int capacity = 0;
int size = 0;

void insert(int e) {
if (size == capacity) {
capacity *= 2;

int *newlist = (int*)malloc(capacity * sizeof (xlist));
int i=0;

for (i=0; i<size; ++i) newlist[i] = 1list[i];

for (; i<capacity; ++i) newlist[i] = O0;

free(list);

list = newlist;

}

assert(size < capacity);
list[size] = e;

size +=

200000

150000

100000

50000

Figure 3.17: The best-fit plot for insert’s self-cost :~ 4, SE = 445. We omit the residuals

plot.

1;

Figure 3.16: Source code for a simple doubling list.

model
| observations O |
QU1 03p

ST B2 I EERIn e

(0005000700080 0X0000000000000000¥0
e OO O O O O O OO B Ol

N\

0 100002000030000400005000060000700008000090000106000

76

400000
350000
300000
250000
200000
150000
100000
50000
0@”
~50000

obs‘ervati(?ns

\ \ \ \ \ \ \
0 1000020000 3000040000 50000 60000 70000 80000 90000100000

80000 \ \ t)
60000 F esiduals

40000 [~ 7

20003 3§§5§7L\<;5%g) <;if%>\ -
-20000 [~ © <%:3> CQ:%%;%2;E>\ &<%:EE)
-40000 N

-60000
0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

A\

Figure 3.18: The best-fit plot (top) and residuals plot (bottom) for insert’s
total-self-cost :a~ 4n — 2600, SE = 26900.

77

2000)
1800 [-
1600 [-
1400 -
1200 -
1000 [-
800 [~ -
600 [~ -

400 [~ model

200 [ob§ervations O
0 ()/ | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.19: The total-self-cost := 2n of looking up in a chaining hash table each of the n
items spread perfectly uniformly among its 2000 buckets. We omit residuals plots for this
perfect fit.

total-self-cost for n averages out to a convincing linear trend and the best powerlaw fit
has exponent 1.08. In this situation, the availability of the scatter plot and the fact the
trend in the data averages out to linear growth is a great help in exploring the theoretical
argument. By building models for functions’ total-self-cost and total-transitive-cost, CF-
TRENDPROF is essentially reporting their costs amortized over an entire workload. This sort
of amortized analysis is crucial in reasoning about the theoretical computational complexity

of many algorithms.

3.5.4 Empirical Performance of a Hash Table

For the purposes of this experiment, we consider a hash table with 2000 buckets
that resolves collisions with chaining. A workload consists of n insertions and n lookups,
one for each element that we insert. The only workload feature is n. For this experiment,
we restrict our attention to n < 1000. Since our purpose with this experiment is to study

the performance of hash table operations given hash functions with various properties, we

78

12

[[
model
observations

O

model
| | | | | | ob§ervati‘ons |
-500
0 100 200 300 400 500 600 700 800 900 1000
60
D
=20 - = n
-40 7
residuals O
-60 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Figure 3.20: The self-cost :~ 2, SE = 0 (top), total-self-cost :~ 2.25n — 38, SE = 19
(middle), and total-self-cost residuals (bottom) of looking up in a chaining hash table each
of the n items spread among its 2000 buckets by a uniform random hash function.

79

actually use the identity function as our hash function and generate inputs as if they had
been hashed from a function with the desired properties.

A hash table with a good hash function provides constant time lookup in the
expected case. In this section we examine CF-TRENDPROF’s analysis of a hash table
storing perfectly uniformly spread data (an ideal case) and data generated uniformly at
random (a more reasonable ideal). In either case, we expect lookups to be constant on
average.

There are no surprises: lookup is constant in both cases. Figure 3.19 shows the
best-fit plot for the lookup operation’s total-self-cost; the models predict performance ex-
actly: the lookup operation has a self-cost of 2 and a total-self-cost of 2n. Figure 3.20 shows
CF-TRENDPROF’s analysis of the lookup operation’s cost in the case of uniform-randomly
distributed items. The self-cost is still constant, though with an upward tendency as the
hash table becomes more full. The total-self-cost averages out to a linear growth in n, but
it has a slight, but undeniable upward bend as the hash table gets full.

In this micro-benchmark, CF-TRENDPROF shows a hash table behaving as it
ought to. Theoretical analysis of hash tables requires one to reason about the expected case:
assuming the hash function distributes keys uniformly at random (and the load factor is
small), a hash table provides constant time lookup in the expected case. CF-TRENDPROF’s
models encompass this sort of reasoning automatically: they reflect the average over the
empirical distribution of workloads.

As long as the load factor of the hash table is reasonably below 1, the lookup

tends to be constant time. In a subsequent micro-benchmark we consider the performance

80

// sort least to greatest
void isort(int n, int *arr) {
int i=0;
while (i < n) {
// arr[0..i-1] is sorted least to greatest
int val = arr[i];
int j = i-1;
// shift anything greater than val up by one position
while (j >= 0 &% arr[j] > val) {
arr[j+1] = arr([j];
~-3;
}
// put val into the gap left by the shifting
arr[j+1] = val;
++3;

Figure 3.21: Code for insertion sort.

of misbehaving hash tables. As we shall see, a less than ideal hash function or a full table

leads to measurable performance degradation.

3.5.5 Insertion Sort’s Cost Depends on More Than Input Size

Consider the code for insertion sort shown in Figure 3.21. A workload for this
micro-benchmark consists of an array of n integers to sort; n is the only workload feature.
While the outer loop always goes around exactly n times, the inner loop’s cost
depends on the sortedness of the array. If we consider only arrays that are already sorted or
nearly so, the inner loop goes around a constant number of times and the cost of insertion
sort scales linearly in n. In contrast, if we consider arrays that are sorted in reverse or are

permuted at random, the cost of insertion sort scales quadratically in n. CF-TRENDPROF’s

81

100000 \
90000 [~ b
80000 [~ O
70000 [~
60000 [~ D
50000 [~
40000
30000
20000 model
10000 opservaﬁon§
0 | |
0 10000 20000 30000 40000 50000 60000
40000 \ \
residuals O
30000
20000 [
5 o O
10000 [~ O m
O O
0@
ZZAENG
© 0
-10000 [~ O
\ \ \ \ C\))
-20000
0 10000 20000 30000 40000 50000 60000

Figure 3.22: Best-fit plot (top) and residuals plot (bottom) for CF-TRENDPROF’s model
for isort self-cost :~ 1.3n, SE = 7330 on sorted and nearly sorted inputs.

2e+0
1.8e+0
1.6e+0
1.4e+0
1.2e+0
le+0
8e+0
6e+0
4e+0
2e+4-0

82

9

o
o
9 -
9 -
o
s |
g |-
g |
s |

O

model

o]a)servation§

10000

20000

30000

40000 50000

60000

6e+08
4e+08
2e+-08

O

O

0¢
-2e+4-08
-4e+-08
-6e+4-08

O

O

residua%s

O

Q

D

0

10000

20000

30000

40000 50000

60000

Figure 3.23: Best-fit plot (top) and residuals plot (bottom) for CF-TRENDPROF’s model
for isort self-cost =~ 0.36n? +58n + 1, SE = 1.76 x 10® on random and reverse-sorted

inputs.

I I
model
2e+09 [~ observations ~
Q)
1.5e+09 |~
O
le4+09 [n
O o D
oe+08 [~ O —
@Ee—S D D S, D D
0 10000 20000 30000 40000 50000 60000
- T T -
1.5e+09 residuals O 5
1le4+09 [n
O
5e+08 [O O -
@GS A e [@) O D
T —<—) o)
© 0
-5e+08 >
e+ C)
~1e+09 ‘ ‘ ‘ ‘ ‘
0 10000 20000 30000 40000 50000 60000

83

Figure 3.24: Best-fit plot (top) and residuals plot (bottom) for CF-TRENDPROF’s model
for isort :~ 0.18n? +30n+ 1, SE = 2.58 x 10® on sorted, nearly sorted, random, and
reverse-sorted inputs.

84

results confirm this analysis.

Figure 3.22 shows CF-TRENDPROF’s best fit plot and residuals plot for insertion
sort on workloads (arrays of n integers) that are either sorted or have been sorted and
had n adjacent elements swapped with each other (i.e., are nearly sorted). As predicted,
CF-TRENDPROF’s models show that isort’s cost scales linearly in n when run on these
workloads. The upper line of points on the scatter plot corresponds to the nearly sorted
inputs while the lower line corresponds to the sorted ones. It is not hard to imagine a
distribution of workloads that would cause the scatter plot to fill out with points between
the lower and upper lines of data points.

Figure 3.23 shows CF-TRENDPROF’s best-fit plot and residuals plot for isort
on workloads that are either permuted randomly or sorted in reverse order. Again, CF-
TRENDPROF’s models agree with our predictions: they show that isort scales quadratically
on these workloads. Here the upper line of points are the reverse sorted workloads, the worst
case for this code, and the lower line of points are the random workloads. Again, it is not
hard to imagine this graph filled out with more data, nor unreasonable to conclude quadratic
growth from it.

Obviously, the performance of isort on the union of these sets of workloads varies
considerably. Figure 3.24 shows the models and scatter plots that CF-TRENDPROF com-
putes for this situation. As always, CF-TRENDPROF reports the empirical average scaling
behavior; in this case, the expensive workloads push the model toward quadratic.

This micro-benchmark demonstrates that the cost of a function on a particular

workload can depend on very subtle properties of the workload, such as sortedness of the

85

array in this example. Indeed, it may be difficult to measure such properties without essen-
tially running the function on it. This dependence of performance on such subtle properties
means that the apparent scalability of an algorithm that CF-TRENDPROF measures is as
much a consequence of the code being measured, as it is of the empirical distribution of
workloads. This issue is one we see many times in this dissertation and it is both one of
the greatest advantages of using TRENDPROF (Section 2.4.4, Section 2.4.7) and one of the

biggest challenges to overcome in designing TRENDPROF (Section 3.7.4).

3.5.6 Approximating the Cost of Quicksort

Figure 3.25 shows the code for our quicksort benchmark [Lam]|. The gsort function
takes arrays of integers and sorts them using the quicksort algorithm. A workloads for this
benchmark is an array of n randomly generated integers. The only workload feature is n; it
ranges from ten to one hundred thousand. For this benchmark, we add a context annotation
that distinguishes the first call to gsort from recursive calls.

The theoretical analysis of quicksort’s performance is difficult [CLR90]. Like in-
sertion sort, quicksort has a worst case complexity of O (n2) operations for sorting an array
of n integers. In the expected case (over the uniform distribution of all permutations of the
input array), though, it scales as O (nlogn).

Figure 3.26 shows observations and CF-TRENDPROF’s best model for the
transitive-cost of the gsort function. For larger workloads (high n), there is more variation
in performance: performance generally increases as a function of n, but the relationship
is not exact. The model CF-TRENDPROF chooses is a linear one, 18.4n — 43000, but the

U-shaped residuals suggest some systematic error as if CF-TRENDPROF missed a factor.

void quickSort(int arraysize, int numbers([]) {

}

gsort (numbers, 0, arraysize - 1);

void gsort(int numbers[], int left, int right) {

int pivot, lhold, rhold;

tpRuntimeSetContext(...);
lhold = left;
rhold = right;
pivot = numbers([left]; // sub-optimal deterministic pivot choice
while (left < right) {
while ((numbers[right] >= pivot) && (left < right)) right--;
if (left '= right) {
numbers[left] = numbers[right];
left++;

}

while ((numbers[left] <= pivot) && (left < right)) left++;
if (left != right) {
numbers [right] = numbers[left];
right--;
}
}
numbers[left] = pivot;
pivot = left;
left = lhold;
right = rhold;
if (left < pivot) gsort(numbers, left, pivot-1);
if (right > pivot) gsort(numbers, pivot+l, right);

Figure 3.25: Code for our quicksort micro-benchmark [Lam].

86

87

2.5e+06
2e+06 [~ _
1.5e+06 [~
1le4+06 [
linear model B
500000 powerlaw model ===~
observations
0 | \ [
0 20000 40000 60000 80000 100000
200000 \ \ [
150000 line%r@iduals O _
100000 [~ - o .
50000 O 7
0@©©@8m@ = %OQO 9 8@@
O O
50000 8 O © o .
-100000 |- O O 4
-150000 [~ I
-200000 | | | | |
0 20000 40000 60000 80000 100000
200000 \ \ [
150000 powerlaw residuals O
100000 [~ O O O 7
50000 [~ O O O .
Ee865099 ~80,0., ©
-50000 ole 8 S 00 @ 3
-100000 [~ I
-150000 [~ O 7
~200000 | | | | |
0 20000 40000 60000 80000 100000

Figure 3.26: Scatter plot of the transitive-cost of initial, non-recursive call to gsort (y axis)
versus n (x axis); the dotted line shows the best powerlaw model (transitive-cost :~ 4n!-13,
SE = 47900) while the solid line shows the best model overall (transitive-cost :~
18.4n — 43000, SE = 45300) (top). The middle and bottom plots show the residuals (y axis)
versus n (z axis) for the best (linear) model and the best powerlaw model respectively.

88

The powerlaw model, 4n'13

is also shown in Figure 3.26. It has a slightly higher standard
error (47900 instead of 45300), but the residuals have a more triangular shape: the model
curves upward with the data. Both models approximate the noisy performance relationship
reasonably.

It is likely that a model in terms of n log n term would predict gsort’s performance
even better. If we were to include such models in CF-TRENDPROF’s repertoire, however, it
would try them for all variables. Because of the similarity between linear trends and nlogn
trends, noisy linear trends might be classified as nlogn and vice versa. The trade-off we
have taken with CF-TRENDPROF is towards a small number of possible models each of

which is likely to convey useful information even if it is not a perfect fit. Inclusion of other

families of models is worthy of further investigation, but it is not an obvious win.

3.5.7 Dijkstra’s Algorithm Using a Fibonacci Heap

For this experiment we consider an implementation of Dijkstra’s algorithm using
a Fibonacci heap as a priority queue. Figure 3.27 shows pseudo-code [Sau]. A workload
consists of a randomly generated sparse, connected graph with n (n € {20...1000}) nodes
and e edges (e € {n,...,5n}) on which we run Dijkstra’s algorithm to find the shortest
path from an arbitrarily chosen start node to all other nodes in the graph. We generate the
graph by first generating a cycle with the n nodes (involving n edges) and then choosing
e —n more edges uniformly at random from all those that are possible; thus every node is

reachable from every other node. All edges have randomly chosen, positive weight.

void dijkstra(Graph g, Node n0) {
FiboHeap heap;

foreach node in g.nodes {
node.state = unseen;
node.dist = infinity;

}

/* place n0 into the frontier set with a distance of zero */
n0.dist = 0;

heap.insert(n0, 0);

n0.state = seen;

while(n = heap.deleteMin()) {
n.state = done;
foreach edge in n.succs {
w = edge.target;
if (w.state != done) {
dist = v.dist + edge.dist;
if(dist < w.dist) {
w.dist = dist;

if(w.state == seen) {
heap.decreaseKey (w, dist);
} else {

heap.insert(w, dist);
w.state = seen;

Figure 3.27: Pseudo-code for Dijkstra’s algorithm [Sau].

90

O

model

observations

20

200 300 400 500 600 700 800 900 1000

100

o
@® S
1T 1T 1 1T 17 1T 177119 ,]
o
N O] 8 O
(=]
— wmn — »m
R =N =) g2
‘ O.m‘O‘ O.D‘
= © =
s g%
Z Z
)
L Ll s L S
2| 2
o o
o
— - o = —
Ne
o
— -1 <o =
10
]
- N I T
<t
]
— -1 o =
(el
o
— -1 <o =
(o]
o
- 4 <o =
—
,,,,,,,,,&O I O O
N elelelolalolalalale] o O O O o o O
O OO OO OO O OO o O O O o o <O
SOOI~ O 1o < N AN —H o O O O o o O
— ~ © 0 <F O N 9~

900 1000

700 800

500 600

200 300 400

Best fit plots for the Fibonacci heap’s insert operation during Dijk-

Figure 3.28:

n (middle),

= 1 (top), call-count :

i~ 6.0, SE
total-transitive-cost :~ 6.0n — 15, SE = 99 (bottom).

transitive-cost

stra’s algorithm.

91

60 \
50 [~ B

30
20
10
model

-10 | observat}ons x
-20

P -
XOOBERRERBRBRER
XOOBBRIBRIIIBIBRIR
XOOBERRERRRBRERLEBAIRL
PO
X B IBIBIIIRR
PaOae i e
PaOae i e

200 400 600 800 1000

)

1000)
900 [T
800 [T
700 .
600 [.
500 [~ T
400 [~ -
300 [.
200 model N

100 [ob§ervations
0 (y/ | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000

40000
35000
30000
25000
20000
15000
10000

5000

-5000 [~ ‘ obﬁervatiPns ‘0
-10000
0 100 200 300 400 500 600 700 800 900 1000

Figure 3.29: Best fit plots for the Fibonacci heap’s deleteMin operation during Di-
jkstra’s algorithm. transitive-cost :~ 32, SE = 9 (top), call-count := n (middle),
total-transitive-cost :~ 36n — 2900, SE = 4370 (bottom).

92

model

observations

O

(@0

)

(DY

40

o

0 O

200 300 400 500 600 700 800 900 1000

100

X

model

obﬁervaqons

500

,
o
=]
<t

300 |~

200 |~

-100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

X

model

ob§ervatipns

2500

2000 |~

,
o
=
0
i

1000 |~

500 [~

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

Figure 3.30: Best fit plots for the Fibonacci heap’s decreaseKey operation during Dijkstra’s

= 35

= 2 (top), call-count :&~ 0.096e — 55, SE

(middle), total-transitive-cost :~ 0.50e — 290, SE = 187 (bottom).

transitive-cost :~ 5.2, SE

algorithm.

93

60000 \ \

\
perfect fit line
predictions (x) vs observations (3

-10000 0 10000 20000 30000 40000 50000

-35000 [~ ‘ ‘ ‘ ‘ {esiduﬁils Versus edges ‘0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

o

-35000 [~ ‘ ‘ ‘ ‘ gesiduqu Versus nqdes ©

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.31: Best fit plot for transitive-cost :~ 1.5e 4+ 45n — 3200, SE = 4500 of dijkstra,
Dijkstra’s algorithm using a Fibonacci heap (top), residuals versus edges (middle), and
residuals versus nodes (bottom).

94

Theoretical analysis of Dijkstra’s algorithm tells us we can expect to do the fol-

lowing operations per workload [CLR90].

e exactly n calls to insert

e exactly n calls to deleteMin

e O (e) calls to decreaseKey

Subtle theoretical analysis of the Fibonacci heap data structure bounds the costs
of its operations [CLR90]. The details are beyond the scope of this thesis, but we summarize
the results below. Based on these bounds, we can bound the contribution of each operation

to the total cost of a workload.

e insert is O (1) and thus n calls should contribute © (n).

e deleteMin is amortized O (logn) and thus n calls should contribute O (nlogn).

e decreaseKey is amortized O (1) and thus e calls should contribute O (e).

Therefore, the entire run of Dijkstra’s algorithm is O (nlogn + e+ n). Notice that the
bounds for deleteMin and decreaseKey are O () and not O (-); thus, it is possible, de-
pending on the properties of the workloads, that these operations account for less work.

Figure 3.28 shows that CF-TRENDPROF’s models and measurements for the
transitive-cost (top), call-count (middle), and total-transitive-cost (bottom) for the insert
operation match well with theory. The transitive-cost is constant, the call-count exactly
linear in n, and the total-transitive-cost is © (n).

Figure 3.29 shows CF-TRENDPROF’s models for deleteMin. The call-count model

(middle) shows that deleteMin is called exactly n times, as theory predicts. The scatter

95

plot for the transitive-cost is consistent with an amortized logarithmic operation, but ul-
timately inconclusive. CF-TRENDPROF chooses a constant model for transitive-cost (32)
here because of the a term in the model scoring formula (Section 3.4.3) — we prefer simple
models in situations such as this one where performance varies within small bounds. We
might hope that CF-TRENDPROF’s model of total-transitive-cost would mirror the theo-
retical prediction of O (nlogn), but these models are not in CF-TRENDPROF’s vocabulary;
instead, CF-TRENDPROF chooses a linear model: 36n — 2900, (SE = 4370). Based on this
scatter plot and the curve at the top of the residuals plot, it is not hard to believe that
the total-transitive-cost of deleteMin is O (nlogn), but this pronouncement is beyond the
scope of CF-TRENDPROF’s power. Nonetheless, the scatter plots and different models that
CF-TRENDPROF automatically generates are useful tools in analyzing the scalability of this
code.

The empirical measurements for decreaseKey more closely track its theoretical
upper bounds. Figure 3.30 shows CF-TRENDPROF’s models and best-fit plots for transitive-
cost, call-count, and total-transitive-cost. The cost of an individual invocation is constant
and despite some noise, the call-count and transitive-cost seem to scale linearly with e.

Figure 3.31 shows CF-TRENDPROF’s model for dijkstra’s transitive-cost as a
function of n and e: 1.5e 4+ 45n — 3200. Since the three dimensional plots are much harder
to judge, we include residuals plots versus edges (middle) and nodes (bottom). That the
standard error (SE = 4500) and the spread of the points on the residuals plots are small
compared to the magnitude of the performance show that CF-TRENDPROF’s model is a

reasonable model of noisy data. This model misses a logarithmic term, but is otherwise close

96

to theory. For this workload CF-TRENDPROF cannot definitively confirm that dijkstra
scales as O (nlogn + e + n), but the empirical truth that CF-TRENDPROF measures is at
least close to this theoretical bound.

This micro-benchmark demonstrates CF-TRENDPROF’s ability to analyze the per-
formance of a complex algorithm. Its result, however, is not the same as what theory gives
us. While theory can reason about upper, lower, and expected case (over some specified dis-
tribution of workloads) bounds on performance, CF-TRENDPROF measures the empirical

cost of an implementation on particular workloads.

3.6 Diagnosing Data Structure Problems

In this section we use CF-TRENDPROF to diagnose performance problems. We
construct a number of scenarios, state our expectations about the performance of the code
involved and compare those expectations with CF-TRENDPROF’s models. The deviations
of the models from our expectations point to performance problems.

Our experiments in this section consider quicksort and hash tables in isolation: we
provide a workload feature that describes the size of the data structure and consider one
call to quicksort or one instance of a hash table. In order to realize such an ideal situation
in the context of a larger algorithm, a user would likely have to provide CF-TRENDPROF
with suitable context annotations and invocation features.

To find the performance problems we diagnose in this section with a tool such as
gprof requires a (potentially large) workload that forces the cost of, say, hash table lookup

to be a large percentage of the cost of the entire program. Even then, it may not be clear

97

exactly why hash table lookups account for such a large portion of performance cost nor
what they ought to cost.

In contrast, CF-TRENDPROF requires only workloads that perform lookups on
hash tables and that these hash tables span a range of sizes. Asymptotic bounds give a
baseline with which to compare CF-TRENDPROF’s models. Deviations suggest potential
performance problems. As we discuss in Section 2.4.5, such deviations invite the user
to imagine a workload that would lead to performance problems based on the observed
scalability and perhaps to fix the performance bug before observing a workload that exercises

it.

3.6.1 Deterministic Quicksort Pivot

Recall our quicksort micro-benchmark from Section 3.5.6. Implemented properly,
quicksort sorts an array of n items in © (nlogn) steps in the expected case. However, if
quicksort chooses a pivot without randomness, say the first element, and its inputs are
suitably permuted, say sorted in reverse, then it can consistently take © (n2) steps to sort
its input.

Figure 3.32 shows the results of running CF-TRENDPROF on such an implemen-
tation of quicksort on arrays of n integers that are sorted in reverse. Quicksort’s transitive-
cost fits a quadratic, 0.5n% + n, quite well. Although the residuals plot suggests that
CF-TRENDPROF’s model misses a linear term roughly proportional to 0.5n, we can safely
ignore it because it is quite small compared to the quadratic term. The quadratic scaling
is quite clear from CF-TRENDPROF’s models. Thus we see CF-TRENDPROF finding a

performance bug.

98

2e+09
1.8e+09 [~
1.6e+409 [~
1.4e+409 [~
1.2e4+09 |-
le+09 [
8e+08 [~
6e+08 [~
4e+08 [~
2e+08 [~

model
ol?servation§ O

\ \
0 10000 20000 30000 40000 50000 60000

35000 |
30000 [o O b
25000 [o O -
g o :
10000 [O O -

L O _|
5000 O

residua%s @)

\ \ \ \
0 10000 20000 30000 40000 50000 60000

-5000

Figure 3.32: Best-fit plot(top) and residuals plot (bottom) for the transitive-cost of a flawed
implementation of quicksort transitive-cost :~ 0.5n% +n, SE = 19200 (it chooses the first
element in its list as the pivot) run on reverse-sorted inputs. We obtained this model by
separating the calls to quicksort by callee — effectively splitting off the initial call from the
recursive ones. The systematic deviation in the residuals plot is not too worrying because
of its small scale compared to the actual performance.

99

3.6.2 Bad Hash Function

A bad hash function can lead to a performance surprise: the hash table may behave
well on inputs that do not make extensive use of it, but its lousy scalability will cause it
to dominate performance on workloads that make heavy use of it. In this experiment
we consider the problem of bad hash functions causing degraded hash table performance.
We consider two bad hash functions: the pathologically bad hash function that hashes
everything to 0 and a clustering hash function that favors buckets around a central mean.
We consider a hash table that resolves collisions with chaining and one that uses linear
probing. A workload consists of adding n € {10...1000} items to a hash table with 2000
buckets and then looking each item up. As we saw in Section 3.5.4, a well-behaved hash
table averages constant time lookups and thus n lookups in © (n) steps,

As with our well-behaved hash table micro-benchmark, we use the identity function
as our hash function and generate inputs as if they had been hashed from a function with
the desired properties. That is, for our first hash function, the items in each input are all
zero. For our clustered hash function, the items are the average of thirteen random numbers
between 0 and 1999; these items tend toward the middle buckets with high probability and
the outer buckets near 0 and 1999 with low probability.

The clustering hash function has some effect on the chaining hash table. Fig-
ure 3.33 shows the best-fit plot and residuals plot for the total-transitive-cost :~ 2.89x — 140,
SE = 69.3 of looking up the z items in the table. The concave-up bend in the data points
(especially evident in the residuals plot) indicates a slight super-linear trend, but we see

a largely similar effect with a well-behaved hash function such as that in Figure 3.20. It

100

seems reasonable to attribute the bend to the table’s filling up. There is no substantial
performance loss in this case and CF-TRENDPROF does not suggest one.

The linear-probing hash tables fares much worse with the clustering hash function.
Although CF-TRENDPROF’s model is linear, the high standard error and the high absolute
values of the slope and intercept suggest further inspection. A glance at the best-fit plot
in Figure 3.34 (top) shows that the linear fit is nonsense and that the code’s scalability
is clearly super-linear. The best powerlaw fit to this data (not shown) is 0.0092z2* and
even this fit does not adequately capture the steep increase. Manually plotting the data on
linear x axis, logarithmic y axis (bottom of Figure 3.34) shows that the data is not quite
growing exponentially either (the plot is not quite a line). Although the exact relationship
of performance to table size is unclear, CF-TRENDPROF has told us all we need to know:
look at the best-fit plot and notice the obvious super-linearity.

The degenerate, one-bucket hash function causes both implementations to go
quadratic. Figure 3.35 and Figure 3.36 show the best fit plots and residuals plots for
our x hash table lookups. The exceptionally good fits leave little doubt: there is a serious

problem with the lookup routine.

3.6.3 Overfull Hash Table

In this section we consider the performance of overfull hash tables. Again we
consider a chaining hash table and a linear-probing hash table. Again workloads consist of
adding x elements and then looking each element up; we expect performance to be linear in
x. Also as before, we use the identity function on integers as our hash function and generate

inputs uniformly at random, simulating use of a good hash function.

101

0 | | | | | | ob§ervati‘ons p

0 100 200 300 400 500 600 700 800 900 1000

200 \ ﬁ)
150 .
100 G

50

N A

-50
-100
2150 [residyals ‘O N
-200

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.33: Best-fit plot (top) and residuals plot (bottom) for the total-transitive-cost :~
2.89z — 140, SE = 69.3 of looking up in a chaining hash table each of the z items spread
among its 2000 buckets by the clustering hash function. The concave-up bend in the data
points (especially evident in the residuals plot) indicates a slight super-linear trend.

102

500000 \
400000
300000
200000
100000

linear model

0
obs‘ervati(?ns O

\ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900 1000

-100000

150000

100000 ~

50000 [~

0

-50000 [~

-100000
0 100 200 300 400 500 600 700 800 900 1000

le4-07
le+06
100000
10000
1000

100 exponential model
obs‘ervati(?ns

\ \ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900 1000

10

Figure 3.34: Best-fit plot (top) and residuals plot (middle) for the total-transitive-cost :~
363z — 89000, SE = 58400 of looking up in a linear-probing hash table each of the x items
spread among its 2000 buckets by the clustering hash function. The linear fit is clearly
nonsense as the high standard error and high absolute values of the slope and intercept
suggest. The bottom plot shows the same data with a logarithmic y axis and the best fit
of log (total-transitive-cost) to x: total-transitive-cost :~ 142¢0-0089%,

103

300000
250000
200000
150000
100000

50000

obs‘ervaticens

0 v S | |

0.6
0.5
0.4
0.3
0.2
0.1

O 0

0000000000

00O

A O

0
-0.1

JQQ O
~ 7000000000°

N

| residgals ‘O

-0.2

0 100 200 300 400 500 600

700 800 900 1000

Figure 3.35: Best-fit plot (top) and residuals plot (bottom) for the total-transitive-cost :~
0.2522 4+ 1.52, SE = 0 of looking up in a chaining hash table each of the z items that have
been dumped into the same bucket by a terrible hash function. The excellent quadratic fit

clearly indicates a problem.

104

600000
500000
400000
300000
200000
100000

5 observaticens
0 (R \ \ \ \
0 100 200 300 400 500 600 700 800 900 1000
1.2 \
[e
0.8 [O N
B O _
0.6 fe o O O o
04~ O O N
L 7P00000000° 0%
O
0 0 O
O
0.2 7 ‘ O C? O Q O Q O Q © © | residgals ‘O
-0.4
0 100 200 300 400 500 600 700 800 900 1000

Figure 3.36: Best-fit plot (top) and residuals plot (bottom) for the total-transitive-cost :~
0.522 + 3.0z, SE = 0 of looking up in a linear-probing hash table each of the x items that
have been dumped into the same bucket by a terrible hash function. The excellent quadratic

fit clearly indicates a problem.

105

Chaining hash tables can hold arbitrary numbers of elements, though at some cost
to performance; it is not hard to imagine careless code evolution leading to very full chaining
hash tables. Figure 3.37 shows the best-fit and residuals plots for a 100 bucket chaining
hash table holding up to 1000 items. This model is not perfect, but it points to the clear
super-linearity in the performance of the chaining hash table.

Hash tables that use any sort of open addressing, including our linear probing
example, cannot store more elements than they have buckets. The performance of these
tables degrades drastically as they become full as the best-fit plot in Figure 3.38 shows.
Again, the the high standard error and the high absolute values of the slope and intercept
indicate trouble; inspection of the best-fit plot shows that the linear fit is clearly nonsense.
It is not clear exactly what sort of relationship the performance of this linear probing hash

table has to its input size, but it is clearly super-linear.

3.7 Large Benchmarks

We evaluated CF-TRENDPROF’s ability to analyze large programs by running it
on several larger benchmarks. Section 3.7.1 explains the setup of the experiments and the
programs and workloads we ran. We show that CF-TRENDPROF meets its design goals
of building precise models, potentially in terms of multiple features (Section 3.7.2) and of
enabling reasoning about how performance flows through the call graph (Section 3.7.3). Sec-
tion 3.7.4 considers how CF-TRENDPROF deals with the fact that performance, especially
of the innards of heuristically optimized complex algorithms run on general workloads, is

not a clean function of workload features. Section 3.7.5 discusses a related issue: how the

| 0b§ervatipns

0 100 200 300 400

500

600 700 800 900 1000

| residlﬂals p

0 100 200 300 400

Figure 3.37: Best-fit plot (top) and residuals plot (bottom) for total-transitive-cost

500

600 700 800 900 1000

106

c~~
o~

0.222146 4+ 2 SE = 326 of looking up in a chaining hash table each of the x items spread
among its 100 buckets. The model is obviously flawed, but the super-linear trend is clear.

107

70000
60000
50000
40000
30000
20000
10000

-10000
-20000

0 200 400 600 800 1000

60000 \
50000 [~ O+
40000 |~
30000 [~
20000 [~
10000

I‘X!XOXO!‘!@!Q!,'.'....‘. e

0 """‘"“"'i'i‘x‘x‘x‘xwlﬂoldﬂoli@@?
-10000 [~ N 7
-20000 [‘ ‘ ‘ residuals O | |
-30000
0 200 400 600 800 1000

Figure 3.38: Best-fit plot (top) and residuals plot (bottom) for total-transitive-cost :~
21x — 4900, SE = 7030 of looking up in a linear probing hash table each of the x items
spread among it 1000 buckets. The model is obviously flawed, but the high absolute values
of the slope and intercept indicate trouble.

108

Program Description Workloads
bzip2 1.0.4 [BZ2] Compresses files Tarballs of preprocessed
source code
banshee Computes Andersen’s alias | Preprocessed C programs
2005.10.07 [KAO5] analysis [And94] on a C pro-
gram
dot from graphviz Renders directed graphs, | Randomly generated con-

2.14.1 [Gra, GNOO] avoiding edge crossings and | nected, directed graphs
minimizing edge length
1lp_solve Solves mixed integer linear | Linear Programs from MI-
5.5.0.10 [LPS] programs PLIB 2003 [AKMO06], Mittel-
mann [Mit], Mészaros [Més]

Figure 3.39: We ran CF-TRENDPROF on these programs with workloads as described above.

Program Workloads Min - Max | Overhead | Time (h)
bzip 524 | 4x10° - 8x10° 609% | 35 + 2.7
banshee 116 | 1x10°% — 1x10° 1928% | 82 + 5.4
dot (simple: e = n) 100 | 9x10* — 4x107 2677% | ?+ 0.5
dot (complex: n < e < 1.3n) 175 | 9x10% — 1x108 2520% | 7+ 1.2
1p_solve 215 | 3x10% — 2x101° 149% | 22 + 2.6

Figure 3.40: Number of workloads, costs of the cheapest (Min) and most expensive (Max)
workload (measured in loop and function counts), geometric mean of overhead of CF-
TRENDPROF’s instrumentation (Overhead), and CF-TRENDPROF’s user+system time in
hours to 1) run workloads and post-process the program trace and 2) fit models and produce
output (Time).

distribution of workloads affects the models that CF-TRENDPROF computes.

3.7.1 Workloads and Experimental Setup

We ran CF-TRENDPROF on the programs listed in Figure 3.39 with workloads as
described in Figure 3.40 and elaborated below. We did not repeat our elsa and maximus
benchmarks from Chapter 2 because shortcomings in our instrumentation infrastructure
did not allow us to handle the C++ templates in these benchmarks. The Overhead column

of Figure 3.40 reports the average (geometric mean) overhead of running a workload with

109

CF-TRENDPROF’s tracing versus having it disabled: (user + system time instrumented)
divided by (user + system time uninstrumented), reported as a percentage; these overhead
measurements are based on 20 randomly selected workloads rather than the entire set. The
Time column reports the total (user + system) time in hours that our straightforward
Perl and C implementation of CF-TRENDPROF takes to create a report on each program;
the first (left) time includes running the instrumented workloads and post-processing the
trace data; the second (right) time includes the rest of CF-TRENDPROF’s post-processing
including model-fitting, and generation of plots and results pages. We did not measure the
time to run the exact set of workloads for the dot benchmarks, though a comparable set
of workloads to the complex (n < e < 1.3n) set took on the order of several days to run
and post-process. Running the workloads can take a long time, but once CF-TRENDPROF
generates its results, they are browseable interactively. We ran these experiments on an
Intel Xeon with two 2.8 GHz CPUs and 3.7 GB of RAM. Because CF-TRENDPROF’s
measurements do not depend on time, scheduling, or system load, we made no effort to
run these experiments on an unloaded system and sometimes ran multiple experiments
simultaneously. The design of CF-TRENDPROF, like BB-TRENDPROF, generally spends
extra computer time to save human time (for example, by generating all models and plots

in advance instead of on demand).

Workloads for bzip

A workload for bzip consists of a tarball of pre-processed source code ranging in
size from 25 thousand bytes to 61 million bytes. The only workload feature we specified for

bzip is B, the size of the input in bytes. CF-TRENDPROF did not instrument two functions

110

in the bzip code because they have irreducible control flow (unRLE obuf to_output FAST
and BZ2_decompress); these functions, however, seem to only concern decompression and
our benchmark only exercised compression. We instrumented only those bzip functions

with loops or recursion as other functions’ costs are accounted for by callers.

Workloads for dot

A workload for dot consists of a directed graph with n nodes and e edges that
dot renders in its default output format so as to minimize edge crossings and edge lengths.
We generate a random workload with n nodes and e edges as follows. The first node starts
with no predecessors. As we add each of the next n — 1 nodes, the new node chooses a
predecessor uniformly at random from those nodes already in existence; this process results
in a tree of n nodes and n — 1 edges. We then pick enough edges uniformly at random from
all non-existent, non-self edges to bring the graph to e edges.

We ran two experiments with dot, both on graphs generated randomly. In the first
experiment, which we refer to as complex dot, we ran dot on graphs containing between 20
and 837 nodes and, for each number of nodes, n, four graphs containing {n, 1.1n,1.2n,1.3n}
edges respectively. In the second experiment, which we refer to as simple dot, we ran dot
on the subset of the graphs from the first experiment with an equal number of nodes and

edges (e =n).

Workloads for banshee

A workload for banshee consists of one or more pre-processed C files that con-

stitute an entire binary; these C files are drawn from the Debian Linux archive [Deb].

111

During the course of a workload, banshee parses the C files and performs Andersen’s alias

analysis [And94] on them. We specify four workload features:

files, the number of files in the input.

bytes, the total number of bytes in all the input files.

e vars an internal metric that banshee outputs.

e nonemptySets, an internal metric that banshee outputs.

Workloads range in size from 30 thousand bytes to 24 million bytes, 1 to 181 files, 41 to
33 thousand vars, and 0 to 14 thousand nonemptySets.

Because of the prevalence of mutual recursion in banshee, we set all functions in
banshee to be caller-sensitive. The yyparse function in banshee has irreducible control
flow and so was not automatically instrumented. We manually instrumented it to report

its loop costs as part of the cost of its caller, compile file.

Workloads for 1psolve

A workload for 1psolve consists of a linear program: a set of variables, constraints
(on the variables), and an objective function (in terms of the variables) to optimize (by
picking values for the variables subject to the constraints). We specify three workload

features.

e bytes, the size of an input in bytes.

e rows, the number of rows in 1psolve’s matrix for the linear program; each constraint

in the linear program occupies a row

112

e columns, the number of columns in 1lpsolve’s matrix for the linear program; each

variable in the program occupies a column

Workloads range in size from 442 bytes to 37 million bytes, 3 to 59 thousand rows, and 3
to 123 thousand columns.

We instrumented only those 1psolve functions with loops as other functions’ costs
are accounted for by callers. The only recursive function in 1psolve (that our workloads
exercised) calls itself at most once and accounts for negligible work; we did not instrument

it.

3.7.2 Precise Models in Terms of Multiple Features

CF-TrRENDPROF’s model generation and selection algorithms enable it to find
precise models and to choose effectively among models in terms of different features. Thus,
the user can provide CF-TRENDPROF with multiple features and have confidence that it will
choose the most suitable. We illustrate this point with several models from our benchmarks.

The total-transitive-cost of the hash table_copy function from banshee scales
as 10.8 - files - vars + 260 - files (SE = 8.44 x 10°). Figure 3.41 shows the multi-feature
best-fit plot (predicted values on the z axis versus observed values on the y axis). This
model tells a story: for every file, banshee copies two hash tables (call-count := 2 - files)
whose sizes increase with the number of vars in the workload. The next best model,
total-transitive-cost :~ 2.3 - bytes — 1.5 x 10, SE = 2.02 x 10%, has more error and less

explanatory power.

113

perfect fit line
predictions (x) v§ observafions (y)

- |
0 le+07 2e+07 3e4+07 4e+07 5be+07 6e+07 Te+07

O O O -
. bredictions <)ﬁ) vs residuals (y)‘ O -

0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 Te+07

Figure 3.41: This scatter plot shows CF-TRENDPROF’s predictions (x axis) versus
the measured values (y axis) for banshee’s hash_table_copy total-transitive-cost :=
10.8 - files - vars 4 260 - files, SE = 8.44 x 10°. The fit is perfect to the extent that the
points lie on the line y = z. The bottom plot shows the residuals (y axis) plotted versus
the predicted values (z axis).

114

6000
5000 [~ 7
4000 [~ N
3000 [~ 7
2000 |~ m
1000 [~ perfect fit line =
predictions gx) vs observations (y‘)
0
0 1000 2000 3000 4000 5000 6000
L (o DD
1oo®0oo ©O MO0 O @OT® ~
A co @ O O O .
5 O =
6 =
T ‘ . predictjons (x) vs residuals (y) O
-8
0 1000 2000 3000 4000 5000 6000

Figure 3.42: Complex dot’s init_rank transitive-cost :~ 4n + 2e + 7.66, SE = 1. This
scatter plot shows CF-TRENDPROF’s predictions (z axis) versus the measured values
(y axis) on top and predictions (z axis) versus residuals (y axis).

115

1.2e4-07 \
le+07 [~
8e+06 |~
6e+06 |~
4e4-06 [~

best model
ol?servatﬁons

2e+06 [~

\
0 100 200 300 400 500 600 700 800 900

0

2e+06 \ \ \ O
09,0
0 m&@gﬁ%@@% U@UO \@b 6) .
) Ne SO

-le+06
O O i

1le4+06 [

-2e+06 -

-3e+06 [~ 7
| | | | | | resid(uals ‘O

0 100 200 300 400 500 600 700 800 900

-4e+06

6e+06 \
5e+06 [~
4e+06 [~
3e+06 [~
2e+06 [~

best model
/kaserva‘ﬁlons

1le4+06 [~

ot \
0 100 200 300 400 500 600 700 800 900

Figure 3.43: Best-fit plot (top) and residuals plot (middle) for simple dot’s gvLayoutJobs
total-transitive-cost :~ 0.24n24% + 30n"7 + 3319n — 22912, SE = 6.34 x 10°. The bottom
plot is the best-fit plot for gvLayoutJobs’s callee mincross_step’s total-transitive-cost :~
0.24n%>% SE = 5.89 x 10°.

116

Figure 3.42 shows another example of a precise model: complex dot’s init_rank
function whose transitive-cost =~ 4n + 2e + 7.66, SE = 1. Again, CF-TRENDPROF has
chosen a precise model in terms of two features.

On the simple (¢ = mn) dot benchmark, the gvLayoutJobs function has
total-transitive-cost :~ 0.24n24? 4+ 30n'™3 4 3319n — 22912, SE = 6.34 x 10°; shown at
the top of Figure 3.43. To be sure, the powerlaw terms in this model look a little strange,
but this model is superior to the best powerlaw direct model (692n'4!) in two respects.
First, it has smaller error. More importantly, though, it preserves the high exponent (2.49)
that arises from a transitive callee: gvLayoutJobs calls dot_layout calls dot_mincross calls
mincross calls mincross_step whose total-transitive-cost scales as 0.24n249. Its high maxi-
mum total-transitive-cost (5.5x 10%) and high exponent suggest that the total-transitive-cost
of mincross_step, and thus the total-transitive-cost of gvLayoutJobs, is likely to remain
quite high.

Thus we see that CF-TRENDPROF’s model generation and selection can result in
more precise models that mirror the control flow of the program. That is not to say that
every function has such a complex performance model. Indeed, in most cases the direct
linear or powerlaw models have low error and are quite adequate. The model selection
criterion penalizes models for including extra features so that these features must justify
their presence by reducing the error of the model. This ability to choose more complex
models when appropriate and reject them otherwise is an asset in describing the scalability

of programs and an improvement over BB-TRENDPROF.

117

bzip compressStream

model SE | SE/mean
total-self-cost 0.0002B + 2.5 0 0%
total-transitive-cost | 1268 — 2.4 x 107 | 7 x 107 11 %
call-count 1 0 0%
self-cost 0.0002B + 2.5 0 0%
transitive-cost 126B — 2.4 x 107 | 7 x 107 11 %

bzip BZ2_bzWrite

model SE | SE/mean
total-self-cost 0.000592B — &80 81 2%
total-transitive-cost | 1258 — 6.3 x 107 | 8 x 107 13 %
call-count 0.0002B + 0.5 0 0%
self-cost 2.89 12 1%
transitive-cost 569000 | 8 x 106 1375 %

Figure 3.44: CF-TRENDPROF’s output on several bzip functions.

3.7.3 Following Cost through the Call Graph

With CF-TRENDPROF, one can follow performance through the call graph. The
call-graph view of functions together with the flat list of functions (sorted by maximum,
over all workloads, total-self-cost) allows the same sort of reasoning that gprof [GKM82]
enables: starting at main, one can top-down explore sub-trees with high total-transitive-cost
or bottom-up start at functions with high total-self-cost and see what calls them and how
many times. CF-TRENDPROF’s models surpass the gprof view in several ways that we

illustrate with examples from our benchmarks.

Finding bzip’s Main Loop

CF-TRENDPROF finds bzip’s main loop. Its output shows that main
(total-transitive-cost :~ 1268 — 2.4 x 107, SE = 7 x 107) calls compress (same total-

transitive-cost model) which calls compressStream which calls BZ2 bzWrite. Figure 3.44

118

model -
obsgrvations | O

0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 Te+07

X x —
X X x
X X
X
% X
XXX]
x x %
x x
" |
X X
X

| | ‘residuals‘

0 le4+07 2e+07 3e+07 4e+07 5e+07 6e+07 Te+07

14000 \ \ \ \ \ \

model
obsgrvations |

\ \ \
0 le+07 2e+07 3e+07 4e4+07 5e+07 6e+07 Te+07

Figure 3.45: Plots that illustrate bzip’s overall performance structure.
compressStream total-self-cost :~ 2.5+ 0.000200B, SE = 0 (top) and residuals
(middle). BZ2_bzWrite call-count :~ 0.5+ 0.000200B, SE = 0 (bottom; residuals not
shown, but similar to middle plot).

119

Maximum
Function total-transitive-cost Model SE total—')

transitive-cost
dot_layout 0.24n%494+-30n 1" +3300n—23000 | 634000 1 x 107
dot_mincross 0.24n249 1+ 310n — 15000 615000 6 x 10°
dot_position 30n173 252000 4 x 10°
dot_splines 2670n — 7900 10100 2 x 106
dot_init_node_edge | 167n + 17 19 1 x10°
dot_rank 139n + 95 313 1 x 10°

Figure 3.46: CF-TRENDPROF’s total-transitive-cost models for dot_layout and its more
expensive callees. These models are based the simple (e = n) dot benchmark.

shows CF-TRENDPROF’s models for these latter two functions. From these models, the
overall structure of bzip’s performance is clear. The linear scaling of compressStream’s
self-cost and the linearly scaling call-count of its callee, BZ2 bzWrite, suggest (and quick
inspection of the code confirm) that compressStrean iterates over 5000-byte blocks of input
and calls BZ2_bzWrite to operate on them. Figure 3.45 shows the relevant best-fit plots
(compressStream’s total-self-cost and BZ2_bzWrite’s call-count); the models fit the data
quite well. The constant models for subsequent functions’ self-cost and transitive-cost (not
shown) indicate that their per-invocation cost does not scale up with input size while the
linear models for their call-count, total-self-cost, and total-transitive-cost show that their
total per-workload cost scales linearly with input size because they are called a linear num-
ber of times. This view provides a quick overview of the broad performance structure of
bzip: it iterates over its input in fixed-size blocks and does a varying amount of work for

each block, but this per-block cost does not grow with the number of blocks.

120

4.5e+06 \
4e+06 [O -
3.5e+06 [~ 7
3e+06 [~
2.5e+06 [~
2e+06 [~
1.5e4+06 [~
1le4+06 [
500000
7
0 =
0 100 200 300 400 500 600 700 800 900

best model
ol?servat}ons

2.5e+06 \ \
2e+4-06 |~ m
1.5e+06 [~ m
le+06 [~ m
500000 = best model
| | | ol?servatﬁons |

0
0 100 200 300 400 500 600 700 800 900

120000
100000 [~
80000 [~
60000 |~
40000 [~

best model
opservat‘ions

20000 |~

\ \ \ \
0 100 200 300 400 500 600 700 800 900

0

Figure 3.47: Best-fit plots for the total-transitive-cost three functions from the simple dot
benchmark: dot_position (top), dot_splines (middle), and dot_rank (bottom). Fig-
ure 3.46 shows the models.

121
Ignoring the Cheap Stuff

CF-TRENDPROF’s call-graph output helps us follow call trees with high or poten-
tially high cost and ignore those that do not matter to scalability. We show one example,
the dot_layout function and its callees from the simple dot benchmark, but this sort of
reasoning applies more generally. Figure 3.46 lists the best total-transitive-cost models for
dot_layout and its more expensive callees. Each of these functions has a linear or sub-linear
total-self-cost and is called exactly once per workload, so we show only CF-TRENDPROF’s
total-transitive-cost models.

The high maximum total-transitive-costs (the maximum total-transitive-cost of
main is 1.2 x 107) and reasonable looking super-linear models clearly indicate that the callees
of dot_mincross and dot_position (top of Figure 3.47) merit further investigation. The
dot_splines function (middle of Figure 3.47) is interesting: its maximum total-transitive-
cost is quite high (about a fifth of the maximum total-transitive-cost of main), but its
total-transitive-cost scales linearly; this high maximum total-transitive-cost suggests that
dot_splines’s callees account for a reasonable chunk of performance, but the model suggests
that they will become less important for larger workloads. The other callees can be safely
ignored: they have maximum total-transitive-costs that are about a factor of one hundred

off from that of main and very good models that show linear scaling (bottom of Figure 3.47).

Finding Inner Loops in dot

Again, we focus on the simple (e = n) dot benchmark. Along the dot_position

call tree we find some nested loops. A function which is called exactly twice, rank, calls

122

rank
model SE | SE/mean
call-count 1 0 0%
total-self-cost 0.87n — 21 28 2 %
total-transitive-cost 18n'89 | 254000 20 %
update
model SE | SE/mean
call-count 0.87n — 22 28 2%
total-self-cost 0.87n — 22 28 2 %
total-transitive-cost 3.1n? | 156000 22 %
dfs_range (initial call)
model SE | SE/mean
call-count 0.87n — 22 28 2%
total-self-cost 4.1n — 110 136 5 %
total-transitive-cost 1.8n%0%4 | 107000 20 %
dfs_range (recursive calls)
model SE | SE/mean
call-count 0.78n2 | 33900 19 %
total-self-cost 2.3n2 | 102000 19 %
total-transitive-cost | 2.3n2 | 102000 19 %

Figure 3.48: CF-TRENDPROF’s models for three functions from the simple (e = n) dot
benchmark.

123

800 \ \
700
600
500
400
300
200
100
0
-100

best model
ﬁ)bserva‘tions

0 100 200 300 400 500 600 700 800 900

600000 \
500000 [~
400000 [~
300000 [~
200000 [~

best model
o‘pservat‘ions

100000 [~

0 ST |

0 100 200 300 400 500 600 700 800 900

Figure 3.49: Best-fit plots for two functions from the simple dot benchmark: call-count of
update (top) and recursive calls to dfs_range (bottom). Figure 3.48 shows the models.

124

banshee compile_file
model SE | SE/mean
total-self-cost | 3.44 - bytes — 270000 | 1 x 10° 21 %
call-count files 0 0%
self-cost 10.4 - vars + 160000 | 2 x 10° 60 %

Figure 3.50: A banshee function whose self-cost increases with workload features; its call-
count increases only modestly, but its total-self-cost increases because its self-cost does.

banshee env_hash

model SE | SE/mean
total-self-cost | 1.81 - bytes + 340000 | 1 x 10° 27 %
call-count 0.2 - bytes + 42000 | 1 x 10° 24 %
self-cost 8.96 6 1%
banshee yylex
model SE | SE/mean
total-self-cost 1.3 - bytes — 29000 | 1 x 10° 5 %
call-count 0.223 - bytes — 10000 | 6 x 10* 13 %
self-cost 5.88 6 1%

Figure 3.51: Functions in banshee whose total-self-cost increases because they are called
more often as input size gets larger.

update (maximum total-transitive-cost of 2.3 x 10°) a linear number of times in n; thus
update is in rank’s inner loop. Since rank is called exactly twice from two separate parts
of the code, we distinguish its caller with tpRuntimeSetContext and so it behaves as if it
were two different functions — the context we discuss here is by far the more expensive one.

Furthermore, update calls dfs_range (maximum total-transitive-cost of 1.6 x 109)
a linear number of times in n. Then dfs_range calls itself recursively; based on its call-
count model, we conclude that these recursive calls result in its scaling quadratically in n.
Figure 3.48 shows the call-count, total-self-cost, and total-transitive-cost models for these
functions with the initial call to dfs_range accounted for separately from the subsequent

recursive calls. Figure 3.49 shows the best-fit plots for the call-count models.

125

More Calls or More Cost?

Some functions, such as bzip’s compressStream (discussed above) increase in
total-self-cost because they iterate over the whole input (or an increasing part of it). These
functions have a self-cost that grows with input size. Figure 3.50 shows CF-TRENDPROF’s
models for such a function from banshee.

Often, however, a function’s self-cost does not grow larger with the size of its input
(though in some cases its maximum or variance goes up), but its total-self-cost scales up
because it is called more (Figure 3.51). Looking at CF-TRENDPROF’s models for call-count
and total-self-cost clarify this situation: if the total-self-cost model is a constant multiple
of the call-count model, then the increased cost of the function on larger inputs is probably
because of the increased number of calls. If a function has a self-cost model that grows with
some workload feature or if the total-self-cost model is of a higher degree, then it is safe to
assume that an invocation of this function touches an ever increasing chunk of the input.
Again we see that CF-TRENDPROF shows not only how a function’s cost increases with

bigger workloads, but why: more calls, more loop iterations, or more work done by callees.

3.7.4 Performance of Complex Algorithms in Large Programs

One of the more exciting results of BB-TRENDPROF is its ability to analyze the
performance of complex algorithms in the context of large programs (Section 2.4). We
demonstrated in Section 3.5 that CF-TRENDPROF can analyze the scalability of complex
algorithms precisely and furthermore demonstrated in Section 3.7.3 that CF-TRENDPROF

enables reasoning about how performance moves through the call graph of large programs.

126

maximuim
Function Model SE | SE/mean | total-self-cost
generateMTFValues 114B — 24 x 10% | 7 x 107 12 % 7 x 107
mainSort 2.86B + 210000 | 1 x 10° 1% 2 x 108
bsW 2.02B — 140000 | 4 x 10° 4% 1x10%
mainGtU 1.57B — 47000 | 3 x 10° 3% 1 x 108
mainSimpleSort 1.43B — 81000 | 7 x 10* 1% 9 x 107
sendMTFValues 1.19B — 40000 | 1 x 10° 2 % 7 x 107
copy_input_until stop 1.00B + 2.2 3 0% 6 x 107
copy_output_until_stop | 0.968B — 98000 | 3 x 10° 5% 6 x 107
BZ2_blockSort 0.488B — 140000 | 6 x 10° 23 % 3 x 107
mainQSort3 0.186B8 4 67000 | 2 x 10° 20 % 1 x 107
BZ2_hbMakeCodeLengths | 0.184B + 110000 | 5 x 10* 4 % 1 x 107

Figure 3.52: Top several functions in the bzip benchmark, ranked by maximum total-self-
cost.

maximum
Function Model SE | SE/mean | total-self-cost
reorder 0.05912%0 [3 x 10° 45 % 3 x 106
dfs_range 2.3n% | 1 x 10° 19 % 2 x 106
left2right 0.0078n28% | 2 x 10° 53 % 2 x 108
dfs_enter_inedge 1.5n% | 1 x 10° 40 % 1 x 106
rerank 2.2n182 | 6 x 10% 35 % 6 x 10°
connecttris 582n — 2600 | 2 x 103 1% 5 x 10°
out_cross 0.36n2 | 5 x 10% 56 % 4 % 10°
in_cross 0.36n2 | 5 x 10* 55 % 4 % 10°
dttree 430n — 3600 | 1 x 103 1% 4 x 10°
Bezier 420n — 300 645 0% 4 % 10°
ccw 300n — 1900 | 2 x 103 1% 3 x 10°

Figure 3.53: Top several functions in the simple (¢ = m) dot benchmark, ranked by
maximum total-self-cost. Rows for the following functions include only recursive calls:
dfs_range, df s_enter_inedge, rerank.

127

maximum
Function Model SE | SE/mean | total-self-cost
dfs_range 10100e — 2.4 x 10° | 4 x 10° 171 % 4 x 107
dfs_enter_inedge 3600e — 870000 | 2 x 10° 200 % 2 x 107
cew 3700e — 720000 | 1 x 10° 131 % 1 x 107
connecttris 3900e — 670000 | 1 x 106 118 % 1 x 107
in_cross 5100e — 1.1 x 10% | 1 x 106 99 % 1 x 107
out_cross 5100e — 1.1 x 10% | 1 x 106 98 % 1 x 107
reorder 5e2 — 260e + 5n — 34000 | 9 x 10° 59 % 1 x 107
rerank 2900e — 670000 | 1 x 10° 144 % 9 x 106
dfs_enter_outedge 1900e — 420000 | 9 x 10° 176 % 8 x 106
_routesplines 2400e — 490000 | 9 x 105 133 % 7 x 106
left2right 0.33e%3% | 6 x 10° 61 % 7 x 106
leave_edge 160e 4 0.24e217 — 16000 | 2 x 10° 76 % 2 x 106

Figure 3.54: Top several functions in the complex (n < e < 1.3n) dot benchmark, ranked
by maximum total-self-cost. Rows for the following functions include only recursive calls:
dfs_range, df s_enter_inedge, rerank, df s_enter_outedge.

maximum
Function Model SE | SE/mean | total-self-cost
last_node 8.2 - bytes — 78000 | 2 x 107 119 % 3 x 108
clear 1 11 - bytes + 95000 | 4 x 106 14 % 3 x 108
clear 2 11 - bytes + 200000 | 3 x 10° 14 % 3 x 108
compile_file 3.4 - bytes — 270000 | 1 x 106 21 % 9 x 107
env_hash 1 1.8 - bytes + 340000 | 1 x 108 27 % 4 x 107
yylex 1.3 - bytes — 29000 | 1 x 10° 5 % 3 x 107
clear 3 1.1 - bytes 4+ 55000 | 5 x 10° 19 % 3 x 107
dhlookup 0.76 - bytes + 140000 | 9 x 10° 50 % 2 x 107
TGETC 0.74 - bytes — 24000 | 6 x 104 4 % 2 x 107
AST set_parent_list | 0.63 - bytes — 110000 | 4 x 10° 30 % 2 x 107
env_hash 2 0.60 - bytes — 14000 | 3 x 10° 27 % 1 x 107
env_compare 0.41 - bytes + 52000 | 8 x 10° 81 % 1 x 107

Figure 3.55: Top several functions in the banshee benchmark, ranked by maximum total-
self-cost. For brevity, we omit the caller-context for these functions.

128

maximum
Function Model SE | SE/mean | total-self-cost
LU1FAD 49 x 10° | 6 x 108 1150 % 8 x 107
prod_xA2 3.6v1 +92 x 105 | 2 x 108 123 % 4 x 107
prod_xA 3.4v9 430 x 105 | 2 x 108 256 % 3 x 107
get_colIndexA 10000c + 6.9 x 105 | 2 x 108 259 % 3 x 10°
LUBLT 5.0v3 + 19 x 10% | 2 x 108 296 % 3 x 109
LU6UT 180007 + 13 x 108 | 2 x 108 267 % 2 x 109
LUBU 2.4v4 + 86007 + 5.3 x 106 | 1 x 108 164 % 1 x 109
LU1MAR 130v5 + 1.1vg + —3.4 x 10% | 4 x 107 363 % 1% 10°
LU1GAU 86v7 + 1.3vg + —60000 | 5 x 107 499 % 9 x 108
LU7ZAP 23007 + 3.2v9 + 4.2 x 105 | 6 x 107 137 % 7 x 108
my_daxpy 5.7 x 10% | 6 x 107 999 % 7 x 108
LU6L 16 x 10% | 6 x 107 375 % 7 x 108

Figure 3.56: Top several functions in the 1psolve benchmark, ranked by maximum total-
self-cost. We use r for feature rows, ¢ for feature columns, and v; through vg for loop count
variables.

In considering its results on our large benchmarks, however, we found that some of the
models for the functions with high total-self-cost, the functions that account for much of
the performance cost of our benchmarks, were not very good. For the rest of this section,
we assess the top total-self-cost models for our benchmarks and consider factors that can
lead to 1) there being no clean relationship between performance and input size and 2)
to CF-TRENDPROF’s choosing inadequate models even if performance and input size are

related.

Assessing the Models

Figures 3.52, 3.53, 3.54, 3.55, and 3.56 show the top ten functions, ranked by
maximum total-self-cost, for each benchmark. These top fits range from quite good (espe-
cially bzip and the simple (e = n) dot benchmark, to mediocre (due to noise or outliers, a

common issue with the banshee models), to quite bad (especially the 1psolve models).

129

Identifying Bad Models

As we discuss elsewhere, the error measures, and to a greater extent, the best-fit
and residuals scatter plots make it clear when a model does not fit the data well. Models
with high error are generally bad, though sometimes a single outlier is enough to disrupt
a model and cause it to have high error. The residuals plot can reveal systematic error
in the model. When CF-TRENDPROF chooses a constant model or a model in terms of
loop counts (as it often does for 1psolve) instead of workload features, this choice is a sign
that there is no tight relationship between execution count and workload features: adding
a workload feature to the model does not decrease error enough to justify its inclusion.

Figure 3.57 shows some functions whose total-self-cost CF-TRENDPROF does not fit well.

Finding Better Features

If we have recognized that there is no clear relationship between performance of a
function and a given set of workload features, it would be nice to have some way of coming up
with better features or understanding what factors cause performance to behave as it does.
CF-TRENDPROF provides some clues in its detailed analysis of a program’s control flow.
Examining the models for all variables (not just functions, but also loops and call counts)
can show which loops are predictable in terms of features and which are not thus allowing
one to localize the parts of the program that depend on more than the provided workload
features. Furthermore, even if some views onto performance, for instance a function’s self-
cost, do not make sense, perhaps considering the transitive-cost or total-self-cost yields

better models and more insight into performance.

130

4e+09
3.5e+09 [~
3e+09 [~
2.5e+09 -
2e+4-09
1.5e+4-09
le+09
5e+08

/ I
/ observations O |
best model
A best powerlaw model

/ —]

50000 100000

150000

1.2e+-07
1e4-07 [~
8e+06 [~
6e+06
4e+06
2e+06

I

observations O

best model
be%fjpowerlaw model

.=
o=
="
-
-
.o

-

-

5000 10000 15000 20000

2e+4-07
1.8e+407 [~
1.6e+4-07 [~
1.4e+07 |-
1.2e4+07 |-
le+07 [~
8e+06 [~
6e+06
4e+4-06

200

[[[
observations O
best model -

best powerlaw model _

400 600 800 1000 1200 1400

Figure 3.57: Best fit plots for three functions with difficult performance: 1lpsolve’s

get_colIndexA total-self-cost :

9980 - columns + 6.9 x 105, SE = 2.26 x 10® (top),

banshee’s member_or_insert total-self-cost :& 420 - nonemptySets — 220000, SE =

5.3 x 10° (middle), and complex dot’s ccw total-self-cost &~ 3740e — 720000, SE

1.46 x 10% (bottom).

le+09
le+08
le+07
le+06
100000

10000 [~

1000

100 [~

10
1

le+07
le+06
100000
10000
1000
100

10

1

le4-07
le+06
100000
10000
1000

100

131

log-log observations O

best model
best‘ powerlaw model

[

100 1000 10000 100000

4
o
-

>

-
f"
-

log-log observations
best model
best powerlz}w model

[u—

100 1000 10000

log-log observations O

best model
best powerlaw model === i

10

100 1000

Figure 3.58: The same scatter plots from Figure 3.57, but on log-log axes.

132

The clustering of BB-TRENDPROF offers different insights toward finding better
features. Even if BB-TRENDPROF cannot precisely explain the performance of a cluster, it
can at least say how many clusters there are — rather than leaving the user with hundreds of
basic blocks whose performance remains cryptic, BB-TRENDPROF might find three clusters.
Indeed, since all the locations in a cluster vary together, a cluster captures some facet of how
a program’s performance changes with workloads. Thus, clusters allow the program to act
as a feature detector for the workloads: if one can quantify the features of a workload that
make the locations in a cluster execute, perhaps one can better explain the performance
of the program. Furthermore, a feature that explains the performance of one location in
a cluster is likely to explain all of them. For these benchmarks, however, it is not entirely

clear what features might explain performance better.

3.7.5 Performance Trends Depend on Workload Distribution

One factor that can lead to noisy performance relationships is the fact that the
performance that CF-TRENDPROF observes and thus the models that it produces depend
on the distribution of workloads. We saw this phenomenon in our insertion sort micro-
benchmark in Section 3.5.5 and it also holds true of our larger benchmarks as well.

Comparing the performance of our bsort example (Figure 3.1) to that of our isort
micro-benchmark (Figure 3.21) is instructive. Ignoring the cost of swap, bsort mechanically
does 0.5n% +0.5n4 1 for any workload of size n. On the other hand, isort is more clever: it
recognizes easy cases, cases where the input is already partially sorted, and does less work
in these situations. For some distributions of workloads, isort even does asymptotically

less work.

133

Real programs are generally more like isort than like bsort. Where they can,
programmers find ways to avoid doing extra work rather than mechanically living down to
the worst case on every workload. With enough of this heuristic optimization of the cases
that seem to occur in practice, a program’s performance on some ad hoc subset of inputs
improves. On the whole though, this sort of optimization makes the performance on the
broader space of possible inputs less predictable. To the extent that the workloads on which
we train TRENDPROF are typical, TRENDPROF can measure the effect of these heuristic
optimizations on the given subspace of program inputs. Workloads whose performance does
not fit the model well are interesting: perhaps the heuristic optimizations do not apply or
there are other factors that make them expensive and difficult. On the other hand, the

performance of a broader set of workloads is harder to characterize.

How Workload Distribution Affects Our Benchmarks

For bzip we consider a narrow subspace of workloads: tarballs of source code. It
is not a big surprise, then, that we observe clear trends in bzip’s performance. On the
whole, CF-TRENDPROF’s models for bzip are quite good.

In the complex dot experiment, where we allow the number of edges to vary from n
to 1.3n (arguably considering larger and more dense graphs than dot was meant to render),
we see some cloudy models. Exactly how dot grows expensive on these denser graphs is
not clear, but the performance of many helper functions is quite clear (e.g., Figure 3.42).
Constraining the subspace of inputs to connected graphs with an equal number of nodes and
edges, as we do in the simple (e = n) dot experiment, yields a tighter relationship between

features and performance and thus nicer fits. Initially we hypothesized that dot would

134

exhibit linear scaling on the simple set of workloads and only scale super-linearly on denser
input graphs. CF-TRENDPROF’s models make it abundantly clear that this hypothesis is
false.

The space of possible C programs is enormous, yet the space of real-world C
programs, the space from which we pick our workloads for our banshee benchmark, is
much smaller. Furthermore, the sort of points-to graphs that these C programs induce are
not the sort that necessarily induce the worst case cubic performance of Andersen’s analysis.
In fact, banshee is optimized for dealing with these common cases in such a way that it
improves performance and avoids bad scalability on the sort of inputs that are likely to arise
in practice. While it is true that a carefully constructed points-to graph, or perhaps even
a carefully constructed C program, could cause banshee to exhibit worst-case performance,
such an input is not likely to arise in practice nor is it important in understanding the
empirical scalability of banshee on typical workloads. Although CF-TRENDPROF provides
some precise models, we argue elsewhere (Section 3.9) that BB-TRENDPROF does a better
job of presenting the big picture of a program’s scalability.

Our 1psolve benchmark is the hardest case for CF-TRENDPROF. Not only is the
possible space of inputs huge, but the particular workloads we chose are an eclectic subset
with no obvious commonality. Hence, the relationship between features and performance is
cloudy and the models are not very accurate. It is notable, however, that CF-TRENDPROF
often presents constant models and models in terms of loop counts for 1psolve’s functions
instead of nonsense models in terms of workload features; these models indicate that the

provided workload features are inadequate to describing lpsolve’s performance.

135

The Benefit of Empiricism

That TRENDPROF’s models depend on the distribution of workloads that it ob-
serves is ultimately a double-edged sword. As we saw, it can lead to cloudy results. On
the other hand, though, others [AKLW02] have observed that the possible space of inputs
can be quite different from those that are probable (and thus important in practice). CF-
TRENDPROF finds the trends that these empirical distributions of workloads induce in the
wild: on actual implementations of algorithms as they exist within large programs. As
we have shown, particularly with BB-TRENDPROF, algorithms often beat their worst-case

bounds for realistic distributions of workloads.

3.8 Count versus Time

In this section we briefly compare CF-TRENDPROF’s models and rankings to the
output of gprof on a subset of the workloads for our large benchmarks. For these exper-
iments, we have compiled our benchmarks without optimizations to ensure that the loops
and functions that CF-TRENDPROF sees are the same as those that gprof sees.

We emphasize that we do not intend that the execution counts we measure and
model be a proxy for execution time per se. Instead, we seek to characterize, in a robust,
platform-agnostic way, how the number of operations code performs scales with workload
features. Characterizing scalability in terms of number of operations (count) is a necessary
part of understanding usage of other resources. Measuring count is enough to point to

unexpected asymptotic scalability problems.

136

Of course, if count had no relation whatsoever to time, measuring and modeling it
would be useless. However, the following tables show that count is a reasonable, if imperfect
predictor of time (as measured by gprof. Thus if one considers models whose predictions
are within a factor of one hundred (or so) from the top observed costs and ignores others, one

can have some confidence that one is focusing on the code that is important to scalability.

Rankings for bzip

CF-TRENDPROF reports linear scaling in B for the total-self-cost of 19 functions
with coefficients between 0.0002 and 114; other total-self-cost models are constant. Fig-
ure 3.59 shows the top 10 functions reported by gprof and the total-self-cost models that
CF-TRENDPROF computes for them. Of the functions not shown, none has a B coeffi-
cient that is higher than 0.1. The coefficients of the linear models, gprof, and maximum

total-self-cost all rank these functions similarly.

Rankings for Simple dot (e = n)

Figure 3.60 shows the top ten functions reported by gprof (above the line) as well
as some other functions with high maximum total-self-cost (below the line). Again, we see

that the models, gprof, and maximum total-self-cost all rank these functions similarly.

3.9 Comparing CF-TrendProf with BB-TrendProf

Our evaluation shows that both BB-TRENDPROF and CF-TRENDPROF make
valuable contributions to characterizing and organizing the scalability of actual software

implementations run on realistic workloads. Neither technique is strictly superior to the

137

Percent of .

Function time reported Model for total-self- | Maximum
p

by gprof cost total-self-cost
generateMTFValues 49.45 % 114B — 24 x 108 17
mainSort 24.43 % 2.86.8 4 210000 17.5
sendMTFValues 8.16 % 1.19B — 40000 7.34
mainGtU 5.84 % 1.57B — 47000 9.61
mainSimpleSort 3.91 % 1.43B — 81000 8.73
copy_input_until _stop 291 % 1.00B + 2.2 6.12
bsW 1.84 % 2.02B — 140000 12.5
copy_output_until_stop 1.71 % 0.968 B — 98000 6.01
mainQSort3 0.75 % 0.1868 + 67000 1.24
BZ2 blockSort 0.61 % 0.488B — 140000 3.19

Figure 3.59: Comparison of bzip functions. We show (left) the percentage of time for which
the function accounts (according to gprof’s estimate based on the sum of the samples from
20 randomly chosen workloads), (middle) CF-TRENDPROF’s model for the function’s total-
self-cost, and (right) the maximum (over all workloads) total-self-cost, measured in tens of
millions (107) of executions.

other: they have complementary strengths. Our comparison in this section naturally leads
to our discussion of future work in the following section.

Both techniques offer tools for identifying scalability-critical code and eliminating
unimportant code from consideration. BB-TRENDPROF organizes locations into clusters;
clusters whose maximum cluster total is low and whose scalability is linear or sub-linear can
generally be ignored. CF-TRENDPROF provides a call tree view; subtrees whose maximum
total-transitive-cost is low and whose scalability is linear or sub-linear can generally be
ignored. Furthermore, both provide diagnostics (error measures, best-fit scatter plots, and

residuals scatter plots) to assess the quality of their models.

138

Percent

of time Maximum
Function reported Model for total-self- total-self-

by gprof cost cost
dfs_enter_inedge 11.21 % 1.5n° 12.3
reorder 9.05 % 0.059n2-60 28.5
dfs_range 8.19 % 2.3n? 16.5
left2right 6.90 % 0.0078n284 16.4
dttree 6.90 % 428n — 3600 3.56
rerank 5.17 % 2.2n 182 5.95
_routesplines 4.74 % 189n + 710 1.61
connecttris 431 % 582n — 2600 4.84
ccw 431 % 398n — 1900 3.31
exchange 3.88 % 270n — 45000 3.00
Bezier 2.59 % 423n — 300 3.54
out_cross 0.86 % 0.36n° 4.09
in_cross 2.16 % 0.36n? 3.58
leave_edge 1.72 % 342n — 28000 2.93
dfs_enter outedge 1.72 % 128n — 13000 2.07

Figure 3.60: Comparison of dot functions for the simple run (e = n). We show (left) the
percentage of time for which the function accounts (according to gprof’s estimate based on
the sum of the samples from 20 randomly chosen workloads), (middle) CF-TRENDPROF’s
model for the function’s total-self-cost, and (right) the maximum (over all workloads) total-
self-cost, measured in hundreds of thousands (10°) of executions. The first ten functions
(above the horizontal line) are the top ten reported by gprof; subsequent functions (below
the line) are those with high maximum total-self-cost.

139

Managing the Complexity of Large Programs

CF-TRENDPROF’s call-graph view allows one to find which functions are the inner
loops of which others, to follow performance through the call graph, and to explain to what
extent a function’s total cost increases on larger workloads because it is called more or
because it does more work per call. BB-TRENDPROF has a complementary strength. By
grouping locations with related performance into clusters, BB-TRENDPROF summarizes the
performance behaviors of the entire program. The scalability of these clusters gives a concise
overview of how the program scales: considering models for a few dozen costly clusters is
easier than considering hundreds of functions. Furthermore, clusters group similar unknown
behaviors. In a setting where performance need not be a clean function of workload features,

reducing the number of unknown entities is useful.

Modeling Performance

By powerlaw fitting every cluster total, BB-TRENDPROF provides a coarse and
sometimes imprecise, but ultimately concise measure of each cluster’s scalability. Each
of BB-TRENDPROF’s powerlaw fits to cluster totals constitutes a hypothesis about the
cluster’s scalability; error measures, scatter plots, and residuals plots provide the evidence
to accept or reject the hypothesis. Of course, these powerlaw models may be confused
by lower order terms and do not handle multiple features elegantly. In contrast, CF-
TRENDPROF prefers to fit a line to data unless that data is compellingly curvy. These
linear models compose into cleaner derived models, but can miss the curve in the data. CF-

TRENDPROF’s model generation and selection algorithms solve (for our problem domain)

140

two problems that are difficult when posed in generality [Ric06]: how to decide what model
describes a given set of data points and how to build models involving highly correlated
features. CF-TRENDPROF can fit precise models involving multiple features when these

models are appropriate.

Relative Error is More Useful Than Absolute Error

Comparing CF-TRENDPROF’s models to BB-TRENDPROF’s makes clear the im-
portance of how one measures, minimizes, and visualizes error. CF-TRENDPROF evaluates
models based on their standard error, a quantity that scales up with the data’s squared
deviation from the model’s predictions, >, (y; — 7i)? (see Section A.1.5). While this view
of error seems to be the starting point for discussion of regression (see for instance [Ric06]),
it is not clear that it is entirely suitable for our purposes. BB-TRENDPROF implicitly makes
a different choice: by fitting its cluster totals to powerlaws (see Sections 2.3.2 and A.1.3),
BB-TRENDPROF chooses to minimize relative error,), <log %)2

This relative view of error leads to models with a different sort of guarantee. Con-
sider what it means for a model to have low absolute error, versus low relative error, as cost
increases. Roughly speaking, a model has low absolute error to the extent that the squared
difference between its predictions and actual performance is small; for instance, most of a
good model’s predictions would be off by less than one hundred (§ — 100 < y < g + 100)
and very few would be off by more than one thousand. A model has low error by the rel-
ative notion of error to the extent that its predictions are within a small factor of actual
performance; for instance, most of a good model’s predictions would be within a factor of

two (0.5 < y < 2¢) and very few would be off by more than a factor of ten. So a model

141

with low relative error corresponds to the familiar notion in theoretical complexity of being
within a constant factor of actual performance (though of course TRENDPROF’s models are
more like averages than bounds).

To make this discussion more concrete, compare the view of absolute error implicit
in the linear-linear plots in Figure 3.57 to the view of relative error implicit in the log-log
plots of the same data in Figure 3.58. The vertical distance to the line of best fit in the
linear-linear plots corresponds to absolute error; the vertical distance in the log-log plots
corresponds to relative error. There are many situations where the absolute error of CF-
TRENDPROF’s models increases as the cost they model increases, but as these log-log plots
show, the relative error often (but not always) stays relatively fixed. The log-log plots have
the additional advantage of showing the performance trend in the data across all orders of
magnitude while the linear-linear plots really focus only on the largest points.

Given these results, we find the relative notion of error more appealing. In fair-
ness, we must acknowledge that Brewer [Bre94] advocates regression models that minimize
relative error to describe the performance of programs; we pursued a more standard ap-
proach to regression with CF-TRENDPROF because we found his arguments unpersuasive
compared to the difficulty and extra machinery they require, but we now share his belief.
Rather than trying for (and failing to achieve) models that predict error to within a small
absolute distance, it is more valuable for our purposes to have a model that characterizes
how performance grows asymptotically to within a constant factor — this tolerance for

constant factors is built in to the notion of big-O and big-theta bounds.

142

Unfortunately, simply changing CF-TRENDPROF’s linear models to minimize rel-
ative error, though a useful step, is insufficient to yield any drastic improvements in models.
While small changes might yield a modest improvement for some models, the evidence and
experience accumulated in this thesis suggests a more thorough re-consideration. As we
elaborate in Section 3.10, there are several opportunities for improving our methodology. A
real solution ought to put powerlaw models and linear models on equal footing: they should
minimize the same notion of error; too many of CF-TRENDPROF’s models approximate a
curve with a line because this difference in error puts powerlaw models at too much of a
disadvantage. However, such a change is not trivial: without our trick of doing linear re-
gression on (logz, logy), fitting powerlaw models requires a potentially unstable iterative
optimization process. Furthermore, other issues beg for a solution as well (Sections 3.10.3,
3.10.4, and 3.10.5) and impede any improvement based purely on improving the notion of
erTor.

In any event, the exact notion of error is not the central thrust of this thesis.
Even with a better notion of error, the good models will stay good and the hopeless data
sets will still be hopeless. A change in our notion of error will most strongly affect those
models that have some predictive power, but also have a flaw: outliers, a missing lower order
term or logarithmic factor, or just general noisiness. A different notion of error will affect
how the model fitting adjusts the model in the presence of the flaw. Other approaches,
like considering a wider class of models or improving our ability to distinguish distinct

performance contexts might more directly address the flaw.

143

Complementary Strengths

In conclusion, BB-TRENDPROF and CF-TRENDPROF have complementary
strengths: CF-TRENDPROF is more precise in some situations, while BB-TRENDPROF
better manages the complexity of large programs. CF-TRENDPROF creates precise models
with multiple terms and multiple features when these models are justified by their low error
and the program’s control flow. In some cases, CF-TRENDPROF even produces exact or
near-exact fits (for example, see Figures 3.13, 3.41, and 3.42). Because the relationship
between performance and workload features is much harder to characterize for the core of
large programs and complex algorithms, the added precision that CF-TRENDPROF brings
is not as big a win over BB-TRENDPROF in these contexts. Large programs present a
further problem for CF-TRENDPROF because its call-graph-centric view of performance,
though useful, is not as succinct a summary of performance as BB-TRENDPROF’s clusters.
While CF-TRENDPROF makes important strides in modeling program performance and
does much better than BB-TRENDPROF in some cases, its inability to manage the complex-
ity of the performance of large programs makes it unwieldy where BB-TRENDPROF scales
more gracefully. Fortunately, the features of BB-TRENDPROF that make it suitable for
analyzing the performance of large programs are portable to CF-TRENDPROF. We discuss
issues related to incorporating the best features of BB-TRENDPROF and CF-TRENDPROF

in Section 3.10.1.

144

3.10 Future Work

Our work on BB-TRENDPROF and CF-TRENDPROF makes progress on charac-
terizing and organizing the scalability of actual software implementations run on realistic
workloads. Our results show that solutions to this problem must manage the difficult reality
that performance is not always a clean function of workload features and that differing dis-
tributions of workloads can lead to different apparent scalability. Much of the future work
we envision below has to do with refining the techniques we have investigated to better

meet these challenges.

3.10.1 Combining Strengths of BB-TrendProf and CF-TrendProf

As we saw, BB-TRENDPROF and CF-TRENDPROF have complementary
strengths. Providing both a call graph view of performance and a decomposition of lo-
cations into clusters would help manage the complexity of having many models for many
locations while still enabling reasoning about how performance is distributed through the
call graph. Forming clusters and cluster totals based on functions’ total-self-costs seems
right since these measurements are a partition of the program’s total performance. Fur-
thermore, coloring total-transitive-costs by the clusters to which they belong could aid in
understanding how different call trees vary and which call trees scale worst.

We have argued (Section 3.9) that models of empirical computational complexity
should minimize relative, rather than absolute error. More concretely, we must develop
methods for linear and powerlaw (and perhaps other kinds of) regression that minimize

Yi—yi

some function of relative error (T) With linear and powerlaw fits competing on even

i

145

ground — both minimizing the same measure of error and competing based on this error
measure — curvy data should fit a powerlaw and linear data a line. Furthermore, the log-log
scatter plot would seem to be more appropriate for understanding the relationship between
performance and workload features since, unlike a linear-linear scatter plot, a constant

relative error corresponds to constant distance.

3.10.2 What Is the Distribution of The Error Terms?

As we mention in Section 3.4.3, it is not clear what sort of distribution characterizes
the error terms in our models. In particular, if we claim that a model, §(z), explains
performance, then what distribution of error terms (%) is acceptable? Characterizing
these error terms would allow for analytical reasoning about properties of our models such
as confidence intervals (for regression parameters and predictions), and a more rigorous
model selection criterion along the lines of Jaynes [JB03] or Brewer [Bre94].

Because of the difficulty of finding good models to predict program performance,
we are willing to accept models that have systematic bias (for example, because they ap-
proximate a logarithmic factor as a powerlaw or miss a lower order term) as long as they
are good approximations of actual performance; for example, models that approximate a
logarithmic factor with a powerlaw or models that are missing a lower order term. To the
extent that they are good approximations, these flawed models are still useful to a hu-

man — probably more useful than declining to fit any model. However, characterizing the

distribution of the error terms for such models is challenging.

146

Empirical Bounds Versus Empirical Averages

Consider the performance behavior shown in Figure 3.24, Figure 3.31, and the
bottom plot of Figure 3.57. For such situations, it might be profitable to formulate model
fitting approaches that, rather than penalizing model overestimates (negative residuals) and
model underestimates (positive residuals) uniformly, instead penalize underestimates more
severely than overestimates. Such an approach should yield models that follow the upper
line of points more closely than the lower line in noisy situations like those in the figures
mentioned above.

In contrast to a big-O bound such an approach can provide no guarantee of per-
formance. The utility of such an approach, though, is that it manages the reality of noisy
relationships between performance and workload features by focusing on the trends in the

more expensive workloads.

3.10.3 A More Robust Class of Models

CF-TRENDPROF’s derived models are an all or nothing proposition: either the
derived model with all of its terms wins or a direct model wins. Some of these derived

models can have odd-looking terms like 32167 + 42124

(though recall that such terms
are well motivated by the structure of the program). Two ways of generating additional
candidate models from a more robust class of models are apparent. First, we could use the
ceiling of the maximum degree term of each feature in our models to suggest the degree of

a regularized polynomial model (e.g., 3 for 23). Second, we could try dropping terms and

re-computing coeflicients for other terms. These approaches would smooth and simplify our

147

derived models when such simplification did not result in substantially less precision. An
important question to consider, though, is whether these approaches are more likely to lead

to over-fitting of training data.

3.10.4 Inferring Contexts

CF-TRENDPROF allows the user to mark function invocations with contexts based
on the call graph or on arbitrary runtime data values. One cause of messy performance
relationships is combining contexts; splitting them can yield cleaner, more precise models.

There are situations where it might be possible to split contexts automatically.

Call Stack and Data Contexts

Some sort of clustering approach (something like k-nearest-neighbors, not to be
confused BB-TRENDPROF’s clustering) might identify situations where invocations of a
function with different callers (or call stacks) caused the function to behave differently.
More ambitiously, one might record data values, either user-provided or mined automatically
from function parameters, and automatically determine if these values had any measurable

correlation with performance.

Different Kinds of Workloads

Another step in the direction of identifying relevant contexts is for the user to
(optionally) describe workloads with some sort of tag. For example, our first dot experiment
might tag workloads with n edges, 1.1n edges, 1.2n edges, and 1.3n edges differently. These

tags would be treated as contexts for all the measurements in the workload. Functions

148

whose performance seemed to be affected by the workload tag would be modeled separately
for each tag. This sort of approach would offer a tool for exploring a larger portion of a
program’s input space and getting a handle on how different kinds of workloads affected (or

did not affect) performance trends.

3.10.5 Improved Handling of Recursion

Overall, CF-TRENDPROF’s handling of recursion is inelegant. Modeling per-
invocation cost of a recursive function entangles the initial call with the subsequent recursive
calls and is unlikely to result in sensible models. Contexts (and our derived models, see
Section 3.4.4) allow one to split out the initial call into a recursive cycle from the subsequent
recursive calls, but this tedious process could be automated. One possible way forward is
to treat loop iterations and function calls more uniformly: record each function entry or
loop iteration in the trace, perform an interval analysis [ASU86] of the entire control flow
of the program to find the loops, and model the self-cost, total-self-cost of each loop per
entry and per invocation of each higher scope. This approach would be yet more data in-
tensive than CF-TRENDPROF and would require more sophisticated compression of traces

and presentation of data.

3.10.6 Toward Modeling Time

This work has demonstrated that modeling execution count as a function of work-
load features yields valuable insights into the scalability of programs. Given infrastructure
for making the measurements, it is a triviality to substitute other measures of performance

(machine instructions, cache misses, time) for execution counts in our methodology for

149

model selection and fitting — indeed, others [SY07] have done so. The important empiri-
cal question to investigate is whether the performance effects caused by caches and other
micro-architectural features can be reasonably modeled with a simple statistical tool such

as regression or whether more sophisticated techniques or other trade-offs are necessary.

3.10.7 Outliers and the Program as a Feature Detector for Workloads

One interesting aspect of TRENDPROF’s models is that they, in the best case,
establish a clear trend in performance — a baseline. Workloads that deviate from this trend
(outliers in the scatter plots) are interesting because they violate this baseline behavior.
Even though such workloads may not be particularly expensive, they invite one to ask why
their performance deviated from the overall performance trend. Finding and characterizing
these workloads (based on their performance behavior across the entire program) might
point to neighborhoods of related workloads with properties that cause bad performance.
A larger workload in such a neighborhood (that is, having whatever properties cause other
workloads in that neighborhood to be expensive) might cause performance problems. Thus,
identifying these neighborhoods has the potential to enhance TRENDPROF’s ability to find

scalability issues by extrapolating trends rather than observing problematic workloads.

150

Chapter 4

Threats to Validity

This chapter reviews concisely the circumstances under which TRENDPROF’s mod-
els do not adequately describe program performance. Knowledge of these hazards has been
a driving factor in the design of our techniques.

Some of the hazards we discuss illustrate the fundamental difficulties and trade-offs
inherent in empirically modeling program performance as a function of workload features.
For instance, while modeling performance based on measuring actual workloads focuses
TRENDPROF’s models on the empirical case, choosing atypical or insufficiently many work-
loads to train TRENDPROF causes its models to over-fit patterns particular to the chosen
workloads (Section 4.1). Furthermore, obvious workload features may not be good predic-
tors of performance (Section 4.2); put another way, performance may depend on properties
of the workload that are difficult to measure (without running the program). TRENDPROF’s
best-fit and residuals plots and BB-TRENDPROF’s bootstrapped confidence intervals seek

to mitigate these hazards by allowing the user to recognize bad fits and outliers.

151

Other hazards are more specific to the implementation of BB-TRENDPROF or
CF-TRENDPROF. Both systems intentionally limit the complexity of models that they use
to fit performance data. While this limitation prevents over-fitting noisy performance data
with a complex model, it also forces approximation of, say, polynomials with powerlaws or

logarithmic terms with constants or powerlaws (Section 4.3).

4.1 The Importance of Workloads

The empiricism of TRENDPROF’s models is both an advantage and a disadvantage.
All of the models TRENDPROF builds are based on measuring a set of workloads the user
provides. This set of workloads allows TRENDPROF to reason about scalability in the
empirical case, often a difficult feat in theoretical settings. On the other hand, choosing
atypical or insufficiently many workloads to train TRENDPROF causes its models to over-fit

patterns particular to the chosen workloads.

When Workloads Reveal Empirical Truth

TRENDPROF does not distinguish correlations that are due to the structure of the
program from those due to the distribution of workloads. This empiricism allows us to
conclude that on typical C programs, an optimized implementation of Andersen’s analysis
scales much better than its worst-case bound of O(n?) in the size of the program (Sec-
tion 2.4.4) and that a linked list append function that runs in linear time in the length of
the list is a performance bug in banshee’s parser (Section 2.4.5), but the same idiom is not

a bug in the context of elsa’s data structures for resolving name lookup (Section 2.4.6).

152
When Workloads Oversimplify

On the other hand, the user of TRENDPROF must choose workloads carefully or risk
generating results that do not generalize. We illustrate this point further by considering
four different kinds of workloads for our bubble sort example (for another example, see
Section 3.5.5). Recall that the workloads we considered earlier (Section 2.2) were arrays
of integers generated uniformly at random and that the locations break into 3 distinct
clusters: comPaREs, swaps, and size (Figure 2.1). Depending on the distribution of inputs,
BB-TRENDPROF’s classification of line 6 (swaps) changes: if our inputs consist respectively
of arrays of integers (a) randomly permuted, (b) sorted from least to greatest, (c) sorted
greatest to least, or (d) sorted from least to greatest but with O (n) swaps of neighbors,

193 and forms its own cluster (swaps),

then we observe respectively that line 6 (a) scales as n
(b) never executes and thus does not appear in the output, (c) executes about O(n?) and
thus falls into cluster coMPARES, or (d) executes about O(n) times and falls into cluster sizEe.
In fact, line 6 may powerlaw-fit n quite poorly: any combination of these extremes
is realizable for line 6 by picking suitable workloads. In contrast the cost of the other lines
varies only with the size of the array, so their classification does not change.
Outliers in the best-fit scatter plots suggest the possibility of workloads that behave

differently than the prevailing performance trend. Running more workloads, particularly

workloads similar to the outlier, may increase the generality of TRENDPROF’s results.

153
4.2 Performance Is Not Always

a Function of Workload Features

It is rare that a function of workload features perfectly predicts the performance
of a piece of code (though see Figure 3.13). Often though, there is a at least a trend in per-
formance as some workload feature grows large (Figures 3.15, 3.30, and 2.11). Sometimes,
however, the performance of a piece of code is simply not a function of any readily apparent
feature of its input (Figures 2.12, and 3.24). For instance, depending on the distribution of
inputs to the bubble sort example, sizE may be a reasonable powerlaw predictor of SWAPS,
but (as we discussed above) it may not be. There is no function that predicts swaps in
terms of SIZE in general.

Similarly, asT does not adequately predict the points in Figure 2.12 nor the cost of
the top cluster for elsa (not shown). It may be that some function of some readily available
features of elsa workloads fit this data well, but we do not know. The performance curve for
some programs may not even increase monotonically with workload size. In these situations,
it is clear from the best-fit plot and residuals plot that TRENDPROF provides that its model
is inadequate for the situation and that its predictions are not to be trusted.

For situations like these, BB-TRENDPROF allows the user to define features that
depend on the runtime behavior of the program. One can designate the number of times a
particular line of code executes as a feature for BB-TRENDPROF. Also, BB-TRENDPROF
does not require workloads to be annotated with features until after they have run; the
programmer may, for instance, modify the program to print the size of a data structure

or the value of a counter and then use these as features. Furthermore, clustering identifies

154

groups of basic blocks that vary together, suggesting that they depend on the same subtle
features on input — the exact property of the workload that causes performance to vary
may not be clear, but locations that exhibit the same variations are grouped.
Consideration of this issue led to several features of CF-TRENDPROF. Its decom-
position of performance allows for multiple views onto performance, essentially allowing
more chances for finding a meaningful chunk of a program’s execution that has some re-
lationship to workload features — one call to a function might not bear any relation to
workload features, but all the calls from a particular caller or all the calls in a workload
might; the transitive-cost of a handful of callees might not follow any discernible trend,
but their sum, as captured in the transitive-cost of their caller, might. Furthermore, by
annotating their program with invocation features and context annotations, the user can
help CF-TRENDPROF identify clear relationships between values of program variables at

runtime and program performance.

4.3 Inability to Find the Right Model To Fit

There may be some relationship between performance and user-provided workload
features, but TRENDPROF may not choose the right model to capture this relationship —
most likely because this model is not in TRENDPROF’s vocabulary. This situation is dif-
ferent from the one we discuss above where there is no relationship between user-provided
features and input size. When there is no relationship between provided features and input
size, the best one can hope for is that there is yet one more feature that will explain perfor-

mance where others have not or that considering performance from a different vantage point

155

(transitive-cost versus self-cost or total-transitive-cost versus transitive-cost or transitive-
cost of a caller versus transitive-cost of a callee) is more enlightening. When the data
(particularly the best fit scatter plot) shows a clear relationship between performance and
a feature, we must ask instead what sort of model might TRENDPROF fit to this data and
is including this model to fit true instances of it worth the “false positives” of over-fitting

noise using this model.

4.3.1 Limitations of the Powerlaw Fit

Our first technique, BB-TRENDPROF, considers only linear and powerlaw models.
In our experience the simple, two-parameter powerlaw fit works amazingly well. However,
there are situations where a powerlaw fit does not precisely capture the variation of a
cluster’s cost across workloads. These situations are quite clear when we examine the
scatter plots and residuals plots that TRENDPROF generates. Wide confidence intervals for
the coefficient and exponent or a low R? are also warnings that the powerlaw may not be
a suitable model. The converse does not hold: these statistics may still be quite good for

data that a powerlaw does not adequately describe.

The Logarithmic Factor Although a powerlaw cannot fit functions such as nlogn,
such logarithmic factors are not a major problem in practice. For example, the number
of compares that quicksort performs grows as O(nlogn) where n is the size of the array
being sorted. The left part of Figure 4.1 shows a scatter plot of the number of compares
a Quicksort performs (y axis) versus the number of elements in the array to be sorted (x

axis). The line is a powerlaw fit to the diamond shaped points (§ = 1.52116). The fit closely

156

1e+08 E T T T T 7 PRERE
i 5]
L %]
le+07 F &7 B
L = i
le+06 & =
L = ,
100000 F et =
L /,cr’/ |
10000 F , o B
L o 4
1000 F e B
i s]
T2 training set ¢]
100 F » further observations ©]
= best powerlaw fit on ‘ﬁraining sef T -
10 | ‘ | | ‘ | | | ‘ | | | | 1 | ‘
10 100 1000 10000 100000 1le+06 le+07
T T T ‘ T T ‘ T T T ‘ T
4k training set residuals B
0. further observations residuals °©
021 .
o © % % o
0r >]
o o
o
o (o]
-0.2 ™ ° .
(@]
(@]
04 [° T
(@]
1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1
10 100 1000 10000 100000 le+06 le+07

Figure 4.1: On the top is a log-log plot of number of comparisons done in a call to gsort
(y axis) versus the size of the array (x axis). On the same plot, we show the best powerlaw
fit to the diamond shaped points (§ = 1.5n'16) R2 > 0.99). On the bottom is the residuals
plot for the powerlaw fit. Note that the residuals are clearly not randomly distributed.

157

tracks the data, but it is clear from the residuals plot that there is more going on. The
hump shaped residuals plots suggests that the data grows more slowly than the powerlaw;
such a curve suggests a logarithmic factor.

The circular points show further observations of compares versus array size. Even
for arrays 60 times larger than any BB-TRENDPROF used to fit the initial powerlaw, the
fit’s prediction (68 million compares) is less than a factor of two from the observed value

(43 million compares).

The Lower Order Term Our bubble sort example illustrates the effect of a lower order
term on a powerlaw fit. Line 4 executes exactly 0.5n2 + 0.5n times while lines 5 and 7
execute exactly 0.5n% — 0.5n times each; the cluster as a whole costs 1.5n% — 0.5n basic
block executions. The powerlaw fit converges to the highest order term: given large enough
workloads, BB-TRENDPROF predicts the cost of this cluster as 1.5n%. That is, for smaller
workloads the lower order terms distort the powerlaw fit; however, for large enough n,
the quadratic term dominates the linear one. To the extent that one term dominates the
others, BB-TRENDPROF’s powerlaw fit is a reasonable, low-dimensional approximation.
This distorting effect that lower order terms can have on powerlaw fits led to our desire to

explore more precise fits with CF-TRENDPROF.

4.3.2 Limitations of CF-TrendProf’s Model Selection

In choosing a model for performance, CF-TRENDPROF has a wider range of pos-
sibilities than BB-TRENDPROF. Nonetheless, the number of terms in any given model is

bounded by the control flow of the program. If a single loop has performance that scales

158

quadratically or cubicly with a workload feature, CF-TRENDPROF is forced to model it
with a powerlaw instead of a more precise polynomial. Similarly, CF-TRENDPROF only
combines models (into derived models) according to control flow; for instance if an inner
loop’s performance depended on x1 X x2, CF-TRENDPROF will not find this model unless
the outer loop’s performance depends on either x1 or xo since it will not try the model
x1 X xo directly nor will it be able to construct a derived model.

These limitations arise from a trade-off in the design of CF-TRENDPROF. Since
there is no limit to the complexity of code’s performance and since there need not be any
relationship between performance and workload features, CF-TRENDPROF prefers to choose
simple models over complex ones unless there is evidence in the program’s control flow to
support the choice of a complex model. Alternative approaches might try more models, but
these approaches would have to decide which models to try (and which to skip) and this
choice leads to trading off model simplicity and interpretability for more precision. The
danger of complex models is that they tend to over-fit noise: situations where there is no
good model would have a complex, difficult to understand model instead of a simple line or
powerlaw that averages the noise.

The ultimate arbiter of the goodness of a CF-TRENDPROF model is the human
user. Complex models, especially those with two or more variables, impede the comprehen-
sibility of a model. Therefore, CF-TRENDPROF errs on the side of choosing simple models
in the absence of any reason to do otherwise; any complex models are derived by composing

simpler models of subcomponents, each of which can be evaluated separately.

159

Chapter 5

Related Work

The main branches of related work are other profilers and other techniques that
construct models of program performance based on simulation, measurement, or reasoning

about source code.

5.1 Profilers

Gprof [GKM82] and many profilers like it periodically sample the program counter
during a single run of a program. A post-processing step propagates these samples through
the call graph to estimate how much of the program’s running time was spent in each
function. Such profilers are the standard way to find opportunities to improve a program’s
performance.

Ammons et al. [ACGS04] describe a framework for finding bottlenecks in large
programs based on execution profiles. Using their framework, they develop two tools for

digesting profile information and finding performance bottlenecks. One tool finds expensive

160

call sequences (e.g., F is expensive when called from G, but not when called from H). Another
tool compares two runs of the same program with the same workload but a different program
configuration (for instance with runtime security checks enabled versus disabled) to find the
paths responsible for making one configuration fast while the other is slow. They emphasize
the importance of extensibility in how their interface summarizes and displays the costs of
program paths — in our terms, they enable a tool designer to define new notions of location
and context to focus on very specific paths through the program. In this regard, their
work is complementary to ours; their system computes the cost of a path for a workload or
two, while TRENDPROF builds models to describe how the cost of a location increases with
workload features. An exciting piece of future work might combine their fine grained control
over profiles with a TRENDPROF style analysis to examine how the costs of particular paths
through the program grow with workload features.

Jinsight EX [SdPKO01] is another tool for managing the vast sea of data that
comes out of profiling a large program. Jinsight exhaustively traces the execution of a
Java program, recording the number of objects of a particular type that are allocated, the
number a times a method is called, etc. To aid in exploring the sequence and resource usage
of the program, Jinsight allows the user to organize subsets of program activity (thread
creation, method invocation, object allocation) into ezecution slices based on static and
dynamic properties of the trace. For example, the user can specify a set of methods whose
invocations (perhaps with their callees) constitute an execution slice; furthermore, dynamic
properties like object lifetime or data values can also define an execution slice. The user can

then filter the call tree or resource usage histograms based on these execution slices. Like

161

Bottlenecks, Jinsight is complementary to TRENDPROF: it defines a rich, dynamic notion
of location and enables exploration of the call tree and resource usage of a single workload;
in contrast, TRENDPROF finds performance trends across many workloads.

We built TRENDPROF to answer questions that these traditional profilers do not
address: traditional profilers present information about one run of the program, whereas
TRENDPROF presents a view across many runs with an eye toward finding trends and

predicting performance on workloads that have not been run.

5.2 Empirical Performance Models

Kluge et al. [KKNO05] focus specifically on how the time a parallel program spends
communicating scales with the number of processors on which it is run. In our terms,
they construct an empirical model of computational complexity where their measure of
performance, y, is MPI communication time and their measure of workload size, x, is
number of processors. They fit these observations to a degree-two polynomial, finding a, b,
and ¢ to fit (§ = a + bz + cx?). Their goal is to find programs that do not parallelize well;
that is, programs whose amount of communication scales super-linearly with the number of
processors. Any part of the program with a large value for ¢ is said to parallelize badly. The
goal of TRENDPROF is more general; we aim to characterize the scalability of a program in
terms of a user-specified notion of input size.

Su and Yelick [SY07] adapted the BB-TRENDPROF methodology and much of the
prototype code to build ti-trend-prof, a tool for debugging communication-performance

for Partitioned Global Address Space (PGAS) languages like Titanium [YSPT98]. In PGAS

162

languages, remote reads and writes look exactly the same as local ones; this sameness
makes code easier to write, but communication performance bugs harder to spot. Indeed,
some communication bugs are not apparent until a program is run at scale on hundreds
of nodes or at large problem sizes. Fortunately, TRENDPROF-style performance models
help a great deal. The user runs their code with a fixed number of processors and several
problem sizes and then again on a fixed problem size with varying numbers of processors.
For every program point that does remote memory accesses, ti-trend-prof measures the
number of communication calls and builds models that describe how communication scales
with problem size or number of processors. These models point to performance bugs:
places where communication grows faster than it ought to. The authors report that using
ti-trend-prof, which uses the methodology in Chapter 2, they found performance bugs
in hours that would take days to find manually. Furthermore, using ti-trend-prof allows
them to do meaningful performance debugging on a laptop instead of a super-computer
and earlier in the development cycle instead of later. Their work is a triumph for the
methodology we describe in this thesis.

Brewer [Bre95] constructs models that predict the performance of a library routine
as a function of problem parameters; for instance the performance of a radix sort might be
modelled by the number of keys per node, radix width in bits, and key width in bits. Given
a problem instance and settings of the parameters, the model predicts how several imple-
mentations of the same algorithm perform. Based on the prediction, the library chooses
an implementation of the algorithm to run for an instance of the problem. The user must

choose the terms for a model; powers of the terms are not considered in building the model,

163

but cross terms are. For instance, for problem parameters [, w, and h, the model is in terms
of

7 = co + c1l + cow + c3h + cqlw + cslh + cgwh + crlwh

The requirement that the user provide the terms for the model, particularly the powers
of those terms, assumes a deeper level of understanding of the code’s performance than
TRENDPROF does: while the resulting models can be more descriptive and precise, each
implementation of each algorithm must be considered separately and terms chosen carefully.
However, in the larger context of the program, the features on which a code’s performance
depends may not be readily apparent; furthermore, due to bugs, gaps in the user’s under-
standing, or fortuitous configurations of inputs, the scalability of program may not be what
the user expects. Therefore, TRENDPROF seeks to describe the performance of each of the
many locations in a large program and focus the user’s attention on those with unantici-
pated performance or scalability problems. Crudely put, TRENDPROF is concerned with
finding the right exponents of the right terms to describe performance for each location in
an entire program while Brewer’s work is concerned with finding the right coefficients of the
right terms for smaller pieces of code. Our differing goals lead us to different assumptions
and trade-offs.

Sarkar [Sar89] predicts the mean and variance of loop execution times using
counter-based profiles. His system measures the execution frequency of each basic block,
carefully optimizing placement of counters based on interval structure and control depen-
dences. After collecting these basic block frequencies for a workload, he uses them together

with a static estimate of how much time each basic block takes to run on the target ar-

164

chitecture to estimate the mean and variance of the run time of each loop. Rather than
predicting run time for a workload on a particular architecture, TRENDPROF predicts the
number of operations a piece of code will perform as a function of workload features.

In as yet unpublished work, Ganapathi et al. [GKD™08] consider the problem of
predicting the performance, measured in elapsed time, CPU time, disk IO operations, and
network traffic, of a database query before it starts executing. Like TRENDPROF, they seek
to predict performance from workload features and make their performance predictions
based on measurements of other workloads; though, their notion of performance is richer
than TRENDPROF’s. In order to predict the performance of a novel query, they use a statis-
tical machine learning technique called Kernel Canonical Correlation Analysis (KCCA) to
essentially interpolate an estimate of the novel query’s performance based on the similarity
of its feature vector with that of training examples. Compared to TRENDPROF, their tech-
nique trades off the interpretability of its models for precision in predicting performance;
indeed, the authors note that dissecting the workings of KCCA is computationally difficult.
Furthermore, whereas TRENDPROF models performance for each location of a general pro-
gram, they consider whole-program performance for a constrained set of programs (database
queries) with a rich set of features, including data from the query optimizer’s cardinality es-
timates for joins and other relational operators. Fundamentally, their work makes different

trade-offs than TRENDPROF in order to solve a more constrained problem.

5.2.1 Modeling Micro-architecture Parameters

Vaswani et al. [VIT'SJ07] build regression models that relate a benchmark’s per-

formance to micro-architectural parameters, compiler optimization flags, and associated

165

compiler optimization heuristic parameters (for instance maximum loop unrolling). They
use these models to (a) predict performance at arbitrary compiler and micro-architecture
settings, (b) identify micro-architectural features that interact (both beneficially and detri-
mentally) with compiler optimization settings, and finally (c) find optimal settings for a
particular program. They use three different regression techniques to find models and in
one case give up on interpretability in favor of precision.

Along similar lines, Lee and Brooks [LBO06] build regression models to predict
(a) performance and (b) power consumption for varying micro-architectural parameters.
They find that these two modeling problems benefit from different statistical techniques.

These systems (Vaswani et al., Lee and Brooks) explore a vast space of design
trade-offs. Their focus is on choosing good designs or understanding interactions of design

decisions. In contrast, TRENDPROF focuses on modeling program cost as workloads change.

5.3 Performance Models by Simulation

There is a long history of predicting the running time of complex systems, such
as distributed systems and embedded systems (including those with real-time performance
constraints), via simulation. These simulations are often geared towards making system
design decisions, tuning system parameters, or deciding how much capacity a system needs
to sustain the desired level of throughput. The literature is too vast to adequately discuss

here, but we consider some examples.

166

5.3.1 Simulation of Distributed System Performance

Rugina and Schauser [RS98] simulate the computation and communication of par-
allel programs to predict their worst-case running time. Their simulation takes as input (a) a
parallel program whose communication does not depend on its data, (b) parameters for the
program such as size of data blocks and a communication pattern, and (¢) LogGP [AISS95]
parameters for the target machine; their simulation outputs a time. Their focus is on tuning
the performance of a constrained class of program (for a fixed workload size) by choosing the
best data block size and communication pattern from among those they simulated. Their
work solves a substantially different problem than TRENDPROF.

Avritzer and Weyuker [AWO04] describe a case study where they test, tune, and
simulate the performance of an e-commerce application. They build a simulation aimed
at reproducing, diagnosing, and fixing an infrequent, but serious performance slowdown.
Based on their experience with the system, they built their simulation to model the ef-
fects of the following factors on system performance: the dynamics of their particular Java
Virtual Machine’s garbage collector (including the fact that it stops all threads for a full
garbage collection), the heap size of the garbage collector, the memory requirements of
each thread, quality of service algorithms used to throttle or refuse connections, number of
threads, arrival rate for work, etc. Based on varying the parameters of their simulation,
they diagnosed the problem as happening due to the large delay imposed by garbage collect-
ing a 3GB heap combined with the kernel overhead caused by a large number of threads.
By further simulation, they found that setting the heap size to 1GB, using a quality of

service enforcement algorithm, or running several instances of the application server on the

167

same multi-processor node fixed the issue. Thus, they found a specific problem in a specific

system by constructing and querying a performance model at the right level of abstraction.

5.3.2 Simulation of Embedded System Performance

Thiele and Wandeler [Thi07] survey some techniques for simulating embedded
system performance for deciding issues such as which functions should be implemented in
software and which in hardware, which hardware components should be used, which buses
or processors are likely to be bottlenecks, etc. They mention that simulation is insufficient
to establish solid worst case execution time (WCET') bounds for schedulability of real-time

systems and that typically, analytic methods must be used.

5.3.3 Statistical Models Versus Simulation

These systems are not particularly similar to TRENDPROF, but there is one piece of
common ground. Like TRENDPROF, the systems above seek to isolate parameters that affect
program performance and predict performance as these parameters change. The examples
above solve a myriad of problems related to how the parameters of complex systems and
the interactions of their components affect their performance; exploration of the parameter
space varies from fully manual to fully automatic depending on the nature and structure of
the problem.

In contrast, TRENDPROF takes aim at a specific problem: how the number of
operations a program performs grows with input size. This focus on a single aspect of
scalability allows us to use an interpretable formula (e.g., 1022) where other systems use an

opaque simulation; this formula serves as an automatic way explore a program’s parameter

168

space — to predict how a program will behave on different workloads. While it by no means
solves all performance problems, TRENDPROF models an aspect of a program’s scalability

that is relevant to a large class of programs.

5.4 Performance Models from Static Analysis

Wegbreit [Weg75] describes a static analysis for computing closed form expres-
sions that describe the minimum, maximum, and “average” performance cost of simple
LISP programs in terms of the size of their input. Le Métayer [Mét88] focuses on stati-
cally analyzing maximum performance cost for FP (a functional programming language)
programs. Rosendahl [Ros89] describes an abstract interpretation for transforming a LISP
program into code that computes the worst case running time of the program. Such systems
produce precise models of performance, but it is unclear how to adapt such approaches to
large imperative programs.

Furthermore, a fundamental problem these techniques would encounter in analyz-
ing even medium-sized programs is the sheer size of the parameter space: each loop, each
conditional, and each input from the environment adds another dimension to the space
and potentially another parameter to statically-derived models of performance. Analyzing
performance of all possible workloads, as static analysis is forced to do, requires one to
consider the possibility that all of these parameters vary independently and thus leads one
to complex models in terms of obscure parameters. However, as we have shown in this
dissertation, considering a realistic set of workloads, which tend to occupy a tiny subregion

of the space of possible inputs, causes many of the dimensions of this parameter space to

169

collapse: a few workloads features do a reasonable job of explaining the performance of a
large number of locations.

Gulavani and Gulwani [GGO8] describe a precise numerical abstract domain that
allows computation (via abstract interpretation) of upper bounds on the number of steps
required to evaluate small C programs that involve mostly integer expressions. Their tech-
nique can deduce polynomial, logarithmic, exponential, and disjunctive (using a max oper-
ator) bounds.

Gulwani et al. [GMCO09] describe a technique, SPEED, that makes enormous
strides in computing worst case execution times of imperative programs via static anal-
ysis. Their technique involves instrumenting back-edges in a program with counters and
using a linear invariant generator, like that described in [GGO08] extended with a theory of
uninterpreted functions, to bound these counters in terms of inputs to a procedure. They
make an effort to ensure that they use few counters with few dependencies among them to
ensure precise bounds. They deal with abstract data structures by having the user provide
quantitative functions, like the length of a list or the height of a tree, and annotations on
data structure operations that show how the operation updates the quantitative function.

The most striking difference between SPEED and TRENDPROF is that SPEED
produces worst-case (over all inputs) bounds on procedure execution time while TREND-
PROF produces average-case (over given workloads) bounds. Both techniques require some
help from the user: SPEED requires extensive annotations to data structures while TREND-
PROF requires the user to provide workloads, features, and (optionally) contexts. While

TRENDPROF produces a performance model for any code that is covered by the user’s work-

170

loads, SPEED’s analysis can fail to produce any bound. On the other hand, when SPEED
produces a bound, that bound comes with a proof; in contrast, TRENDPROF’s models are
statistical and may be utter nonsense in the worst case.

Combining SPEED and TRENDPROF offers some fascinating possibilities. SPEED
and the quantitative functions it requires are a rich source of invocation features for TREND-
ProOF. Furthermore, SPEED’s bounds provide hints as to the shape of average case models
and constrain the possible models that TRENDPROF might consider (for example, if SPEED
proves a worst-case bound that is quadratic in n, TRENDPROF need not consider models
that are cubic in n). Also, TRENDPROF could measure the extent to which SPEED’s worst

case bounds are realized in practice.

5.4.1 Analyzing Data Structures

Danielsson [Dan08] outlines a library, THUNK, for analyzing the amortized com-
plexity of purely functional data structures that use laziness. The mechanism is to annotate
each function with types that describe how many steps the function takes to compute its
result and use a dependent type system to verify these bounds. Thus, assuming the user
uses the annotations correctly and adheres to a few syntactic restrictions, the type of an
expression (for instance, a function call) includes how many steps it takes to compute the
expression. In general, this type can include parameters like the size of a data structure.

Along similar lines, Krone et al. [KOS06] develop a system for specifying and ver-
ifying performance contracts of software components. These contracts specify the duration
of a function call (perhaps based on parameters or other data) and how much memory it

consumes. This performance verification requires functional specification and verification

171

of the code as well. They use their system to specify several data structures including a
spanning forest component built out of smaller components. For larger components, they
report an annotation to code ratio of about one to three; smaller, simpler components
require relatively less code and may have a ratio closer to one to one.

These systems model performance of data structures and components based on
parameters relating to their size and other runtime concerns. In contrast, TRENDPROF
provides an automatic analysis that provides a more whole-program view of performance:
TRENDPROF models the performance of data structures, but these models reflect how actual
workloads to the program exercise these data structures.

A tool like TRENDPROF could benefit from the existence of such performance
contracts: these contracts suggest variables and functions in terms of which to model per-
formance. As we saw in Section 3.4.3, the model selection problem is difficult: it is not clear
what functional relationship, if any, there is between performance and workload size. Thus,
having the user specify the form of the performance model as a performance contract would
be a benefit to TRENDPROF. To a system that verified performance contracts, TREND-
PROF could add inference: rather than specify an entire performance contract with all its
terms and coefficients, the user could give TRENDPROF a hint (e.g., performance is roughly
O (n2)); based on runs of the program, TRENDPROF could derive coefficients or perhaps
even extra terms (e.g., 5n?+10n) to performance contracts. Furthermore, if the variables in
the performance contracts are very local (for instance, some list’s size), a TRENDPROF-like

tool could attempt to model these local variables in terms of workload features.

172

Chapter 6

Conclusion

TRENDPROF’s models of empirical computational complexity allow developers to
compare the empirical reality of how their code is scaling on realistic workloads to their
expectations.

We advocate the use of empirical computational complexity for understanding
program performance and scalability. We have presented two techniques, BB-TRENDPROF
and CF-TRENDPROF, that, given a program and workloads for it, build models of ex-
ecution count in terms of user-specified workload features. Although these models are
not always accurate, we may assess their plausibility using the scatter plots and residuals
plots that TRENDPROF provides. Both BB-TRENDPROF’s clustering and ranking and CF'-
TRENDPROF’s call-graph oriented summary of program performance focuses attention on
scalability-critical code. These models allow us to predict the performance of programs on
novel workloads, including workloads bigger than any measured. The trends that TREND-

PROF finds can point to potential scalability problems with a piece of code even if that

173

piece of code is not a huge percentage of any workload’s performance.

By using clues from the program’s control flow, CF-TRENDPROF is able to con-
sider a rich family of models to precisely explain program performance. With help from the
user, CF-TRENDPROF can distinguish different performance contexts based on control flow
or data. CF-TRENDPROF provides per-workload and per-function-invocation views onto
performance. These improvements over BB-TRENDPROF are sufficient to model, to within
a logarithmic factor, the performance of several algorithms and data structures, some of
which have very complex formal analyses.

Our technique is useful for understanding program performance: TRENDPROF’s
models allow us to compare the empirical computational complexity on typical workloads to
our expectations. Such comparisons can either confirm the expected performance or reveal a
difference from it: even on our few examples, we have discovered several surprises which the
usual testing process could easily miss and furthermore demonstrated CF-TRENDPROF’s
ability to find still more performance surprises. By modelling the performance of the pro-
gram on workloads that we have not actually measured we add a new dimension of generality
to traditional profilers. Further, the complexity of algorithms on realistic workloads can
easily differ from their theoretical worst-case behavior. Our banshee and elsa experiments
illustrate both of these points: that is, no current profiler would have discovered that An-
dersen’s analysis actually scales quadratically in practice or that elsa’s GLR C++ parser
is only mildly super-linear, in contrast to their cubic theoretical worst-case bounds. Our
analysis therefore gives engineers a more accurate working performance model.

While anyone could attempt a performance-trend analysis of their program most

174

engineers do not; a generic and convenient tool for automatically computing a comprehensive

performance-trend analysis belongs in every programmer’s toolbox.

175

Appendix A

Regression

A.1 Model Construction with Regression

In constructing models to predict performance and put locations into clusters,
TRENDPROF makes use of least-squares linear regression and powerlaw regression. Re-
gression selects model parameters (a and b below) that minimize some measure of error.
Regression does not evaluate the applicability of these models, but TRENDPROF provides

diagnostics that allow the user to asses their plausibility (Section A.1.5).

A.1.1 Linear Models

Given a set of points (z;,¥;), least-squares linear regression constructs a model

that predicts y as g(x) ey + bz, an affine function of x. Given a data point, (z;,y;), define

Ui def 9(x;) = a + bx;. The quantity r; def y; — U; is called the residual of the fit at (x;, y;).

176

Linear regression chooses a and b to minimize the sum of the squared residuals:

k e
ry = Z(?/z’ 92 => (i — (a+bz;))?.

i=1 =1 i=1

A.1.2 Constant Models

We use the sample mean 3 = %Z;C:l y; to approximate a set of points (y;) with
a constant. This model, ¢, minimizes the sum of the squared residuals: Zle (y; — g))z. A

constant model is clearly just a degenerate case of a linear model (b = 0); sometimes this

trading off of precision for simplicity is worthwhile.

A.1.3 Powerlaw Models

Our interest in measuring the scalability of a program led us toward powerlaw
models. A powerlaw predicts y as §(x) = az’. On log-log axes, the plot of a powerlaw is
a straight line. Thus to fit observations to a powerlaw, TRENDPROF uses linear regression

on (logz;,logy;) to find a and b that minimize the following quantity:

k k 2 k b 2
; ax’
(logy; — (loga + blog a:z))2 = E <log yzb> = E <log 'Z>

1 i=1 i i=1 Yi

)

Yi
axr

Notice that here our residuals are expressed in logarithmic space as log 4.

A.1.4 Numerical Stability

It is important to compute regression coefficients in a numerically stable fashion.
We adapt an algorithm from Higham’s book [Hig02] to compute regression coefficients

efficiently from our run-length encoded data points.

177

A.1.5 How good is a model?

There are a number of ways for the user of TRENDPROF to evaluate the usefulness
of a particular model. For each model, TRENDPROF presents two scatter plots: one with
the data points (x;, y;) and the line of best fit (z, y(z)) and another with the residuals
(x4, 7;). Inspecting these plots is a good way to decide if TRENDPROF’s model is plausible.
To the extent that a model captures the variation in a data set, the data points in the
best-fit scatter plot closely track the line of best fit and the residuals scatter plot looks like
random noise. Therefore, any pattern in the residuals plot or systematic deviation from
the line of best fit is an indication that there is more going on than the model describes
(Section 4.3).

Plots are not very compact, however, so for each of its fits BB-TRENDPROF reports
the R? statistic, a measure of the model’s goodness-of-fit that quantifies the fraction of the

variance in y accounted for by a least-squares linear regression on x:

lyﬁgZiM%—ﬂf:: (Eiﬁ%_fﬂ%_ywz
Sa -9 (S e-n?) (S8 - 9?)

The equality on the right assumes least squares linear regression. The formula for
R? applies to powerlaw fits, but with « replaced by log 2 and y replaced by logy. Values for
R? range from 0 (bad) to 1 (excellent). Note that denotes the sample mean of a k-vector

y and 05 denotes its bias-corrected sample variance:

__ def _
= (vi —7)°.
1

x| =

k
1=

k

) gdef 1
Zyz T ko1
i=1

Instead of R%2, CF-TRENDPROF reports the standard error for each of its models,

a measure akin to the standard deviation of a data set that instead measures the deviation

178

of the data from the model as follows.

g e [N (=)’
k—2

A standard error of 0 indicates a perfect fit, while higher standard errors indicate worse fits.
In order to make a meaningful comparison of powerlaw fits to linear fits, CF-TRENDPROF
uses the residuals (¢; — y;) suggested by the formula above to evaluate the standard error

of powerlaw fits.

179

Appendix B

Proof of Cluster Theorem

THEOREM: Ifz, y, and p are vectors of length k such that x and y both fit p with R?> > 1 —«

and 0 < a < 0.5, then z fits y with R2 > 1 — 4a(1 —).

PRrROOF: Without loss of generality, assume that z, y, and p are normalized to have mean
0 and variance 1 and that z-p > 0 and y - p > 0; they can be made so with an affine
transformation and such transformations preserve R?. We denote the R? statistic for the

fit of x to p by R:%,p and the angle (in R¥) between z and p by ¢zp- We have
l-a< Ri,p = (v -p)? = cos® rp

Rearranging terms yields ¢, , < arcsin /o and similarly for ¢, ,,. By the triangle inequality

on the surface of the k-sphere and substitution,

Gry < Pup + byp < 2arcsin Vo

and so

Rivy =cos?Ppy>1—4da(l—a) m

180

181

Bibliography

[ACGS04]

[AISS95]

[AKLW02]

[AKMOG6]

Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil Swamy. Find-
ing and removing performance bottlenecks in large systems. In EFCOOP 2004.

Springer Berlin / Heidelberg, 2004.

Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
LogGP: Incorporating long messages into the LogP model — One step closer
towards a realistic model for parallel computation. In SPAA 1995: Proceedings
of the Tth Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 95105, New York, NY, USA, 1995. ACM Press.

Alberto Avritzer, Joe Kondek, Danielle Liu, and Elaine J. Weyuker. Software
performance testing based on workload characterization. In WOSP 2002: Pro-

ceedings of the 3rd international Workshop On Software and Performance, pages

17-24, New York, NY, USA, 2002. ACM.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Op-

erations Research Letters, 34(4):1-12, 2006. See http://miplib.zib.de.

[And94]

[ASUS6]

[AW04]

[BL94

[Bre94]

[Bre95]

[BZ2]

[CLRYO]

[Dan08]

182

Lars O. Andersen. Program Analysis and Specialization for the C' Programming

Language. Ph.d. thesis, DIKU, Unversity of Copenhagen, 1994.

Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

Alberto Avritzer and Elaine J. Weyuker. The role of modeling in the per-
formance testing of e-commerce applications. [IEEE Trans. Softw. FEng.,

30(12):1072-1083, 2004.

Thomas Ball and James R. Larus. Optimally profiling and tracing programs.

ACM Trans. Program. Lang. Syst., 16(4):1319-1360, 1994.

Eric Allen Brewer. Portable High Performance Supercomputing: High-Level
Platform Dependent Optimization. Ph.d. thesis, Massachusetts Institute of

Technology, 1994.

FEric A. Brewer. High-level optimization via automated statistical modeling. In
PPOPP 1995: Proceedings of the 5th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 80-91, New York, NY, USA, 1995.

ACM Press.

bzip2 project homepage. http://www.bzip.org/.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. The MIT Press, Mc-Graw Hill, 1990.

Nils Anders Danielsson. Lightweight semiformal time complexity analysis for

[Deb]

[GAWO7]

[GCO]

[GGOS]

[GKD+08]

[GKM82]

183

purely functional data structures. In POPL 2008: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages,

pages 133144, New York, NY, USA, 2008. ACM.

Debian project homepage. http://www.debian.org/.

Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. Measuring em-
pirical computational complexity. In ESEC-FSE 2007: Proceedings of the the
6th joint meeting of the Furopean Software Engineering Conference and the
ACM SIGSOFT symposium on the Foundations of Software Engineering, pages

395-404, New York, NY, USA, 2007. ACM.

gcov documentation. http://gcc.gnu.org/onlinedocs/gcc/Geov.html.

Bhargav S. Gulavani and Sumit Gulwani. A numerical abstract domain based on
expression abstraction and max operator with application in timing analysis. In
CAV 2008: Proceedings of the 20th international conference on Computer Aided

Verification, pages 370-384, Berlin, Heidelberg, 2008. Springer-Verlag.

Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet Wiener, Ar-
mando Fox, Michael Jordan, and David Patterson. Predicting multi-
ple performance metrics for queries: Better decisions enabled by machine
learning. http://radlab.cs.berkeley.edu/people/fox/wp/wp-content/uploads/

perf_prediction vldb_submitted.pdf accessed on June 23, 2008, 2008.

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a call

graph execution profiler. In SIGPLAN 1982: Proceedings of the 1982 SIGPLAN

[GMCO09]

[GNOO]

[Gra

[Hig02]

[JB03]

[KAO5]

[KKNO5]

184

Symposium on Compiler Construction, pages 120-126, New York, NY, USA,

1982. ACM Press.

Sumit Gulwani, Krishna Mehra, and Trishul Chilimbi. SPEED: Precise and ef-
ficient static estimation of program computational complexity. In POPL 2009:
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Prin-

ciples of Programming Languages, New York, NY, USA, 2009. ACM.

Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software — Practice and Experi-

ence, 30(11):1203-1233, 2000.

graphviz project homepage. http://www.graphviz.org/.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,

2002.

Edwin T. Jaynes and G. Larry Bretthorst. Probability Theory: The Logic of

Science. Cambridge University Press, 2003.

John Kodumal and Alex Aiken. Banshee: A scalable constraint-based analysis
toolkit. In SAS 2005: Proceedings of the 12th International Static Analysis

Symposium. London, United Kingdom, September 2005.

Michael Kluge, Andreas Kniipfer, and Wolfgang E. Nagel. Knowledge based

automatic scalability analysis and extrapolation for MPI programs. In Furo-

[KOS06]

[Lam)]

[LB06)

[LPS]

[Més|

[Mét88]

[Mit]

185

Par 2005 Parallel Processing: 11th International Furo-Par Conference, Lecture

Notes in Computer Science. Springer-Verlag, 2005.

Joan Krone, William F. Ogden, and Murali Sitaraman. Performance analysis
based upon complete profiles. In SAVCBS 2006: Proceedings of the 2006 con-
ference on Specification and Verification of Component-Based Systems, pages

3-10, New York, NY, USA, 2006. ACM.

Michael Lamont. Source code for quicksort.
http://linux.wku.edu/~lamonml/algor/sort/quick.html accessed around

November 15, 2007.

Benjamin C. Lee and David M. Brooks. Accurate and efficient regression mod-
eling for microarchitectural performance and power prediction. In ASPLOS-
XII: Proceedings of the 12th international conference on Architectural Support
for Programming Languages and Operating Systems, pages 185-194, New York,

NY, USA, 2006. ACM.

1lp_solve project homepage. http://tech.groups.yahoo.com/group/lp_solve/.

Csaba Mészaros. Csaba Mészaros’s collection of linear programs.

http://www.sztaki.hu/~meszaros/bpmpd/ accessed around October 25, 2006.

Daniel Le Métayer. ACE: An automatic complexity evaluator. ACM Trans.

Program. Lang. Syst., 10(2):248-266, 1988.

Hans Mittelmann. Hans Mittelmann’s collection of linear programs.

http://plato.asu.edu/ftp/lptestset/ accessed around October 25, 2006.

[MNO4]

[Ric06]

[Ros89]

[RS98]

[Sar89]

[Sau]

[SAPKO1]

186

Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR parser

generator. In Conference on Compiler Construction (CC04), 2004.

John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 2006.

M. Rosendahl. Automatic complexity analysis. Proceedings of the 4th Interna-
tional Conference on Functional Programming Languages and Computer Archi-

tecture, pages 144-156, 1989.

Radu Rugina and Klause Schauser. Predicting the running times of parallel
programs by simulation. In Proceedings of the 12th International Parallel Pro-
cessing Symposium and 9th Symposium on Parallel and Distributed Processing,

1998.

V. Sarkar. Determining average program execution times and their variance. In
PLDI 1989: Proceedings of the ACM SIGPLAN 1989 Conference on Program-
ming Language Design and Implementation, pages 298-312, New York, NY,

USA, 1989. ACM Press.

Shane Saunders. Source code for Dijkstra’s algorithm and a Fibonacci heap.
http://www.cosc.canterbury.ac.nz/tad.takaoka/alg/spalgs/spalgs.html

accessed around November 15, 2007.

Gary Sevitsky, Wim de Pauw, and Ravi Konuru. An information exploration
tool for performance analysis of Java programs. In TOOLS 2001: Proceedings
of the Technology of Object-Oriented Languages and Systems, page 85, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[SY07]

[Thi07]

[Ukk90]

[VTSJ07]

[WegT5]

[YSP+98]

187

Jimmy Su and Katherine Yelick. Automatic communication performance de-
bugging in PGAS languages. In 20th International Workshop on Languages and

Compilers for Parallel Computing, 2007.

Lothar Thiele. Performance analysis of distributed embedded systems. In EM-
SOFT 2007: Proceedings of the Tth ACM & IEEE international conference on

Embedded Software, pages 10-10, New York, NY, USA, 2007. ACM.

Esko Ukkonen. A linear-time algorithm for finding approximate shortest com-

mon superstrings. In Algorithmica, volume 5, pages 313-323, 1990.

Kapil Vaswani, Matthew J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph.
Microarchitecture sensitive empirical models for compiler optimizations. In
CGO 2007: Proceedings of the International Symposium on Code Generation
and Optimization, pages 131-143, Washington, DC, USA, 2007. IEEE Computer

Society.

Ben Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528-539,

1975.

Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,
and Alex Aiken. Titanium: A high-performance Java dialect. In ACM 1998
Workshop on Java for High-Performance Network Computing, New York, NY

10036, USA, 1998. ACM Press.

