
Measuring Empirical Computational Complexity

by

Simon Fredrick Goldsmith

B.S. (Carnegie Mellon University) 2001

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alex Aiken, Co-chair
Professor Koushik Sen, Co-chair

Professor Rastislav Bodik
Professor Dor Abrahamson

Fall 2008

The dissertation of Simon Fredrick Goldsmith is approved:

Co-chair Date

Co-chair Date

Date

Date

University of California, Berkeley

Fall 2008

Measuring Empirical Computational Complexity

Copyright 2008

by

Simon Fredrick Goldsmith

1

Abstract

Measuring Empirical Computational Complexity

by

Simon Fredrick Goldsmith

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alex Aiken, Co-chair

Professor Koushik Sen, Co-chair

Scalability is a fundamental problem in computer science. Computer scientists

often describe the scalability of algorithms in the language of theoretical computational

complexity, bounding the number of operations an algorithm performs as a function of the

size of its input. The main contribution of this dissertation is to provide an analogous

description of the scalability of actual software implementations run on realistic workloads.

We propose a method for describing the asymptotic behavior of programs in prac-

tice by measuring their empirical computational complexity. Our method involves running a

program on workloads spanning several orders of magnitude in size, measuring their perfor-

mance, and fitting these observations to a model that predicts performance as a function of

workload size. Comparing these models to the programmer’s expectations or to theoretical

asymptotic bounds can reveal performance bugs or confirm that a program’s performance

2

scales as expected.

We develop our methodology for constructing these models of empirical complexity

as we describe and evaluate two techniques. Our first technique, BB-TrendProf, con-

structs models that predict how many times each basic block runs as a linear (y = a + bx)

or a powerlaw (y = axb) function of user-specified features of the program’s workloads. To

present output succinctly and focus attention on scalability-critical code, BB-TrendProf

groups and ranks program locations based on these models. We demonstrate the power of

BB-TrendProf compared to existing tools by running it on several large programs and

reporting cases where its models show (1) an implementation of a complex algorithm scal-

ing as expected, (2) two complex algorithms beating their worst-case theoretical complexity

bounds when run on realistic inputs, and (3) a performance bug.

Our second technique, CF-TrendProf, models performance of loops and func-

tions both per-function-invocation and per-workload. It improves upon the precision of

BB-TrendProf’s models by using control flow to generate candidates from a richer fam-

ily of models and a novel model selection criteria to select among these candidates. We

show that CF-TrendProf’s improvements to model generation and selection allow it to

correctly characterize or closely approximate the empirical scalability of several well-known

algorithms and data structures and to diagnose several synthetic, but realistic, scalabil-

ity problems without observing an egregiously expensive workload. We also show that

CF-TrendProf deals with multiple workload features better than BB-TrendProf. We

qualitatively compare the output of BB-TrendProf and CF-TrendProf and discuss

their relative strengths and weaknesses.

3

Professor Alex Aiken, Co-chair

Professor Koushik Sen, Co-chair

i

Dedication

To my wife Lili for her patience, love, and support.

ii

Contents

1 Introduction 1

2 Basic Block TrendProf 10
2.1 Measuring Empirical Computational Complexity 11

2.1.1 Execution Counts . 12
2.1.2 Other Notions of Location . 13

2.2 An Example . 13
2.3 Implementation of BB-TrendProf . 14

2.3.1 Summarizing with Clusters . 14
2.3.2 Powerlaw Fits Measure Scalability 17

2.4 Results . 20
2.4.1 Programs Have Few Clusters . 22
2.4.2 Simple Programs Have Simple Profiles 22
2.4.3 Confirming Expected Performance of the

Implementation of a Complex Algorithm 23
2.4.4 Quantifying the Improvement of Heuristic Optimizations 25
2.4.5 This List Traversal is a Bug . 26
2.4.6 Focusing on Scalability-Critical Code 27
2.4.7 An Empirical Measure of GLR Performance 27
2.4.8 This List Traversal Is Not a Bug . 28

2.5 Assessment of BB-TrendProf . 30

3 Control Flow TrendProf 32
3.1 Overview . 32
3.2 Example . 37
3.3 Gathering Data . 39

3.3.1 Measuring Performance . 40
3.3.2 Workload Data . 43

3.4 From Data to Models . 45
3.4.1 Direct Models . 48
3.4.2 Derived Models . 49
3.4.3 Choosing the Best Model . 57

iii

3.4.4 Interleaving Computation of Derived Models and Best Models . . . 62
3.4.5 Output . 66

3.5 Micro-benchmarks . 68
3.5.1 An Exact Bound for Square Matrix Multiply 69
3.5.2 Tiled Matrix Multiply is Cubic . 71
3.5.3 Amortized Analysis of Doubling Lists 74
3.5.4 Empirical Performance of a Hash Table 77
3.5.5 Insertion Sort’s Cost Depends on More Than Input Size 80
3.5.6 Approximating the Cost of Quicksort 85
3.5.7 Dijkstra’s Algorithm Using a Fibonacci Heap 88

3.6 Diagnosing Data Structure Problems . 96
3.6.1 Deterministic Quicksort Pivot . 97
3.6.2 Bad Hash Function . 99
3.6.3 Overfull Hash Table . 100

3.7 Large Benchmarks . 105
3.7.1 Workloads and Experimental Setup 108
3.7.2 Precise Models in Terms of Multiple Features 112
3.7.3 Following Cost through the Call Graph 117
3.7.4 Performance of Complex Algorithms in Large Programs 125
3.7.5 Performance Trends Depend on Workload Distribution 132

3.8 Count versus Time . 135
3.9 Comparing CF-TrendProf with BB-TrendProf 136
3.10 Future Work . 144

3.10.1 Combining Strengths of BB-TrendProf and CF-TrendProf . . 144
3.10.2 What Is the Distribution of The Error Terms? 145
3.10.3 A More Robust Class of Models . 146
3.10.4 Inferring Contexts . 147
3.10.5 Improved Handling of Recursion . 148
3.10.6 Toward Modeling Time . 148
3.10.7 Outliers and the Program as a Feature Detector for Workloads . . . 149

4 Threats to Validity 150
4.1 The Importance of Workloads . 151
4.2 Performance Is Not Always

a Function of Workload Features . 153
4.3 Inability to Find the Right Model To Fit . 154

4.3.1 Limitations of the Powerlaw Fit . 155
4.3.2 Limitations of CF-TrendProf’s Model Selection 157

5 Related Work 159
5.1 Profilers . 159
5.2 Empirical Performance Models . 161

5.2.1 Modeling Micro-architecture Parameters 164
5.3 Performance Models by Simulation . 165

5.3.1 Simulation of Distributed System Performance 166

iv

5.3.2 Simulation of Embedded System Performance 167
5.3.3 Statistical Models Versus Simulation 167

5.4 Performance Models from Static Analysis 168
5.4.1 Analyzing Data Structures . 170

6 Conclusion 172

A Regression 175
A.1 Model Construction with Regression . 175

A.1.1 Linear Models . 175
A.1.2 Constant Models . 176
A.1.3 Powerlaw Models . 176
A.1.4 Numerical Stability . 176
A.1.5 How good is a model? . 177

B Proof of Cluster Theorem 179

Bibliography 181

v

Acknowledgments

I would like to thank the following people, in no particular order. Johnathon

Jamison and Armando Solar-Lezama for trying TrendProf; Karl Chen for trying and

helping debug TrendProf, a great help; John Kodumal for feedback about banshee;

Scott McPeak for feedback about elsa; Adam Chlipala, Robert Johnson, Matt Harren and

Jeremy Condit for feedback on early drafts of a paper about this work; Jimmy Su, Jonathan

Traupman, and Joseph Dale for useful discussions; Daniel Wilkerson for our collaboration

and for good advice; Alex Aiken for all the good stuff that advisers do; the Open Source

Quality group at Berkeley for listening to and helping me improve many half-baked talks;

the people who helped make grad school fun including Matt Harren, Jeremy Condit, John

Kodumal, Tachio Terauchi, Wes Weimer, Scott McPeak, and Daniel Wilkerson; my wife

and family for their support and encouragement.

Parts of this dissertation were previously published in the Proceedings of the the

6th joint meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering [GAW07]. Chapters 2 and 4, as

well as Appendices A and B are derived from material that appeared in that paper. That

publication and thus those sections arose from joint work with Daniel S. Wilkerson and

my adviser Alex Aiken. Daniel Wilkerson suggested powerlaw fitting and assisted with the

architecture and implementation of BB-TrendProf.

1

Chapter 1

Introduction

Scalability is a fundamental problem in computer science. Recent trends towards

more information, more computational units, richer media, smaller devices, and larger sys-

tems (with more potential for unanticipated component interactions) push issues of scal-

ability to greater prominence. Unfortunately, scalability problems often do not manifest

themselves until a program is run at scale: on large workloads, at heavy load, or on many

nodes.

Computer scientists often describe the scalability of algorithms in the language

of theoretical computational complexity, bounding the number of operations an algorithm

performs as a function of the size of its input. The main contribution of this dissertation

is to provide an analogous description of the scalability of actual software implementations

run on realistic workloads.

We propose a method for describing the asymptotic behavior of programs in prac-

tice by measuring their empirical computational complexity. Our method involves running

2

a program on workloads spanning several orders of magnitude in size, measuring their per-

formance, and fitting these observations to a model that predicts performance as a function

of workload size. We rely on the user to provide workloads and describe them with features,

some quantity upon which performance depends — for example, size in bytes, number of

abstract syntax tree nodes, or number of edges in a graph. As we run the program on

these workloads, we measure the number of operations performed by each location (e.g.,

basic block, loop, function) in the program. Finally, for every location, we automatically

construct statistical models that predict number of operations as a function of workload fea-

tures. Comparing these models to the programmer’s expectations or to theoretical asymp-

totic bounds can reveal performance bugs or confirm that a program’s performance scales

as expected.

This work combines strengths of theoretical asymptotic analysis of algorithms

with strengths of empirical profiling to yield a methodology that complements both. The

strength of theoretical asymptotic analysis is its ability to reason about algorithms as the

size of the problem on which they operate becomes large. However, how an algorithm

fits into the context of a larger program and how the program’s actual workloads exercise

this algorithm are harder questions to approach analytically. In contrast, the strength of

profilers like gprof [GKM82] is their ability to focus on an actual workload and account for

how much of that workload’s cost is attributable to which program locations. What profilers

miss, though, is a sense of how the cost of a location changes as workloads change — they

say nothing about workloads on which the program was not run. This dissertation’s models

of empirical computational complexity seek to combine the empiricism of a profiler with the

3

generality of a big-O bound: we focus on actual workloads and consider the performance of

each location in the context of the rest of the program while creating performance models

that predict performance on novel workloads.

According to a careful study that measured a large system [AKLW02], only a small

portion of the input space tends to account for much of the work a program does. They

offer the following scenario based on their experience.

[T]he theoretical size of the input space might be 1050, but even after record-
ing every input that occurred during a 12 month period, the number of distinct
inputs that were actually observed numbered only in the tens of thousands. Fur-
thermore, it is not uncommon for only several thousand inputs to correspond to
more than 99% of the probability mass associated with the input space.

Their observation underscores one of the recurring themes in this dissertation: that perfor-

mance depends on the empirical distribution of workloads and that this distribution need

not be uniform nor cause performance to conform to theoretical bounds. Indeed, we show

several examples of complex algorithms whose empirical performance ranges from sometimes

different to entirely different from its big-O bounds (Sections 3.5.5, 3.5.7, 2.4.4, 2.4.7).

Example

The following code illustrates how our combination of empiricism with generality

leads to a useful, novel perspective.

node * last node(node *n) {
if (!n) return NULL;

while (n->next) n = n->next;

return n;

}

From a performance perspective, this programming idiom looks suspicious: it is finding the

last element in a list in time linear in the list’s length. Adding a pointer directly to the

4

last element in the list would admit an obvious constant time implementation. Of course,

if the list’s size is a small constant, the performance impact of the linear search is likely

negligible, and adding the pointer might not be worth the cost in space or code complexity.

On the other hand, if the lists tend to be long, and especially if their length increases with

the size of the program input, then use of this idiom constitutes a performance bug.

The crucial information is how this list is used in the context of the rest of the

program and how the workloads of the program exercise it. The code above is from a C

parser used in a program analysis system [KA05] and is called from a list append function

to construct lists of compound initializers. In practice the sizes of the lists increase as inputs

grow larger, but unless an input makes extensive use of compound initializers, last node

will not be particularly high on the list of what a typical, gprof-style profiler reports. On

a workload with lots of long compound initializers, however, the unreasonable performance

of this little function suddenly becomes apparent. We call this phenomenon a performance

surprise. In contrast, we found a similar linear-time list append in a C and C++ front-

end [MN04] that turned out to be benign: the lists are so small in practice (and depend on a

quantity that is unlikely to be large) that use of this idiom does not substantially contribute

to the overall performance of the system. Our technique automatically distinguishes these

two different situations.

5

Core Assumptions

Our approach to modeling empirical computational complexity makes the following

assumptions about the programs we profile. To the extent to which these assumptions do

not hold, this work is not applicable.

• Workloads exist. The user can provide discrete workloads on which to run their

program. As few as thirty workloads are enough to characterize programs with well-

behaved performance or find the general trends in more difficult programs. However,

given the lack of guarantees in this space and the often noisy relationships of perfor-

mance to workload features, we generally opt for several hundred workloads ranging

in size from small to large.

• The workloads are representative of the distribution of all interesting workloads for

the program. The assumption is not trivial [AKLW02], but any serious investigation

of program’s performance must be grounded in an understanding of the distribution

of its workloads.

• Workload features exist. The user can provide some quantities that describe a work-

load and are easy to compute.

6

Design Constraints

There are two design constraints that bear mentioning since they rule out many

techniques for constructing models.

• Models must be interpretable. A human must be able to grasp what a model says

about code’s performance and relate it to her understanding of her code.

• Model building must be automatic. Our technique must build thousands of models

without human intervention.

The ultimate consumers of our models of empirical computational complexity are

humans. As we show, the utility of our models is in their ability to describe the empirical

performance trends of actual implementations on realistic workloads and enable a human

user to compare these descriptions to her expectations. Thus, we are unwilling to consider

statistical techniques that do not yield interpretable models.

Our experiments involve using our technique to build performance models for tens

of thousands of locations (e.g., basic blocks, functions, loops) in a program and considering

hundreds of thousands of models in all. Clearly, our technique cannot function at this

scale if it relies on human intervention to adjust models, interpret statistical test results, or

transform data. Instead we must use automatic approaches to building models and provide

the user with enough data to assess the validity of each model should she wish to do so.

7

Core Hypotheses

Throughout this dissertation we investigate several core hypotheses; these have a

direct bearing on the utility and applicability of our technique.

• The given workload features predict performance. There is some functional relationship

between workload features and performance.

• Our models are valid: they capture the relationship, if any, between workload features

and performance. If there is no relationship, our selected models decline to model

performance as a function of this workload feature.

Contributions

In Chapter 2 we develop the idea of measuring empirical computational com-

plexity and elaborate on our decision to use execution count in our models of scalability

(Section 2.1). We go on to describe our first technique, BB-TrendProf, to measure empir-

ical computational complexity (Section 2.3). BB-TrendProf models the total execution

count of clusters of basic blocks whose performance varies together (Section 2.3.1) as linear

(y = a + bx) and powerlaw (y = axb) functions of workload features (Section 2.3.2). Al-

though the user interface is not the focus of this work, we discuss several techniques that

we have found useful for presenting scalability information for large (tens of thousands of

lines of code) programs.

Section 2.4 establishes the utility of models of empirical computational complex-

ity with experiments on several large programs. We show that BB-TrendProf reports

simple results for programs with simple performance behavior (Section 2.4.2), confirm that

8

desired performance behavior is realized in practice (Section 2.4.3), measure the empirical

performance of complex algorithms (Sections 2.4.3, 2.4.4, and 2.4.7), and find a scalability

bug (Section 2.4.5). We argue that BB-TrendProf reports the empirical computational

complexity of a program succinctly (Section 2.4.1) and that it helps focus attention on

performance and scalability critical code (Section 2.4.6).

Chapter 3 develops our second technique, CF-TrendProf. In essence, CF-

TrendProf seeks to describe the relationship between program performance and workload

features more precisely than BB-TrendProf by using the program’s control flow to sug-

gest more complex and potentially more precise models. In order to gather information

about control flow for its model generation process, CF-TrendProf models empirical

computational complexity at the granularity of loops and functions not only per-workload,

but also per-function-invocation. In general, CF-TrendProf considers multiple models

for each location and picks a best one based on a novel model selection criteria. Section 3.3

describes CF-TrendProf’s measurements, annotations the user can add to their program

to improve CF-TrendProf’s precision; Section 3.4 describes its model generation and

model selection procedures.

We evaluate CF-TrendProf by considering how its models characterize the per-

formance of well-understood algorithms and data structures like matrix multiply, doubling

lists, Dijkstra’s algorithm, Fibonacci heaps, insertion sort, quicksort, and hash tables (Sec-

tion 3.5). We further show CF-TrendProf’s use in diagnosing data structure problems in

situations where a troubling super-linear trend is apparent in its output, but no workload

necessarily exhibits glaringly obvious performance problems (Section 3.6). Further experi-

9

ments on larger programs (Section 3.7) demonstrate CF-TrendProf’s ability to identify

functions that are crucial to scalability.

Although CF-TrendProf’s call tree organization of performance is more verbose

than BB-TrendProf’s clusters, it makes the overall structure of the program’s perfor-

mance and scalability clearer. Furthermore, CF-TrendProf finds more precise perfor-

mance models than BB-TrendProf and chooses more effectively among models in terms

of different workload features. On the other hand, BB-TrendProf’s clusters and log-log

scatter plots are valuable tools for managing large programs with difficult to characterize

performance. We compare our two techniques in Section 3.9.

Throughout this dissertation, we use TrendProf when we are discussing issues

common to BB-TrendProf, CF-TrendProf, and any other tool modeling performance

as a function of workload features. We specify BB-TrendProf or CF-TrendProf when

our discussion applies to one and not the other.

Chapter 4 reviews threats to the validity of TrendProf’s models and features

of TrendProf that mitigate them; our understanding of these threats has informed the

design of TrendProf. Chapter 5 discusses related work.

10

Chapter 2

Basic Block TrendProf

In this chapter we develop a technique, BB-TrendProf, for building models of

empirical computational complexity that predict how many times a basic block executes as

a function of workload features. The work in this chapter initially appeared as a separate

paper [GAW07]. Our technique is as follows.

• Choose a program to profile.

• Choose workloads {w1, . . . , wk} for the program.

• Describe the workloads with numeric features (f1, . . . , fk) , (g1, . . . , gk), for example

the number of bytes in an input file or the number of nodes in a graph.

• Measure program performance; run the program on each workload and record the cost

of each each basic block, ℓ, as a k-vector: (yℓ,1, . . . , yℓ,k).

• Group basic blocks whose performance is correlated into clusters.

11

• BB-TrendProf predicts performance in terms of features, fitting the performance

measurements, y, to features of the program’s input, f . We use linear models,

y = a + bf , and powerlaw models, y = af b.

2.1 Measuring Empirical Computational Complexity

In describing models of empirical computational complexity in general, we use the

term location to refer to the parts of the program (e.g., basic blocks) and cost to refer to a

location’s performance (for instance, its execution count). We discuss our choice of counting

the number of times each basic block executes as a measure of performance in Section 2.1.1.

After running and measuring k workloads, we have a k-vector of costs for each

location (one measurement per workload) and a k-vector for each feature (one value of

the feature per workload); these k-vectors are rows in the matrix below. Profilers such as

gprof [GKM82] report results for one column of this matrix. In contrast, we predict the

costs of locations in terms of features; i.e., we construct models to predict one row in terms

of another. For example, we might predict the number of compares a bubble sort does in

terms of a feature like the number of elements to be sorted.

workloads
w1 w2 . . . wk

locations



















ℓ1 y1,1 y1,2 . . . y1,k

ℓ2 y2,1 y2,2 . . . y2,k

...
...

...
. . .

...
ℓn yn,1 yn,2 . . . yn,k

features

{

f f1 f2 . . . fk

g g1 g2 . . . gk

12

2.1.1 Execution Counts

Our focus on modeling scalability rather than exact running time led to our choice

of execution counts as a measure of performance. The amount of time (or number of clock

cycles) each basic block takes is another measure, but we chose basic block counts because

of the following advantages:

• Accuracy: Block counts are exact: issues of insufficient timer resolution do not

apply.

• Repeatability: If a program is deterministic, so is its measure. Our measurements

do not depend on the operating system or architecture if the program’s control flow

does not.

• Lack of bias: The mechanism of measurement does not affect its result. In contrast,

the mechanism of measuring time distorts its own result. We do not sample, so there

is no sampling bias.

• Low overhead: Counting basic block executions by computing control-flow edge

coverage [BL94] is cheap (Section 2.4).

• Portability: We rely only on gcc’s coverage mechanism [GCO] and not on platform-

specific performance registers. Furthermore, because execution counts (in general) do

not depend on architecture, results measured on one machine should generalize to

others.

13

2.1.2 Other Notions of Location

Our notion of basic blocks as locations is useful, but is not the only sort of loca-

tion we might measure. For instance, CF-TrendProf (see Chapter 3) models both the

amount of work a function does in its own code and the transitive work that its callees

do. Furthermore, it allows the user to distinguish invocations of the same function with

different data parameters — effectively attributing these invocations to different locations.

Also, the work of Ammons et al. [ACGS04] (see discussion in Section 5.1) measures the

work of a sequence of nested function calls.

2.2 An Example

Before exploring our methodology in detail, we illustrate the use of BB-

TrendProf with the following simple sorting code.

// pre: The memory at arr[0..n-1] is an array of ints.

// post: arr[0..n-1] is sorted in place from least to greatest.

void bsort(int n, int *arr) {
1: int i=0;

2: while (i<n) {
3: int j=i+1;

4: while (j<n) {
5: if (arr[j] < arr[i]) //compare

6: swap(&arr[i], &arr[j]);

7: j++;

}
8: i++;

}
}

This code has eight locations (each of which happens to be exactly one line of

code), numbered one through eight above. Each workload for bsort consists of an array

of n integers. The size, n, is a feature of the workload. We ran bsort on 30 workloads: 3

14

arrays of random integers at each of the following sizes 60, 200, 500, 1000, 2000, 4000, 8000,

15000, 30000, 60000. We chose these sizes because they span a wide range, their logarithms

span a wide range, and the smallest size is large enough that the high order terms dominate

all other terms. We find that including very small workloads, for instance an array with 3

integers, serves only to add noise to the left of the plot. In subsequent sections we show the

output of BB-TrendProf on this example.

2.3 Implementation of BB-TrendProf

We describe how BB-TrendProf builds and ranks clusters and how it models

the performance of these clusters.

2.3.1 Summarizing with Clusters

Studying the performance variation of the thousands of basic blocks in a large

program would be overwhelming. Fortunately, doing so is unnecessary for understanding

the performance and scalability of a program. In practice, large groups of locations have

executions counts that are very well correlated with each other: on a run of bsort where

line 2 executes many times, lines 3 and 8 will also execute many times; when line 2 executes

only a few times, lines 3 and 8 execute few times.

This observation leads us to divide the locations in a program into clusters of

locations that vary linearly together. A cluster consists of one location, called the cluster

representative, together with the set of locations that linearly fit the representative with

R2 > 1 − α, where R2 is a measure of goodness of fit (see Appendix A.1.5) and α is a

15

small constant such that 0 < α < 0.5. Every location belongs to at least one, and possibly

multiple, clusters.

BB-TrendProf computes the set of cluster representatives together with com-

puting cluster membership. Initially the set of cluster representatives is the set of user-

specified features. We consider locations in descending order of variance (σ2
ℓ) and add

location ℓ to all clusters whose representative it fits. If ℓ fits no existing cluster repre-

sentatives, ℓ becomes the cluster representative for a new cluster. Thus, when the cluster

representative is a location and not a feature, it has higher variance than any other location

in the cluster.

The choice of a value for α is a trade-off between how many clusters BB-

TrendProf finds and how well the locations in these clusters fit each other. Lower values

of α produce more, but tighter clusters. In this work we use α = 0.02. This choice is some-

what arbitrary, but it is informed by the following intuition. As we show in Appendix B,

this choice guarantees that all the locations in a cluster fit each other better than R2 > 0.92;

note that the converse does not hold. In our experience, many fits with R2 < 0.90 do not

convincingly demonstrate the sameness of the locations being fit. In choosing α, we err on

the side of having a strong guarantee about the locations in a cluster at the cost of having

more clusters.

We discard data for locations executing a constant number of times or showing

very little variation (σℓ < 10) as they contain little information: for example, we would

discard a location whose cost is always between 100 and 120.

16

The Meaning of Clusters

Clustering organizes the mass of information without compromising the ability to

point to specific places in the code since the costs of locations in the same cluster vary

together. The following theorem gives us a simple guarantee about what it means for a

location to be in a cluster: if α is 0.02 and location x is in the same cluster as location

y, then the performance of x is linearly related to the performance of y with an R2 better

than 0.92.

Theorem: If x, y, and p are vectors of length k such that x and y both fit p with R2 > 1−α

and 0 < α < 0.5, then x fits y with R2 > 1 − 4α(1 − α).

Proof: See Appendix B.

Example

In the bsort example, BB-TrendProf breaks the locations in this code into

three clusters we call compares, swaps, and size.

• compares’s representative is line 4; it contains lines {4, 5, 7}.

• swaps’s representative and only location is line 6.

• size’s representative is line 2; it contains lines {2, 3, 8}.

If we specify the size of the input array, n, as a feature of the workloads, then BB-

TrendProf uses the feature n as the representative for the cluster size.

Notice that although lines 5 and 7 execute 0.5n2 − 0.5n times and line 4 executes

0.5n2+0.5n times, these lines are all in the same cluster. This behavior is desirable since for

17

Cluster Max Fit with n R2

compares 1.1×1010 3.0 n2.00 1.00
swaps 2.6×109 3.1 n1.93 0.99
size 1.3×106 22 n1.00 1.00

1

100

10000

1e+06

1e+08

1e+10

1e+12

10 100 1000 10000 100000

size
size

compares
compares

swaps
swaps

Figure 2.1: The table (top) shows powerlaw models predicting cluster costs for the Bubble
Sort example. The graph (bottom) shows three powerlaw best-fit plots showing observed
cluster costs for compares, swaps, and size (y axis) versus n (x axis) with their lines of
best fit.

the values of n in our workloads, the quadratic term is the only important one for describing

scalability.

2.3.2 Powerlaw Fits Measure Scalability

We define the cost of a cluster as the sum of the costs of all the locations in

the cluster. BB-TrendProf measures the scalability of each cluster with respect to each

feature, f , by powerlaw-fitting the cost of the cluster, C, to f ; that is, BB-TrendProf

finds a and b to fit C = af b. The expression, af b gives a concise, quantitative model of how

the cost of the cluster increases as f increases. The summary output of BB-TrendProf

18

also includes the following for each feature/cluster pair.

• The R2 goodness-of-fit statistic for the fit.

• The best-fit plot: a scatter plot of feature values versus cluster costs (fi, Ci) on log-log

axes with the line of best fit af b. Recall that a true powerlaw looks like a line on

log-log axes.

• The residuals plot: a scatter plot of f (x axis, log scale) versus the residuals log af b −

log C (y axis, linear scale). The residuals plot is random if the powerlaw explains

the data. Extra variation that the powerlaw does not account for, like a logarithmic

factor or a lower order term, are often clearer in the residuals plot than the best-fit

plot.

• Predicted cost at values of f larger than any actually measured. Define f95 as the

95th percentile value for f ; that is if we have 1000 workloads and we sort the values

for f , f95 is the 950th largest value. We show the model’s predictions for 2f95 and

10f95 with a 95% confidence interval for each.

• A 95% confidence interval for a, the coefficient.

• A 95% confidence interval for b, the exponent.

We compute the confidence intervals mentioned above by means of a general sta-

tistical technique called the bootstrap percentile method [Ric06]. A detailed discussion of the

bootstrap is beyond the scope of this thesis. In outline the bootstrap estimates the stability

(such as the standard deviation or, in our case, confidence interval) of a function of the

distribution of a random variable (such as median or mean or, in our case, the regression

19

coefficients or other predictions of our model). Bootstrap does this by 1) generating many

“example” data sets, not from the distribution (which we do not know) but from the actual

data set by repeatedly sampling with replacement, 2) computing the function in question on

each example data set and collecting those results into a “function value” set and 3) simply

measuring the stability of function value set (such as by throwing out the top and bottom

2.5% and calling the result the 95% confidence interval). The strength of the bootstrap

method is that it makes no assumptions about any underlying distribution of the random

variable (in our case, the regression coefficients). In BB-TrendProf we use one thousand

iterations of the bootstrap.

A cluster that scales super-linearly (that is, has an exponent greater than one)

has the potential to overtake higher ranked clusters on larger workloads. Thus, BB-

TrendProf predicts situations where a cluster accounting for a modest portion of the

cost of a program on medium sized workloads comes to dominate the performance cost on

larger workloads.

The primary output of BB-TrendProf shows a list of clusters ranked by the

maximum (over all workloads) cost of the cluster. This ranking draws attention to the

clusters that cost the most on BB-TrendProf’s workloads. Code that does not scale well

and may cause performance problems is likely to be high on this list.

Since the logarithm of zero is not defined, BB-TrendProf ignores points where

the observed execution count is zero when fitting to a powerlaw (the number of ignored

points is reported). Thus, the models produced predict how many times a location is

executed if it is executed at all. BB-TrendProf may be configured to suppress the display

20

Program Description Workloads

bzip2 1.0.3 [BZ2] Compresses files Tarballs of prepro-
cessed source code

banshee

2005.10.07 [KA05]
Computes Andersen’s alias
analysis [And94] on a C pro-
gram

Preprocessed C pro-
grams

elsa [MN04] Parses, type-checks, and elabo-
rates C and C++ programs

Preprocessed C++
programs

maximus Ukkonen’s suffix tree algo-
rithm [Ukk90] for finding
common substrings

C source code

Figure 2.2: We ran BB-TrendProf on these programs with workloads as described above.

Program Workloads Min – Max Overhead Time (h)

bzip 1000 3×107 – 2×1011 22% 19 + 0.1
banshee 277 4×106 – 1×1010 18% 0.7 + 1.1
maximus 910 3×104 – 8×109 10% 3.7 + 0.1
elsa 785 9×105 – 4×109 103% 3.3 + 7.4

Figure 2.3: Number of workloads, costs of the cheapest (Min) and most expensive (Max)
workload (measured in number of basic block executions), geometric mean of overhead
of edge profiling (Overhead), and BB-TrendProf’s time in hours to run workloads and
post-process data (Time).

of models constructed with few data points as such models are unlikely to make accurate

predictions.

Example

In the bsort example we have only one feature, n, but it powerlaw-fits all cluster

totals well. Figure 2.1 shows the scatter plot and lines of best fit for these powerlaws.

2.4 Results

We ran BB-TrendProf on the programs listed in Figure 2.2 with workloads as

described in Figure 2.3. Figure 2.3 also mentions the average (geometric mean) overhead of

21

Program
Basic
Blocks

Varying
Basic
Blocks

Clusters
Costly
Clusters

Reduction
Factor

bzip 1,032 721 23 10 103
maximus 1,220 496 13 9 136
elsa 33,647 22,382 1489 30 1122
banshee 13,308 11,891 859 26 512

Figure 2.4: For each benchmark we list number of basic blocks, number of basic blocks
with σ > 10, number of clusters, number of clusters whose cost is ever more than 2% of the
workload’s total cost, and the ratio of Basic Blocks to Costly Clusters.

Cluster Rep Max Fit R2 Prediction

bytes 35 77 bytes
1.01 1.00 (470, 480)

blocksort.c 459 22 50 bytes
1.03 0.95 (420, 580)

blocksort.c 416 16 34 bytes
1.01 0.99 (210, 240)

blocksort.c 492 13 24 bytes
1.04 0.94 (230, 340)

compress.c 241 3 4.0 bytes
1.01 0.98 (23, 28)

Figure 2.5: The cluster representatives for the top clusters for bzip, the maximum observed
cost of the cluster (in billions of basic block executions), the powerlaw fit of the cost of the
cluster to bytes, R2 of this fit, a 95% confidence interval for predicted cluster cost (in
billions of basic block executions) for a 5 GB workload.

running a workload with edge profiling enabled versus having it disabled (Overhead) and

the total time in hours that our straightforward Perl implementation of BB-TrendProf

takes to create a report on each program (Time). The Time column is broken down into

two components: the first (left) time includes running the instrumented workloads and

some minimal per-workload post-processing; the second (right) time includes the rest of

BB-TrendProf’s post-processing including clustering, model-fitting, and generation of

plots and results pages. Once BB-TrendProf generates its results, they are browseable

interactively.

22

2.4.1 Programs Have Few Clusters

For each of our benchmark programs, Figure 2.4 shows the number of basic blocks

in the benchmarked program (Basic Blocks), the number of basic blocks whose standard de-

viation is greater than ten (Varying Basic Blocks), the number of clusters BB-TrendProf

finds (Clusters), the number of clusters whose cost on any workload is more than 2% of the

workload’s total cost (Costly Clusters), and the ratio of basic blocks to costly clusters (Re-

duction Factor). These numbers illustrate a fundamental empirical fact about programs:

that there are orders of magnitude fewer costly clusters than locations.

2.4.2 Simple Programs Have Simple Profiles

Running BB-TrendProf on bzip reveals that it scales linearly in the size of its

input and that most of the locations vary together. Figure 2.5 shows the top several clusters

of locations for bzip. The first cluster contains those basic blocks that linearly fit bytes,

the number of bytes in the input, very well. The next several clusters all powerlaw-fit bytes

very well with exponents very close to 1.0. Together these clusters account for 86% of the

basic blocks in the program and (taking the geometric mean across all the workloads) more

than 99% of the total number of basic block executions. Taken together, this output shows

the number of bytes in the input is an excellent predictor of performance, that bzip scales

nearly linearly in the size of its input, and that none of the code scales particularly worse

than the rest. With BB-TrendProf a program with simple performance has a simple

profile.

23

2.4.3 Confirming Expected Performance of the

Implementation of a Complex Algorithm

Measuring the empirical computational complexity of a program using BB-

TrendProf can verify that it scales as expected. Ukkonen’s algorithm [Ukk90] finds

common substrings in a string by constructing a data structure called a suffix tree. When

implemented correctly, Ukkonen’s algorithm creates a linear number of suffix tree nodes

and edges. Faulty implementations of this tricky algorithm can cause performance with

quadratic or worse scalability.

We ran BB-TrendProf on an implementation of Ukkonen’s algorithm in a tool

called maximus. A workload for maximus consists of a string. For each workload we specified

three features: chars, the number of characters in the input string; nodes, the number of

nodes in the suffix tree; and edges, the number of edges in the suffix tree. Feature chars

is an easily measurable property of an input to maximus; after execution, maximus outputs

nodes and edges and BB-TrendProf incorporates these features into its calculations.

As expected, nodes and edges both linearly fit chars and thus wind up in its cluster.

Figure 2.6 shows the relevant scatter plots and lines of best fit; chars is on the x axis and

the two different styles of points and lines show nodes and edges.

The suffix tree representation of common substrings in a string is too compact to

be comprehensible to a human, so maximus expands it to produce output. Operationally,

for certain nodes in the suffix tree, the output routine must print something for each of

the node’s leaves and then recursively do the same thing for each of its children. This

super-linearity is obvious in BB-TrendProf’s output. The top ranked cluster scales as

24

-1e+06

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 1e+06 2e+06 3e+06 4e+06 5e+06

nodes
nodes
edges
edges

Figure 2.6: These two linear best-fit plots for maximus show that the number of suffix
tree nodes and edges (y axis) grows linearly with the number of characters (x axis) in the
workload.

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100 1000 10000 100000 1e+06 1e+07

output cluster
power law fit

Figure 2.7: The crisp powerlaw fit in this best-fit plot for maximus’s output routines
shows that their cost grows super-linearly in the number of characters in the input
(ŷ = 11chars

1.29).

25

Cluster Rep Max Fit R2 Prediction

AST.c 34 800 0.9 bytes
1.21 0.95 (400, 700)

regions.c 94 600 140 bytes
1.01 0.99 (1900, 2100)

dhash.c 74 500 4 bytes
1.05 0.98 (100, 200)

ufind.c 101 500 0.6 bytes
1.18 0.88 (200, 300)

bytes 200 50 bytes
1.01 1.00 (700, 700)

AST.c 147 200 40 bytes
1.02 1.00 (600, 700)

setif-sort.c 256 100 0.02 bytes
1.25 0.86 (20, 40)

dhash.c 118 40 0.2 bytes
1.03 0.95 (4, 7)

dhash.c 151 40 6 bytes
1.03 0.99 (100, 100)

types.c 452 40 3 bytes
1.05 0.98 (100, 100)

hashset.c 113 20 10−6
bytes

1.72 0.87 (20, 60)
hashset.c 98 6 10−7

bytes
1.91 0.77 (20, 50)

Figure 2.8: The top clusters for banshee with powerlaw fits and R2. The maximum observed
cost of each cluster and the 95% confidence interval for the model’s prediction on a 128 MB
workload are given in tens of millions of basic block executions.

11chars
1.29(R2 = 0.99) and includes the output routines; Figure 2.7 shows the relevant

best-fit plot.

The author of maximus was happy at the confirmation that the core of his im-

plementation of this complex algorithm was in fact linear. Not being the object of his

attention he was surprised at the super-linearity of the output routine; though obvious to

him in retrospect, the use of BB-TrendProf was still required to find it.

2.4.4 Quantifying the Improvement of Heuristic Optimizations

At the core of our banshee benchmark is an implementation of Andersen’s points-

to analysis. Although this algorithm is cubic in the worst case, the workloads we measured

scaled much better than that: no cluster scaled worse than n2; Figure 2.8 shows the top

several clusters. Realistic inputs often need not result in worst-case behavior; our measure-

ments quantify the extent to which banshee’s optimizations take advantage of this fact.

26

100

10000

1e+06

1e+08

1e+10

10000 100000 1e+06 1e+07 1e+08 1e+09

cparser/AST.c 34.1
lastnode iterations

other cluster fits

Figure 2.9: Powerlaw best-fit plot for the loop body of the performance bug in banshee

(ŷ = 0.87 bytes
1.21). We show lines of best fit for other cluster costs for reference.

2.4.5 This List Traversal is a Bug

As mentioned in earlier, we found a scalability bug in the C parser used by banshee.

BB-TrendProf predicts that the last node function (see below) is called roughly linearly

in bytes, the number of bytes in the input, and that the cost of the loop body scales as

bytes
1.2. These predictions suggest the average size of these lists grows as bytes

0.2 and also

that the three locations in this cluster account for more than 10% of the program’s cost for

inputs of 128 MB. Clearly, a pointer to the last node in the list is called for. Figure 2.9

shows the scatter plot of and powerlaw fit for this cluster together with the powerlaw fits

for other top clusters (dotted lines) shown for comparison.

node * last node(node *n) {
if (!n) return NULL;

while (n->next) n = n->next;

return n;

}

27

2.4.6 Focusing on Scalability-Critical Code

The elsa benchmark is a parser, type-checker, and elaborator for C and C++

code. Running BB-TrendProf on elsa with C++ programs as input divides the roughly

33,000 basic blocks of elsa into fewer than 1500 clusters. Figure 2.10 shows the top several

clusters and a few farther down the list with higher exponents along with their powerlaw fits

to ast, the number of nodes in the abstract syntax tree for the workload, and 95% confidence

intervals for our extrapolations when ast is 10 times larger than the 95th percentile value of

ast for the workloads. Other features, notably bytes, the number of bytes in an input, fit

the cluster costs about as well as ast. The top several clusters contain code that is critical

to the performance and scalability of elsa for large workloads.

2.4.7 An Empirical Measure of GLR Performance

Figure 2.11 shows the powerlaw fit and residuals plot for one of elsa’s top clusters

(elkhound/glr.cc, line 362). Based on the scatter plot and residuals plot, the powerlaw fit

with ast is a reasonable model for this cluster’s cost. The 95% confidence interval for the

exponent is (1.11, 1.15), and so it appears that the code in this cluster scales super-linearly

with the number of AST nodes in the input. This cluster is largely concerned with GLR

parsing and tracking and resolving ambiguous parse trees. As we would expect from a

mostly unambiguous grammar and a well optimized parser generator [MN04], the measured

empirical computational complexity is substantially better than the cubic worst case com-

plexity of GLR parsing. Nonetheless, the slight super-linearity and the large coefficient

suggest that this code is crucial to performance.

28

Cluster Rep Max Fit R2 Prediction

hashtbl.cc 44 100 6500 (ast)0.76 0.93 (40, 50)
argexpr 70 260 (ast)1.11 0.97 (300, 300)
glr.cc 362 70 200 (ast)1.13 0.95 (300, 300)
cc flags.h 139 70 490 (ast)0.865 0.84 (10, 20)
sobjset.h 28 60 65 (ast)0.997 0.84 (10, 20)
stmt 20 260 (ast)1.02 0.99 (70, 80)
hashtbl.cc 67 20 280 (ast)0.833 0.90 (4, 6)
lookupset.cc 154 4 0.008 (ast)1.35 0.65 (0.2, 0.5)

Figure 2.10: The top clusters for elsa with power law fits and R2. We show the maximum
observed cost of each cluster and a 95% confidence interval for the model’s prediction on
a two hundred thousand AST-node workload in tens of millions of basic block executions.
The cluster representatives argexpr and stmt are features that count particular kinds of
AST nodes.

2.4.8 This List Traversal Is Not a Bug

The cost of the cluster whose representative is line 154 of elsa/lookupset.cc fits

ast with the notably high exponent of 1.35. Figure 2.12 shows the scatter plot and powerlaw

fit for this cluster’s cost; it also shows the powerlaw fit for another top cluster whose

representative is elkhound/glr.cc line 362 (also shown in Figure 2.11) for comparison.

There is a lot of variance in the data and thus the fit is somewhat dubious, but two things

are clear. For at least some kinds of inputs, this cluster’s cost increases sharply as input

size gets large. However, even if we follow the upper edge of the points, this cluster’s cost

will not overtake the cost of the other cluster for any reasonably sized input (recall that

the y axis is on a logarithmic scale and that a factor of 100 is not particularly tall). We

conclude that the code in this cluster is not crucial to performance.

The code in the aforementioned cluster consists of a function to add an object to

a list in time linear in the length of the list. This pattern is exactly the sort of code that

was a performance bug in the banshee benchmark, but here BB-TrendProf provided us

29

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000 100000 1e+06

power law fit
observations

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 10 100 1000 10000 100000 1e+06

residuals

Figure 2.11: A powerlaw best-fit plot showing the slight super-linearity of elsa’s GLR
parsing (ŷ = 195 ast

1.13, R2 = 0.95) (top) and the corresponding residuals plot (bottom).

30

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100 1000 10000 100000 1e+06 1e+07

power law fit
observations

fit for a top cluster

Figure 2.12: There is no clear relationship between feature ast and these points. Thus,
the line of best fit (solid) is dubious. Nonetheless, comparing to the powerlaw fit from
Figure 2.11 (dotted line) suggests that this cluster is not a scalability problem.

with enough information to conclude that it is not a serious scalability problem. The code

is as follows.

void LookupSet::add(Variable *v) {
for each w in this {

if (sameEntity(v, w)) return;

}
prepend(v);

}

2.5 Assessment of BB-TrendProf

Given a program and workloads for it, BB-TrendProf 1) builds models of basic

block execution count in terms of user-specified workload features and 2) provides the means

to assess the plausibility and applicability of these models. By grouping related locations

into clusters and modelling the performance of these clusters, TrendProf summarizes the

performance of tens of thousands of lines of code with a few dozen of these models.

31

We cluster locations (and features) that vary together linearly; conversely, loca-

tions that vary somewhat independently end up in different clusters. For several programs

and associated sets of workloads, we have empirically measured that there are many fewer

clusters than locations; that is, empirically there is much linear correlation between execu-

tion counts of locations. Clustering dramatically reduces the number of degrees of freedom

of the overall performance model; that is, clustering simplifies our presentation of program

performance by dramatically reducing the number of program components whose costs we

model. With only the clustered view of performance, however, it can be difficult to follow

the control flow of the program or figure out how performance is distributed through the

dynamic call graph.

BB-TrendProf fits each cluster’s per-workload cost to a powerlaw. These models

are not always accurate, but they often capture the general trend in the data as input size

grows large. Managing multiple features is somewhat of a problem for BB-TrendProf:

its powerlaw fits only support one feature and they are often not precise enough to really

justify choosing one feature over another to describe a given cluster’s performance. In the

next chapter, we develop a technique that aims to relate performance more closely to the

program’s call graph and to increase model accuracy by trying a richer family of models

that we generate based on the structure of the program’s call graph and control flow.

32

Chapter 3

Control Flow TrendProf

3.1 Overview

Chapter 2 describes a technique and a tool, BB-TrendProf, for measuring em-

pirical computational complexity by modeling the execution count of basic blocks as a

function of workload features. This chapter presents a new technique and tool, Control

Flow TrendProf (CF-TrendProf) that models program performance at the granular-

ity of loops and functions. CF-TrendProf explores a different part of design space than

BB-TrendProf and improves upon it in several ways as follows.

• CF-TrendProf models performance both per program run (like BB-TrendProf)

and per function invocation.

• CF-TrendProf uses hints from the program’s control flow and call graph to suggest

performance models that are potentially more precise than BB-TrendProf’s linear

and powerlaw models (Section 3.4.2).

33

• CF-TrendProf considers many models for each location, including models in terms

of multiple features; choosing the best from among these models (Section 3.4.3) po-

tentially improves the precision of CF-TrendProf’s models.

Section 3.9 contains a more thorough comparison of BB-TrendProf with CF-

TrendProf.

A New Approach

Like BB-TrendProf, CF-TrendProf measures performance in terms of ex-

ecution counts. Instead of modelling basic block executions, though, CF-TrendProf

measures and models the costs of loops and functions. CF-TrendProf charges one unit

of performance for either entering a function or going once around a loop. In addition to

the per-workload view of performance inherent in BB-TrendProf, CF-TrendProf also

measures and models performance per function invocation. Furthermore, CF-TrendProf

models not just the per-invocation self-cost of each function (cost of the function excluding

callees’ costs), but also the per-invocation transitive-cost (cost of the function including

callees’ costs), and the per-workload total-self-cost and total-transitive-cost (computed as

sums over all invocations). A single run of the program can potentially provide many

per-invocation data points. Section 3.3.2 discusses the performance quantities that CF-

TrendProf gathers.

Like BB-TrendProf, CF-TrendProf models the cost of a location (for ex-

ample, a function’s self-cost), by fitting measurements of that location’s cost directly to

workload features (Section 3.4.1); we call these BB-TrendProf-style models direct mod-

34

els. However CF-TrendProf also models performance more precisely with derived models

that it forms by symbolically adding and multiplying other models based on hints from

the program’s control flow and call graph. The quantities CF-TrendProf measures and

models are carefully chosen to enable computation of these derived models. Section 3.4.2

discusses the how CF-TrendProf builds derived models. This technique for deriving mod-

els allows CF-TrendProf’s performance models to increase in complexity as the program

they model increases in complexity.

One useful example of a derived model allows CF-TrendProf to model a func-

tion’s self-cost by symbolically adding the models for the loops in the function. A function’s

self-cost is the sum of the costs of the loops in the function plus one for entering the func-

tion. CF-TrendProf measures the cost of each loop in the function and constructs direct

models for these costs. By symbolically adding the models that it has constructed for each

loop in the function (and adding 1 for entering the function), CF-TrendProf constructs

a derived model for the function’s self-cost.

This process of generating direct and derived models results in several candidate

models for each performance quantity (e.g., self-cost, transitive-cost, total-transitive-cost,

etc.). Section 3.4.3 discusses the process of choosing the best model from among the can-

didates based on a trade-off of model complexity versus model precision. The overall goal

of CF-TrendProf’s enhancements to the model selection procedure is to increase the

precision of its performance models by considering (in a principled way) more complex

performance models in terms of multiple features.

35

Multiple Views

The overall organization of CF-TrendProf’s performance models differs from

that of BB-TrendProf. While BB-TrendProf organizes its per-workload basic block

models into clusters, CF-TrendProf models each function’s per-invocation self-cost and

transitive-cost, as well as its per-workload total-self-cost, total-transitive-cost, and call-

count. Thus CF-TrendProf provides a view of performance for different chunks (self-cost

versus transitive-cost) of a program at different levels of granularity (per-workload versus

per-invocation). For example, considering the per-invocation transitive-cost of inserting an

element into a doubling list (Section 3.5.3) is not enlightening, but considering the per-

workload total-transitive-cost shows the linear trend: inserting n elements scales linearly

in n. Section 3.5.7 illustrates another example. We consider the empirical scalability of

Dijkstra’s breadth first search (BFS) algorithm when it uses a Fibonacci heap as a priority

queue. While the cost of each loop and helper function call is interesting to the developer

of the Fibonacci heap and Dijkstra’s algorithm, the bottom line for a consumer of this

algorithm is what the entire breadth first search costs on some input graph. This cost is

represented as a transitive-cost of the dijkstra function (Figure 3.27) and the cost of all

BFS calls per workload is modeled as the total-transitive-cost of the dijkstra function.

These views onto performance aim to capture the common decompositions programmers use

to reason about program performance. If CF-TrendProf’s decomposition of performance

is insufficient, the user can add annotations to improve it (Section 3.3.1).

36

Evaluation

As with BB-TrendProf, CF-TrendProf is successful to the extent that it

accurately models the performance of a program and facilitates a comparison of observed

performance to expected performance. We evaluate CF-TrendProf by considering how

its models characterize the performance of well-understood algorithms and data structures

such as matrix multiply, doubling lists, Dijkstra’s algorithm, Fibonacci heaps, insertion

sort, quicksort, and hash tables in limited scenarios (Section 3.5). These micro-benchmarks

show strengths and weakness of CF-TrendProf that we summarize below. As with BB-

TrendProf, CF-TrendProf’s models are about measured performance of a particular

implementation run on a particular set of workloads; this focus can point to interesting

trends in program inputs or faulty implementations of algorithms. In many cases, CF-

TrendProf’s models are more precise than any model BB-TrendProf can deduce. Ex-

pected case analysis and amortized analysis are powerful theoretical tools for characterizing

asymptotic performance, but can be hard to apply to actual implementations and real-world

workloads; CF-TrendProf effectively applies these techniques to the empirical distribu-

tion of workloads. On the other hand, CF-TrendProf’s view is limited to an expected

case view: its models do not provide upper or lower bounds.

Section 3.7 evaluates CF-TrendProf based on the insight it yields into larger

programs. In general, the organization of CF-TrendProf’s output based on the dynamic

call tree allows one to follow the cost of a workload through the call tree. Many func-

tions have moderate to good models that show that their cost scales linearly with workload

features; absent concerns about other resources (which are beyond the scope of this disser-

37

tation) these functions can be safely ignored. Other functions scale super-linearly and are

thus likely to be important to the scalability of the program.

Both the small and large benchmarks demonstrate CF-TrendProf’s ability

model performance precisely, sometimes perfectly, as a function of one or multiple workload

features. In many cases, CF-TrendProf’s model improves upon the precision of BB-

TrendProf’s. However, as we demonstrate in Section 3.5.5 and see again in Section 3.7.4,

sometimes performance is not a simple function of workload features. The latter part of

our evaluation of CF-TrendProf describes how it mitigates this issue and compares CF-

TrendProf’s approach to BB-TrendProf’s. Section 3.9 summarizes this comparison.

3.2 Example

Interspersed with our discussion of the CF-TrendProf technique in Sections 3.3

and 3.4, we describe CF-TrendProf’s measurements, processing, intermediate results,

and output on a simple sorting algorithm, bsort, shown in Figure 3.1. The data we present

is simplified and stylized for clarity of presentation, but the substance is not altered.

Workloads A workload for this simple example consists of an array, arr, full of n ints.

The size of the array, n, is a workload feature: CF-TrendProf will model performance of

bsort and its loops in terms of n. For a more complex program, however, we might choose

to make n an invocation feature (Section 3.3.1), recording its (potentially different) value

for each call to bsort and modeling the per-invocation performance of bsort in terms of n.

38

void swap(int *a, int *b) {
int tmp = *a;

*a = *b;

*b = tmp;

}

// pre: The memory at arr[0..n-1] is

// an array of ints.

// post: The ints in arr[0..n-1] are

// sorted in place from least to greatest.

void bsort(int n, int *arr) {
1: int i=0;

2: while (i<n) {
3: int j=i+1;

4: while (j<n) {
5: if (arr[j] < arr[i]) //compare

6: swap(&arr[i], &arr[j]);

7: j++;

}
8: i++;

}
}

int main() {
int n=..., *arr=..., i=-1;

while (++i < n) arr[i] = ...;

bsort(n, arr);

return 0;

}

Figure 3.1: Code for the bsort example.

39

Function self-cost transitive-cost call-count

main n + 1 0.7n2 + 1.5n + 2 1
bsort 0.5n2 + 0.5n + 1 0.7n2 + 0.5n + 1 1
swap 1 1 0.2n2

Function total-self-cost total-transitive-cost

main n + 1 0.7n2 + 1.5n + 2
bsort 0.5n2 + 0.5n + 1 0.7n2 + 0.5n + 1
swap 0.2n2 0.2n2

Figure 3.2: Expected output of CF-TrendProf for the bsort example.

Loops This code has two loops: an outer loop at line 2, ℓo, and an inner loop at line 4,

ℓi. With some thought we can see that ℓo goes around exactly n times per call and that ℓi

goes around 1
2n(n − 1) times per call.

Functions This code has three functions main, bsort, and swap. Characterizing the

performance of main and bsort is easy, swap is harder because its total cost varies based on

subtle properties (sortedness) of the input. Although it can vary widely, assume (as is the

case for inputs generated uniformly at random) for the purposes of our example that swap

is called about 0.2n2 times to sort an array of size n. Figure 3.2 summarizes the output we

would expect from CF-TrendProf in this situation.

3.3 Gathering Data

The steps for using CF-TrendProf to measure empirical computational com-

plexity are as follows:

• Choose a program to profile.

40

• Annotate the program with invocation features and contexts as necessary (Sec-

tion 3.3.1).

• Choose workloads {w1, . . . , wk} for the program.

• Describe the workloads with numerical features (f1, . . . , fk) , (g1, . . . , gk), for example

the number of bytes in an input file or the number of nodes in a graph.

• Measure program performance; run the program on each workload and record the

loops costs, functions costs, and other measures (Sections 3.3.1, 3.3.2).

• Build direct models by fitting the performance measurements, y, to features of the

program’s input, f (Section 3.4.1). We use constant models, y = a, linear models,

y = a + bf , and powerlaw models, y = af b.

• Generate derived models for loop and function costs (Section 3.4.2).

• Choose the best model for each loop and function cost from among the direct and

derived models (Section 3.4.3).

In our prototype implementation of CF-TrendProf, the last two steps are carefully in-

terleaved to keep the working set small (Section 3.4.4). The following discussion proceeds

in the order that CF-TrendProf processes its data.

3.3.1 Measuring Performance

In order to gather the performance data it requires, CF-TrendProf instruments

the program to emit a program trace as it runs. The user may annotate the program to

identify performance-relevant quantities or to distinguish calls of a function that ought to be

41

modeled separately. Running a workload yields a program trace that CF-TrendProf post-

processes to extract the performance data it needs for subsequent analysis (Section 3.3.2).

The details of the instrumentation and of the program trace are engineering concerns specific

to our prototype implementation of CF-TrendProf: their goal is to obtain the data

described in Section 3.3.2; other approaches are possible. For the purposes of a research

prototype though, our clean separation of the program tracing and the data extraction has

simplified our implementation efforts.

Preparing the Program to be Measured

Before instrumenting the program, CF-TrendProf assigns a unique ID to each

function and each loop. It also records (for later stages) each loop’s outer loop (if any)

and the function in which each loop resides. As the instrumented program runs, CF-

TrendProf’s instrumentation does the following:

1. At the start of the main function, open a file to contain the trace.

2. At the start of a function, emit a start-of-function record that contains the function

ID.

3. At the start of a function, reserve space for a counter for each loop and initialize these

to zero.

4. Every time a loop goes around, increment its counter.

5. Before a function returns, emit an end-of-function record that contains the function

ID and the counts for each loop.

42

User Annotations

The user may enhance the results of CF-TrendProf by adding annotations.

Operationally, these annotations call CF-TrendProf helper functions that emit data into

the program trace.

Workload features describe workloads. The user can specify them in a con-

figuration file that associates workload features with workloads or they can call

tpRuntimeWorkloadFeature with a name and a value. Essentially, if the easiest way to

measure a feature of a workload is to have the program do it, this CF-TrendProf call

saves the user some mechanism.

Contexts allow the user to partition the calls to a function. CF-TrendProf models

the performance of the calls in each context separately, as if they were calls to separate

functions that happen to have identical source code. The user identifies the context of a

call by calling tpRuntimeSetContext with a context specifier and a flag to designate what

is to be annotated. The context is a string the user provides, the function’s caller, the

entire call stack, or the currently executing (active) function. The context annotates either

the active function, its immediate callees, or all the functions it calls transitively. Contexts

are useful for apportioning performance cost of a library to different callers or even costs of

data structure operations to different instances of the data structure.

Invocation features allow the user to identify a quantity that CF-TrendProf will use

to predict performance of a function invocation by calling tpRuntimeInvocationFeature

with a name and a value. For example, one might specify the size of a linked list as an

43

invocation feature to linked list operations. As we describe below, CF-TrendProf uses

invocation features to predict all the quantities (loop counts, function costs, etc.) in the

scope of the function.

3.3.2 Workload Data

Once the instrumented program has been run on a workload, CF-TrendProf is

left with a program trace. In one pass over the trace, CF-TrendProf extracts data about

the cost of the workload and the cost of each function invocation that happened during the

workload. We refer to each of these quantities as performance variables or just variables

when there is no potential for confusion.

For each invocation of function F, CF-TrendProf computes the following from

the program trace.

• invocation features in F’s scope

• loop count for each loop in F

• average count of each inner loop (in F) per iteration of its outer loop:
inner loop count
outer loop count

• F’s self-cost: one plus the sum of the loop counts of all the loops in F

• call-count for each direct callee

• transitive-cost for each direct callee, G: the sum of the transitive-costs of all calls to G

during this invocation of F

• F’s pure-transitive-cost: the sum of the transitive-costs of all direct callees

44

• F’s transitive-cost: self-cost plus pure-transitive-cost

Once CF-TrendProf has read the end-of-function record in the program trace,

it has enough information to compute all of the above for that invocation. After computing

the function F’s transitive-cost, CF-TrendProf charges F’s caller for the cost of the call to

F. It is by this mechanism of direct callees charging callers that CF-TrendProf computes

per-direct-callee call-count and transitive-cost. We refer to this collection of data for a

function invocation as a frame.

Even for modestly sized programs, this per-invocation data gathering leads to a

massive number of frames. Attaining reasonable performance for CF-TrendProf requires

that we compress these frames.

Subsequent steps of CF-TrendProf require that we be able to match, for exam-

ple, an invocation feature to a loop count from the same invocation. However, the order of

frames is not important; all the data we need to know about an invocation is recorded in

its frame. Thus we may not split frames, but we may re-order them.

Empirically, there are many duplicate frames. Our compression strategy is to hash

the frames and keep count of the occurrences of each frame—essentially re-ordering them to

group duplicates. For convenience in subsequent steps, we output this data as a run-length

encoded list of points for each variable in the frame (loop count, self-cost, etc.). Re-ordering

by frame instead of treating each variable separately means that the ith point in the list

of data points for a function’s self-cost and the ith point in the list of data points for an

invocation feature for that function refer to the same invocation in the same workload.

In addition to per-invocation data, CF-TrendProf gathers per-workload data

45

from the program trace as follows.

• total loop count for each loop: computed by summing over all invocations

• average count of each inner loop per iteration of its outer loop:
total inner loop count
total outer loop count

• total-self-cost for each function: computed by summing over all invocations

• total-transitive-cost for each function: computed by summing over all invocations,

taking care to avoid double-counting recursive calls to the same function

• call-count for each function

Example

Figure 3.3 shows the content of the program trace for a run of our bsort example

for a workload with n = 10. In our actual implementation, the program trace is more

terse, but we use names and labels here for clarity of presentation. Figure 3.4 shows the

entire data record that CF-TrendProf extracts from the program traces after running

workloads with n = 10, n = 20, n = 1000. The notation 1r23 is run-length encoding for

1 repeated 23 times. Since main and bsort are only called once each, their total (per-

workload) figures are no different than their per-invocation figures. Since swap is called

many times per workload, it has many data points in each column.

3.4 From Data to Models

CF-TrendProf’s goal (like BB-TrendProf’s) is to predict program perfor-

mance as a function of workload features or invocation features. Recall that we refer to

46

start main

start bsort

start swap

end swap

...

start swap

end swap

end bsort, outer_loop_count=10, inner_loop_count=45

end main, main_loop_count=10

Figure 3.3: The program trace for the bsort example when n = 10. For clarity, we replace
numerical IDs with function and loop names and annotate the fields of records.

these functions as models. Thus we can restate CF-TrendProf’s goal more operationally:

CF-TrendProf seeks to choose a sensible model (for example, a + bx + cx2 or axb) and

then fit its observations to this model (that is, choose values for coefficients a, b and c that

minimize some measure of error on our training data). The topic of the next few sections

is choosing sensible models; Appendix A.1 discusses fitting observations to them.

There is absolutely no theoretical or practical reason why any code’s performance

must have anything to do with any easily discernible feature of the workload. Thus, if we

are to fit code’s performance to some model (such as a polynomial function of workload fea-

tures), we must have some justification for doing so: either some prior belief that programs

ought to behave as the model predicts, some hint from the structure of the program itself,

or some pattern in the observed data. Simply having low error on the training data is insuf-

ficient: fitting a degree 6 polynomial to some program’s performance may have reasonably

low error, but why should we believe that this model will adequately predict performance

for other workloads? Indeed, a degree 7 polynomial is almost guaranteed to produce lower

error.

47

Variable n = 10 n = 20 n = 1000

self-cost of swap 1r23 1r100 1r257808
pure-transitive-cost of swap 0r23 0r100 0r257808
transitive-cost of swap 1r23 1r100 1r257808
call-count of swap 23 100 257808
total-self-cost of swap 23 100 257808
total-transitive-cost of swap 23 100 257808

bsort inner loop count 45 190 499500
bsort outer loop count 10 20 1000

bsort inner
outer 4.5 9.5 499.5

total bsort inner loop count 45 190 499500
total bsort outer loop count 10 20 1000

bsort total inner
total outer

4.5 9.5 499.5

self-cost of bsort 56 211 500501
transitive-cost of bsort calling swap 23 100 257808
call-count of bsort calling swap 23 100 257808
pure-transitive-cost of bsort 23 100 257808
transitive-cost of bsort 79 311 758309
call-count of bsort 1 1 1
total-self-cost of bsort 56 211 500501
total-transitive-cost of bsort 79 311 758309

main loop count 10 20 1000
total main loop count 10 20 1000
self-cost of main 12 22 1002
transitive-cost of main calling bsort 79 311 758309
call-count of main calling bsort 1 1 1
pure-transitive-cost of main 79 311 758309
transitive-cost of main 91 333 759311
call-count of main 1 1 1
total-self-cost of main 12 22 1002
total-transitive-cost of main 91 333 759311

Figure 3.4: Data records for the bsort example for several workloads. The notation 1r23
is run-length encoding for 1 repeated 23 times.

48

Thus, there is a crucial question to answer: which models shall we consider and

why those models and not others? The next few sections address this question as we describe

our technique for choosing a model.

3.4.1 Direct Models

As a starting point, we are willing to entertain the notion that any loop’s or func-

tion’s performance grows as a linear or powerlaw function of some workload feature or invo-

cation feature. Thus, we fit our observations for every variable (y) to linear (ŷ(x) = a + bx)

and powerlaw (ŷ(x) = axb) models of every workload feature and invocation feature (x).

We discuss the details of finding the coefficients of regression (a, b) for these models in

Appendix A.1. Recall that our finding these coefficients for a model says nothing about

the suitability of that model — assuming the model is a true description of the data, the

values of a and b that we find minimize some measure of error, but the model may be utter

nonsense.

It may be, however, that none of the features that the user provides is particularly

useful for predicting performance. To cater to this case we consider a constant model for

every variable. The constant model’s prediction for a variable’s value is just the mean of

the observed data. Furthermore, in addition to the models already mentioned, we are also

willing to predict the performance of an inner loop as a linear or powerlaw function of its

outer loop’s performance. A model in terms of an outer loop’s count is not as informative as

a model in terms of features, but such models can serve to explain several difficult variables

in terms of one difficult variable.

We refer to these models as direct models since they directly fit performance mea-

49

surements to features. In the next section we discuss how CF-TrendProf uses evidence

from the structure of the program to posit more complex, derived models. We discuss the

process of model selection: choosing the “best” model from among many candidates in

Section 3.4.3.

Fitting Workload Features to Per-Invocation Variables

To fit a workload feature (one performance measurement point per workload) to

a per-invocation variable (one performance measurement per invocation—zero or more per

workload), we pair the workload feature with every measurement for the variable on the

corresponding workload. For example if a function’s self-cost is measured at {5, 6} on a

workload with feature n = 2 and {11, 12, 12} on a workload with feature n = 4, then we

would treat the data set as {(2, 5), (2, 6), (4, 11), (4, 12), (4, 12)} for the purposes of fitting

this function’s self-cost to workload feature n.

Example

Figure 3.5 shows some of the direct models for some of the variables for our bsort

example. For brevity we show only the best direct model for each variable in this table.

As we will see, some of these direct models are the best model for their variable, but

CF-TrendProf replaces others with superior derived models.

3.4.2 Derived Models

As we saw in Chapter 2, direct models can do a reasonable job of predicting per-

formance, but they are not always particularly accurate. This section considers a technique

50

Variable Direct Model

self-cost of swap 1
call-count of swap 0.2n2

total-self-cost of swap 0.2n2

bsort inner loop count 0.45n2.02

bsort outer loop count n

bsort inner
outer 0.5n − 0.5

self-cost of bsort 0.56n1.98

transitive-cost of bsort calling swap 0.2n2

call-count of bsort calling swap 0.2n2

pure-transitive-cost of bsort 0.2n2

transitive-cost of bsort 0.8n1.99

call-count of bsort 1

main loop count n

self-cost of main n + 1
transitive-cost of main calling bsort 0.93n1.97

call-count of main calling bsort 1
transitive-cost of main 0.93n1.97

call-count of main 1

Figure 3.5: Some direct models for the bsort example.

for deriving more precise models based on hints in the program’s control flow. For example,

if we can model the loops in a function, we can symbolically add these models to form a

model for the function’s self-cost; similarly if we can model the costs of a function’s callees,

we can symbolically add these models to form a models for the function’s transitive-cost.

This general intuition gives rise to several rules for constructing derived models.

This way of deriving models based on the program’s control flow and call graph

has several advantages. Most importantly, it gives us a principled way of considering com-

plex models to explain the performance of complex programs; as the program grows more

complex, the models we are willing to consider also grow more complex. Furthermore, gen-

erating many models (some simple, some complex) to explain the performance of a variable

(for example, a function’s self-cost) allows us to trade off model simplicity for model pre-

51

cision; in essence we only choose complex models when their complexity is paid for with

extra precision.

Example

Consider the problem of finding a good model for the self-cost of function F with

two loops K and L. Let (l1, . . . , ln) , (k1, . . . , kn), and (y1, . . . , yn) be the data points we

measured for L’s iteration count, K’s iteration count, and F’s self-cost on all the workloads;

let (w1, . . . , wn) be the points for a workload feature in terms of which we’d like to predict

F’s self-cost. Recall that by our definition of self-cost, yi
def
= 1 + li + ki for all i ∈ {1, . . . , n};

indeed, this formula is how we compute self-cost from our program trace. Now suppose that

we have (recursively) computed a best model for L, L̂(w), and a best model for K, K̂(w).

Now we can form a derived model for F’s self-cost by symbolically adding these models:

ŷ(wi) = 1 + L̂(wi) + K̂(wi). Thus we have arrived at a model for F’s self-cost by

combining best models for its sub-components L and K. As we shall see, this intuition allows

to model the self-cost of bsort perfectly (see Figure 3.8 and Figure 3.11) as the sum of one,

its outer loop’s cost, and its inner loop’s cost:

self-cost of bsort :≈ 1 + (n) + (0.5n2 − 0.5n) = 0.5n2 + 0.5n + 1

If F had more loops, we would add more terms to our derived model for its self-

cost. By construction this algorithm for computing a derived model for F’s self-cost results

in models whose size is bounded by the number of loops in F. In more general terms, the

complexity of the model for F’s self-cost is bounded by the number of sub-components of F’s

self-cost. Of course like terms in L̂(wi) and K̂(wi) may combine; for example, if L̂(wi) and

52

K̂(wi) are both linear models in some feature w, then the derived model (1+L̂(wi)+K̂(wi))

is just a linear model in w. In general, though, L̂ and K̂ may be in terms of different features;

for example, we might model L’s cost with features v and w and model K’s cost with features

w and x, thus yielding the following derived model for y (F’s self-cost) in terms of all three

features: ŷ(vi, wi, xi) = 1 + L̂(vi, wi) + K̂(wi, xi).

The general procedure we use to create derived models is as follows. First, de-

compose a variable (yi) into a function of its sub-components (yi = 1 + li + ki). Then

model each sub-component separately (find L̂(vi, wi) and K̂(wi, xi)). Finally, reverse the

decomposition by symbolically combining these models to yield a model of the variable

(ŷ(vi, wi, xi) = 1 + L̂(vi, wi) + K̂(wi, xi)).

Rules for Deriving Models

Figures 3.6 and 3.7 list the specific rules CF-TrendProf uses to create derived

models. These rules use a different notation than the example above, defined as follows. In

these lists of derived models we denote a model for variable v as [v]; we denote symbolic

addition and multiplication of models for variables x and y with [x] ⊕ [y] and [x] ⊗ [y]

respectively; we indicate that some expression, e over this language is a derived model for

v with the notation [v] ≺ e. We show the derived models for function F that calls functions

{G1, . . . , Gm} and has loops {ℓ1, . . . , ℓk}. Each of the variables for which we compute derived

models are variables that CF-TrendProf measures directly and for which it constructs

direct models (recall that we list these variables in Section 3.3.2). We use only direct models

to explain variables that do not appear on the left of any of our derivation rules (for example,

53

[inner loop count] ≺ [outer loop count] ⊗
[

inner loop count

outer loop count

]

(3.1)

[self-cost of F] ≺ 1 ⊕
k

⊕

i=1

[per-invocation cost of ℓi] (3.2)

[transitive-cost of F] ≺ [self-cost of F] ⊕ [pure-transitive-cost of F] (3.3)

[total-self-cost of F] ≺ [call-count of F] ⊕
k

⊕

i=1

[per-workload cost of ℓi] (3.4)

[total-self-cost of F] ≺ [call-count of F] ⊗ [self-cost of F] (3.5)

[total-transitive-cost of F] ≺ [total-self-cost of F] (3.6)

Figure 3.6: Rules for generating derived models. CF-TrendProf derives these models on
its first pass through the functions.

pure-transitive-cost of F, outer loop counts, and
inner loop count
outer loop count

).

Derived model 3.1 models the cost of an inner loop as a product of the cost of

the outer loop and the average number of iterations of the inner loop per iteration of the

outer loop. CF-TrendProf records and models these average iteration counts specifically

for this derived model. The multiplication in this derived model allows inner loops to have

models of higher degree than their outer loops. CF-TrendProf uses this rule for both

per-invocation and per-workload loop counts. Notice that our bsort example uses this rule

(Figure 3.8).

Derived model 3.2 is the one we developed in our example above. The self-cost of

a function is one plus the sum of the costs of its loops.

Derived model 3.3 models the transitive-cost of a function by lumping the costs of

all its callees into one quantity (pure-transitive-cost) that it models directly. Other derived

models for transitive-cost rely on a finer decomposition of sub-components. This derived

54

[transitive-cost of F calling G] ≺ [call-count of G per invocation of F]

⊗ [transitive-cost of G] (3.7)

[transitive-cost of F] ≺ [self-cost] ⊕
m

⊕

i=1

[transitive-cost of F calling Gi] (3.8)

[total-transitive-cost of F] ≺ [call-count of F] ⊗ [transitive-cost of F] (3.9)

Figure 3.7: Rules for generating derived models. CF-TrendProf derives these models on
its second pass through the functions.

model caters to the case where these models for sub-components are not very good; instead

of a complex mess, we get one derived model that approximates some complex behavior.

Indeed, the other decompositions may not be a useful view onto performance where this one

may be. Essentially this model (and others like it) gives the model generation procedure a

certain resilience: more complex derived models (that may contain bad sub-models) must

compete with simpler derived models like this one and even simpler direct models; we can

thus discard useless or counter-productive complex models in favor of simpler ones.

Derived model 3.4 is the per-workload analogue to derived model 3.2. It models

total-self-cost of a function as the sum of the function’s call-count (corresponding to the

1 in the self-cost’s definition) and the per-workload sums of its loops. Derived model 3.5

models the total-self-cost of a function as its call-count times self-cost.

Derived model 3.6 guesses that a function’s total-transitive-cost is the same as its

total-self-cost. This guess is right if the function transitively makes no calls except to itself.

This model goes against the established pattern in that it is more of a guess (that may be

55

wildly wrong) than a decomposition. Since it will be compared against other models, both

direct and derived, this potential inaccuracy is not a particular problem: this model will be

chosen as the best only if it is appropriate.

Derived model 3.7 is concerned with modeling the cost of all calls to G during

a single invocation of F ; it does so by multiplying the number of times F calls G (again

per-invocation of F) by the transitive-cost model for G.

Derived model 3.8 decomposes the transitive-cost of a function as its self-

cost plus the sum of the contributions of each callee. We model this per-callee term

([transitive-cost of F calling G]) both directly and with derived model 3.7 above. The fact

that we also model this variable ([transitive-cost of F calling G]) directly gives this derived

model resilience against bad or missing (see Section 3.4.4) transitive-cost models.

Derived model 3.9, analogous to derived model 3.5, models the total-transitive-cost

of a function as its call-count times its transitive-cost.

Discussion

To be sure, these rules for generating derived models can create odd-looking models

such as 3x2.0 + 9x1.9, or as we see in Section 3.7.2 and Figure 3.43, 0.24n2.49 + 30n1.73 +

3319n − 22912. These models are not the standard fare of algorithms textbooks, but they

are no less interpretable. Indeed, they convey more information: the terms arise as a

consequence of the program’s structure and so reflect behavior of inner loops or callees.

The former model can only arise if there are two loops (or two callees) whose empirical

scalability is similar but not identical; the 9x1.9 term dominates until x = 310 ≈ 60000

when the 3x2.0 term takes over. Furthermore, as we will see in the next section, models

56

Variable Derived Model

[bsort inner loop count] [bsort outer loop count] ⊗
[

bsort inner
outer

]

[self-cost of bsort] 1 ⊕ [bsort inner loop count] ⊕ [bsort outer loop count]
[transitive-cost of bsort] [pure-transitive-cost of bsort] ⊕ [self-cost of bsort]

Figure 3.8: Some derived models for the bsort example.

such as the former that consist of a sum of terms with similar exponents must compete

against direct powerlaw models; if the extra terms do not add extra precision, we discard

the model in favor of a simpler one. The latter model arises based on the behavior of two

distinct callees. If we were to “round” the latter model to a cubic polynomial or a powerlaw,

we would discard the information that one callee scales as n2.49 while the other scales more

slowly.

Of course performance need not decompose along the lines of control flow and the

decompositions built into our derived models are not guaranteed to be the right ones to

understand all programs’ performance. However, CF-TrendProf is designed to try many

feasible possibilities and can recover from bad decompositions at a higher level of the call

tree, at the per-workload rather than per-invocation level, by using derivation rules such as

derived models 3.3, 3.8, and 3.4. In any event, CF-TrendProf is an improvement upon

any approach that chooses models from a small, a priori bounded family.

Example

Figure 3.8 shows some of the more useful derived models for some of the variables

for our bsort example. Computing these derived models requires that we have computed

the best model for sub-components.

57

3.4.3 Choosing the Best Model

So far we have seen that CF-TrendProf generates a set of candidate models for

every variable. It considers direct models for all variables. Furthermore, it builds derived

models for a variable based on the structure of the program and the best models for the

variable’s subcomponents (such as loops inside a function or callees).

There are two fundamental concerns to balance when choosing models: model

precision, as measured by training set error, and model complexity. We would like a model

with low error. As we argued before, more complex models with more terms have the

potential to decrease error on the training data. However, there is a danger that if we

allow our models to grow gratuitously complex, that they will overfit the training data and

not generalize to other data. Put another way, the principle of Occam’s razor says that

we should pick a simple model absent evidence for a more complex one. Since any of our

candidate models may be nonsense, we insist that any complexity in the model be justified

by a sufficient decrease in training set error: derived models must exhibit lower error than

direct models which must in turn exhibit lower error than constant models if they are to be

chosen as the best model.

For every performance variable, CF-TrendProf chooses a best model from

among the direct and derived models it produces by assigning each model a score (smaller

is better) based on its standard error (Appendix A.1.5), and its complexity (see below).

The model with the lowest score is the best model.

The following formula gives the score for a model, ŷ(x), that explains ob-

servations from n workloads, y1, . . . , yn, in terms of n vectors of k features each

58

(x1,1, . . . , x1,k) , . . . , (xn,1, . . . , xn,k); we define ŷi as the model’s estimate on workload i,

(that is, ŷi
def
= ŷ(xi,1, . . . , xi,k)) ; y is the sample mean of the observations 1

n

∑n
i=1 yi and Sy

is the standard error of the model

√

P

n

i=1
(ŷi−yi)

2

n−2 (see Appendix A.1.5).

ℓ
def
=















0 ŷ(x) is a simple linear model

1 otherwise

V
def
=

k
∑

i=1































2 xi is a workload feature

3 xi is an invocation feature

20 xi is a loop count

t
def
= 0.01 × (the number of terms in the model)

α
def
= 1111

model score
def
=

100Sy

α + y
+ ℓ + V + t

This formula is ad hoc, but each term has a purpose. The units of the score formula

are percentage points of deviation from the mean, y, of the observations; the idea is that

performance deviations in the thousands are serious when overall performance is, on average,

in the ten thousands, but not so serious if overall performance is in the billions. The α > 0

sets a threshold of performance that is too small to bother modeling precisely; when y is

small compared to α (that is, performance just does not get very high), we prefer simpler

models: the error term matters less and the complexity terms (ℓ, V , and t) matter more.

The V term penalizes for extra independent variables; it causes CF-TrendProf to prefer

workload features to invocation features and to penalize loop counts so seriously that models

that include them must offer dramatic improvements over those with more interpretable

59

features. The ℓ term chooses a linear fit over other types when the errors are similar. The

t term penalizes models with extra terms; its small magnitude means that t acts as a third

tie breaker if the other terms are quite similar. In essence, this formula trades off precision

(low standard error relative to y) for model simplicity (fewer terms and features involved,

constant is simpler than linear is simpler than powerlaw).

Nonetheless, this formula is mostly about error. The other terms only matter

when two models are very close in error or when y and error are both very small and the α

term causes the error part of the formula to be very small.

Which Models and Why

Earlier (Section 3.4), we posed the question of which models we will consider to

explain the performance of a variable and why we are justified in considering them; we can

now answer this question as follows. We consider direct (linear and powerlaw) models for

every variable; these models are justified by our assumption that they may be reasonable

and by the fact that they must compete with a constant model. For variables with more

structure, such as a function’s self-cost or an inner loop’s count, we consider derived models

whose complexity is bounded by the structure of what they are modeling; these models are

justified by the structure of the program and furthermore by the fact that must compete

with direct and constant models. All of the degrees of freedom in our models arise from

apparent degrees of freedom in the program and each new term or feature in a model must

prove its worth by reducing error sufficiently.

60

Comparison to Other Ways of Selecting Models

There is no best solution to the problem of model selection in general. A typical

first-principles look at fitting [Ric06] and selecting [JB03] models to explain data begins with

some assumptions about the nature of the data and the nature of any deviations from the

model’s prediction. For instance, the exposition of linear regression, adapted to our setting,

is as follows. Suppose that we have a set of n workloads, {w1, . . . , wn} annotated with

workload features {x1, . . . , xn} and as we run each workload, wi, we measure some variable,

yi (for instance, the total-self-cost of function F) for each workload. We might consider the

hypothesis that the values we observe for y are based on a linear function of x plus some noise

that is beyond our model’s explanatory power (ei): ŷi(xi) = a + bxi + ei. If we assume that

the ei are independent, have equal variance, and have some known distribution we can reason

about the probability of observing some particular set of data points {(x1, y1), . . . , (xn, yn)}

conditioned on the model being accurate. One approach to model selection hypothesizes a

model with an extra term, say cx2
i , and then does statistical tests [Ric06] on the hypothesis

that c = 0. Brewer [Bre94], for instance, starts his models with many terms, computes

coefficients for each term and confidence intervals for the coefficients; if any coefficient’s

confidence interval contains zero, he drops a term and re-assigns coefficients to those that

remain. Alternately we could follow Jaynes’s [JB03] Bayesian approach and assume some

prior probability distribution for regression coefficients a and b and compare the odds of one

model being true (conditioned on data and priors) to another model being true (conditioned

on data and priors) — though the math for these comparisons is rather involved for even

the case of comparing two simple models.

61

Unfortunately, it is not clear that our observations have equal variance; in many

of our best-fit plots, residuals increase with features. For total-self-costs, the independence

assumption seems reasonable, but for self-costs during the same program run, it seems ill-

motivated. It is not at all clear what probability distributions to assign to either the errors

or the model parameters; the normal distribution (with a mean of zero for the error terms)

is standard, but again, residuals plots suggest that the sort of errors our approach must

tolerate are anything but normally distributed. For instance, the models in Figures 3.15,

3.18, 3.22, 3.31, 3.32, and 3.43 are useful, but their errors are probably not independent,

nor equal variance, nor normally distributed). Figures 3.9 and 3.10 show normal probability

plots to evaluate the hypothesis that the residuals of several of CF-TrendProf’s models

are normally distributed; a detailed discussion of these plots is beyond the scope of this

dissertation, but it suffices to understand that the residuals are normally distributed to

the extent that the points in the normal probability plots form lines. Simply put, these

residuals are not normally distributed.

Neither of these sources discuss a general framework for comparing multiple mod-

els. Furthermore, it is not clear how to incorporate, as our approach does, evidence from

program structure into the model selection process.

Thus, deriving a model selection algorithm for our setting from statistical first prin-

ciples would seem to involve several ill-motivated assumptions or difficult decisions about

distributions and priors. We have opted instead to use domain knowledge (the structure

of the program) and explicit, reasonable assumptions (constant, linear, powerlaw models

explain performance) to generate plausible models and a special-purpose model selection

62

criterion to trade off model simplicity for low model error on training data.

As we have seen, model selection is a difficult problem. We have settled on a rea-

sonable approach, but more work, both theoretical and empirical, remains. In Section 3.10.2

and Section 3.10.3 we consider some future directions for inquiry into selecting models for

program performance.

Example

Figure 3.11 shows CF-TrendProf’s best models for some of the variables in our

bsort example. The rightmost “Source” column says “Direct” for direct models or shows

the models symbolically combined to form derived models.

3.4.4 Interleaving Computation of Derived Models and Best Models

Derived models (for example, for self-cost) require models for sub-components (for

example, loop counts). Since considering k models each for each of n subcomponents would

entail considering nk models, CF-TrendProf considers only the best model for each sub-

component while constructing derived models. Once all the direct and derived models for

a variable are known, we can compute the best model for that variable.

In implementing our prototype of CF-TrendProf, we carefully manage the order

in which we compute direct fits, derived fits, and best fits for each variable so that all the

pieces (best models for other variables) we need are available for constructing derived models

and best models with good locality. CF-TrendProf proceeds in two passes. Both passes

process one function at a time in reverse topological order of the call graph (that is, leaf

functions first and other functions only after all of their callees). When processing a function

63

−2 −1 0 1 2

0
e+

0
0

2
e+

0
5

4
e+

0
5

6
e+

0
5 Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti

le
s

−2 −1 0 1 2

−
6
0
0
0
0

−
2
0
0
0
0

2
0
0
0
0

6
0
0
0
0

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti

le
s

Figure 3.9: Normal probability plots comparing residuals for the models in Figure 3.15
(top) and Figure 3.18 (bottom) to quantiles of the normal distribution. To the extent that
the points form a line, the residuals are normally distributed.

64

−3 −2 −1 0 1 2 3

−
3
0
0
0
0

−
1
0
0
0
0

0

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti

le
s

−2 −1 0 1 2

−
1
5
0
0
0
0
0

0
1
0
0
0
0
0
0

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti

le
s

Figure 3.10: Normal probability plots comparing residuals for the models in Figure 3.31
(top) and Figure 3.43 (bottom) to quantiles of the normal distribution. To the extent that
the points form a line, the residuals are normally distributed.

65

Variable Best Model Source

self-cost of swap 1 Direct
call-count of swap 0.2n2 Direct
total-self-cost of swap 0.2n2 Direct

bsort inner loop count 0.5n2 − 0.5n (n) ⊗ (0.5n − 0.5)
bsort outer loop count n Direct

bsort inner
outer 0.5n − 0.5 Direct

self-cost of bsort 0.5n2 + 0.5n + 1 (0.5n2 − 0.5n) ⊕ (n) ⊕ 1
pure-transitive-cost of bsort 0.2n2 Direct
transitive-cost of bsort 0.7n2 + 0.5n + 1 (0.5n2 + 0.5n + 1) ⊕ (0.2n2)
call-count of bsort 1 Direct

main loop count n Direct
self-cost of main n + 1 Direct
transitive-cost of main 0.7n2 + 1.5n + 2 (n + 1) ⊕ (1 ⊗ (0.7n2 + 0.5n + 1))
call-count of main 1 Direct

Figure 3.11: Best models for some variables in the bsort example.

on the first pass, CF-TrendProf finds the best models in the following order: loop counts

(outer loops first), total loop counts, self-costs, transitive costs, call counts, total self-cost,

total transitive-cost; this order allows CF-TrendProf to compute all the derived models

in Figure 3.6 for each of these variables. On the second pass, CF-TrendProf computes all

the derived models in Figure 3.7; these models concern transitive-cost and total-transitive-

cost.

The purpose computing best models in two passes instead of one is to handle a

particular case that arises in the presence of recursion. Notice derived model 3.7 presupposes

best models for the transitive-cost of each of a function’s callees. On the first pass through

all the variables, we compute a best-so-far model for every function’s transitive-cost that

encompasses direct models and all the derived models in Figure 3.6. Generally, the reverse

topological order in which we process functions ensures that the derived models in Figure 3.6

are computed for callees as well. In the event of a recursive cycle in the call graph, though,

66

the first function we process from a connected component has only a best-so-far transitive-

cost model for any of its callees from that component; in particular, its callees have not yet

considered derived models from Figure 3.7.

Handling Recursive Functions

We have found it useful to manually annotate (using tpRuntimeSetContext) all

recursive functions to be caller-sensitive. Clearly this annotation could be automated. The

sensitivity means that CF-TrendProf is modeling the call-count, self-cost and transitive-

cost of the initial invocation of the function (or entrance into the recursive component)

separately from the subsequent recursive calls.

We emphasize, however, the resilience of derived models 3.7 and 3.8 in Figure 3.7.

Suppose, for illustration, that F calls G and H. For every invocation of F, recall that CF-

TrendProf measures the transitive-cost of F accounted for by its calls to G and similarly

for H; CF-TrendProf considers both direct and derived models (derived model 3.7) for this

quantity. Thus, even if CF-TrendProf’s best model for G’s transitive-cost is complicated

by recursion (or is otherwise bad), G’s cost when called from F can be captured with a

direct model. Derived model 3.8 takes advantage of this per-callee modeling by deriving a

model for F’s transitive-cost as the best model for F’s self-cost plus the best model for the

portion of F’s transitive-cost accounted for by G plus the best model for the portion of F’s

transitive-cost accounted for by H.

3.4.5 Output

CF-TrendProf’s output organizes all of a program’s functions according to their

67

dynamic call graph. It presents the best fits for each function’s self-cost, transitive-cost, call-

count, total-self-cost, and total-transitive-cost. For each variable, there is a more detailed

view showing best-fit scatter plots and residuals scatter plots of all models for the variable

(much like the output of BB-TrendProf) with standard errors and a breakdown of their

score (used for computing the best fit).

For models that predict a variable in terms of more than one feature, we show a

best-fit scatter plot that shows the predictions (x axis) versus the observed performance

(y axis); in these plots the fit is good to the extent that the points lie on the line y = x.

We also show a scatter plot of predictions (x axis) versus residuals (y axis) and a scatter

plot for each feature that shows the feature (x axis) versus residuals (y axis).

In order to give a sense of the magnitude of each function’s performance contri-

bution, CF-TrendProf lists each function’s maximum (over all workloads) total-self-cost

and total-transitive-cost; we find that this maximum cost helps put scalability models and

standard errors into perspective and is a useful tool for finding the important (and discard-

ing the unimportant) parts of the call graph. Two alternate top-level output pages show all

functions sorted by their maximum (over all workloads) total-transitive-cost, and maximum

(over all workloads) total-self-cost respectively; these views quickly focus attention on the

most expensive subtrees of the call graph and the most expensive functions respectively.

We report two measures of error for each model. The standard error (see Sec-

tion A.1.5) gives a measure of the absolute magnitude of the deviations of observed values

from predicted values; it is similar to the standard deviation, but with the model as a

baseline instead of the mean. In order to give a sense of the error of the model relative

68

to magnitude of the data that it is modeling, we also report the standard error divided by

the mean of the observed execution counts; we report this value as a percentage (0 % is a

perfect model, 100 % means the standard error is equal to the mean, higher numbers are

worse).

3.5 Micro-benchmarks

In this section we demonstrate both the power of CF-TrendProf and some of its

limitations in a number of small, but realistic scenarios that focus on its analysis of several

well understood algorithms and data structures. In each of these scenarios we have a clear

hypothesis about how we expect performance to scale as a function of workload features.

We evaluate CF-TrendProf by how clearly it supplies evidence to support or refute these

hypotheses.

On a simple nested loop matrix multiply algorithm, CF-TrendProf derives an

exact performance function (Section 3.5.1). Tiled matrix multiply is more complex, but

CF-TrendProf derives a cubic model for its performance (Section 3.5.2). A look at

doubling lists shows how amortized analysis is built in to CF-TrendProf’s notions of

total-self-cost and total-transitive-cost (Section 3.5.3). Similarly, our hash table benchmark

shows how CF-TrendProf’s measurement of real workload data serves the same purpose

as an expected case analysis, not over a careful constructed theoretical distribution, but over

the distribution of workloads that the user provides (Section 3.5.4). Insertion sort’s cost

and scalability depends on a deeper property of its input than its size (Section 3.5.5); this

example illustrates a mixed blessing of the TrendProf technique that recurs throughout

69

this thesis: TrendProf’s models intimately depend on the implementation’s behavior

given the empirical distribution of workloads that the user provides.

Establishing the scalability of Dijkstra’s algorithm using a Fibonacci heap as a

priority queue requires sophisticated analysis, but CF-TrendProf’s models are a good

approximation—they approximate a O (n log n) factor with a linear model (Section 3.5.7).

Our quicksort benchmark (Section 3.5.6) combines several ideas from above: it has a com-

plex theoretical performance analysis, CF-TrendProf approximates its expected case

O (n log n) complexity with a linear model, and its performance ultimately depends on a

deeper property than the size of its input. We also consider the problem of a quicksort al-

gorithm with a deterministic choice of pivot and how CF-TrendProf finds the scalability

problems this coding error can cause (Section 3.6.1) on certain distributions of workloads.

We show that CF-TrendProf is useful in diagnosing improperly implemented

or improperly used hash tables. We consider the case of a subtly bad hash function (Sec-

tion 3.6.2) and that of an overfull hash table (Section 3.6.3), two situations that are not

hard to imagine occurring in the wild.

3.5.1 An Exact Bound for Square Matrix Multiply

Figure 3.12 shows code for multiplying two n by n square matrices, A and B, and

storing the result in a third n by n square matrix, C. A workload consists of values for A

and B. We specify n as the only workload feature. This code is clearly Θ
(

n3
)

.

CF-TrendProf derives the exact performance function, n3 + n2 + n + 1, for the

matmult function. Figure 3.13 shows the best-fit plot (top) and residuals plot (bottom)

for CF-TrendProf’s model of the matmult function’s cost. The residuals plot shows that

70

// C = A * B

void matmult(int *A, int *B, int *C, int n) {
int i,j,k;

memset(C, 0, n*n);

for (i=0; i<n; ++i)

for (j=0; j<n; ++j)

for (k=0; k<n; ++k)

C[n*i+j] += A[n*i+k] * B[n*k+j];

return;

}

Figure 3.12: Code for matrix multiply.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 100 200 300 400 500 600

model
observations

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600

residuals

Figure 3.13: The best-fit plot (top) and residuals plot (bottom) for the cost of the
matmult function for matrix multiplication. These plots show a perfect fit (self-cost :=
n3 + n2 + n + 1).

71

CF-TrendProf’s model is a perfect fit to the observed performance.

This benchmark shows an ideal case for CF-TrendProf. Each loop’s cost de-

pends only on its outer loop and known workload features. To the extent that we can isolate

contexts where loops cost roughly the same every time and provide workload features or

invocation features that explain these costs, CF-TrendProf explains performance well.

3.5.2 Tiled Matrix Multiply is Cubic

Figure 3.14 shows an implementation of tiled n by n square matrix multiply. A

workload consists of two n by n matrices, A and B, which tmatmult multiplies, yielding a

third n by n matrix, C. We specify n as a workload features.

The complexity of this code is still Θ
(

n3
)

, but the exact performance cost of

this code is more difficult to characterize than that of the simple matrix multiply code

we saw previously. The gist of the algorithm is to compute the matrix multiplication by

breaking A and B into TileSize by TileSize tiles and considering one pair of tiles at a time

(resulting in better cache locality). The details are tedious, but for our purposes it suffices

to understand that when the size of the matrix is not an integer multiple of the size of the

tiles, there are fragments on the bottom and right of the matrix that do not fill a tile; for

these fragments, at least one of M, N, and K is less than TileSize and the inner three loops

have a different cost than the usual case when all three are equal to TileSize.

72

// C += A * B

void tmatmult (int n, int *A, int *B, int *C) {
int ntiles = n / TileSize + (n%TileSize? 1 : 0);

int bi, bj, bk;

for (bi = 0; bi < ntiles; ++bi) {
int i = bi * TileSize;

for (bj = 0; bj < ntiles; ++bj) {
int j = bj * TileSize;

for (bk = 0; bk < ntiles; ++bk) {
int k = bk * TileSize;

int M = (i+TileSize > n? n-i : TileSize);

int N = (j+TileSize > n? n-j : TileSize);

int K = (k+TileSize > n? n-k : TileSize);

int* AA = A + i + k*n;

int* BB = B + k + j*n;

int* CC = C + i + j*n;

int ii, jj, kk;

for (ii = 0; ii < M; ++ii) {
for (jj = 0; jj < N; ++jj) {

int ciijj = *(CC + jj*n + ii);

for (kk = 0; kk < K; ++kk) {
int aa = *(AA + ii + kk*n);

int bb = *(BB + jj*n + kk);

ciijj += aa * bb;

} //kk

*(CC + jj*n + ii) = ciijj;

} //jj

} //ii

} //bk

} //bj

} //bi

}

Figure 3.14: Code for tiled matrix multiply. The details of the traversal of A, B, and C are
tedious, but fortunately unimportant for our discussion.

73

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0 100 200 300 400 500 600 700

model
observations

-1e+06

-500000

0

500000

1e+06

0 100 200 300 400 500 600 700

residuals

Figure 3.15: The best-fit plot (top) and residuals plot (bottom) for tiled matrix multiply as
implemented in the tmatmult function (self-cost :≈ n3 + 0.11 ∗ n2.91 + 0.10n2 + 0.97n + 4.2,
SE = 2.11 × 105). Notice that the scale of the residuals is substantially less than that of
the performance.

74

CF-TrendProf arrives at a good approximation of tmatmult’s cost, n3 + 0.11 ∗

n2.91 + 0.10n2 + 0.97n + 4.2. Figure 3.15 shows the best-fit plot (top) and residuals plot

(bottom) for CF-TrendProf’s model of tmatmult’s cost. The standard error (2.11× 105)

and residuals are small relative to the overall cost of the function. The fit is not exact

(indeed it seems to have missed a quadratic term), but it is a good approximation that gets

the overall cubic scalability right. This derived model beats the less precise, but simpler

powerlaw model, 1.1n2.99 standard error = 2.84 × 105. Despite the fact that the loops

in tmatmult do not always iterate the same number of times, CF-TrendProf finds the

performance trend.

3.5.3 Amortized Analysis of Doubling Lists

Perhaps the simplest example of amortized analysis is in the analysis of a doubling

array list. Figure 3.16 shows an example implementation. Additions to the list usually take

constant-time, but every once in a while the entire list must be moved to a larger array. A

workload for this benchmark consists of n integers to pass to insert; n is the only workload

feature. By an amortized analysis [CLR90], the insert operation takes amortized constant

time; that is, n inserts take O (n) time.

The self-cost of insert, shown in Figure 3.17 varies even at the same input size;

there is some pattern, but the overall trend is unclear. However, CF-TrendProf predicts

growth linear in n for the total-self-cost of insert: 4n − 2600 (SE = 26900) for n inserts.

Figure 3.18 shows the best-fit and residuals plot for this model.

It is not unequivocally clear from the best-fit plot that this implementation is

amortized constant, but CF-TrendProf supplies evidence to support this hypothesis: the

75

int *list = NULL;

int capacity = 0;

int size = 0;

void insert(int e) {
if (size == capacity) {

capacity *= 2;

int *newlist = (int*)malloc(capacity * sizeof(*list));

int i=0;

for (i=0; i<size; ++i) newlist[i] = list[i];

for (; i<capacity; ++i) newlist[i] = 0;

free(list);

list = newlist;

}
assert(size < capacity);

list[size] = e;

size += 1;

}

Figure 3.16: Source code for a simple doubling list.

0

50000

100000

150000

200000

0 100002000030000400005000060000700008000090000100000

model
observations

Figure 3.17: The best-fit plot for insert’s self-cost :≈ 4, SE = 445. We omit the residuals
plot.

76

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100002000030000400005000060000700008000090000100000

model
observations

-60000

-40000

-20000

0

20000

40000

60000

80000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

residuals

Figure 3.18: The best-fit plot (top) and residuals plot (bottom) for insert’s
total-self-cost :≈ 4n − 2600, SE = 26900.

77

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

Figure 3.19: The total-self-cost := 2n of looking up in a chaining hash table each of the n

items spread perfectly uniformly among its 2000 buckets. We omit residuals plots for this
perfect fit.

total-self-cost for n averages out to a convincing linear trend and the best powerlaw fit

has exponent 1.08. In this situation, the availability of the scatter plot and the fact the

trend in the data averages out to linear growth is a great help in exploring the theoretical

argument. By building models for functions’ total-self-cost and total-transitive-cost, CF-

TrendProf is essentially reporting their costs amortized over an entire workload. This sort

of amortized analysis is crucial in reasoning about the theoretical computational complexity

of many algorithms.

3.5.4 Empirical Performance of a Hash Table

For the purposes of this experiment, we consider a hash table with 2000 buckets

that resolves collisions with chaining. A workload consists of n insertions and n lookups,

one for each element that we insert. The only workload feature is n. For this experiment,

we restrict our attention to n < 1000. Since our purpose with this experiment is to study

the performance of hash table operations given hash functions with various properties, we

78

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-500

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-60

-40

-20

0

20

40

60

0 100 200 300 400 500 600 700 800 900 1000

residuals

Figure 3.20: The self-cost :≈ 2, SE = 0 (top), total-self-cost :≈ 2.25n − 38, SE = 19
(middle), and total-self-cost residuals (bottom) of looking up in a chaining hash table each
of the n items spread among its 2000 buckets by a uniform random hash function.

79

actually use the identity function as our hash function and generate inputs as if they had

been hashed from a function with the desired properties.

A hash table with a good hash function provides constant time lookup in the

expected case. In this section we examine CF-TrendProf’s analysis of a hash table

storing perfectly uniformly spread data (an ideal case) and data generated uniformly at

random (a more reasonable ideal). In either case, we expect lookups to be constant on

average.

There are no surprises: lookup is constant in both cases. Figure 3.19 shows the

best-fit plot for the lookup operation’s total-self-cost; the models predict performance ex-

actly: the lookup operation has a self-cost of 2 and a total-self-cost of 2n. Figure 3.20 shows

CF-TrendProf’s analysis of the lookup operation’s cost in the case of uniform-randomly

distributed items. The self-cost is still constant, though with an upward tendency as the

hash table becomes more full. The total-self-cost averages out to a linear growth in n, but

it has a slight, but undeniable upward bend as the hash table gets full.

In this micro-benchmark, CF-TrendProf shows a hash table behaving as it

ought to. Theoretical analysis of hash tables requires one to reason about the expected case:

assuming the hash function distributes keys uniformly at random (and the load factor is

small), a hash table provides constant time lookup in the expected case. CF-TrendProf’s

models encompass this sort of reasoning automatically: they reflect the average over the

empirical distribution of workloads.

As long as the load factor of the hash table is reasonably below 1, the lookup

tends to be constant time. In a subsequent micro-benchmark we consider the performance

80

// sort least to greatest

void isort(int n, int *arr) {

int i=0;

while (i < n) {

// arr[0..i-1] is sorted least to greatest

int val = arr[i];

int j = i-1;

// shift anything greater than val up by one position

while (j >= 0 && arr[j] > val) {

arr[j+1] = arr[j];

--j;

}

// put val into the gap left by the shifting

arr[j+1] = val;

++i;

}

}

Figure 3.21: Code for insertion sort.

of misbehaving hash tables. As we shall see, a less than ideal hash function or a full table

leads to measurable performance degradation.

3.5.5 Insertion Sort’s Cost Depends on More Than Input Size

Consider the code for insertion sort shown in Figure 3.21. A workload for this

micro-benchmark consists of an array of n integers to sort; n is the only workload feature.

While the outer loop always goes around exactly n times, the inner loop’s cost

depends on the sortedness of the array. If we consider only arrays that are already sorted or

nearly so, the inner loop goes around a constant number of times and the cost of insertion

sort scales linearly in n. In contrast, if we consider arrays that are sorted in reverse or are

permuted at random, the cost of insertion sort scales quadratically in n. CF-TrendProf’s

81

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 10000 20000 30000 40000 50000 60000

model
observations

-20000

-10000

0

10000

20000

30000

40000

0 10000 20000 30000 40000 50000 60000

residuals

Figure 3.22: Best-fit plot (top) and residuals plot (bottom) for CF-TrendProf’s model
for isort self-cost :≈ 1.3n, SE = 7330 on sorted and nearly sorted inputs.

82

0
2e+08
4e+08
6e+08
8e+08
1e+09

1.2e+09
1.4e+09
1.6e+09
1.8e+09

2e+09

0 10000 20000 30000 40000 50000 60000

model
observations

-6e+08

-4e+08

-2e+08

0

2e+08

4e+08

6e+08

0 10000 20000 30000 40000 50000 60000

residuals

Figure 3.23: Best-fit plot (top) and residuals plot (bottom) for CF-TrendProf’s model
for isort self-cost :≈ 0.36n2 + 58n + 1, SE = 1.76 × 108 on random and reverse-sorted
inputs.

83

0

5e+08

1e+09

1.5e+09

2e+09

0 10000 20000 30000 40000 50000 60000

model
observations

-1e+09

-5e+08

0

5e+08

1e+09

1.5e+09

0 10000 20000 30000 40000 50000 60000

residuals

Figure 3.24: Best-fit plot (top) and residuals plot (bottom) for CF-TrendProf’s model
for isort :≈ 0.18n2 + 30n + 1, SE = 2.58 × 108 on sorted, nearly sorted, random, and
reverse-sorted inputs.

84

results confirm this analysis.

Figure 3.22 shows CF-TrendProf’s best fit plot and residuals plot for insertion

sort on workloads (arrays of n integers) that are either sorted or have been sorted and

had n adjacent elements swapped with each other (i.e., are nearly sorted). As predicted,

CF-TrendProf’s models show that isort’s cost scales linearly in n when run on these

workloads. The upper line of points on the scatter plot corresponds to the nearly sorted

inputs while the lower line corresponds to the sorted ones. It is not hard to imagine a

distribution of workloads that would cause the scatter plot to fill out with points between

the lower and upper lines of data points.

Figure 3.23 shows CF-TrendProf’s best-fit plot and residuals plot for isort

on workloads that are either permuted randomly or sorted in reverse order. Again, CF-

TrendProf’s models agree with our predictions: they show that isort scales quadratically

on these workloads. Here the upper line of points are the reverse sorted workloads, the worst

case for this code, and the lower line of points are the random workloads. Again, it is not

hard to imagine this graph filled out with more data, nor unreasonable to conclude quadratic

growth from it.

Obviously, the performance of isort on the union of these sets of workloads varies

considerably. Figure 3.24 shows the models and scatter plots that CF-TrendProf com-

putes for this situation. As always, CF-TrendProf reports the empirical average scaling

behavior; in this case, the expensive workloads push the model toward quadratic.

This micro-benchmark demonstrates that the cost of a function on a particular

workload can depend on very subtle properties of the workload, such as sortedness of the

85

array in this example. Indeed, it may be difficult to measure such properties without essen-

tially running the function on it. This dependence of performance on such subtle properties

means that the apparent scalability of an algorithm that CF-TrendProf measures is as

much a consequence of the code being measured, as it is of the empirical distribution of

workloads. This issue is one we see many times in this dissertation and it is both one of

the greatest advantages of using TrendProf (Section 2.4.4, Section 2.4.7) and one of the

biggest challenges to overcome in designing TrendProf (Section 3.7.4).

3.5.6 Approximating the Cost of Quicksort

Figure 3.25 shows the code for our quicksort benchmark [Lam]. The qsort function

takes arrays of integers and sorts them using the quicksort algorithm. A workloads for this

benchmark is an array of n randomly generated integers. The only workload feature is n; it

ranges from ten to one hundred thousand. For this benchmark, we add a context annotation

that distinguishes the first call to qsort from recursive calls.

The theoretical analysis of quicksort’s performance is difficult [CLR90]. Like in-

sertion sort, quicksort has a worst case complexity of O
(

n2
)

operations for sorting an array

of n integers. In the expected case (over the uniform distribution of all permutations of the

input array), though, it scales as O (n log n).

Figure 3.26 shows observations and CF-TrendProf’s best model for the

transitive-cost of the qsort function. For larger workloads (high n), there is more variation

in performance: performance generally increases as a function of n, but the relationship

is not exact. The model CF-TrendProf chooses is a linear one, 18.4n − 43000, but the

U-shaped residuals suggest some systematic error as if CF-TrendProf missed a factor.

86

void quickSort(int arraysize, int numbers[]) {
qsort(numbers, 0, arraysize - 1);

}

void qsort(int numbers[], int left, int right) {
int pivot, lhold, rhold;

tpRuntimeSetContext(...);

lhold = left;

rhold = right;

pivot = numbers[left]; // sub-optimal deterministic pivot choice

while (left < right) {
while ((numbers[right] >= pivot) && (left < right)) right--;

if (left != right) {
numbers[left] = numbers[right];

left++;

}
while ((numbers[left] <= pivot) && (left < right)) left++;

if (left != right) {
numbers[right] = numbers[left];

right--;

}
}
numbers[left] = pivot;

pivot = left;

left = lhold;

right = rhold;

if (left < pivot) qsort(numbers, left, pivot-1);

if (right > pivot) qsort(numbers, pivot+1, right);

}

Figure 3.25: Code for our quicksort micro-benchmark [Lam].

87

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20000 40000 60000 80000 100000

linear model
powerlaw model

observations

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

0 20000 40000 60000 80000 100000

linear residuals

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

0 20000 40000 60000 80000 100000

powerlaw residuals

Figure 3.26: Scatter plot of the transitive-cost of initial, non-recursive call to qsort (y axis)
versus n (x axis); the dotted line shows the best powerlaw model (transitive-cost :≈ 4n1.13,
SE = 47900) while the solid line shows the best model overall (transitive-cost :≈
18.4n − 43000, SE = 45300) (top). The middle and bottom plots show the residuals (y axis)
versus n (x axis) for the best (linear) model and the best powerlaw model respectively.

88

The powerlaw model, 4n1.13 is also shown in Figure 3.26. It has a slightly higher standard

error (47900 instead of 45300), but the residuals have a more triangular shape: the model

curves upward with the data. Both models approximate the noisy performance relationship

reasonably.

It is likely that a model in terms of n log n term would predict qsort’s performance

even better. If we were to include such models in CF-TrendProf’s repertoire, however, it

would try them for all variables. Because of the similarity between linear trends and n log n

trends, noisy linear trends might be classified as n log n and vice versa. The trade-off we

have taken with CF-TrendProf is towards a small number of possible models each of

which is likely to convey useful information even if it is not a perfect fit. Inclusion of other

families of models is worthy of further investigation, but it is not an obvious win.

3.5.7 Dijkstra’s Algorithm Using a Fibonacci Heap

For this experiment we consider an implementation of Dijkstra’s algorithm using

a Fibonacci heap as a priority queue. Figure 3.27 shows pseudo-code [Sau]. A workload

consists of a randomly generated sparse, connected graph with n (n ∈ {20 . . . 1000}) nodes

and e edges (e ∈ {n, . . . , 5n}) on which we run Dijkstra’s algorithm to find the shortest

path from an arbitrarily chosen start node to all other nodes in the graph. We generate the

graph by first generating a cycle with the n nodes (involving n edges) and then choosing

e − n more edges uniformly at random from all those that are possible; thus every node is

reachable from every other node. All edges have randomly chosen, positive weight.

89

void dijkstra(Graph g, Node n0) {
FiboHeap heap;

foreach node in g.nodes {
node.state = unseen;

node.dist = infinity;

}

/* place n0 into the frontier set with a distance of zero */

n0.dist = 0;

heap.insert(n0, 0);

n0.state = seen;

while(n = heap.deleteMin()) {
n.state = done;

foreach edge in n.succs {
w = edge.target;

if(w.state != done) {
dist = v.dist + edge.dist;

if(dist < w.dist) {
w.dist = dist;

if(w.state == seen) {
heap.decreaseKey(w, dist);

} else {
heap.insert(w, dist);

w.state = seen;

}
}

}
}

}
}

Figure 3.27: Pseudo-code for Dijkstra’s algorithm [Sau].

90

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

model
observations

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

Figure 3.28: Best fit plots for the Fibonacci heap’s insert operation during Dijk-
stra’s algorithm. transitive-cost :≈ 6.0, SE = 1 (top), call-count := n (middle),
total-transitive-cost :≈ 6.0n − 15, SE = 99 (bottom).

91

-20

-10

0

10

20

30

40

50

60

0 200 400 600 800 1000

model
observations

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-10000
-5000

0
5000

10000
15000
20000
25000
30000
35000
40000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

Figure 3.29: Best fit plots for the Fibonacci heap’s deleteMin operation during Di-
jkstra’s algorithm. transitive-cost :≈ 32, SE = 9 (top), call-count := n (middle),
total-transitive-cost :≈ 36n − 2900, SE = 4370 (bottom).

92

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-100

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

model
observations

-500

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

model
observations

Figure 3.30: Best fit plots for the Fibonacci heap’s decreaseKey operation during Dijkstra’s
algorithm. transitive-cost :≈ 5.2, SE = 2 (top), call-count :≈ 0.096e − 55, SE = 35
(middle), total-transitive-cost :≈ 0.50e − 290, SE = 187 (bottom).

93

-10000

0

10000

20000

30000

40000

50000

60000

-10000 0 10000 20000 30000 40000 50000

perfect fit line
predictions (x) vs observations (y)

-40000
-35000
-30000
-25000
-20000
-15000
-10000
-5000

0
5000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

residuals versus edges

-40000
-35000
-30000
-25000
-20000
-15000
-10000
-5000

0
5000

10000

0 100 200 300 400 500 600 700 800 900 1000

residuals versus nodes

Figure 3.31: Best fit plot for transitive-cost :≈ 1.5e + 45n − 3200, SE = 4500 of dijkstra,
Dijkstra’s algorithm using a Fibonacci heap (top), residuals versus edges (middle), and
residuals versus nodes (bottom).

94

Theoretical analysis of Dijkstra’s algorithm tells us we can expect to do the fol-

lowing operations per workload [CLR90].

• exactly n calls to insert

• exactly n calls to deleteMin

• O (e) calls to decreaseKey

Subtle theoretical analysis of the Fibonacci heap data structure bounds the costs

of its operations [CLR90]. The details are beyond the scope of this thesis, but we summarize

the results below. Based on these bounds, we can bound the contribution of each operation

to the total cost of a workload.

• insert is Θ (1) and thus n calls should contribute Θ (n).

• deleteMin is amortized O (log n) and thus n calls should contribute O (n log n).

• decreaseKey is amortized O (1) and thus e calls should contribute O (e).

Therefore, the entire run of Dijkstra’s algorithm is O (n log n + e + n). Notice that the

bounds for deleteMin and decreaseKey are O (·) and not Θ (·); thus, it is possible, de-

pending on the properties of the workloads, that these operations account for less work.

Figure 3.28 shows that CF-TrendProf’s models and measurements for the

transitive-cost (top), call-count (middle), and total-transitive-cost (bottom) for the insert

operation match well with theory. The transitive-cost is constant, the call-count exactly

linear in n, and the total-transitive-cost is Θ (n).

Figure 3.29 shows CF-TrendProf’s models for deleteMin. The call-count model

(middle) shows that deleteMin is called exactly n times, as theory predicts. The scatter

95

plot for the transitive-cost is consistent with an amortized logarithmic operation, but ul-

timately inconclusive. CF-TrendProf chooses a constant model for transitive-cost (32)

here because of the α term in the model scoring formula (Section 3.4.3) — we prefer simple

models in situations such as this one where performance varies within small bounds. We

might hope that CF-TrendProf’s model of total-transitive-cost would mirror the theo-

retical prediction of O (n log n), but these models are not in CF-TrendProf’s vocabulary;

instead, CF-TrendProf chooses a linear model: 36n − 2900, (SE = 4370). Based on this

scatter plot and the curve at the top of the residuals plot, it is not hard to believe that

the total-transitive-cost of deleteMin is O (n log n), but this pronouncement is beyond the

scope of CF-TrendProf’s power. Nonetheless, the scatter plots and different models that

CF-TrendProf automatically generates are useful tools in analyzing the scalability of this

code.

The empirical measurements for decreaseKey more closely track its theoretical

upper bounds. Figure 3.30 shows CF-TrendProf’s models and best-fit plots for transitive-

cost, call-count, and total-transitive-cost. The cost of an individual invocation is constant

and despite some noise, the call-count and transitive-cost seem to scale linearly with e.

Figure 3.31 shows CF-TrendProf’s model for dijkstra’s transitive-cost as a

function of n and e: 1.5e + 45n − 3200. Since the three dimensional plots are much harder

to judge, we include residuals plots versus edges (middle) and nodes (bottom). That the

standard error (SE = 4500) and the spread of the points on the residuals plots are small

compared to the magnitude of the performance show that CF-TrendProf’s model is a

reasonable model of noisy data. This model misses a logarithmic term, but is otherwise close

96

to theory. For this workload CF-TrendProf cannot definitively confirm that dijkstra

scales as O (n log n + e + n), but the empirical truth that CF-TrendProf measures is at

least close to this theoretical bound.

This micro-benchmark demonstrates CF-TrendProf’s ability to analyze the per-

formance of a complex algorithm. Its result, however, is not the same as what theory gives

us. While theory can reason about upper, lower, and expected case (over some specified dis-

tribution of workloads) bounds on performance, CF-TrendProf measures the empirical

cost of an implementation on particular workloads.

3.6 Diagnosing Data Structure Problems

In this section we use CF-TrendProf to diagnose performance problems. We

construct a number of scenarios, state our expectations about the performance of the code

involved and compare those expectations with CF-TrendProf’s models. The deviations

of the models from our expectations point to performance problems.

Our experiments in this section consider quicksort and hash tables in isolation: we

provide a workload feature that describes the size of the data structure and consider one

call to quicksort or one instance of a hash table. In order to realize such an ideal situation

in the context of a larger algorithm, a user would likely have to provide CF-TrendProf

with suitable context annotations and invocation features.

To find the performance problems we diagnose in this section with a tool such as

gprof requires a (potentially large) workload that forces the cost of, say, hash table lookup

to be a large percentage of the cost of the entire program. Even then, it may not be clear

97

exactly why hash table lookups account for such a large portion of performance cost nor

what they ought to cost.

In contrast, CF-TrendProf requires only workloads that perform lookups on

hash tables and that these hash tables span a range of sizes. Asymptotic bounds give a

baseline with which to compare CF-TrendProf’s models. Deviations suggest potential

performance problems. As we discuss in Section 2.4.5, such deviations invite the user

to imagine a workload that would lead to performance problems based on the observed

scalability and perhaps to fix the performance bug before observing a workload that exercises

it.

3.6.1 Deterministic Quicksort Pivot

Recall our quicksort micro-benchmark from Section 3.5.6. Implemented properly,

quicksort sorts an array of n items in Θ (n log n) steps in the expected case. However, if

quicksort chooses a pivot without randomness, say the first element, and its inputs are

suitably permuted, say sorted in reverse, then it can consistently take Θ
(

n2
)

steps to sort

its input.

Figure 3.32 shows the results of running CF-TrendProf on such an implemen-

tation of quicksort on arrays of n integers that are sorted in reverse. Quicksort’s transitive-

cost fits a quadratic, 0.5n2 + n, quite well. Although the residuals plot suggests that

CF-TrendProf’s model misses a linear term roughly proportional to 0.5n, we can safely

ignore it because it is quite small compared to the quadratic term. The quadratic scaling

is quite clear from CF-TrendProf’s models. Thus we see CF-TrendProf finding a

performance bug.

98

0
2e+08
4e+08
6e+08
8e+08
1e+09

1.2e+09
1.4e+09
1.6e+09
1.8e+09

2e+09

0 10000 20000 30000 40000 50000 60000

model
observations

-5000

0

5000

10000

15000

20000

25000

30000

35000

0 10000 20000 30000 40000 50000 60000

residuals

Figure 3.32: Best-fit plot(top) and residuals plot (bottom) for the transitive-cost of a flawed
implementation of quicksort transitive-cost :≈ 0.5n2 + n, SE = 19200 (it chooses the first
element in its list as the pivot) run on reverse-sorted inputs. We obtained this model by
separating the calls to quicksort by callee – effectively splitting off the initial call from the
recursive ones. The systematic deviation in the residuals plot is not too worrying because
of its small scale compared to the actual performance.

99

3.6.2 Bad Hash Function

A bad hash function can lead to a performance surprise: the hash table may behave

well on inputs that do not make extensive use of it, but its lousy scalability will cause it

to dominate performance on workloads that make heavy use of it. In this experiment

we consider the problem of bad hash functions causing degraded hash table performance.

We consider two bad hash functions: the pathologically bad hash function that hashes

everything to 0 and a clustering hash function that favors buckets around a central mean.

We consider a hash table that resolves collisions with chaining and one that uses linear

probing. A workload consists of adding n ∈ {10 . . . 1000} items to a hash table with 2000

buckets and then looking each item up. As we saw in Section 3.5.4, a well-behaved hash

table averages constant time lookups and thus n lookups in Θ (n) steps,

As with our well-behaved hash table micro-benchmark, we use the identity function

as our hash function and generate inputs as if they had been hashed from a function with

the desired properties. That is, for our first hash function, the items in each input are all

zero. For our clustered hash function, the items are the average of thirteen random numbers

between 0 and 1999; these items tend toward the middle buckets with high probability and

the outer buckets near 0 and 1999 with low probability.

The clustering hash function has some effect on the chaining hash table. Fig-

ure 3.33 shows the best-fit plot and residuals plot for the total-transitive-cost :≈ 2.89x − 140,

SE = 69.3 of looking up the x items in the table. The concave-up bend in the data points

(especially evident in the residuals plot) indicates a slight super-linear trend, but we see

a largely similar effect with a well-behaved hash function such as that in Figure 3.20. It

100

seems reasonable to attribute the bend to the table’s filling up. There is no substantial

performance loss in this case and CF-TrendProf does not suggest one.

The linear-probing hash tables fares much worse with the clustering hash function.

Although CF-TrendProf’s model is linear, the high standard error and the high absolute

values of the slope and intercept suggest further inspection. A glance at the best-fit plot

in Figure 3.34 (top) shows that the linear fit is nonsense and that the code’s scalability

is clearly super-linear. The best powerlaw fit to this data (not shown) is 0.0092x2.4 and

even this fit does not adequately capture the steep increase. Manually plotting the data on

linear x axis, logarithmic y axis (bottom of Figure 3.34) shows that the data is not quite

growing exponentially either (the plot is not quite a line). Although the exact relationship

of performance to table size is unclear, CF-TrendProf has told us all we need to know:

look at the best-fit plot and notice the obvious super-linearity.

The degenerate, one-bucket hash function causes both implementations to go

quadratic. Figure 3.35 and Figure 3.36 show the best fit plots and residuals plots for

our x hash table lookups. The exceptionally good fits leave little doubt: there is a serious

problem with the lookup routine.

3.6.3 Overfull Hash Table

In this section we consider the performance of overfull hash tables. Again we

consider a chaining hash table and a linear-probing hash table. Again workloads consist of

adding x elements and then looking each element up; we expect performance to be linear in

x. Also as before, we use the identity function on integers as our hash function and generate

inputs uniformly at random, simulating use of a good hash function.

101

-500

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-200

-150

-100

-50

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

residuals

Figure 3.33: Best-fit plot (top) and residuals plot (bottom) for the total-transitive-cost :≈
2.89x − 140, SE = 69.3 of looking up in a chaining hash table each of the x items spread
among its 2000 buckets by the clustering hash function. The concave-up bend in the data
points (especially evident in the residuals plot) indicates a slight super-linear trend.

102

-100000

0

100000

200000

300000

400000

500000

0 100 200 300 400 500 600 700 800 900 1000

linear model
observations

-100000

-50000

0

50000

100000

150000

0 100 200 300 400 500 600 700 800 900 1000

residuals

10

100

1000

10000

100000

1e+06

1e+07

0 100 200 300 400 500 600 700 800 900 1000

exponential model
observations

Figure 3.34: Best-fit plot (top) and residuals plot (middle) for the total-transitive-cost :≈
363x − 89000, SE = 58400 of looking up in a linear-probing hash table each of the x items
spread among its 2000 buckets by the clustering hash function. The linear fit is clearly
nonsense as the high standard error and high absolute values of the slope and intercept
suggest. The bottom plot shows the same data with a logarithmic y axis and the best fit
of log (total-transitive-cost) to x: total-transitive-cost :≈ 142e0.0089x.

103

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800 900 1000

residuals

Figure 3.35: Best-fit plot (top) and residuals plot (bottom) for the total-transitive-cost :≈
0.25x2 + 1.5x, SE = 0 of looking up in a chaining hash table each of the x items that have
been dumped into the same bucket by a terrible hash function. The excellent quadratic fit
clearly indicates a problem.

104

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000

residuals

Figure 3.36: Best-fit plot (top) and residuals plot (bottom) for the total-transitive-cost :≈
0.5x2 + 3.0x, SE = 0 of looking up in a linear-probing hash table each of the x items that
have been dumped into the same bucket by a terrible hash function. The excellent quadratic
fit clearly indicates a problem.

105

Chaining hash tables can hold arbitrary numbers of elements, though at some cost

to performance; it is not hard to imagine careless code evolution leading to very full chaining

hash tables. Figure 3.37 shows the best-fit and residuals plots for a 100 bucket chaining

hash table holding up to 1000 items. This model is not perfect, but it points to the clear

super-linearity in the performance of the chaining hash table.

Hash tables that use any sort of open addressing, including our linear probing

example, cannot store more elements than they have buckets. The performance of these

tables degrades drastically as they become full as the best-fit plot in Figure 3.38 shows.

Again, the the high standard error and the high absolute values of the slope and intercept

indicate trouble; inspection of the best-fit plot shows that the linear fit is clearly nonsense.

It is not clear exactly what sort of relationship the performance of this linear probing hash

table has to its input size, but it is clearly super-linear.

3.7 Large Benchmarks

We evaluated CF-TrendProf’s ability to analyze large programs by running it

on several larger benchmarks. Section 3.7.1 explains the setup of the experiments and the

programs and workloads we ran. We show that CF-TrendProf meets its design goals

of building precise models, potentially in terms of multiple features (Section 3.7.2) and of

enabling reasoning about how performance flows through the call graph (Section 3.7.3). Sec-

tion 3.7.4 considers how CF-TrendProf deals with the fact that performance, especially

of the innards of heuristically optimized complex algorithms run on general workloads, is

not a clean function of workload features. Section 3.7.5 discusses a related issue: how the

106

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700 800 900 1000

model
observations

-200

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

residuals

Figure 3.37: Best-fit plot (top) and residuals plot (bottom) for total-transitive-cost :≈
0.22x1.46 + x, SE = 326 of looking up in a chaining hash table each of the x items spread
among its 100 buckets. The model is obviously flawed, but the super-linear trend is clear.

107

-20000

-10000

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

model
observations

-30000

-20000

-10000

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

residuals

Figure 3.38: Best-fit plot (top) and residuals plot (bottom) for total-transitive-cost :≈
21x − 4900, SE = 7030 of looking up in a linear probing hash table each of the x items
spread among it 1000 buckets. The model is obviously flawed, but the high absolute values
of the slope and intercept indicate trouble.

108

Program Description Workloads

bzip2 1.0.4 [BZ2] Compresses files Tarballs of preprocessed
source code

banshee

2005.10.07 [KA05]
Computes Andersen’s alias
analysis [And94] on a C pro-
gram

Preprocessed C programs

dot from graphviz

2.14.1 [Gra, GN00]
Renders directed graphs,
avoiding edge crossings and
minimizing edge length

Randomly generated con-
nected, directed graphs

lp solve

5.5.0.10 [LPS]
Solves mixed integer linear
programs

Linear Programs from MI-
PLIB 2003 [AKM06], Mittel-
mann [Mit], Mészáros [Més]

Figure 3.39: We ran CF-TrendProf on these programs with workloads as described above.

Program Workloads Min – Max Overhead Time (h)

bzip 524 4×106 – 8×109 609% 35 + 2.7
banshee 116 1×106 – 1×109 1928% 82 + 5.4
dot (simple: e = n) 100 9×104 – 4×107 2677% ? + 0.5
dot (complex: n ≤ e ≤ 1.3n) 175 9×104 – 1×108 2520% ? + 1.2
lp solve 215 3×103 – 2×1010 149% 22 + 2.6

Figure 3.40: Number of workloads, costs of the cheapest (Min) and most expensive (Max)
workload (measured in loop and function counts), geometric mean of overhead of CF-

TrendProf’s instrumentation (Overhead), and CF-TrendProf’s user+system time in
hours to 1) run workloads and post-process the program trace and 2) fit models and produce
output (Time).

distribution of workloads affects the models that CF-TrendProf computes.

3.7.1 Workloads and Experimental Setup

We ran CF-TrendProf on the programs listed in Figure 3.39 with workloads as

described in Figure 3.40 and elaborated below. We did not repeat our elsa and maximus

benchmarks from Chapter 2 because shortcomings in our instrumentation infrastructure

did not allow us to handle the C++ templates in these benchmarks. The Overhead column

of Figure 3.40 reports the average (geometric mean) overhead of running a workload with

109

CF-TrendProf’s tracing versus having it disabled: (user + system time instrumented)

divided by (user + system time uninstrumented), reported as a percentage; these overhead

measurements are based on 20 randomly selected workloads rather than the entire set. The

Time column reports the total (user + system) time in hours that our straightforward

Perl and C implementation of CF-TrendProf takes to create a report on each program;

the first (left) time includes running the instrumented workloads and post-processing the

trace data; the second (right) time includes the rest of CF-TrendProf’s post-processing

including model-fitting, and generation of plots and results pages. We did not measure the

time to run the exact set of workloads for the dot benchmarks, though a comparable set

of workloads to the complex (n ≤ e ≤ 1.3n) set took on the order of several days to run

and post-process. Running the workloads can take a long time, but once CF-TrendProf

generates its results, they are browseable interactively. We ran these experiments on an

Intel Xeon with two 2.8 GHz CPUs and 3.7 GB of RAM. Because CF-TrendProf’s

measurements do not depend on time, scheduling, or system load, we made no effort to

run these experiments on an unloaded system and sometimes ran multiple experiments

simultaneously. The design of CF-TrendProf, like BB-TrendProf, generally spends

extra computer time to save human time (for example, by generating all models and plots

in advance instead of on demand).

Workloads for bzip

A workload for bzip consists of a tarball of pre-processed source code ranging in

size from 25 thousand bytes to 61 million bytes. The only workload feature we specified for

bzip is B, the size of the input in bytes. CF-TrendProf did not instrument two functions

110

in the bzip code because they have irreducible control flow (unRLE obuf to output FAST

and BZ2 decompress); these functions, however, seem to only concern decompression and

our benchmark only exercised compression. We instrumented only those bzip functions

with loops or recursion as other functions’ costs are accounted for by callers.

Workloads for dot

A workload for dot consists of a directed graph with n nodes and e edges that

dot renders in its default output format so as to minimize edge crossings and edge lengths.

We generate a random workload with n nodes and e edges as follows. The first node starts

with no predecessors. As we add each of the next n − 1 nodes, the new node chooses a

predecessor uniformly at random from those nodes already in existence; this process results

in a tree of n nodes and n− 1 edges. We then pick enough edges uniformly at random from

all non-existent, non-self edges to bring the graph to e edges.

We ran two experiments with dot, both on graphs generated randomly. In the first

experiment, which we refer to as complex dot, we ran dot on graphs containing between 20

and 837 nodes and, for each number of nodes, n, four graphs containing {n, 1.1n, 1.2n, 1.3n}

edges respectively. In the second experiment, which we refer to as simple dot, we ran dot

on the subset of the graphs from the first experiment with an equal number of nodes and

edges (e = n).

Workloads for banshee

A workload for banshee consists of one or more pre-processed C files that con-

stitute an entire binary; these C files are drawn from the Debian Linux archive [Deb].

111

During the course of a workload, banshee parses the C files and performs Andersen’s alias

analysis [And94] on them. We specify four workload features:

• files, the number of files in the input.

• bytes, the total number of bytes in all the input files.

• vars an internal metric that banshee outputs.

• nonemptySets, an internal metric that banshee outputs.

Workloads range in size from 30 thousand bytes to 24 million bytes, 1 to 181 files, 41 to

33 thousand vars, and 0 to 14 thousand nonemptySets.

Because of the prevalence of mutual recursion in banshee, we set all functions in

banshee to be caller-sensitive. The yyparse function in banshee has irreducible control

flow and so was not automatically instrumented. We manually instrumented it to report

its loop costs as part of the cost of its caller, compile file.

Workloads for lpsolve

A workload for lpsolve consists of a linear program: a set of variables, constraints

(on the variables), and an objective function (in terms of the variables) to optimize (by

picking values for the variables subject to the constraints). We specify three workload

features.

• bytes, the size of an input in bytes.

• rows, the number of rows in lpsolve’s matrix for the linear program; each constraint

in the linear program occupies a row

112

• columns, the number of columns in lpsolve’s matrix for the linear program; each

variable in the program occupies a column

Workloads range in size from 442 bytes to 37 million bytes, 3 to 59 thousand rows, and 3

to 123 thousand columns.

We instrumented only those lpsolve functions with loops as other functions’ costs

are accounted for by callers. The only recursive function in lpsolve (that our workloads

exercised) calls itself at most once and accounts for negligible work; we did not instrument

it.

3.7.2 Precise Models in Terms of Multiple Features

CF-TrendProf’s model generation and selection algorithms enable it to find

precise models and to choose effectively among models in terms of different features. Thus,

the user can provide CF-TrendProf with multiple features and have confidence that it will

choose the most suitable. We illustrate this point with several models from our benchmarks.

The total-transitive-cost of the hash table copy function from banshee scales

as 10.8 · files · vars + 260 · files (SE = 8.44 × 105). Figure 3.41 shows the multi-feature

best-fit plot (predicted values on the x axis versus observed values on the y axis). This

model tells a story: for every file, banshee copies two hash tables (call-count := 2 · files)

whose sizes increase with the number of vars in the workload. The next best model,

total-transitive-cost :≈ 2.3 · bytes − 1.5 × 106, SE = 2.02 × 106, has more error and less

explanatory power.

113

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

perfect fit line
predictions (x) vs observations (y)

-4e+06

-2e+06

0

2e+06

4e+06

6e+06

8e+06

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

predictions (x) vs residuals (y)

Figure 3.41: This scatter plot shows CF-TrendProf’s predictions (x axis) versus
the measured values (y axis) for banshee’s hash table copy total-transitive-cost :≈
10.8 · files · vars + 260 · files, SE = 8.44 × 105. The fit is perfect to the extent that the
points lie on the line y = x. The bottom plot shows the residuals (y axis) plotted versus
the predicted values (x axis).

114

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

perfect fit line
predictions (x) vs observations (y)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 1000 2000 3000 4000 5000 6000

predictions (x) vs residuals (y)

Figure 3.42: Complex dot’s init rank transitive-cost :≈ 4n + 2e + 7.66, SE = 1. This
scatter plot shows CF-TrendProf’s predictions (x axis) versus the measured values
(y axis) on top and predictions (x axis) versus residuals (y axis).

115

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

0 100 200 300 400 500 600 700 800 900

best model
observations

-4e+06

-3e+06

-2e+06

-1e+06

0

1e+06

2e+06

0 100 200 300 400 500 600 700 800 900

residuals

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 100 200 300 400 500 600 700 800 900

best model
observations

Figure 3.43: Best-fit plot (top) and residuals plot (middle) for simple dot’s gvLayoutJobs
total-transitive-cost :≈ 0.24n2.49 + 30n1.73 + 3319n − 22912, SE = 6.34 × 105. The bottom
plot is the best-fit plot for gvLayoutJobs’s callee mincross step’s total-transitive-cost :≈
0.24n2.49, SE = 5.89 × 105.

116

Figure 3.42 shows another example of a precise model: complex dot’s init rank

function whose transitive-cost :≈ 4n + 2e + 7.66, SE = 1. Again, CF-TrendProf has

chosen a precise model in terms of two features.

On the simple (e = n) dot benchmark, the gvLayoutJobs function has

total-transitive-cost :≈ 0.24n2.49 + 30n1.73 + 3319n − 22912, SE = 6.34 × 105; shown at

the top of Figure 3.43. To be sure, the powerlaw terms in this model look a little strange,

but this model is superior to the best powerlaw direct model (692n1.41) in two respects.

First, it has smaller error. More importantly, though, it preserves the high exponent (2.49)

that arises from a transitive callee: gvLayoutJobs calls dot layout calls dot mincross calls

mincross calls mincross step whose total-transitive-cost scales as 0.24n2.49. Its high maxi-

mum total-transitive-cost (5.5×106) and high exponent suggest that the total-transitive-cost

of mincross step, and thus the total-transitive-cost of gvLayoutJobs, is likely to remain

quite high.

Thus we see that CF-TrendProf’s model generation and selection can result in

more precise models that mirror the control flow of the program. That is not to say that

every function has such a complex performance model. Indeed, in most cases the direct

linear or powerlaw models have low error and are quite adequate. The model selection

criterion penalizes models for including extra features so that these features must justify

their presence by reducing the error of the model. This ability to choose more complex

models when appropriate and reject them otherwise is an asset in describing the scalability

of programs and an improvement over BB-TrendProf.

117

bzip compressStream

model SE SE/mean

total-self-cost 0.0002B + 2.5 0 0 %
total-transitive-cost 126B − 2.4 × 107 7 × 107 11 %
call-count 1 0 0 %
self-cost 0.0002B + 2.5 0 0 %
transitive-cost 126B − 2.4 × 107 7 × 107 11 %

bzip BZ2 bzWrite

model SE SE/mean

total-self-cost 0.000592B − 80 81 2 %
total-transitive-cost 125B − 6.3 × 107 8 × 107 13 %
call-count 0.0002B + 0.5 0 0 %
self-cost 2.89 12 1 %
transitive-cost 569000 8 × 106 1375 %

Figure 3.44: CF-TrendProf’s output on several bzip functions.

3.7.3 Following Cost through the Call Graph

With CF-TrendProf, one can follow performance through the call graph. The

call-graph view of functions together with the flat list of functions (sorted by maximum,

over all workloads, total-self-cost) allows the same sort of reasoning that gprof [GKM82]

enables: starting at main, one can top-down explore sub-trees with high total-transitive-cost

or bottom-up start at functions with high total-self-cost and see what calls them and how

many times. CF-TrendProf’s models surpass the gprof view in several ways that we

illustrate with examples from our benchmarks.

Finding bzip’s Main Loop

CF-TrendProf finds bzip’s main loop. Its output shows that main

(total-transitive-cost :≈ 126B − 2.4 × 107, SE = 7 × 107) calls compress (same total-

transitive-cost model) which calls compressStream which calls BZ2 bzWrite. Figure 3.44

118

0

2000

4000

6000

8000

10000

12000

14000

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

model
observations

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

residuals

0

2000

4000

6000

8000

10000

12000

14000

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

model
observations

Figure 3.45: Plots that illustrate bzip’s overall performance structure.
compressStream total-self-cost :≈ 2.5 + 0.000200B, SE = 0 (top) and residuals
(middle). BZ2 bzWrite call-count :≈ 0.5 + 0.000200B, SE = 0 (bottom; residuals not
shown, but similar to middle plot).

119

Function total-transitive-cost Model SE

Maximum
total-
transitive-cost

dot layout 0.24n2.49+30n1.73+3300n−23000 634000 1 × 107

dot mincross 0.24n2.49 + 310n − 15000 615000 6 × 106

dot position 30n1.73 252000 4 × 106

dot splines 2670n − 7900 10100 2 × 106

dot init node edge 167n + 17 19 1 × 105

dot rank 139n + 95 313 1 × 105

Figure 3.46: CF-TrendProf’s total-transitive-cost models for dot layout and its more
expensive callees. These models are based the simple (e = n) dot benchmark.

shows CF-TrendProf’s models for these latter two functions. From these models, the

overall structure of bzip’s performance is clear. The linear scaling of compressStream’s

self-cost and the linearly scaling call-count of its callee, BZ2 bzWrite, suggest (and quick

inspection of the code confirm) that compressStream iterates over 5000-byte blocks of input

and calls BZ2 bzWrite to operate on them. Figure 3.45 shows the relevant best-fit plots

(compressStream’s total-self-cost and BZ2 bzWrite’s call-count); the models fit the data

quite well. The constant models for subsequent functions’ self-cost and transitive-cost (not

shown) indicate that their per-invocation cost does not scale up with input size while the

linear models for their call-count, total-self-cost, and total-transitive-cost show that their

total per-workload cost scales linearly with input size because they are called a linear num-

ber of times. This view provides a quick overview of the broad performance structure of

bzip: it iterates over its input in fixed-size blocks and does a varying amount of work for

each block, but this per-block cost does not grow with the number of blocks.

120

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 100 200 300 400 500 600 700 800 900

best model
observations

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 100 200 300 400 500 600 700 800 900

best model
observations

0

20000

40000

60000

80000

100000

120000

0 100 200 300 400 500 600 700 800 900

best model
observations

Figure 3.47: Best-fit plots for the total-transitive-cost three functions from the simple dot

benchmark: dot position (top), dot splines (middle), and dot rank (bottom). Fig-
ure 3.46 shows the models.

121

Ignoring the Cheap Stuff

CF-TrendProf’s call-graph output helps us follow call trees with high or poten-

tially high cost and ignore those that do not matter to scalability. We show one example,

the dot layout function and its callees from the simple dot benchmark, but this sort of

reasoning applies more generally. Figure 3.46 lists the best total-transitive-cost models for

dot layout and its more expensive callees. Each of these functions has a linear or sub-linear

total-self-cost and is called exactly once per workload, so we show only CF-TrendProf’s

total-transitive-cost models.

The high maximum total-transitive-costs (the maximum total-transitive-cost of

main is 1.2×107) and reasonable looking super-linear models clearly indicate that the callees

of dot mincross and dot position (top of Figure 3.47) merit further investigation. The

dot splines function (middle of Figure 3.47) is interesting: its maximum total-transitive-

cost is quite high (about a fifth of the maximum total-transitive-cost of main), but its

total-transitive-cost scales linearly; this high maximum total-transitive-cost suggests that

dot splines’s callees account for a reasonable chunk of performance, but the model suggests

that they will become less important for larger workloads. The other callees can be safely

ignored: they have maximum total-transitive-costs that are about a factor of one hundred

off from that of main and very good models that show linear scaling (bottom of Figure 3.47).

Finding Inner Loops in dot

Again, we focus on the simple (e = n) dot benchmark. Along the dot position

call tree we find some nested loops. A function which is called exactly twice, rank, calls

122

rank

model SE SE/mean

call-count 1 0 0 %
total-self-cost 0.87n − 21 28 2 %
total-transitive-cost 18n1.80 254000 20 %

update

model SE SE/mean

call-count 0.87n − 22 28 2 %
total-self-cost 0.87n − 22 28 2 %
total-transitive-cost 3.1n2 156000 22 %

dfs range (initial call)

model SE SE/mean

call-count 0.87n − 22 28 2 %
total-self-cost 4.1n − 110 136 5 %
total-transitive-cost 1.8n2.04 107000 20 %

dfs range (recursive calls)

model SE SE/mean

call-count 0.78n2 33900 19 %
total-self-cost 2.3n2 102000 19 %
total-transitive-cost 2.3n2 102000 19 %

Figure 3.48: CF-TrendProf’s models for three functions from the simple (e = n) dot

benchmark.

123

-100

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900

best model
observations

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900

best model
observations

Figure 3.49: Best-fit plots for two functions from the simple dot benchmark: call-count of
update (top) and recursive calls to dfs range (bottom). Figure 3.48 shows the models.

124

banshee compile file

model SE SE/mean

total-self-cost 3.44 · bytes − 270000 1 × 106 21 %
call-count files 0 0 %
self-cost 10.4 · vars + 160000 2 × 105 60 %

Figure 3.50: A banshee function whose self-cost increases with workload features; its call-
count increases only modestly, but its total-self-cost increases because its self-cost does.

banshee env hash

model SE SE/mean

total-self-cost 1.81 · bytes + 340000 1 × 106 27 %
call-count 0.2 · bytes + 42000 1 × 105 24 %
self-cost 8.96 6 1 %

banshee yylex

model SE SE/mean

total-self-cost 1.3 · bytes − 29000 1 × 105 5 %
call-count 0.223 · bytes − 10000 6 × 104 13 %
self-cost 5.88 6 1 %

Figure 3.51: Functions in banshee whose total-self-cost increases because they are called
more often as input size gets larger.

update (maximum total-transitive-cost of 2.3 × 106) a linear number of times in n; thus

update is in rank’s inner loop. Since rank is called exactly twice from two separate parts

of the code, we distinguish its caller with tpRuntimeSetContext and so it behaves as if it

were two different functions — the context we discuss here is by far the more expensive one.

Furthermore, update calls dfs range (maximum total-transitive-cost of 1.6×106)

a linear number of times in n. Then dfs range calls itself recursively; based on its call-

count model, we conclude that these recursive calls result in its scaling quadratically in n.

Figure 3.48 shows the call-count, total-self-cost, and total-transitive-cost models for these

functions with the initial call to dfs range accounted for separately from the subsequent

recursive calls. Figure 3.49 shows the best-fit plots for the call-count models.

125

More Calls or More Cost?

Some functions, such as bzip’s compressStream (discussed above) increase in

total-self-cost because they iterate over the whole input (or an increasing part of it). These

functions have a self-cost that grows with input size. Figure 3.50 shows CF-TrendProf’s

models for such a function from banshee.

Often, however, a function’s self-cost does not grow larger with the size of its input

(though in some cases its maximum or variance goes up), but its total-self-cost scales up

because it is called more (Figure 3.51). Looking at CF-TrendProf’s models for call-count

and total-self-cost clarify this situation: if the total-self-cost model is a constant multiple

of the call-count model, then the increased cost of the function on larger inputs is probably

because of the increased number of calls. If a function has a self-cost model that grows with

some workload feature or if the total-self-cost model is of a higher degree, then it is safe to

assume that an invocation of this function touches an ever increasing chunk of the input.

Again we see that CF-TrendProf shows not only how a function’s cost increases with

bigger workloads, but why: more calls, more loop iterations, or more work done by callees.

3.7.4 Performance of Complex Algorithms in Large Programs

One of the more exciting results of BB-TrendProf is its ability to analyze the

performance of complex algorithms in the context of large programs (Section 2.4). We

demonstrated in Section 3.5 that CF-TrendProf can analyze the scalability of complex

algorithms precisely and furthermore demonstrated in Section 3.7.3 that CF-TrendProf

enables reasoning about how performance moves through the call graph of large programs.

126

Function Model SE SE/mean
maximum
total-self-cost

generateMTFValues 114B − 24 × 106 7 × 107 12 % 7 × 109

mainSort 2.86B + 210000 1 × 105 1 % 2 × 108

bsW 2.02B − 140000 4 × 105 4 % 1 × 108

mainGtU 1.57B − 47000 3 × 105 3 % 1 × 108

mainSimpleSort 1.43B − 81000 7 × 104 1 % 9 × 107

sendMTFValues 1.19B − 40000 1 × 105 2 % 7 × 107

copy input until stop 1.00B + 2.2 3 0 % 6 × 107

copy output until stop 0.968B − 98000 3 × 105 5 % 6 × 107

BZ2 blockSort 0.488B − 140000 6 × 105 23 % 3 × 107

mainQSort3 0.186B + 67000 2 × 105 20 % 1 × 107

BZ2 hbMakeCodeLengths 0.184B + 110000 5 × 104 4 % 1 × 107

Figure 3.52: Top several functions in the bzip benchmark, ranked by maximum total-self-
cost.

Function Model SE SE/mean
maximum
total-self-cost

reorder 0.059n2.60 3 × 105 45 % 3 × 106

dfs range 2.3n2 1 × 105 19 % 2 × 106

left2right 0.0078n2.84 2 × 105 53 % 2 × 106

dfs enter inedge 1.5n2 1 × 105 40 % 1 × 106

rerank 2.2n1.82 6 × 104 35 % 6 × 105

connecttris 582n − 2600 2 × 103 1 % 5 × 105

out cross 0.36n2 5 × 104 56 % 4 × 105

in cross 0.36n2 5 × 104 55 % 4 × 105

dttree 430n − 3600 1 × 103 1 % 4 × 105

Bezier 420n − 300 645 0 % 4 × 105

ccw 300n − 1900 2 × 103 1 % 3 × 105

Figure 3.53: Top several functions in the simple (e = n) dot benchmark, ranked by
maximum total-self-cost. Rows for the following functions include only recursive calls:
dfs range, dfs enter inedge, rerank.

127

Function Model SE SE/mean
maximum
total-self-cost

dfs range 10100e − 2.4 × 106 4 × 106 171 % 4 × 107

dfs enter inedge 3600e − 870000 2 × 106 200 % 2 × 107

ccw 3700e − 720000 1 × 106 131 % 1 × 107

connecttris 3900e − 670000 1 × 106 118 % 1 × 107

in cross 5100e − 1.1 × 106 1 × 106 99 % 1 × 107

out cross 5100e − 1.1 × 106 1 × 106 98 % 1 × 107

reorder 5e2 − 260e + 5n − 34000 9 × 105 59 % 1 × 107

rerank 2900e − 670000 1 × 106 144 % 9 × 106

dfs enter outedge 1900e − 420000 9 × 105 176 % 8 × 106

routesplines 2400e − 490000 9 × 105 133 % 7 × 106

left2right 0.33e2.34 6 × 105 61 % 7 × 106

leave edge 160e + 0.24e2.17 − 16000 2 × 105 76 % 2 × 106

Figure 3.54: Top several functions in the complex (n ≤ e ≤ 1.3n) dot benchmark, ranked
by maximum total-self-cost. Rows for the following functions include only recursive calls:
dfs range, dfs enter inedge, rerank, dfs enter outedge.

Function Model SE SE/mean
maximum
total-self-cost

last node 8.2 · bytes − 78000 2 × 107 119 % 3 × 108

clear 1 11 · bytes + 95000 4 × 106 14 % 3 × 108

clear 2 11 · bytes + 200000 3 × 106 14 % 3 × 108

compile file 3.4 · bytes − 270000 1 × 106 21 % 9 × 107

env hash 1 1.8 · bytes + 340000 1 × 106 27 % 4 × 107

yylex 1.3 · bytes − 29000 1 × 105 5 % 3 × 107

clear 3 1.1 · bytes + 55000 5 × 105 19 % 3 × 107

dhlookup 0.76 · bytes + 140000 9 × 105 50 % 2 × 107

TGETC 0.74 · bytes − 24000 6 × 104 4 % 2 × 107

AST set parent list 0.63 · bytes − 110000 4 × 105 30 % 2 × 107

env hash 2 0.60 · bytes − 14000 3 × 105 27 % 1 × 107

env compare 0.41 · bytes + 52000 8 × 105 81 % 1 × 107

Figure 3.55: Top several functions in the banshee benchmark, ranked by maximum total-
self-cost. For brevity, we omit the caller-context for these functions.

128

Function Model SE SE/mean
maximum
total-self-cost

LU1FAD 49 × 106 6 × 108 1150 % 8 × 109

prod xA2 3.6v1 + 92 × 106 2 × 108 123 % 4 × 109

prod xA 3.4v2 + 30 × 106 2 × 108 256 % 3 × 109

get colIndexA 10000c + 6.9 × 106 2 × 108 259 % 3 × 109

LU6LT 5.0v3 + 19 × 106 2 × 108 296 % 3 × 109

LU6UT 18000r + 13 × 106 2 × 108 267 % 2 × 109

LU6U 2.4v4 + 8600r + 5.3 × 106 1 × 108 164 % 1 × 109

LU1MAR 130v5 + 1.1v6 + −3.4 × 106 4 × 107 363 % 1 × 109

LU1GAU 86v7 + 1.3v8 + −60000 5 × 107 499 % 9 × 108

LU7ZAP 2300r + 3.2v9 + 4.2 × 106 6 × 107 137 % 7 × 108

my daxpy 5.7 × 106 6 × 107 999 % 7 × 108

LU6L 16 × 106 6 × 107 375 % 7 × 108

Figure 3.56: Top several functions in the lpsolve benchmark, ranked by maximum total-
self-cost. We use r for feature rows, c for feature columns, and v1 through v9 for loop count
variables.

In considering its results on our large benchmarks, however, we found that some of the

models for the functions with high total-self-cost, the functions that account for much of

the performance cost of our benchmarks, were not very good. For the rest of this section,

we assess the top total-self-cost models for our benchmarks and consider factors that can

lead to 1) there being no clean relationship between performance and input size and 2)

to CF-TrendProf’s choosing inadequate models even if performance and input size are

related.

Assessing the Models

Figures 3.52, 3.53, 3.54, 3.55, and 3.56 show the top ten functions, ranked by

maximum total-self-cost, for each benchmark. These top fits range from quite good (espe-

cially bzip and the simple (e = n) dot benchmark, to mediocre (due to noise or outliers, a

common issue with the banshee models), to quite bad (especially the lpsolve models).

129

Identifying Bad Models

As we discuss elsewhere, the error measures, and to a greater extent, the best-fit

and residuals scatter plots make it clear when a model does not fit the data well. Models

with high error are generally bad, though sometimes a single outlier is enough to disrupt

a model and cause it to have high error. The residuals plot can reveal systematic error

in the model. When CF-TrendProf chooses a constant model or a model in terms of

loop counts (as it often does for lpsolve) instead of workload features, this choice is a sign

that there is no tight relationship between execution count and workload features: adding

a workload feature to the model does not decrease error enough to justify its inclusion.

Figure 3.57 shows some functions whose total-self-cost CF-TrendProf does not fit well.

Finding Better Features

If we have recognized that there is no clear relationship between performance of a

function and a given set of workload features, it would be nice to have some way of coming up

with better features or understanding what factors cause performance to behave as it does.

CF-TrendProf provides some clues in its detailed analysis of a program’s control flow.

Examining the models for all variables (not just functions, but also loops and call counts)

can show which loops are predictable in terms of features and which are not thus allowing

one to localize the parts of the program that depend on more than the provided workload

features. Furthermore, even if some views onto performance, for instance a function’s self-

cost, do not make sense, perhaps considering the transitive-cost or total-self-cost yields

better models and more insight into performance.

130

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

4e+09

0 50000 100000 150000 200000

observations
best model

best powerlaw model

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

0 5000 10000 15000 20000

observations
best model

best powerlaw model

0
2e+06
4e+06
6e+06
8e+06
1e+07

1.2e+07
1.4e+07
1.6e+07
1.8e+07

2e+07

200 400 600 800 1000 1200 1400

observations
best model

best powerlaw model

Figure 3.57: Best fit plots for three functions with difficult performance: lpsolve’s
get colIndexA total-self-cost :≈ 9980 · columns + 6.9 × 106, SE = 2.26 × 108 (top),
banshee’s member or insert total-self-cost :≈ 420 · nonemptySets − 220000, SE =
5.3 × 105 (middle), and complex dot’s ccw total-self-cost :≈ 3740e − 720000, SE =
1.46 × 106 (bottom).

131

1
10

100
1000

10000
100000
1e+06
1e+07
1e+08
1e+09

1 10 100 1000 10000 100000

log-log observations
best model

best powerlaw model

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000

log-log observations
best model

best powerlaw model

100

1000

10000

100000

1e+06

1e+07

10 100 1000

log-log observations
best model

best powerlaw model

Figure 3.58: The same scatter plots from Figure 3.57, but on log-log axes.

132

The clustering of BB-TrendProf offers different insights toward finding better

features. Even if BB-TrendProf cannot precisely explain the performance of a cluster, it

can at least say how many clusters there are — rather than leaving the user with hundreds of

basic blocks whose performance remains cryptic, BB-TrendProf might find three clusters.

Indeed, since all the locations in a cluster vary together, a cluster captures some facet of how

a program’s performance changes with workloads. Thus, clusters allow the program to act

as a feature detector for the workloads: if one can quantify the features of a workload that

make the locations in a cluster execute, perhaps one can better explain the performance

of the program. Furthermore, a feature that explains the performance of one location in

a cluster is likely to explain all of them. For these benchmarks, however, it is not entirely

clear what features might explain performance better.

3.7.5 Performance Trends Depend on Workload Distribution

One factor that can lead to noisy performance relationships is the fact that the

performance that CF-TrendProf observes and thus the models that it produces depend

on the distribution of workloads. We saw this phenomenon in our insertion sort micro-

benchmark in Section 3.5.5 and it also holds true of our larger benchmarks as well.

Comparing the performance of our bsort example (Figure 3.1) to that of our isort

micro-benchmark (Figure 3.21) is instructive. Ignoring the cost of swap, bsort mechanically

does 0.5n2 +0.5n+1 for any workload of size n. On the other hand, isort is more clever: it

recognizes easy cases, cases where the input is already partially sorted, and does less work

in these situations. For some distributions of workloads, isort even does asymptotically

less work.

133

Real programs are generally more like isort than like bsort. Where they can,

programmers find ways to avoid doing extra work rather than mechanically living down to

the worst case on every workload. With enough of this heuristic optimization of the cases

that seem to occur in practice, a program’s performance on some ad hoc subset of inputs

improves. On the whole though, this sort of optimization makes the performance on the

broader space of possible inputs less predictable. To the extent that the workloads on which

we train TrendProf are typical, TrendProf can measure the effect of these heuristic

optimizations on the given subspace of program inputs. Workloads whose performance does

not fit the model well are interesting: perhaps the heuristic optimizations do not apply or

there are other factors that make them expensive and difficult. On the other hand, the

performance of a broader set of workloads is harder to characterize.

How Workload Distribution Affects Our Benchmarks

For bzip we consider a narrow subspace of workloads: tarballs of source code. It

is not a big surprise, then, that we observe clear trends in bzip’s performance. On the

whole, CF-TrendProf’s models for bzip are quite good.

In the complex dot experiment, where we allow the number of edges to vary from n

to 1.3n (arguably considering larger and more dense graphs than dot was meant to render),

we see some cloudy models. Exactly how dot grows expensive on these denser graphs is

not clear, but the performance of many helper functions is quite clear (e.g., Figure 3.42).

Constraining the subspace of inputs to connected graphs with an equal number of nodes and

edges, as we do in the simple (e = n) dot experiment, yields a tighter relationship between

features and performance and thus nicer fits. Initially we hypothesized that dot would

134

exhibit linear scaling on the simple set of workloads and only scale super-linearly on denser

input graphs. CF-TrendProf’s models make it abundantly clear that this hypothesis is

false.

The space of possible C programs is enormous, yet the space of real-world C

programs, the space from which we pick our workloads for our banshee benchmark, is

much smaller. Furthermore, the sort of points-to graphs that these C programs induce are

not the sort that necessarily induce the worst case cubic performance of Andersen’s analysis.

In fact, banshee is optimized for dealing with these common cases in such a way that it

improves performance and avoids bad scalability on the sort of inputs that are likely to arise

in practice. While it is true that a carefully constructed points-to graph, or perhaps even

a carefully constructed C program, could cause banshee to exhibit worst-case performance,

such an input is not likely to arise in practice nor is it important in understanding the

empirical scalability of banshee on typical workloads. Although CF-TrendProf provides

some precise models, we argue elsewhere (Section 3.9) that BB-TrendProf does a better

job of presenting the big picture of a program’s scalability.

Our lpsolve benchmark is the hardest case for CF-TrendProf. Not only is the

possible space of inputs huge, but the particular workloads we chose are an eclectic subset

with no obvious commonality. Hence, the relationship between features and performance is

cloudy and the models are not very accurate. It is notable, however, that CF-TrendProf

often presents constant models and models in terms of loop counts for lpsolve’s functions

instead of nonsense models in terms of workload features; these models indicate that the

provided workload features are inadequate to describing lpsolve’s performance.

135

The Benefit of Empiricism

That TrendProf’s models depend on the distribution of workloads that it ob-

serves is ultimately a double-edged sword. As we saw, it can lead to cloudy results. On

the other hand, though, others [AKLW02] have observed that the possible space of inputs

can be quite different from those that are probable (and thus important in practice). CF-

TrendProf finds the trends that these empirical distributions of workloads induce in the

wild: on actual implementations of algorithms as they exist within large programs. As

we have shown, particularly with BB-TrendProf, algorithms often beat their worst-case

bounds for realistic distributions of workloads.

3.8 Count versus Time

In this section we briefly compare CF-TrendProf’s models and rankings to the

output of gprof on a subset of the workloads for our large benchmarks. For these exper-

iments, we have compiled our benchmarks without optimizations to ensure that the loops

and functions that CF-TrendProf sees are the same as those that gprof sees.

We emphasize that we do not intend that the execution counts we measure and

model be a proxy for execution time per se. Instead, we seek to characterize, in a robust,

platform-agnostic way, how the number of operations code performs scales with workload

features. Characterizing scalability in terms of number of operations (count) is a necessary

part of understanding usage of other resources. Measuring count is enough to point to

unexpected asymptotic scalability problems.

136

Of course, if count had no relation whatsoever to time, measuring and modeling it

would be useless. However, the following tables show that count is a reasonable, if imperfect

predictor of time (as measured by gprof. Thus if one considers models whose predictions

are within a factor of one hundred (or so) from the top observed costs and ignores others, one

can have some confidence that one is focusing on the code that is important to scalability.

Rankings for bzip

CF-TrendProf reports linear scaling in B for the total-self-cost of 19 functions

with coefficients between 0.0002 and 114; other total-self-cost models are constant. Fig-

ure 3.59 shows the top 10 functions reported by gprof and the total-self-cost models that

CF-TrendProf computes for them. Of the functions not shown, none has a B coeffi-

cient that is higher than 0.1. The coefficients of the linear models, gprof, and maximum

total-self-cost all rank these functions similarly.

Rankings for Simple dot (e = n)

Figure 3.60 shows the top ten functions reported by gprof (above the line) as well

as some other functions with high maximum total-self-cost (below the line). Again, we see

that the models, gprof, and maximum total-self-cost all rank these functions similarly.

3.9 Comparing CF-TrendProf with BB-TrendProf

Our evaluation shows that both BB-TrendProf and CF-TrendProf make

valuable contributions to characterizing and organizing the scalability of actual software

implementations run on realistic workloads. Neither technique is strictly superior to the

137

Function

Percent of
time reported
by gprof

Model for total-self-
cost

Maximum
total-self-cost

generateMTFValues 49.45 % 114B − 24 × 106 717
mainSort 24.43 % 2.86B + 210000 17.5
sendMTFValues 8.16 % 1.19B − 40000 7.34
mainGtU 5.84 % 1.57B − 47000 9.61
mainSimpleSort 3.91 % 1.43B − 81000 8.73
copy input until stop 2.91 % 1.00B + 2.2 6.12
bsW 1.84 % 2.02B − 140000 12.5
copy output until stop 1.71 % 0.968B − 98000 6.01
mainQSort3 0.75 % 0.186B + 67000 1.24
BZ2 blockSort 0.61 % 0.488B − 140000 3.19

Figure 3.59: Comparison of bzip functions. We show (left) the percentage of time for which
the function accounts (according to gprof’s estimate based on the sum of the samples from
20 randomly chosen workloads), (middle) CF-TrendProf’s model for the function’s total-
self-cost, and (right) the maximum (over all workloads) total-self-cost, measured in tens of
millions (107) of executions.

other: they have complementary strengths. Our comparison in this section naturally leads

to our discussion of future work in the following section.

Both techniques offer tools for identifying scalability-critical code and eliminating

unimportant code from consideration. BB-TrendProf organizes locations into clusters;

clusters whose maximum cluster total is low and whose scalability is linear or sub-linear can

generally be ignored. CF-TrendProf provides a call tree view; subtrees whose maximum

total-transitive-cost is low and whose scalability is linear or sub-linear can generally be

ignored. Furthermore, both provide diagnostics (error measures, best-fit scatter plots, and

residuals scatter plots) to assess the quality of their models.

138

Function

Percent
of time
reported
by gprof

Model for total-self-
cost

Maximum
total-self-
cost

dfs enter inedge 11.21 % 1.5n2 12.3
reorder 9.05 % 0.059n2.60 28.5
dfs range 8.19 % 2.3n2 16.5
left2right 6.90 % 0.0078n2.84 16.4
dttree 6.90 % 428n − 3600 3.56
rerank 5.17 % 2.2n1.82 5.95
routesplines 4.74 % 189n + 710 1.61
connecttris 4.31 % 582n − 2600 4.84
ccw 4.31 % 398n − 1900 3.31
exchange 3.88 % 270n − 45000 3.00
Bezier 2.59 % 423n − 300 3.54

out cross 0.86 % 0.36n2 4.09
in cross 2.16 % 0.36n2 3.58
leave edge 1.72 % 342n − 28000 2.93
dfs enter outedge 1.72 % 128n − 13000 2.07

Figure 3.60: Comparison of dot functions for the simple run (e = n). We show (left) the
percentage of time for which the function accounts (according to gprof’s estimate based on
the sum of the samples from 20 randomly chosen workloads), (middle) CF-TrendProf’s
model for the function’s total-self-cost, and (right) the maximum (over all workloads) total-
self-cost, measured in hundreds of thousands (105) of executions. The first ten functions
(above the horizontal line) are the top ten reported by gprof; subsequent functions (below
the line) are those with high maximum total-self-cost.

139

Managing the Complexity of Large Programs

CF-TrendProf’s call-graph view allows one to find which functions are the inner

loops of which others, to follow performance through the call graph, and to explain to what

extent a function’s total cost increases on larger workloads because it is called more or

because it does more work per call. BB-TrendProf has a complementary strength. By

grouping locations with related performance into clusters, BB-TrendProf summarizes the

performance behaviors of the entire program. The scalability of these clusters gives a concise

overview of how the program scales: considering models for a few dozen costly clusters is

easier than considering hundreds of functions. Furthermore, clusters group similar unknown

behaviors. In a setting where performance need not be a clean function of workload features,

reducing the number of unknown entities is useful.

Modeling Performance

By powerlaw fitting every cluster total, BB-TrendProf provides a coarse and

sometimes imprecise, but ultimately concise measure of each cluster’s scalability. Each

of BB-TrendProf’s powerlaw fits to cluster totals constitutes a hypothesis about the

cluster’s scalability; error measures, scatter plots, and residuals plots provide the evidence

to accept or reject the hypothesis. Of course, these powerlaw models may be confused

by lower order terms and do not handle multiple features elegantly. In contrast, CF-

TrendProf prefers to fit a line to data unless that data is compellingly curvy. These

linear models compose into cleaner derived models, but can miss the curve in the data. CF-

TrendProf’s model generation and selection algorithms solve (for our problem domain)

140

two problems that are difficult when posed in generality [Ric06]: how to decide what model

describes a given set of data points and how to build models involving highly correlated

features. CF-TrendProf can fit precise models involving multiple features when these

models are appropriate.

Relative Error is More Useful Than Absolute Error

Comparing CF-TrendProf’s models to BB-TrendProf’s makes clear the im-

portance of how one measures, minimizes, and visualizes error. CF-TrendProf evaluates

models based on their standard error, a quantity that scales up with the data’s squared

deviation from the model’s predictions,
∑

i (yi − ŷi)
2 (see Section A.1.5). While this view

of error seems to be the starting point for discussion of regression (see for instance [Ric06]),

it is not clear that it is entirely suitable for our purposes. BB-TrendProf implicitly makes

a different choice: by fitting its cluster totals to powerlaws (see Sections 2.3.2 and A.1.3),

BB-TrendProf chooses to minimize relative error,
∑

i

(

log ŷi

yi

)2
.

This relative view of error leads to models with a different sort of guarantee. Con-

sider what it means for a model to have low absolute error, versus low relative error, as cost

increases. Roughly speaking, a model has low absolute error to the extent that the squared

difference between its predictions and actual performance is small; for instance, most of a

good model’s predictions would be off by less than one hundred (ŷ − 100 < y < ŷ + 100)

and very few would be off by more than one thousand. A model has low error by the rel-

ative notion of error to the extent that its predictions are within a small factor of actual

performance; for instance, most of a good model’s predictions would be within a factor of

two (0.5ŷ < y < 2ŷ) and very few would be off by more than a factor of ten. So a model

141

with low relative error corresponds to the familiar notion in theoretical complexity of being

within a constant factor of actual performance (though of course TrendProf’s models are

more like averages than bounds).

To make this discussion more concrete, compare the view of absolute error implicit

in the linear-linear plots in Figure 3.57 to the view of relative error implicit in the log-log

plots of the same data in Figure 3.58. The vertical distance to the line of best fit in the

linear-linear plots corresponds to absolute error; the vertical distance in the log-log plots

corresponds to relative error. There are many situations where the absolute error of CF-

TrendProf’s models increases as the cost they model increases, but as these log-log plots

show, the relative error often (but not always) stays relatively fixed. The log-log plots have

the additional advantage of showing the performance trend in the data across all orders of

magnitude while the linear-linear plots really focus only on the largest points.

Given these results, we find the relative notion of error more appealing. In fair-

ness, we must acknowledge that Brewer [Bre94] advocates regression models that minimize

relative error to describe the performance of programs; we pursued a more standard ap-

proach to regression with CF-TrendProf because we found his arguments unpersuasive

compared to the difficulty and extra machinery they require, but we now share his belief.

Rather than trying for (and failing to achieve) models that predict error to within a small

absolute distance, it is more valuable for our purposes to have a model that characterizes

how performance grows asymptotically to within a constant factor — this tolerance for

constant factors is built in to the notion of big-O and big-theta bounds.

142

Unfortunately, simply changing CF-TrendProf’s linear models to minimize rel-

ative error, though a useful step, is insufficient to yield any drastic improvements in models.

While small changes might yield a modest improvement for some models, the evidence and

experience accumulated in this thesis suggests a more thorough re-consideration. As we

elaborate in Section 3.10, there are several opportunities for improving our methodology. A

real solution ought to put powerlaw models and linear models on equal footing: they should

minimize the same notion of error; too many of CF-TrendProf’s models approximate a

curve with a line because this difference in error puts powerlaw models at too much of a

disadvantage. However, such a change is not trivial: without our trick of doing linear re-

gression on (log x, log y), fitting powerlaw models requires a potentially unstable iterative

optimization process. Furthermore, other issues beg for a solution as well (Sections 3.10.3,

3.10.4, and 3.10.5) and impede any improvement based purely on improving the notion of

error.

In any event, the exact notion of error is not the central thrust of this thesis.

Even with a better notion of error, the good models will stay good and the hopeless data

sets will still be hopeless. A change in our notion of error will most strongly affect those

models that have some predictive power, but also have a flaw: outliers, a missing lower order

term or logarithmic factor, or just general noisiness. A different notion of error will affect

how the model fitting adjusts the model in the presence of the flaw. Other approaches,

like considering a wider class of models or improving our ability to distinguish distinct

performance contexts might more directly address the flaw.

143

Complementary Strengths

In conclusion, BB-TrendProf and CF-TrendProf have complementary

strengths: CF-TrendProf is more precise in some situations, while BB-TrendProf

better manages the complexity of large programs. CF-TrendProf creates precise models

with multiple terms and multiple features when these models are justified by their low error

and the program’s control flow. In some cases, CF-TrendProf even produces exact or

near-exact fits (for example, see Figures 3.13, 3.41, and 3.42). Because the relationship

between performance and workload features is much harder to characterize for the core of

large programs and complex algorithms, the added precision that CF-TrendProf brings

is not as big a win over BB-TrendProf in these contexts. Large programs present a

further problem for CF-TrendProf because its call-graph-centric view of performance,

though useful, is not as succinct a summary of performance as BB-TrendProf’s clusters.

While CF-TrendProf makes important strides in modeling program performance and

does much better than BB-TrendProf in some cases, its inability to manage the complex-

ity of the performance of large programs makes it unwieldy where BB-TrendProf scales

more gracefully. Fortunately, the features of BB-TrendProf that make it suitable for

analyzing the performance of large programs are portable to CF-TrendProf. We discuss

issues related to incorporating the best features of BB-TrendProf and CF-TrendProf

in Section 3.10.1.

144

3.10 Future Work

Our work on BB-TrendProf and CF-TrendProf makes progress on charac-

terizing and organizing the scalability of actual software implementations run on realistic

workloads. Our results show that solutions to this problem must manage the difficult reality

that performance is not always a clean function of workload features and that differing dis-

tributions of workloads can lead to different apparent scalability. Much of the future work

we envision below has to do with refining the techniques we have investigated to better

meet these challenges.

3.10.1 Combining Strengths of BB-TrendProf and CF-TrendProf

As we saw, BB-TrendProf and CF-TrendProf have complementary

strengths. Providing both a call graph view of performance and a decomposition of lo-

cations into clusters would help manage the complexity of having many models for many

locations while still enabling reasoning about how performance is distributed through the

call graph. Forming clusters and cluster totals based on functions’ total-self-costs seems

right since these measurements are a partition of the program’s total performance. Fur-

thermore, coloring total-transitive-costs by the clusters to which they belong could aid in

understanding how different call trees vary and which call trees scale worst.

We have argued (Section 3.9) that models of empirical computational complexity

should minimize relative, rather than absolute error. More concretely, we must develop

methods for linear and powerlaw (and perhaps other kinds of) regression that minimize

some function of relative error (yi−ŷi

yi
). With linear and powerlaw fits competing on even

145

ground — both minimizing the same measure of error and competing based on this error

measure — curvy data should fit a powerlaw and linear data a line. Furthermore, the log-log

scatter plot would seem to be more appropriate for understanding the relationship between

performance and workload features since, unlike a linear-linear scatter plot, a constant

relative error corresponds to constant distance.

3.10.2 What Is the Distribution of The Error Terms?

As we mention in Section 3.4.3, it is not clear what sort of distribution characterizes

the error terms in our models. In particular, if we claim that a model, ŷ(x), explains

performance, then what distribution of error terms (ŷi(xi)−yi

yi
) is acceptable? Characterizing

these error terms would allow for analytical reasoning about properties of our models such

as confidence intervals (for regression parameters and predictions), and a more rigorous

model selection criterion along the lines of Jaynes [JB03] or Brewer [Bre94].

Because of the difficulty of finding good models to predict program performance,

we are willing to accept models that have systematic bias (for example, because they ap-

proximate a logarithmic factor as a powerlaw or miss a lower order term) as long as they

are good approximations of actual performance; for example, models that approximate a

logarithmic factor with a powerlaw or models that are missing a lower order term. To the

extent that they are good approximations, these flawed models are still useful to a hu-

man — probably more useful than declining to fit any model. However, characterizing the

distribution of the error terms for such models is challenging.

146

Empirical Bounds Versus Empirical Averages

Consider the performance behavior shown in Figure 3.24, Figure 3.31, and the

bottom plot of Figure 3.57. For such situations, it might be profitable to formulate model

fitting approaches that, rather than penalizing model overestimates (negative residuals) and

model underestimates (positive residuals) uniformly, instead penalize underestimates more

severely than overestimates. Such an approach should yield models that follow the upper

line of points more closely than the lower line in noisy situations like those in the figures

mentioned above.

In contrast to a big-O bound such an approach can provide no guarantee of per-

formance. The utility of such an approach, though, is that it manages the reality of noisy

relationships between performance and workload features by focusing on the trends in the

more expensive workloads.

3.10.3 A More Robust Class of Models

CF-TrendProf’s derived models are an all or nothing proposition: either the

derived model with all of its terms wins or a direct model wins. Some of these derived

models can have odd-looking terms like 3x1.67 + 4x1.24 (though recall that such terms

are well motivated by the structure of the program). Two ways of generating additional

candidate models from a more robust class of models are apparent. First, we could use the

ceiling of the maximum degree term of each feature in our models to suggest the degree of

a regularized polynomial model (e.g., 3 for x2.3). Second, we could try dropping terms and

re-computing coefficients for other terms. These approaches would smooth and simplify our

147

derived models when such simplification did not result in substantially less precision. An

important question to consider, though, is whether these approaches are more likely to lead

to over-fitting of training data.

3.10.4 Inferring Contexts

CF-TrendProf allows the user to mark function invocations with contexts based

on the call graph or on arbitrary runtime data values. One cause of messy performance

relationships is combining contexts; splitting them can yield cleaner, more precise models.

There are situations where it might be possible to split contexts automatically.

Call Stack and Data Contexts

Some sort of clustering approach (something like k-nearest-neighbors, not to be

confused BB-TrendProf’s clustering) might identify situations where invocations of a

function with different callers (or call stacks) caused the function to behave differently.

More ambitiously, one might record data values, either user-provided or mined automatically

from function parameters, and automatically determine if these values had any measurable

correlation with performance.

Different Kinds of Workloads

Another step in the direction of identifying relevant contexts is for the user to

(optionally) describe workloads with some sort of tag. For example, our first dot experiment

might tag workloads with n edges, 1.1n edges, 1.2n edges, and 1.3n edges differently. These

tags would be treated as contexts for all the measurements in the workload. Functions

148

whose performance seemed to be affected by the workload tag would be modeled separately

for each tag. This sort of approach would offer a tool for exploring a larger portion of a

program’s input space and getting a handle on how different kinds of workloads affected (or

did not affect) performance trends.

3.10.5 Improved Handling of Recursion

Overall, CF-TrendProf’s handling of recursion is inelegant. Modeling per-

invocation cost of a recursive function entangles the initial call with the subsequent recursive

calls and is unlikely to result in sensible models. Contexts (and our derived models, see

Section 3.4.4) allow one to split out the initial call into a recursive cycle from the subsequent

recursive calls, but this tedious process could be automated. One possible way forward is

to treat loop iterations and function calls more uniformly: record each function entry or

loop iteration in the trace, perform an interval analysis [ASU86] of the entire control flow

of the program to find the loops, and model the self-cost, total-self-cost of each loop per

entry and per invocation of each higher scope. This approach would be yet more data in-

tensive than CF-TrendProf and would require more sophisticated compression of traces

and presentation of data.

3.10.6 Toward Modeling Time

This work has demonstrated that modeling execution count as a function of work-

load features yields valuable insights into the scalability of programs. Given infrastructure

for making the measurements, it is a triviality to substitute other measures of performance

(machine instructions, cache misses, time) for execution counts in our methodology for

149

model selection and fitting — indeed, others [SY07] have done so. The important empiri-

cal question to investigate is whether the performance effects caused by caches and other

micro-architectural features can be reasonably modeled with a simple statistical tool such

as regression or whether more sophisticated techniques or other trade-offs are necessary.

3.10.7 Outliers and the Program as a Feature Detector for Workloads

One interesting aspect of TrendProf’s models is that they, in the best case,

establish a clear trend in performance — a baseline. Workloads that deviate from this trend

(outliers in the scatter plots) are interesting because they violate this baseline behavior.

Even though such workloads may not be particularly expensive, they invite one to ask why

their performance deviated from the overall performance trend. Finding and characterizing

these workloads (based on their performance behavior across the entire program) might

point to neighborhoods of related workloads with properties that cause bad performance.

A larger workload in such a neighborhood (that is, having whatever properties cause other

workloads in that neighborhood to be expensive) might cause performance problems. Thus,

identifying these neighborhoods has the potential to enhance TrendProf’s ability to find

scalability issues by extrapolating trends rather than observing problematic workloads.

150

Chapter 4

Threats to Validity

This chapter reviews concisely the circumstances under which TrendProf’s mod-

els do not adequately describe program performance. Knowledge of these hazards has been

a driving factor in the design of our techniques.

Some of the hazards we discuss illustrate the fundamental difficulties and trade-offs

inherent in empirically modeling program performance as a function of workload features.

For instance, while modeling performance based on measuring actual workloads focuses

TrendProf’s models on the empirical case, choosing atypical or insufficiently many work-

loads to train TrendProf causes its models to over-fit patterns particular to the chosen

workloads (Section 4.1). Furthermore, obvious workload features may not be good predic-

tors of performance (Section 4.2); put another way, performance may depend on properties

of the workload that are difficult to measure (without running the program). TrendProf’s

best-fit and residuals plots and BB-TrendProf’s bootstrapped confidence intervals seek

to mitigate these hazards by allowing the user to recognize bad fits and outliers.

151

Other hazards are more specific to the implementation of BB-TrendProf or

CF-TrendProf. Both systems intentionally limit the complexity of models that they use

to fit performance data. While this limitation prevents over-fitting noisy performance data

with a complex model, it also forces approximation of, say, polynomials with powerlaws or

logarithmic terms with constants or powerlaws (Section 4.3).

4.1 The Importance of Workloads

The empiricism of TrendProf’s models is both an advantage and a disadvantage.

All of the models TrendProf builds are based on measuring a set of workloads the user

provides. This set of workloads allows TrendProf to reason about scalability in the

empirical case, often a difficult feat in theoretical settings. On the other hand, choosing

atypical or insufficiently many workloads to train TrendProf causes its models to over-fit

patterns particular to the chosen workloads.

When Workloads Reveal Empirical Truth

TrendProf does not distinguish correlations that are due to the structure of the

program from those due to the distribution of workloads. This empiricism allows us to

conclude that on typical C programs, an optimized implementation of Andersen’s analysis

scales much better than its worst-case bound of O(n3) in the size of the program (Sec-

tion 2.4.4) and that a linked list append function that runs in linear time in the length of

the list is a performance bug in banshee’s parser (Section 2.4.5), but the same idiom is not

a bug in the context of elsa’s data structures for resolving name lookup (Section 2.4.6).

152

When Workloads Oversimplify

On the other hand, the user of TrendProf must choose workloads carefully or risk

generating results that do not generalize. We illustrate this point further by considering

four different kinds of workloads for our bubble sort example (for another example, see

Section 3.5.5). Recall that the workloads we considered earlier (Section 2.2) were arrays

of integers generated uniformly at random and that the locations break into 3 distinct

clusters: compares, swaps, and size (Figure 2.1). Depending on the distribution of inputs,

BB-TrendProf’s classification of line 6 (swaps) changes: if our inputs consist respectively

of arrays of integers (a) randomly permuted, (b) sorted from least to greatest, (c) sorted

greatest to least, or (d) sorted from least to greatest but with O (n) swaps of neighbors,

then we observe respectively that line 6 (a) scales as n1.93 and forms its own cluster (swaps),

(b) never executes and thus does not appear in the output, (c) executes about O(n2) and

thus falls into cluster compares, or (d) executes about O(n) times and falls into cluster size.

In fact, line 6 may powerlaw-fit n quite poorly: any combination of these extremes

is realizable for line 6 by picking suitable workloads. In contrast the cost of the other lines

varies only with the size of the array, so their classification does not change.

Outliers in the best-fit scatter plots suggest the possibility of workloads that behave

differently than the prevailing performance trend. Running more workloads, particularly

workloads similar to the outlier, may increase the generality of TrendProf’s results.

153

4.2 Performance Is Not Always

a Function of Workload Features

It is rare that a function of workload features perfectly predicts the performance

of a piece of code (though see Figure 3.13). Often though, there is a at least a trend in per-

formance as some workload feature grows large (Figures 3.15, 3.30, and 2.11). Sometimes,

however, the performance of a piece of code is simply not a function of any readily apparent

feature of its input (Figures 2.12, and 3.24). For instance, depending on the distribution of

inputs to the bubble sort example, size may be a reasonable powerlaw predictor of swaps,

but (as we discussed above) it may not be. There is no function that predicts swaps in

terms of size in general.

Similarly, ast does not adequately predict the points in Figure 2.12 nor the cost of

the top cluster for elsa (not shown). It may be that some function of some readily available

features of elsa workloads fit this data well, but we do not know. The performance curve for

some programs may not even increase monotonically with workload size. In these situations,

it is clear from the best-fit plot and residuals plot that TrendProf provides that its model

is inadequate for the situation and that its predictions are not to be trusted.

For situations like these, BB-TrendProf allows the user to define features that

depend on the runtime behavior of the program. One can designate the number of times a

particular line of code executes as a feature for BB-TrendProf. Also, BB-TrendProf

does not require workloads to be annotated with features until after they have run; the

programmer may, for instance, modify the program to print the size of a data structure

or the value of a counter and then use these as features. Furthermore, clustering identifies

154

groups of basic blocks that vary together, suggesting that they depend on the same subtle

features on input — the exact property of the workload that causes performance to vary

may not be clear, but locations that exhibit the same variations are grouped.

Consideration of this issue led to several features of CF-TrendProf. Its decom-

position of performance allows for multiple views onto performance, essentially allowing

more chances for finding a meaningful chunk of a program’s execution that has some re-

lationship to workload features — one call to a function might not bear any relation to

workload features, but all the calls from a particular caller or all the calls in a workload

might; the transitive-cost of a handful of callees might not follow any discernible trend,

but their sum, as captured in the transitive-cost of their caller, might. Furthermore, by

annotating their program with invocation features and context annotations, the user can

help CF-TrendProf identify clear relationships between values of program variables at

runtime and program performance.

4.3 Inability to Find the Right Model To Fit

There may be some relationship between performance and user-provided workload

features, but TrendProf may not choose the right model to capture this relationship —

most likely because this model is not in TrendProf’s vocabulary. This situation is dif-

ferent from the one we discuss above where there is no relationship between user-provided

features and input size. When there is no relationship between provided features and input

size, the best one can hope for is that there is yet one more feature that will explain perfor-

mance where others have not or that considering performance from a different vantage point

155

(transitive-cost versus self-cost or total-transitive-cost versus transitive-cost or transitive-

cost of a caller versus transitive-cost of a callee) is more enlightening. When the data

(particularly the best fit scatter plot) shows a clear relationship between performance and

a feature, we must ask instead what sort of model might TrendProf fit to this data and

is including this model to fit true instances of it worth the “false positives” of over-fitting

noise using this model.

4.3.1 Limitations of the Powerlaw Fit

Our first technique, BB-TrendProf, considers only linear and powerlaw models.

In our experience the simple, two-parameter powerlaw fit works amazingly well. However,

there are situations where a powerlaw fit does not precisely capture the variation of a

cluster’s cost across workloads. These situations are quite clear when we examine the

scatter plots and residuals plots that TrendProf generates. Wide confidence intervals for

the coefficient and exponent or a low R2 are also warnings that the powerlaw may not be

a suitable model. The converse does not hold: these statistics may still be quite good for

data that a powerlaw does not adequately describe.

The Logarithmic Factor Although a powerlaw cannot fit functions such as n log n,

such logarithmic factors are not a major problem in practice. For example, the number

of compares that quicksort performs grows as O(n log n) where n is the size of the array

being sorted. The left part of Figure 4.1 shows a scatter plot of the number of compares

a Quicksort performs (y axis) versus the number of elements in the array to be sorted (x

axis). The line is a powerlaw fit to the diamond shaped points (ŷ = 1.5x1.16). The fit closely

156

10

100

1000

10000

100000

1e+06

1e+07

1e+08

10 100 1000 10000 100000 1e+06 1e+07

training set
further observations

best powerlaw fit on training set

-0.4

-0.2

0

0.2

0.4

10 100 1000 10000 100000 1e+06 1e+07

training set residuals
further observations residuals

Figure 4.1: On the top is a log-log plot of number of comparisons done in a call to qsort

(y axis) versus the size of the array (x axis). On the same plot, we show the best powerlaw
fit to the diamond shaped points (ŷ = 1.5n1.16, R2 > 0.99). On the bottom is the residuals
plot for the powerlaw fit. Note that the residuals are clearly not randomly distributed.

157

tracks the data, but it is clear from the residuals plot that there is more going on. The

hump shaped residuals plots suggests that the data grows more slowly than the powerlaw;

such a curve suggests a logarithmic factor.

The circular points show further observations of compares versus array size. Even

for arrays 60 times larger than any BB-TrendProf used to fit the initial powerlaw, the

fit’s prediction (68 million compares) is less than a factor of two from the observed value

(43 million compares).

The Lower Order Term Our bubble sort example illustrates the effect of a lower order

term on a powerlaw fit. Line 4 executes exactly 0.5n2 + 0.5n times while lines 5 and 7

execute exactly 0.5n2 − 0.5n times each; the cluster as a whole costs 1.5n2 − 0.5n basic

block executions. The powerlaw fit converges to the highest order term: given large enough

workloads, BB-TrendProf predicts the cost of this cluster as 1.5n2. That is, for smaller

workloads the lower order terms distort the powerlaw fit; however, for large enough n,

the quadratic term dominates the linear one. To the extent that one term dominates the

others, BB-TrendProf’s powerlaw fit is a reasonable, low-dimensional approximation.

This distorting effect that lower order terms can have on powerlaw fits led to our desire to

explore more precise fits with CF-TrendProf.

4.3.2 Limitations of CF-TrendProf’s Model Selection

In choosing a model for performance, CF-TrendProf has a wider range of pos-

sibilities than BB-TrendProf. Nonetheless, the number of terms in any given model is

bounded by the control flow of the program. If a single loop has performance that scales

158

quadratically or cubicly with a workload feature, CF-TrendProf is forced to model it

with a powerlaw instead of a more precise polynomial. Similarly, CF-TrendProf only

combines models (into derived models) according to control flow; for instance if an inner

loop’s performance depended on x1 × x2, CF-TrendProf will not find this model unless

the outer loop’s performance depends on either x1 or x2 since it will not try the model

x1 × x2 directly nor will it be able to construct a derived model.

These limitations arise from a trade-off in the design of CF-TrendProf. Since

there is no limit to the complexity of code’s performance and since there need not be any

relationship between performance and workload features, CF-TrendProf prefers to choose

simple models over complex ones unless there is evidence in the program’s control flow to

support the choice of a complex model. Alternative approaches might try more models, but

these approaches would have to decide which models to try (and which to skip) and this

choice leads to trading off model simplicity and interpretability for more precision. The

danger of complex models is that they tend to over-fit noise: situations where there is no

good model would have a complex, difficult to understand model instead of a simple line or

powerlaw that averages the noise.

The ultimate arbiter of the goodness of a CF-TrendProf model is the human

user. Complex models, especially those with two or more variables, impede the comprehen-

sibility of a model. Therefore, CF-TrendProf errs on the side of choosing simple models

in the absence of any reason to do otherwise; any complex models are derived by composing

simpler models of subcomponents, each of which can be evaluated separately.

159

Chapter 5

Related Work

The main branches of related work are other profilers and other techniques that

construct models of program performance based on simulation, measurement, or reasoning

about source code.

5.1 Profilers

Gprof [GKM82] and many profilers like it periodically sample the program counter

during a single run of a program. A post-processing step propagates these samples through

the call graph to estimate how much of the program’s running time was spent in each

function. Such profilers are the standard way to find opportunities to improve a program’s

performance.

Ammons et al. [ACGS04] describe a framework for finding bottlenecks in large

programs based on execution profiles. Using their framework, they develop two tools for

digesting profile information and finding performance bottlenecks. One tool finds expensive

160

call sequences (e.g., F is expensive when called from G, but not when called from H). Another

tool compares two runs of the same program with the same workload but a different program

configuration (for instance with runtime security checks enabled versus disabled) to find the

paths responsible for making one configuration fast while the other is slow. They emphasize

the importance of extensibility in how their interface summarizes and displays the costs of

program paths — in our terms, they enable a tool designer to define new notions of location

and context to focus on very specific paths through the program. In this regard, their

work is complementary to ours; their system computes the cost of a path for a workload or

two, while TrendProf builds models to describe how the cost of a location increases with

workload features. An exciting piece of future work might combine their fine grained control

over profiles with a TrendProf style analysis to examine how the costs of particular paths

through the program grow with workload features.

Jinsight EX [SdPK01] is another tool for managing the vast sea of data that

comes out of profiling a large program. Jinsight exhaustively traces the execution of a

Java program, recording the number of objects of a particular type that are allocated, the

number a times a method is called, etc. To aid in exploring the sequence and resource usage

of the program, Jinsight allows the user to organize subsets of program activity (thread

creation, method invocation, object allocation) into execution slices based on static and

dynamic properties of the trace. For example, the user can specify a set of methods whose

invocations (perhaps with their callees) constitute an execution slice; furthermore, dynamic

properties like object lifetime or data values can also define an execution slice. The user can

then filter the call tree or resource usage histograms based on these execution slices. Like

161

Bottlenecks, Jinsight is complementary to TrendProf: it defines a rich, dynamic notion

of location and enables exploration of the call tree and resource usage of a single workload;

in contrast, TrendProf finds performance trends across many workloads.

We built TrendProf to answer questions that these traditional profilers do not

address: traditional profilers present information about one run of the program, whereas

TrendProf presents a view across many runs with an eye toward finding trends and

predicting performance on workloads that have not been run.

5.2 Empirical Performance Models

Kluge et al. [KKN05] focus specifically on how the time a parallel program spends

communicating scales with the number of processors on which it is run. In our terms,

they construct an empirical model of computational complexity where their measure of

performance, y, is MPI communication time and their measure of workload size, x, is

number of processors. They fit these observations to a degree-two polynomial, finding a, b,

and c to fit (ŷ = a + bx + cx2). Their goal is to find programs that do not parallelize well;

that is, programs whose amount of communication scales super-linearly with the number of

processors. Any part of the program with a large value for c is said to parallelize badly. The

goal of TrendProf is more general; we aim to characterize the scalability of a program in

terms of a user-specified notion of input size.

Su and Yelick [SY07] adapted the BB-TrendProf methodology and much of the

prototype code to build ti-trend-prof, a tool for debugging communication-performance

for Partitioned Global Address Space (PGAS) languages like Titanium [YSP+98]. In PGAS

162

languages, remote reads and writes look exactly the same as local ones; this sameness

makes code easier to write, but communication performance bugs harder to spot. Indeed,

some communication bugs are not apparent until a program is run at scale on hundreds

of nodes or at large problem sizes. Fortunately, TrendProf-style performance models

help a great deal. The user runs their code with a fixed number of processors and several

problem sizes and then again on a fixed problem size with varying numbers of processors.

For every program point that does remote memory accesses, ti-trend-prof measures the

number of communication calls and builds models that describe how communication scales

with problem size or number of processors. These models point to performance bugs:

places where communication grows faster than it ought to. The authors report that using

ti-trend-prof, which uses the methodology in Chapter 2, they found performance bugs

in hours that would take days to find manually. Furthermore, using ti-trend-prof allows

them to do meaningful performance debugging on a laptop instead of a super-computer

and earlier in the development cycle instead of later. Their work is a triumph for the

methodology we describe in this thesis.

Brewer [Bre95] constructs models that predict the performance of a library routine

as a function of problem parameters; for instance the performance of a radix sort might be

modelled by the number of keys per node, radix width in bits, and key width in bits. Given

a problem instance and settings of the parameters, the model predicts how several imple-

mentations of the same algorithm perform. Based on the prediction, the library chooses

an implementation of the algorithm to run for an instance of the problem. The user must

choose the terms for a model; powers of the terms are not considered in building the model,

163

but cross terms are. For instance, for problem parameters l, w, and h, the model is in terms

of

ŷ = c0 + c1l + c2w + c3h + c4lw + c5lh + c6wh + c7lwh

The requirement that the user provide the terms for the model, particularly the powers

of those terms, assumes a deeper level of understanding of the code’s performance than

TrendProf does: while the resulting models can be more descriptive and precise, each

implementation of each algorithm must be considered separately and terms chosen carefully.

However, in the larger context of the program, the features on which a code’s performance

depends may not be readily apparent; furthermore, due to bugs, gaps in the user’s under-

standing, or fortuitous configurations of inputs, the scalability of program may not be what

the user expects. Therefore, TrendProf seeks to describe the performance of each of the

many locations in a large program and focus the user’s attention on those with unantici-

pated performance or scalability problems. Crudely put, TrendProf is concerned with

finding the right exponents of the right terms to describe performance for each location in

an entire program while Brewer’s work is concerned with finding the right coefficients of the

right terms for smaller pieces of code. Our differing goals lead us to different assumptions

and trade-offs.

Sarkar [Sar89] predicts the mean and variance of loop execution times using

counter-based profiles. His system measures the execution frequency of each basic block,

carefully optimizing placement of counters based on interval structure and control depen-

dences. After collecting these basic block frequencies for a workload, he uses them together

with a static estimate of how much time each basic block takes to run on the target ar-

164

chitecture to estimate the mean and variance of the run time of each loop. Rather than

predicting run time for a workload on a particular architecture, TrendProf predicts the

number of operations a piece of code will perform as a function of workload features.

In as yet unpublished work, Ganapathi et al. [GKD+08] consider the problem of

predicting the performance, measured in elapsed time, CPU time, disk IO operations, and

network traffic, of a database query before it starts executing. Like TrendProf, they seek

to predict performance from workload features and make their performance predictions

based on measurements of other workloads; though, their notion of performance is richer

than TrendProf’s. In order to predict the performance of a novel query, they use a statis-

tical machine learning technique called Kernel Canonical Correlation Analysis (KCCA) to

essentially interpolate an estimate of the novel query’s performance based on the similarity

of its feature vector with that of training examples. Compared to TrendProf, their tech-

nique trades off the interpretability of its models for precision in predicting performance;

indeed, the authors note that dissecting the workings of KCCA is computationally difficult.

Furthermore, whereas TrendProf models performance for each location of a general pro-

gram, they consider whole-program performance for a constrained set of programs (database

queries) with a rich set of features, including data from the query optimizer’s cardinality es-

timates for joins and other relational operators. Fundamentally, their work makes different

trade-offs than TrendProf in order to solve a more constrained problem.

5.2.1 Modeling Micro-architecture Parameters

Vaswani et al. [VTSJ07] build regression models that relate a benchmark’s per-

formance to micro-architectural parameters, compiler optimization flags, and associated

165

compiler optimization heuristic parameters (for instance maximum loop unrolling). They

use these models to (a) predict performance at arbitrary compiler and micro-architecture

settings, (b) identify micro-architectural features that interact (both beneficially and detri-

mentally) with compiler optimization settings, and finally (c) find optimal settings for a

particular program. They use three different regression techniques to find models and in

one case give up on interpretability in favor of precision.

Along similar lines, Lee and Brooks [LB06] build regression models to predict

(a) performance and (b) power consumption for varying micro-architectural parameters.

They find that these two modeling problems benefit from different statistical techniques.

These systems (Vaswani et al., Lee and Brooks) explore a vast space of design

trade-offs. Their focus is on choosing good designs or understanding interactions of design

decisions. In contrast, TrendProf focuses on modeling program cost as workloads change.

5.3 Performance Models by Simulation

There is a long history of predicting the running time of complex systems, such

as distributed systems and embedded systems (including those with real-time performance

constraints), via simulation. These simulations are often geared towards making system

design decisions, tuning system parameters, or deciding how much capacity a system needs

to sustain the desired level of throughput. The literature is too vast to adequately discuss

here, but we consider some examples.

166

5.3.1 Simulation of Distributed System Performance

Rugina and Schauser [RS98] simulate the computation and communication of par-

allel programs to predict their worst-case running time. Their simulation takes as input (a) a

parallel program whose communication does not depend on its data, (b) parameters for the

program such as size of data blocks and a communication pattern, and (c) LogGP [AISS95]

parameters for the target machine; their simulation outputs a time. Their focus is on tuning

the performance of a constrained class of program (for a fixed workload size) by choosing the

best data block size and communication pattern from among those they simulated. Their

work solves a substantially different problem than TrendProf.

Avritzer and Weyuker [AW04] describe a case study where they test, tune, and

simulate the performance of an e-commerce application. They build a simulation aimed

at reproducing, diagnosing, and fixing an infrequent, but serious performance slowdown.

Based on their experience with the system, they built their simulation to model the ef-

fects of the following factors on system performance: the dynamics of their particular Java

Virtual Machine’s garbage collector (including the fact that it stops all threads for a full

garbage collection), the heap size of the garbage collector, the memory requirements of

each thread, quality of service algorithms used to throttle or refuse connections, number of

threads, arrival rate for work, etc. Based on varying the parameters of their simulation,

they diagnosed the problem as happening due to the large delay imposed by garbage collect-

ing a 3GB heap combined with the kernel overhead caused by a large number of threads.

By further simulation, they found that setting the heap size to 1GB, using a quality of

service enforcement algorithm, or running several instances of the application server on the

167

same multi-processor node fixed the issue. Thus, they found a specific problem in a specific

system by constructing and querying a performance model at the right level of abstraction.

5.3.2 Simulation of Embedded System Performance

Thiele and Wandeler [Thi07] survey some techniques for simulating embedded

system performance for deciding issues such as which functions should be implemented in

software and which in hardware, which hardware components should be used, which buses

or processors are likely to be bottlenecks, etc. They mention that simulation is insufficient

to establish solid worst case execution time (WCET) bounds for schedulability of real-time

systems and that typically, analytic methods must be used.

5.3.3 Statistical Models Versus Simulation

These systems are not particularly similar to TrendProf, but there is one piece of

common ground. Like TrendProf, the systems above seek to isolate parameters that affect

program performance and predict performance as these parameters change. The examples

above solve a myriad of problems related to how the parameters of complex systems and

the interactions of their components affect their performance; exploration of the parameter

space varies from fully manual to fully automatic depending on the nature and structure of

the problem.

In contrast, TrendProf takes aim at a specific problem: how the number of

operations a program performs grows with input size. This focus on a single aspect of

scalability allows us to use an interpretable formula (e.g., 10x2) where other systems use an

opaque simulation; this formula serves as an automatic way explore a program’s parameter

168

space — to predict how a program will behave on different workloads. While it by no means

solves all performance problems, TrendProf models an aspect of a program’s scalability

that is relevant to a large class of programs.

5.4 Performance Models from Static Analysis

Wegbreit [Weg75] describes a static analysis for computing closed form expres-

sions that describe the minimum, maximum, and “average” performance cost of simple

LISP programs in terms of the size of their input. Le Métayer [Mét88] focuses on stati-

cally analyzing maximum performance cost for FP (a functional programming language)

programs. Rosendahl [Ros89] describes an abstract interpretation for transforming a LISP

program into code that computes the worst case running time of the program. Such systems

produce precise models of performance, but it is unclear how to adapt such approaches to

large imperative programs.

Furthermore, a fundamental problem these techniques would encounter in analyz-

ing even medium-sized programs is the sheer size of the parameter space: each loop, each

conditional, and each input from the environment adds another dimension to the space

and potentially another parameter to statically-derived models of performance. Analyzing

performance of all possible workloads, as static analysis is forced to do, requires one to

consider the possibility that all of these parameters vary independently and thus leads one

to complex models in terms of obscure parameters. However, as we have shown in this

dissertation, considering a realistic set of workloads, which tend to occupy a tiny subregion

of the space of possible inputs, causes many of the dimensions of this parameter space to

169

collapse: a few workloads features do a reasonable job of explaining the performance of a

large number of locations.

Gulavani and Gulwani [GG08] describe a precise numerical abstract domain that

allows computation (via abstract interpretation) of upper bounds on the number of steps

required to evaluate small C programs that involve mostly integer expressions. Their tech-

nique can deduce polynomial, logarithmic, exponential, and disjunctive (using a max oper-

ator) bounds.

Gulwani et al. [GMC09] describe a technique, SPEED, that makes enormous

strides in computing worst case execution times of imperative programs via static anal-

ysis. Their technique involves instrumenting back-edges in a program with counters and

using a linear invariant generator, like that described in [GG08] extended with a theory of

uninterpreted functions, to bound these counters in terms of inputs to a procedure. They

make an effort to ensure that they use few counters with few dependencies among them to

ensure precise bounds. They deal with abstract data structures by having the user provide

quantitative functions, like the length of a list or the height of a tree, and annotations on

data structure operations that show how the operation updates the quantitative function.

The most striking difference between SPEED and TrendProf is that SPEED

produces worst-case (over all inputs) bounds on procedure execution time while Trend-

Prof produces average-case (over given workloads) bounds. Both techniques require some

help from the user: SPEED requires extensive annotations to data structures while Trend-

Prof requires the user to provide workloads, features, and (optionally) contexts. While

TrendProf produces a performance model for any code that is covered by the user’s work-

170

loads, SPEED’s analysis can fail to produce any bound. On the other hand, when SPEED

produces a bound, that bound comes with a proof; in contrast, TrendProf’s models are

statistical and may be utter nonsense in the worst case.

Combining SPEED and TrendProf offers some fascinating possibilities. SPEED

and the quantitative functions it requires are a rich source of invocation features for Trend-

Prof. Furthermore, SPEED’s bounds provide hints as to the shape of average case models

and constrain the possible models that TrendProf might consider (for example, if SPEED

proves a worst-case bound that is quadratic in n, TrendProf need not consider models

that are cubic in n). Also, TrendProf could measure the extent to which SPEED’s worst

case bounds are realized in practice.

5.4.1 Analyzing Data Structures

Danielsson [Dan08] outlines a library, Thunk, for analyzing the amortized com-

plexity of purely functional data structures that use laziness. The mechanism is to annotate

each function with types that describe how many steps the function takes to compute its

result and use a dependent type system to verify these bounds. Thus, assuming the user

uses the annotations correctly and adheres to a few syntactic restrictions, the type of an

expression (for instance, a function call) includes how many steps it takes to compute the

expression. In general, this type can include parameters like the size of a data structure.

Along similar lines, Krone et al. [KOS06] develop a system for specifying and ver-

ifying performance contracts of software components. These contracts specify the duration

of a function call (perhaps based on parameters or other data) and how much memory it

consumes. This performance verification requires functional specification and verification

171

of the code as well. They use their system to specify several data structures including a

spanning forest component built out of smaller components. For larger components, they

report an annotation to code ratio of about one to three; smaller, simpler components

require relatively less code and may have a ratio closer to one to one.

These systems model performance of data structures and components based on

parameters relating to their size and other runtime concerns. In contrast, TrendProf

provides an automatic analysis that provides a more whole-program view of performance:

TrendProf models the performance of data structures, but these models reflect how actual

workloads to the program exercise these data structures.

A tool like TrendProf could benefit from the existence of such performance

contracts: these contracts suggest variables and functions in terms of which to model per-

formance. As we saw in Section 3.4.3, the model selection problem is difficult: it is not clear

what functional relationship, if any, there is between performance and workload size. Thus,

having the user specify the form of the performance model as a performance contract would

be a benefit to TrendProf. To a system that verified performance contracts, Trend-

Prof could add inference: rather than specify an entire performance contract with all its

terms and coefficients, the user could give TrendProf a hint (e.g., performance is roughly

O
(

n2
)

); based on runs of the program, TrendProf could derive coefficients or perhaps

even extra terms (e.g., 5n2+10n) to performance contracts. Furthermore, if the variables in

the performance contracts are very local (for instance, some list’s size), a TrendProf-like

tool could attempt to model these local variables in terms of workload features.

172

Chapter 6

Conclusion

TrendProf’s models of empirical computational complexity allow developers to

compare the empirical reality of how their code is scaling on realistic workloads to their

expectations.

We advocate the use of empirical computational complexity for understanding

program performance and scalability. We have presented two techniques, BB-TrendProf

and CF-TrendProf, that, given a program and workloads for it, build models of ex-

ecution count in terms of user-specified workload features. Although these models are

not always accurate, we may assess their plausibility using the scatter plots and residuals

plots that TrendProf provides. Both BB-TrendProf’s clustering and ranking and CF-

TrendProf’s call-graph oriented summary of program performance focuses attention on

scalability-critical code. These models allow us to predict the performance of programs on

novel workloads, including workloads bigger than any measured. The trends that Trend-

Prof finds can point to potential scalability problems with a piece of code even if that

173

piece of code is not a huge percentage of any workload’s performance.

By using clues from the program’s control flow, CF-TrendProf is able to con-

sider a rich family of models to precisely explain program performance. With help from the

user, CF-TrendProf can distinguish different performance contexts based on control flow

or data. CF-TrendProf provides per-workload and per-function-invocation views onto

performance. These improvements over BB-TrendProf are sufficient to model, to within

a logarithmic factor, the performance of several algorithms and data structures, some of

which have very complex formal analyses.

Our technique is useful for understanding program performance: TrendProf’s

models allow us to compare the empirical computational complexity on typical workloads to

our expectations. Such comparisons can either confirm the expected performance or reveal a

difference from it: even on our few examples, we have discovered several surprises which the

usual testing process could easily miss and furthermore demonstrated CF-TrendProf’s

ability to find still more performance surprises. By modelling the performance of the pro-

gram on workloads that we have not actually measured we add a new dimension of generality

to traditional profilers. Further, the complexity of algorithms on realistic workloads can

easily differ from their theoretical worst-case behavior. Our banshee and elsa experiments

illustrate both of these points: that is, no current profiler would have discovered that An-

dersen’s analysis actually scales quadratically in practice or that elsa’s GLR C++ parser

is only mildly super-linear, in contrast to their cubic theoretical worst-case bounds. Our

analysis therefore gives engineers a more accurate working performance model.

While anyone could attempt a performance-trend analysis of their program most

174

engineers do not; a generic and convenient tool for automatically computing a comprehensive

performance-trend analysis belongs in every programmer’s toolbox.

175

Appendix A

Regression

A.1 Model Construction with Regression

In constructing models to predict performance and put locations into clusters,

TrendProf makes use of least-squares linear regression and powerlaw regression. Re-

gression selects model parameters (a and b below) that minimize some measure of error.

Regression does not evaluate the applicability of these models, but TrendProf provides

diagnostics that allow the user to asses their plausibility (Section A.1.5).

A.1.1 Linear Models

Given a set of points (xi, yi), least-squares linear regression constructs a model

that predicts y as ŷ(x)
def
= a+ bx, an affine function of x. Given a data point, (xi, yi), define

ŷi
def
= ŷ(xi) = a + bxi. The quantity ri

def
= yi − ŷi is called the residual of the fit at (xi, yi).

176

Linear regression chooses a and b to minimize the sum of the squared residuals:

k
∑

i=1

r2
i =

k
∑

i=1

(yi − ŷi)
2 =

k
∑

i=1

(yi − (a + bxi))
2
.

A.1.2 Constant Models

We use the sample mean ŷ = 1
k

∑k
i=1 yi to approximate a set of points (yi) with

a constant. This model, ŷ, minimizes the sum of the squared residuals:
∑k

i=1 (yi − ŷ)2. A

constant model is clearly just a degenerate case of a linear model (b = 0); sometimes this

trading off of precision for simplicity is worthwhile.

A.1.3 Powerlaw Models

Our interest in measuring the scalability of a program led us toward powerlaw

models. A powerlaw predicts y as ŷ(x) = axb. On log-log axes, the plot of a powerlaw is

a straight line. Thus to fit observations to a powerlaw, TrendProf uses linear regression

on (log xi, log yi) to find a and b that minimize the following quantity:

k
∑

i=1

(log yi − (log a + b log xi))
2 =

k
∑

i=1

(

log
yi

axb
i

)2

=
k

∑

i=1

(

log
axb

i

yi

)2

.

Notice that here our residuals are expressed in logarithmic space as log yi

axb

i

.

A.1.4 Numerical Stability

It is important to compute regression coefficients in a numerically stable fashion.

We adapt an algorithm from Higham’s book [Hig02] to compute regression coefficients

efficiently from our run-length encoded data points.

177

A.1.5 How good is a model?

There are a number of ways for the user of TrendProf to evaluate the usefulness

of a particular model. For each model, TrendProf presents two scatter plots: one with

the data points (xi, yi) and the line of best fit (x, ŷ(x)) and another with the residuals

(xi, ri). Inspecting these plots is a good way to decide if TrendProf’s model is plausible.

To the extent that a model captures the variation in a data set, the data points in the

best-fit scatter plot closely track the line of best fit and the residuals scatter plot looks like

random noise. Therefore, any pattern in the residuals plot or systematic deviation from

the line of best fit is an indication that there is more going on than the model describes

(Section 4.3).

Plots are not very compact, however, so for each of its fits BB-TrendProf reports

the R2 statistic, a measure of the model’s goodness-of-fit that quantifies the fraction of the

variance in y accounted for by a least-squares linear regression on x:

R2 def
=

∑k
i=1 (ŷi − y)2

∑k
i=1 (yi − y)2

=

(

∑k
i=1 (xi − x) (yi − y)

)2

(

∑k
i=1 (xi − x)2

) (

∑k
i=1 (yi − y)2

) .

The equality on the right assumes least squares linear regression. The formula for

R2 applies to powerlaw fits, but with x replaced by log x and y replaced by log y. Values for

R2 range from 0 (bad) to 1 (excellent). Note that y denotes the sample mean of a k-vector

y and σ2
y denotes its bias-corrected sample variance:

y
def
=

1

k

k
∑

i=1

yi σ2
y

def
=

1

k − 1

k
∑

i=1

(yi − y)2 .

Instead of R2, CF-TrendProf reports the standard error for each of its models,

a measure akin to the standard deviation of a data set that instead measures the deviation

178

of the data from the model as follows.

S
def
=

√

∑k
i=1 (ŷi − yi)

2

k − 2

A standard error of 0 indicates a perfect fit, while higher standard errors indicate worse fits.

In order to make a meaningful comparison of powerlaw fits to linear fits, CF-TrendProf

uses the residuals (ŷi − yi) suggested by the formula above to evaluate the standard error

of powerlaw fits.

179

Appendix B

Proof of Cluster Theorem

Theorem: If x, y, and p are vectors of length k such that x and y both fit p with R2 > 1−α

and 0 < α < 0.5, then x fits y with R2 > 1 − 4α(1 − α).

Proof: Without loss of generality, assume that x, y, and p are normalized to have mean

0 and variance 1 and that x · p ≥ 0 and y · p ≥ 0; they can be made so with an affine

transformation and such transformations preserve R2. We denote the R2 statistic for the

fit of x to p by R2
x,p and the angle (in R

k) between x and p by φx,p. We have

1 − α < R2
x,p = (x · p)2 = cos2 φx,p

Rearranging terms yields φx,p < arcsin
√

α and similarly for φy,p. By the triangle inequality

on the surface of the k-sphere and substitution,

φx,y ≤ φx,p + φy,p < 2 arcsin
√

α

and so

R2
x,y = cos2 φx,y > 1 − 4α(1 − α)

180

181

Bibliography

[ACGS04] Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil Swamy. Find-

ing and removing performance bottlenecks in large systems. In ECOOP 2004.

Springer Berlin / Heidelberg, 2004.

[AISS95] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.

LogGP: Incorporating long messages into the LogP model — One step closer

towards a realistic model for parallel computation. In SPAA 1995: Proceedings

of the 7th Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 95–105, New York, NY, USA, 1995. ACM Press.

[AKLW02] Alberto Avritzer, Joe Kondek, Danielle Liu, and Elaine J. Weyuker. Software

performance testing based on workload characterization. In WOSP 2002: Pro-

ceedings of the 3rd international Workshop On Software and Performance, pages

17–24, New York, NY, USA, 2002. ACM.

[AKM06] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Op-

erations Research Letters, 34(4):1–12, 2006. See http://miplib.zib.de.

182

[And94] Lars O. Andersen. Program Analysis and Specialization for the C Programming

Language. Ph.d. thesis, DIKU, Unversity of Copenhagen, 1994.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[AW04] Alberto Avritzer and Elaine J. Weyuker. The role of modeling in the per-

formance testing of e-commerce applications. IEEE Trans. Softw. Eng.,

30(12):1072–1083, 2004.

[BL94] Thomas Ball and James R. Larus. Optimally profiling and tracing programs.

ACM Trans. Program. Lang. Syst., 16(4):1319–1360, 1994.

[Bre94] Eric Allen Brewer. Portable High Performance Supercomputing: High-Level

Platform Dependent Optimization. Ph.d. thesis, Massachusetts Institute of

Technology, 1994.

[Bre95] Eric A. Brewer. High-level optimization via automated statistical modeling. In

PPOPP 1995: Proceedings of the 5th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 80–91, New York, NY, USA, 1995.

ACM Press.

[BZ2] bzip2 project homepage. http://www.bzip.org/.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. The MIT Press, Mc-Graw Hill, 1990.

[Dan08] Nils Anders Danielsson. Lightweight semiformal time complexity analysis for

183

purely functional data structures. In POPL 2008: Proceedings of the 35th annual

ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages,

pages 133–144, New York, NY, USA, 2008. ACM.

[Deb] Debian project homepage. http://www.debian.org/.

[GAW07] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. Measuring em-

pirical computational complexity. In ESEC-FSE 2007: Proceedings of the the

6th joint meeting of the European Software Engineering Conference and the

ACM SIGSOFT symposium on the Foundations of Software Engineering, pages

395–404, New York, NY, USA, 2007. ACM.

[GCO] gcov documentation. http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[GG08] Bhargav S. Gulavani and Sumit Gulwani. A numerical abstract domain based on

expression abstraction and max operator with application in timing analysis. In

CAV 2008: Proceedings of the 20th international conference on Computer Aided

Verification, pages 370–384, Berlin, Heidelberg, 2008. Springer-Verlag.

[GKD+08] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet Wiener, Ar-

mando Fox, Michael Jordan, and David Patterson. Predicting multi-

ple performance metrics for queries: Better decisions enabled by machine

learning. http://radlab.cs.berkeley.edu/people/fox/wp/wp-content/uploads/

perf prediction vldb submitted.pdf accessed on June 23, 2008, 2008.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a call

graph execution profiler. In SIGPLAN 1982: Proceedings of the 1982 SIGPLAN

184

Symposium on Compiler Construction, pages 120–126, New York, NY, USA,

1982. ACM Press.

[GMC09] Sumit Gulwani, Krishna Mehra, and Trishul Chilimbi. SPEED: Precise and ef-

ficient static estimation of program computational complexity. In POPL 2009:

Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Prin-

ciples of Programming Languages, New York, NY, USA, 2009. ACM.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system

and its applications to software engineering. Software — Practice and Experi-

ence, 30(11):1203–1233, 2000.

[Gra] graphviz project homepage. http://www.graphviz.org/.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,

2002.

[JB03] Edwin T. Jaynes and G. Larry Bretthorst. Probability Theory: The Logic of

Science. Cambridge University Press, 2003.

[KA05] John Kodumal and Alex Aiken. Banshee: A scalable constraint-based analysis

toolkit. In SAS 2005: Proceedings of the 12th International Static Analysis

Symposium. London, United Kingdom, September 2005.

[KKN05] Michael Kluge, Andreas Knüpfer, and Wolfgang E. Nagel. Knowledge based

automatic scalability analysis and extrapolation for MPI programs. In Euro-

185

Par 2005 Parallel Processing: 11th International Euro-Par Conference, Lecture

Notes in Computer Science. Springer-Verlag, 2005.

[KOS06] Joan Krone, William F. Ogden, and Murali Sitaraman. Performance analysis

based upon complete profiles. In SAVCBS 2006: Proceedings of the 2006 con-

ference on Specification and Verification of Component-Based Systems, pages

3–10, New York, NY, USA, 2006. ACM.

[Lam] Michael Lamont. Source code for quicksort.

http://linux.wku.edu/∼lamonml/algor/sort/quick.html accessed around

November 15, 2007.

[LB06] Benjamin C. Lee and David M. Brooks. Accurate and efficient regression mod-

eling for microarchitectural performance and power prediction. In ASPLOS-

XII: Proceedings of the 12th international conference on Architectural Support

for Programming Languages and Operating Systems, pages 185–194, New York,

NY, USA, 2006. ACM.

[LPS] lp solve project homepage. http://tech.groups.yahoo.com/group/lp solve/.

[Més] Csaba Mészáros. Csaba Mészáros’s collection of linear programs.

http://www.sztaki.hu/∼meszaros/bpmpd/ accessed around October 25, 2006.

[Mét88] Daniel Le Métayer. ACE: An automatic complexity evaluator. ACM Trans.

Program. Lang. Syst., 10(2):248–266, 1988.

[Mit] Hans Mittelmann. Hans Mittelmann’s collection of linear programs.

http://plato.asu.edu/ftp/lptestset/ accessed around October 25, 2006.

186

[MN04] Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR parser

generator. In Conference on Compiler Construction (CC04), 2004.

[Ric06] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 2006.

[Ros89] M. Rosendahl. Automatic complexity analysis. Proceedings of the 4th Interna-

tional Conference on Functional Programming Languages and Computer Archi-

tecture, pages 144–156, 1989.

[RS98] Radu Rugina and Klause Schauser. Predicting the running times of parallel

programs by simulation. In Proceedings of the 12th International Parallel Pro-

cessing Symposium and 9th Symposium on Parallel and Distributed Processing,

1998.

[Sar89] V. Sarkar. Determining average program execution times and their variance. In

PLDI 1989: Proceedings of the ACM SIGPLAN 1989 Conference on Program-

ming Language Design and Implementation, pages 298–312, New York, NY,

USA, 1989. ACM Press.

[Sau] Shane Saunders. Source code for Dijkstra’s algorithm and a Fibonacci heap.

http://www.cosc.canterbury.ac.nz/tad.takaoka/alg/spalgs/spalgs.html

accessed around November 15, 2007.

[SdPK01] Gary Sevitsky, Wim de Pauw, and Ravi Konuru. An information exploration

tool for performance analysis of Java programs. In TOOLS 2001: Proceedings

of the Technology of Object-Oriented Languages and Systems, page 85, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

187

[SY07] Jimmy Su and Katherine Yelick. Automatic communication performance de-

bugging in PGAS languages. In 20th International Workshop on Languages and

Compilers for Parallel Computing, 2007.

[Thi07] Lothar Thiele. Performance analysis of distributed embedded systems. In EM-

SOFT 2007: Proceedings of the 7th ACM & IEEE international conference on

Embedded Software, pages 10–10, New York, NY, USA, 2007. ACM.

[Ukk90] Esko Ukkonen. A linear-time algorithm for finding approximate shortest com-

mon superstrings. In Algorithmica, volume 5, pages 313–323, 1990.

[VTSJ07] Kapil Vaswani, Matthew J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph.

Microarchitecture sensitive empirical models for compiler optimizations. In

CGO 2007: Proceedings of the International Symposium on Code Generation

and Optimization, pages 131–143, Washington, DC, USA, 2007. IEEE Computer

Society.

[Weg75] Ben Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539,

1975.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,

Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,

and Alex Aiken. Titanium: A high-performance Java dialect. In ACM 1998

Workshop on Java for High-Performance Network Computing, New York, NY

10036, USA, 1998. ACM Press.

