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Preface

Quantified first-order formulas, often with quantifier alternations, are increasingly
used in the verification of complex systems. While automated theorem provers for
first-order logic are becoming more robust, until recently invariant inference tools
that handle quantifiers were restricted to purely universal formulas. We define and
analyze first-order quantified separators and their application to inferring quantified
invariants with alternations. A separator for a given set of positively and negatively
labeled structures is a formula that is true on positive structures and false on negative
structures. We investigate the problem of finding a separator from the class of formulas
in prenex normal form with a bounded number of quantifiers and show this problem
is NP-complete by reduction to and from SAT.

Based on this computational primitive, we present a new PDR /IC3-based algorithm
for finding inductive invariants with quantifier alternations. We tackle scalability
issues that arise due to the large search space of quantified invariants by combining a
breadth-first search strategy and a new syntactic form for quantifier-free bodies. The
breadth-first strategy prevents inductive generalization from getting stuck in regions
of the search space that are expensive to search and focuses instead on lemmas that
are easy to discover. The new syntactic form is well-suited to lemmas with quantifier
alternations by allowing both limited conjunction and disjunction in the quantifier-free
body, while carefully controlling the size of the search space. We evaluate both
separation itself and our combined invariant inference algorithm on a benchmark of
primarily distributed protocols, including complex Paxos variants. We demonstrate
separation can be solved in practice, and that our inference algorithm can solve more

of the most complicated examples than other state-of-the-art techniques.
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Chapter 1
Introduction

Formal verification of software is the task of proving the correctness of a system with
respect to some specification. Most verification tasks require inductive invariants for
these proofs, but generating these invariants manually is difficult and time consuming.
In addition, for complex unbounded systems the required invariants often involve
quantifiers, including quantifier alternations. For example, an invariant for a dis-
tributed system may need to quantify over an unbounded number of nodes, messages,
etc. Furthermore, the invariant may need to nest quantifiers in alternation (between
V and 3) to capture the system’s correctness. For example, one crucial invariant of
the Paxos consensus protocol is “every decision must come from a quorum of votes,”
i.e. Vdecision.dquorum.Vnode. node € quorum = node voted for decision. Invariant
inference, the problem of automatically generating an invaraint for a given system, is a
long-standing problem in formal verification. By avoiding the need to write a invariant
in addition to the system, inference reduces the effort required to produce verified
systems. We present a solution to the invariant inference problem for invariants with
quantifier alternations.

Program invariants are often used as separators of states, evaluating to true on the
good (reachable) states and false on the bad (error) states of a system. A common
approach in invariant inference algorithms for quantifier-free invariants is to learn a
formula that separates good and bad states (e.g., [40]); with enough of the right sort

of examples, the discovered separator will hopefully be an invariant.
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Figure 1.1: A set of labeled structures represented by graphs, and a quantified separator
between them. The separator may be interpreted as “every edge is part of a triangle.”
The structures are defined over a signature with a single sort for vertices and a single
symmetric relation e(-, -) for edges.

We introduce the problem of first-order quantified separation, which we believe is
a key step towards improved automation for verification problems requiring quantified
invariants. We give algorithms and complexity results for inferring separators that are
quantified first-order formulas. We show how to adapt PDR/IC3 [4] to use separation.
Our technique was the first to infer invariants with alternations [28], and is the only
system able to infer invariants for five challenging distributed protocols requiring
alternations (Section 8.3.2).

An example of a separation query (where structures are represented as undirected
graphs) and a possible solution is given in Figure 1.1. The query is the set of labeled
structures, and the problem is to generate a formula that is satisfied by the positive
structures and is not satisfied by the negative structures. In this query, the structures
labeled positive all have edges that form triangles, if they exist. In the negative
structures, there is at least one edge that is not part of any triangle. A property
that separates these structures is thus “every edge is part of a triangle.” To create a
concrete formula from this property, we make use of a relation e(x,y) representing
when vertices xz,y are connected by an edge, and let quantification range over vertices.
We can then quantify over edges using a formula of the form Vz,y.e(x,y) = (...).
To express that x,y is part of a triangle, we say “there is a vertex z connected to

both x and y,” or formally 3z.e(x, 2z) A (y,z). Putting this together, we say that



CHAPTER 1. INTRODUCTION 3

Vr,y.e(z,y) = Jz.e(x,z) Ae(y,z) is a separator of these structures, and thus a
solution to the separation query.

We consider separators expressed in uninterpreted first-order logic. The separability
problem has some connections to graph isomorphism [24], Boolean function learning
[5], and interpolation [34]. If arbitrary first-order formulas are permitted, then it
is trivial to separate any two finite sets of distinct structures. However, generating
such separators ends up owverfitting to the specific structures and fail to generalize
to new positive and negative structures. A separation algorithm prone to overfitting
will require more labeled structures to generate a specific desired formula, which can
significantly increase the cost of invariant inference. We propose formulas with at
most k quantifiers in prenex normal form (k-prenex formulas) as an interesting class
of separators, and study its theoretical overfitting potential. In particular, the division
into a prefix quantifier structure and a quantifier-free body (the matriz) is critical for
our separation algorithm, which leverages the power of existing SAT solvers.

We show that some other separability problems, such as quantifier-depth k& formulas,
are in P. We show that for fixed k > 2, the k-prenex separability problem is NP-
complete. One direction of the proof reduces a given SAT problem to a carefully
constructed set of highly symmetric structures that force the separator to encode an
assignment to the SAT problem in the matrix (Boolean) part of the formula. By using
the two player game semantics of first-order logic, we show that the separability of
this set of structures is insensitive to permutations of the quantifiers, and depends
only on whether the formula has the right number of ¥V and 3 quantifiers.

The other direction of the NP-completeness proof is given by our algorithm, which
reduces separation to SAT. We develop the connection to SAT by showing that the
quantifier structure can be eagerly computed up front, leaving only a SAT problem
that corresponds to a search for the Boolean part of the formula. While prenex
form improves the generalization of the quantifier part of the formula, our algorithm
also uses a new form for the Boolean structure, k-term pDNF. This class of Boolean
formulas is inspired by the implication structure of human-written invariants and
allows for both limited conjunction and disjunction while keeping the search space

manageable compared to traditional conjunctive or disjunctive normal forms (CNF
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or DNF). In particular, many invariants have the general structure “for all objects
satisfying some constraints, there exists an object satisfying some other particular
properties,” which is the same structure as the formula in Figure 1.1. Many of the
lemmas that arise in our evaluation would require many clauses in CNF, but are only
2-term pDNF. We extend separation to search for lemmas of this form, leading to a
reduced search space compared to CNF or DNF, resulting in both faster inductive
generalization and less overfitting.

Many recent successful invariant inference techniques, including ours, are based on
PDR/IC3 [4, 9]. PDR/IC3 progresses by building a collection of lemmas, organized
into frames labeled by number of steps from the initial states, until eventually some
of these lemmas form an inductive invariant. New lemmas are generated by inductive
generalization, where a given (often backward reachable) state is generalized to a
formula that excludes it and is inductive relative to a previous frame. Inductive general-
ization therefore plays a key role in PDR/IC3 implementations. Specifically, extending
PDR/IC3 to a new domain of lemmas requires a suitable inductive generalization
procedure.

While separation can be used naively as a black-box to implement inductive
generalization using a refinement loop with an SMT solver (28], this does not scale to
challenging protocols such as Paxos and its variants. These examples require invariants
with many lemmas (up to 44) and many quantifiers (up to 6 or 7) in each lemma,
and the search space for quantified separators explodes as the number of sorts and
symbols in the vocabulary and number of quantifiers increases.

When targeting complex invariants, there are two main challenges for inductive
generalization: (i) the run time of each individual query; and (ii) overfitting, i.e.,
learning a lemma that eliminates the given state but does not advance the search
for an inductive invariant. We tackle both problems via two strategies: the first
integrates inductive generalization with separation in a breadth-first way, and the
second leverages our new k-term pDNF form for the quantifier-free Boolean structure
of the separators.

Integrating quantified separation with inductive generalization enables us to effec-

tively use a breadth-first rather than a depth-first search strategy for the quantifiers
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of potential separators: we search in multiple parts of the search space simultaneously
rather than exhaustively exploring one region before moving to the next (Section 7.2).
Beyond enabling parallelism, and thus faster wall-clock times, this restructuring can
change which solution is found by allowing easy-to-search regions to find a solution first.
We find that these easier-to-find formulas generalize better (i.e., avoid overfitting),
and also result in faster subsequent queries.

We evaluate our technique on a benchmark suite that includes challenging dis-
tributed protocols. Inferring invariants with quantifier alternations has recently drawn
significant attention, with recent works ([16, 19, 17]) presenting various techniques for
this problem. Our experiments show that our separation-based approach significantly
advances the state of the art, and scales to three Paxos variants that are unsolved by
other techniques. We also present an ablation study that investigates the individual
effect of key features of our technique.

Finally, we summarize our findings and discuss the implications of our results and
the possibilities for future work. In particular, we identify important steps to make
automated invariant inference practical for real systems, such as relaxing the logic
restrictions that enable efficient SMT solving, and extending separation to interpreted

domains such as arithmetic.

1.1 Overview

This dissertation is structured into three main parts: (1) introducing quantified separa-
tion, (2) developing an algorithm to solve separation and presenting a complexity proof
of NP-completeness, and (3) presenting a variant of PDR/IC3 that uses separation
to infer invariants for complex distributed protocols. Throughout, we will transition
from viewing separation as a computational problem on its own, to viewing it as a
tool for invariant inference.

We begin in Chapter 2 by presenting the preliminary definitions required to
understand our contributions, including a description of the logic we use and our
representation of transition systems. This is important because it determines the

kinds of systems we can model and thus infer the invariants for. We also present a
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review of related work. In Chapter 3, we then define the problem of separation itself,
and select depth-limited prenex formulas as the class of separators.

In Chapter 4, we present our algorithm for separation, which we introduce gradually.
Our algorithm reduces separation to SAT, which forms one half of our complexity
proof for the corresponding decision problem. We also present extensions to the
algorithm, including using k-pDNF matrices for better generalization and a strategy
to limit formulas to the EPR logic fragment. In Chapter 5, we then show separation
is NP-hard. Together with the reduction to SAT, this shows our decision problem is
NP-complete, and justifies our use of the complexity of a SAT solver.

We consider the problem of invariant inference in Chapter 6. We review the
problem of invariant inference, and present two existing inference algorithms, ICE
learning and PDR/IC3. In Chapter 7, we present our variant of PDR/IC3 that uses
separation to implement inductive generalization, one of the essential components of
PDR/IC3. In Chapter 8, we evaluate both separation on its own and our PDR/IC3
variant on a benchmark of difficult invariant inference problems. Finally, Chapter 9

discusses possibilities for future work and summarizes our contributions.

1.2 Contributions

This work makes the following contributions:

1. The introduction of quantified separation as a new computational problem
(Section 3.1), and an exploration of the potential classes of formulas used for
separation leading to the definition of k-SEP using bounded prenex formulas
(Section 3.2.3)

2. An algorithm to solve k-SEP by translation to SAT (Chapter 4)
3. A proof that k-SEP is NP-complete (Chapter 5)

4. A syntactic form of lemmas (k-pDNF, Section 4.5) that is well-suited for invari-

ants with quantifier alternations
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5. A variant of PDR/IC3 (Chapter 7) built on quantified separation that can infer
the invariants of many complex distributed protocols, some of which are unsolved

by other state-of-the-art tools

6. A comprehensive evaluation (Chapter 8) on a large benchmark suite including
complex Paxos variants, comparisons with a variety of state-of-the-art tools
[19, 16, 17, 27], and an ablation study exploring the effects of key features of

our technique



Chapter 2
Background

We begin by presenting essential definitions and concepts from formal logic. We will
then explore how to model distributed protocols with the transition systems subject
to our restrictions. Finally, we will present a summary of related work, both prior

and concurrent.

2.1 Preliminaries

2.1.1 First-Order Logic

We use first-order, many-sorted logic with equality. Formulas in this logic are defined
relative to some signature naming the uninterpreted sorts, and the constant, relation,
and function symbols and their sorts. We consider only finite signatures, i.e. ones
with a finite number of sorts and symbols. Terms are constants, variables, or function
symbols applied to other terms. Examples include z, f(y), and g(z, f(z)). Atoms
are a relation symbol or equality applied to terms of appropriate sorts, and literals
are atoms or their negation. Examples of atoms include p(x), x =y, and r(z, f(y)).
Finally, formulas are the closure of literals under conjunction, disjunction, negation

and quantification. An example formula over a signature of two sorts s; and s is

Vo sy 3y sq. (plz) A—r(z,y)) Vo = f(y).
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A standard result in logic is that any formula is equivalent to one in prenex normal

form, in which all quantifiers are lifted to the front of the formula:*

V. PAQ

(V. P) - )
(Vz. P)VQ=Vz.(PVQ)
(Jz. PYANQ =Fz. (PNQ)
(Jz. P)VQ=3x.(PVQ)
—Vz.P = dz.-P
—Jx. P =Vz.-P

For such prenex formulas, the quantifier part is called the prefiz and the remaining
Boolean structure is called the matriz (usually denoted ).

A structure M over some signature S, is a set of sorted elements, along with a
well-sorted interpretation for each constant, relation and function symbol of S. We
only consider finite structures, i.e. ones in which the set of elements is finite. We
assume all sorts have at least one element. An assignment is a mapping, o, from
variables to elements of M. A structure M may be augmented with o to form M U o
by adding the variables as new constants interpreted according to o. We say that a
structure M satisfies a formula p, written M = p, if p is true when its symbols are

interpreted according to M. In this case, M is known as a model of p.

2.1.2 Game Semantics of Logic

The standard semantics for first-order logic may be defined via a two player game,
with one player as V and one as 3 [21]. We use a semantics simplified to answer
M = p for prenex formulas p with matrix ¢: the two players take turns picking
appropriately sorted elements according to their order in the prefix, with the game

ending in some assignment ¢ when the prefix is exhausted. The 3 player wins if and

'We assume alpha-renaming to avoid capturing free occurrences of the quantifed variable when
lifting a quantifer, and that all sorts are non-empty.
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only if M Uo |= . The semantics becomes: M |= p if and only if 3 has a winning
strategy; otherwise V has a winning strategy and we say M [~ p. The best-known
algorithms for deciding M |= p are exponential in the number of quantifiers of p, as
in the worst case they explore all the exponentially many assignments of quantified
variables.

Consider the structure M with three elements ey, es, e3 and a relation p defined by
—p(ey1), ples), p(es). For the formula V. 3y. z # y A p(y), 3 has a winning strategy: if
x is eq, pick es, otherwise pick e;. The advantage of using game semantics is that we
can consider how strategies in more than one structure must relate, a technique we

will put to good use in Chapter 5.

2.1.3 Quantifier-Free Types

Intuitively, two tuples aq,...,ar € M, by,..., by € N of elements from two structures
over the same signature have the same quantifier-free type, or QF-type, if they cannot
be distinguished by a quantifier-free formula. Formally, the quantifier-free type of
ai,...,ap € M is the set of quantifier-free formulas with free variables x4, ..., x; that
are satisfied by M and the assignment [a;/x1, . .., ar/x]. We also define the b-bounded
QF-type to only allow formulas in which all function symbols are nested at most b
levels deep.

Intuitively, we can compute a representation of the b-bounded QF-type by enumer-
ating all possible atomic formulas from the signature and x4, ..., x; with maximum
function nesting b, and then collecting only those that satisfy M U [ay /21, ..., ax/xk].
We can ignore trivial equivalence for equality by omitting = = and keeping only one
of v =y, y = x. For example, if we let M be a structure with elements eq, e5 and
a single relation p defined by p(e;) and —p(es), the QF-type is {p(z1)} for elements
eq, e, and {p(x1), p(x2), 1 = xo} for elements ey, e;. In this work we will only make
use of b-bounded QF-types.
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2.1.4 Transition Systems

We consider a transition system to be a set of states as all structures over some signature
S that satisfy an axiom Az, a set of some initial states satisfying Init, a transition
formula 7Tr which can contain both ordinary constant, predicate, and function symbols,
representing values in the pre-state, and primed symbols (z’) representing values in
the post-state, and safe states satisfying the safety property Safe. We define bad
states as = Safe. We define single-state implication, written A = B, and two-state

implication across transitions, written A = wp(B), as:

A= B =UNSAT(AA Az A\ =B) (2.7)
A = wp(B) = UNSAT(A A Az A Tr A Add N —B') (2.8)

where UNSAT(P) = -3dM. M |= P and P’ is P with all symbols from the background
signature replaced with primed versions. Note that for A = wp(B), we augment the
signature with the primed symbols. Thus if a satisfying structure M exists it will
have two interpretations for each original symbol: one for the pre-state and one for
the post-state.

The initial states and transition relation together define reachable states, which are
all initial states plus states which are accessible with a finite sequence of transitions
from some initial state. A transition system is itself safe if all reachable states are

safe states, or equivalently if no bad states are reachable.

Example Transition System. We present an example of a specific transition
system, expressed in mypyvy syntax, in Figure 2.1. This simple consensus protocol,
one of the simplest examples from our benchmark (Section 8.1), is a good exploration
of how to model a formal system using our formulation of transition systems. We first
give an overview of the operation of the algorithm, and then discuss the specifics of
the syntax.

The system is modeling a simplified single-round distributed consensus protocol,
with the goal allowing multiple nodes to decide on a unique, abstract value. Each

node is part of some quorum, given by the relation member. The transition relation
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sort value
sort quorum
sort node

mutable relation voted(node)

mutable relation vote(node, value)
mutable relation decided(value)
immutable relation member (node, quorum)

axiom forall Q1, Q2. exists N. member (N, Q1) & member (N, Q2)

init forall N. !voted(N)
init forall N, V. !vote(N, V)
init forall V. !decided(V)

transition cast_vote(n: node, v: value)
modifies voted, vote
& 'voted(n)
& (forall N, V. new(vote(N, V)) <-> vote(N, V) | N=n & V = v)
& (forall N. new(voted(N)) <-> voted(N) | N = n)

transition decide(v: value, q: quorum)
modifies decided
& (forall N. member(N,q) -> vote(N,v))
& (forall V. new(decided(V)) <-> (decided(V) | V = v))

safety forall V1, V2. decided(V1) & decided(V2) -> V1 = V2

invariant forall N, V. vote(N,V) -> voted(N)

invariant forall N, V1, V2. vote(N, V1) & vote(N, V2) -> V1 = V2

invariant forall V. decided(V) -> exists Q. forall N. member(N, Q) -> vote(N, V)

Figure 2.1: Example transition system, specifying the signature (sort, mutable or
immutable relation), axioms (axiom), initial states (init), transitions (transition), and
a safety property (safety). While not part of the transition system itself, a human-
written invariant is also given.



CHAPTER 2. BACKGROUND 13

is split into two named parts (cast_vote and decide), which are each disjuncts of
the full transition relation, i.e. two states are related by the full transition relation
if they are related by either transition. Each node can vote for some value, using
the cast_vote transition. The system ensures each node can only vote once using
voted relation. The resulting uniqueness of votes is something that needs to be proven
with an invariant: while straightforward, it does not follow immediately from the
definition of the system and its transitions. The decide transition checks that all
members of a quorum have voted for a value, and then makes that value as a decision.
The safety property states that at most one value is decided on. The correctness
of the algorithm depends on the uniqueness of votes, the requirement for a quorum
to unanimously vote before a decision, and the fact that any two quorums overlap:
together, these ensure at most one value is decided on. The inference problem is to
generate an invariant sufficient to prove the safety property. This example includes a
human-written invariant, which is a solution to the corresponding inference problem.
We discuss invariants further in Chapter 6.

Note this algorithm is very abstract. We could make it more closely reflect an
implementation by e.g. splitting the existing atomic vote process into send_msg and
recv_msg, with a vote_msg() relation to model the messages in flight. Adding these
kinds of details makes the system more faithful to an implementation, but typically
makes the required invariants larger and harder to infer. The flexibility of transition
systems allows us to model systems other than distributed protocols: our benchmark
(Section 8.1) includes a hardware cache coherency system.

Concretely, in mypyvy syntax we represent the transition system’s signature with
sort, relation, function, and constant declarations.? The interpretation of immutable
symbols are not changed by any transitions, while mutable ones may have their
interpretations changed by the action of transitions. We can use one or more axiom
declarations (interpreted conjunctively to form Az) to specify properties that all states
must have. Quantified variables always quantify over a particular sort, but the sort can
be inferred from context and is not written. Here the axiom constrains the quorums

so that any two overlap by at least one member node. Any property that can be

2Constants and functions are not used in this example.
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written as a first-order formula is suitable, which allows us to model objects such as
total orderings that do not otherwise exist in uninterpreted logic.

The initial states and safety property are represented by one or more declarations,
each interpreted conjunctively to form Init and Safe. The first init states that in
initial states, all nodes have not voted. The transitions are a bit more involved:
each transition allows arguments (e.g. n and v for cast_vote) that are implicitly
existentially quantified. The body of the transition contains a modifies clause, which
ensures that symbols not mentioned in this clause preserve their interpretations
between the pre- and post-states. Within the new(...) syntactic form, all symbols
from the system signature are primed.?> The body can contain restrictions on the pre-
state alone or relations between the pre- and post-state: in the cast_vote transition,
the transition requires the node n to not have voted in the pre-state, and the voted
relation in the post-state (i.e. new(voted(...))) is updated to hold for n but be
unchanged for other nodes. The overall abstract transition relation for this example
will be of the form Tr = (In,v. P) V (Jv,q.Q), where P and @ are the bodies of
the transitions (including restrictions from modifies clauses). Splitting the transition
disjunctively turns a large UNSAT query from Equation (2.8) into multiple smaller

and hopefully easier queries.

2.2 Related Work

Our work draws on ideas from logic and machine learning, and is motivated by
applications of quantified formulas in verification. We also discuss other techniques

for invariant inference of quantified formula.

2.2.1 Logical Separability

Distinguishability of two structures with a quantified formula has been investigated
through the study of Ehrenfeucht-Fraissé (EF) games [23]. These games characterize

the structures that may be separated by a formula with quantifier rank £, which

3Note quantified variables and argument variables are not primed within new.
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is the maximal depth of a quantifier in the formula. EF games are traditionally
only defined for a pair of structures, while we are interested in separating sets of
structures. A related usage is graph isomorphism problems. Determining whether a
pair of structures can be separated by any first-order formula is the same question as

asking if they are isomorphic, which is a generalization of graph isomorphism.

2.2.2 Interpolants

Separators are related to the concept of interpolation, which has been applied to
software and hardware verification [34, 35]. An interpolant can be viewed as a
separator between sets of states described by formulas. While interpolants separate
symbolic sets of states and we consider finite, concrete sets of states, the two are
connected because one can be used to implement the other (i.e., by creating a formula
that encodes a finite set, or in the other direction by using counterexample-guided
refinement of the concrete sets).

Existing work finds quantified interpolants for alternation-free formulas [8]. Another
existing interpolation technique [1] is similar to this work in that it reduces to SAT
and minimizes a syntactic measure of complexity, but it considers quantifier-free

interpolants over the theory of linear rational arithmetic.

2.2.3 Boolean Learnability

The problem of learning a Boolean function from examples can be seen as a separability
problem where the formula is restricted to propositional logic. This problem is
often investigated in models like PAC (probably approzimately correct) learning from
statistical machine learning theory, where the separator need only be probabilistically
correct on the examples. In this work, we are interested only in exact separators
that label all examples correctly. For example, [5] shows that in the exact learning
setting, only a polynomial number of examples are required if the true separator has
both a short CNF and DNF representation. In contrast, the worst case to learn an

arbitrary Boolean function of n inputs requires 2" examples, one for each input point.
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Recently, [11] showed that for some classes of Boolean functions, learning inductive

invariants is harder than exact learning.

2.2.4 VC dimension

The VC dimension of a class of classifier functions F over some domain D is the size
of the largest set C' C D that the class can shatter. A class F shatters a set C' if
for any labeling of elements of C' as positive and negative, a function from F assigns
that labeling. Stated another way, the VC dimension is the largest set that can be
separated by F in every possible way. While VC dimension was originally defined
for statistical learning [44], it has been applied to study exact learning for program

analysis [42].

2.2.5 Quantified Formulas in Verification

Despite their computational expense and possible undecidability, quantified formulas
are used in many verification tools. In Ivy [39], Alloy [26], and Dafny [31], quantified
formulas including quantifier alternation are part of the user’s interface to the system.
Existing invariant inference techniques based on IC3/PDR [4, 9] such as PDRY [27]
are restricted to universally quantified invariants, and systems that would be modeled
naturally with existential quantifiers must be manually transformed (if possible) to

eliminate existential quantifiers.

2.2.6 Extensions of PDR/IC3.

The PDR/IC3 [4, 9] algorithm has been very influential as an invariant inference
technique, first for hardware (finite state) systems and later for software (infinite
state). There are multiple extensions of PDR/IC3 to infinite-state systems using SMT
theories [22, 29]. [27] extended PDR/IC3 to universally quantified first-order formulas
using the model-theoretic notion of diagrams. [18] applies PDR/IC3 to find universally
quantified invariants over arrays and also to manage quantifier instantiation. Another

extension of PDR/IC3 for universally quantified invariants is [32], where a quantified
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invariant is generalized from an invariant of a bounded, finite system. This technique
of generalization from a bounded system has also been extended to quantifiers with
alternations [16]. Recently, [45] suggested combining synthesis and PDR/IC3, but
they focus on word-level hardware model checking and do not support quantifier
alternations. Most of these works focus on quantifier-free or universally quantified
invariants. In contrast, we address unique challenges that arise when supporting
lemmas with quantifier alternations.

The original PDR/IC3 algorithm has also been extended with techniques that
use different heuristic strategies to find more invariants by considering additional
proof goals and collecting reachable states [20, 25]. Our implementation benefits from
some of these heuristics, but our contribution is largely orthogonal as our focus is
on inductive generalization of quantified formulas. Generating lemmas from multiple
states, similar to multi-block generalization, was explored in [30].

[33] suggests a way to parallelize PDR/IC3 by combining a portfolio approach
with problem partitioning and lemma sharing. Our parallelism is more fine-grained,

as we parallelize the inductive generalization procedure within PDR/IC3.

2.2.7 Synthesis-Based Approaches to Invariant Inference.

Synthesis is a common approach for automating invariant inference. ICE [15] is a
framework for learning inductive invariants from positive, negative, and implication
constraints. Our use of separation is similar, but it is integrated into PDR/IC3’s

inductive generalization, so unlike ICE, we find invariants incrementally.

2.2.8 Enumeration-Based Approaches.

Another approach is to use enumerative search, for example [10], which only supports
universal quantification. Enumerative search has been extended to quantifier alterna-
tions in [19], which is able to infer the invariants of complex protocols such as some

Paxos variants.



Chapter 3
Quantified Separation

We give a formal definition of the quantified separation problem, both as a compu-
tational primitive useful for invariant inference, and as a decision problem. We also

consider what class of formulas to allow as separators.

3.1 Definition of Separation

We take inspiration from the problem of linear separability from machine learning
and statistics, where two sets of points in space, one labeled positive and the other
negative, are separable if there is a hyperplane (i.e., a linear expression) such that the
positive points are in the positive half-space and the negative points are in the negative
half-space (Figure 3.1). If there is no such plane, then the points are inseparable.
We can define quantified separation analogously, where we replace points with first-
order structures and the hyperplane by a (possibly quantified) first-order formula from
some predetermined space of formulas P. The half-spaces are replaced by satisfaction,

i.e., p must be true for the positive structures and false for the negative ones. Formally:

Definition 1 (Separability). Given a signature S and set of formulas Pg, the sets

of structures A and A~ defined over S are separable if and only if there ewists a

18
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Figure 3.1: Example of two sets of points that are linearly separable and not linearly
separable, respectively.

formula p € Pg such that:

MEp forMe A" (3.1)
MW¥Ep forMe A (3.2)

If no such formula exists, we say A™ and A~ are inseparable or the problem is UNSEP.

We are particularly interested in the case where Pg includes quantifed formulas, as
this will allow us to find invariants with quantification. In particular, the algorithm
we will use for separation will permit both universal and existential quantification,
nested arbitrarily. This is what distinguishes our work from prior work on invariant
inference. An example of such a formula with alternations was given in Figure 1.1. In
that example, a quantifier alternation is necessary to separate the two sets.!

We can call the structures in A" positive constraints, and the structures in A~
negative constraints. It is useful for invariant inference to have a third kind of constraint,
implication constraints, pairs of structures (M, M') € A7, and to define an extended

separation problem:

Definition 2 (Extended Separability). Given a signature S and set of formulas Pg,

sets of structures AT, A=,A™ are separable if and only if there exists a formula p € Pg

1 To see this, observe that a purely universal or existential formula cannot separate a structure
from a sub- or superstructure (i.e. structures obtained by removing or adding elements without
changing the relations between remaining or existing elements), respectively. In these sets, the
positive single point is a substructure of any negative example, and the negative line segment is a
substructure of the last three positive examples.
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such that:
MED for M € A" (3.3)
MW p for M € A~ (3.4)
(M Ep) = (M = p) for (M, M') € A7 (3.5)

An implication constraint expresses the constraint that if a formula is satisfied for
the first structure, it must also satisfy the second. These constraints, when the pair of
structures satisfy a transition relation, are useful for generating inductive formulas.
While implication constraints are important for invariant inference, they play relatively
little role in either the algorithm for separation or complexity proof, so we will use

Definition 1 until we discuss invariant inference in Chapter 6.

3.2 Separability as a Decision Problem

To define a decision problem, and thus allow ourselves to consider the complexity of
separation, we need to fix a class of formulas to consider as separators. If we allow
arbitrary first-order formulas then the problem is trivial: we can write down a formula
that satisfies exactly a given structure and a disjunction of such formulas for the
positive structures will separate any set, provided no structure is both positive and
negative. Such formulas have at least as many quantifiers as structure elements, so it is
natural to consider limiting the quantifiers in some way. We focus on the separability

problem restricted to prenex normal formulas with at most k& quantifers (k-prenez):

Definition 3. k-SEP is the decision problem of determining whether positively and
negatively labeled structures AT, A~ are separable by a prenex formula with at most k

quantifiers.

In addition, we can define a related separation problem for when we are given a

particular prefix to separate with:
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Definition 4. fived-k-SEP is the decision problem of determining whether a given set
of positively and negatively labeled structures is separable by a prenex formula with a

specified quantifier prefix of size k.

For example, Figure 1.1 is separable in 3-SEP but not in 2-SEP. Similarly, it is
separable in 3-fixed-SEP for the prefix VVd but not for the prefix 333.

We will now explore the properties of other classes of formulas, such as those
with quantifiers nested up to depth k (k-depth). We will show how these properties
relate to those of k-prenex, and explain why some theoretical properties indicate that

k-prenex might be a good choice for practical separation.

3.2.1 k-Depth Separability is in P

The quantifier-depth of a first-order formula, p, is the maximum depth of nesting of
quantifiers in p. It is easy to see from known results [24] that for each fixed k, k-depth
separability is in P by computing the model-theoretic types of the structures. The
C-type, for some class of formulas C| is the set of all formulas from C' true of that
structure. If two structures have the same type, they are inseparable. If the types are

different then there is a formula in one set and not the other that can be the separator.

Proposition 1. For a fixed relational signature, given ¢ positively labeled and m
negatively labeled structures, where each is of maximum size n and all have total size
s, testing if they are k-depth separable, and if so, finding a depth k separator, can be
done in time O(s + (£ + m)n").

The k-dimensional Weisfeiler-Leman algorithm, known for its applications to graph
isomorphism, computes a coloring of all k-tuples of vertices in an input graph. As
[24] shows, this coloring of k-tuples is exactly the C*-type of the k-tuple, where C*
is first-order logic with a fixed set of k variables x1,...z; (which may be arbitrarily
requantified) and counting quantifiers.

The time to compute this coloring is given as follows:

Proposition 2. We can compute the C* types of a given n-vertex graph in time
O(n*logn). [24]
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The algorithm in Proposition 2 works just as well, in the same running time, for
LF, first-order logic with at most k variables but no counting quantifiers. Furthermore,
this algorithm works by incrementally computing the L or S* type of quantifier-depth
0,1, 2, ..., until a fixed point is reached. Stopping after k£ rounds reduces the time
needed to compute the depth k L* type to just O(n*). In depth k, having at most k
variables is no restriction. Furthermore, the same algorithm works for any relational

structure with relations of arity at most k.

Corollary 1. Given a relational structure of size s, universe size n and mazimal arity

at most k, we can compute its depth k type in time O(s + nk).

Finally, to prove Proposition 1, we simultaneously compute the depth k£ types
of the given structures. They are k-depth separable if and only if the set of types
occurring in the positive structures is disjoint from the set of types occurring in the
negative structures. In this case, a depth k separator is just a disjunction of the types
of the positive structures. We can separate structures over signatures with function
symbols as long as the nesting in the allowed separators is bounded, as fresh relations
can be introduced to represent the finite set of atoms containing function symbols.?

These disjunctive k-depth separators encode the positive structures they separate
directly, and intuitively we do not expect them to generalize well. In contrast with
k-depth formulas, k-prenex formulas must share the k quantifiers amongst all the
structures, so we might expect these separators, when they exist, to find some common
property of the structures. One theoretical tool to analyze this intuitive overfitting

behavior is by calculating the VC dimension of these classes.

3.2.2 VC Dimension of k-Depth is Exponentially Larger than

k-Prenex

We analyze the VC dimension of k-depth and k-prenex formula classes over a fixed

signature which has one binary relation r and no other symbols (besides equality).

2For example, introduce fresh relations ' (z,y) = r(f(x),y), r'2(z,y) = r(f(x), 9(y)), etc. and
remove function symbols. When a separator exists, these relations can be expanded to obtain a
separator of the original structures.
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k-Prenex A bound on the VC dimension of a class can be obtained based on the
size of the class. Recall that to shatter a set of size n, we need at least 2™ different
functions, so the VC dimension is bounded above by the logarithm of the size of
the class. There are 2% different prefixes, and 2k? different atoms (k? for both the
relation and equality). The number of matrices is then 22%2, and the overall number of
ok+22+” 92k?

formulas is . Thus the VC dimension of k-prenex formulas is at most k +

k-Depth We show that k-depth formulas may shatter a set of structures which
encode a large number of disjoint graphs. Let GGj be the set of all distinct unlabeled
directed graphs without self-loops on k — 1 vertices. For a graph g € G, we construct
a graph gadget ¢’ as follows: Add a new vertex v, with a self loop, r(vy, v,4) plus edges
to all the vertices in g. This new vertex prevents formulas designed to match one
gadget from spuriously matching a subgraph of another gadget. Now we build a set of
structures S with all 2/9%! patterns of presence or absence of graph gadgets for graphs

g € G. For each g, we can construct a formula:

Jzg, 1, .., Tp_1. T(T0, To) AT(T0, 1) A+ AT(T0, Tp—1)

A (50 are related as in g)

This formula is true precisely when the gadget for g appears in the structure. To
isolate a particular structure, we can conjoin the formulas for the present graphs with
the negations of the formulas of all the absent ones. Then by taking the disjunction
of these formulas for a set of structures, we can separate any subset of S. Thus the
VC dimension of k-depth formulas is at least 2/9* which is exponentially larger than
k + 2%%° because |Gy| is exponential in k [14]. These results can be extended to other
signatures as long as they have at least one non-unary relation (to encode the graph

gadgets) and the function nesting depth is fixed (as in Section 3.2.1).

3.2.3 Summary of Separator Classes

In addition to the classes of separators we have already looked at, we can consider a

few more related classes:
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Table 3.1: Summary of important properties of separator classes. VC dimension is for
the signature with a single binary relation.

AJV-
Class Sep. Complexity VC-dim closed?
full FOL graph-iso. 00 v
alternation-free graph-iso. 00 v
v* /3 NP-complete 00
ATEL pt < 92
k-depth pt > 2lGkl v
k-prenex NP-completef < k4 22

ffor fixed k and signature.

1. Alternation-free: Formulas in which 3 does not appear inside V and vice versa.

2. V*/3*. A pair of classes, each consisting of an arbitrary number of quantifiers of
one kind. These classes are closely related because swapping the labels on the

structures negates the separator and switches V < 4.

3. Vk /3¢ A pair of classes, each with prefixes of at most k quantifiers of one kind.

Each is a subclass of k-prenex formulas.

If a class of formulas is closed under A and V, a separator of that class exists if
and only if every pair of positive and negative structures can be separated by possibly

different formulas. Let ®;; separate positive structure ¢ from negative structure j.

Then the formula:
Vv (/.\ %‘)
i \Jj

is true for positive structures and false for negative structures. Thus separator classes
closed under A/V are actually not desirable, because they allow a separator to be
constructed from pairwise separators.

The pairwise argument allows us to give the complexity of full FOL and alternation-
free separators as equivalent to graph isomorphism, because a pair of structures are
separable with these classes if and only if they are not isomorphic. Isomorphism of
first-order structures is equivalent to graph isomorphism, which is in NP but not

known to be NP-complete or in P. The complexity of V*/3* is equivalent to subgraph
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isomorphism because the structures are separable if and only if no negative structure
is a substructure of a positive structure. Subgraph isomorphism is known to be
NP-complete [6].

To summarize, for each of these classes we give the complexity of the separability
decision problem, the VC dimension, and whether it is closed under V and A in Table 3.1.
If we adopt the common hypothesis that low VC dimension helps avoid overfitting
[42], then desirable candidates are V*/3* and k-prenex. While ¥*/3* has desirable
properties including low computational complexity, purely universal or existential
formulas cannot express invariants of many systems, including Paxos, its variants, and
even the simple consensus protocol in Figure 2.1. We thus propose k-prenex formulas
as a separator class k-SEP, because it is expressive and our evaluation will show that
it is often tractable in practice. One interesting property of the complexity of these
classes is that the complexity of k-prenex is higher than either k-depth or V* /3%, while
in terms of inclusion it sits between the two.

Now that we have justified our choice of definition for k-SEP, we will give an
algorithm for separation, and then present a complexity proof that together establish
k-SEP as NP-complete.



Chapter 4
Algorithm for Quantified Separation

We begin by considering separation with formulas in the quantifier-free case, and
then add support for quantifiers. After this explanation, we present our separation

algorithm formally, and consider important extensions to the base algorithm.

4.1 Quantifier-Free Separation

We start with an example of a signature and structure and investigate how separation
can be solved in this setting. Our signature consists of a single sort A, a constant
¢ : A, and two unary relations p(z : A) and ¢(z : A). Candidate separators are thus
formulas such as p(c), =¢q(c), =p(c) V q(c), etc. We can define a structure M; over this

signature:

A= {ao, al}

C = Qo
p:{agv—>—|',a1 |—>J_}

q={ap— L,a1 — 1}

Now if we consider our candidate separators, we see that M; = p(c), My = —q(c),
and M; = —p(c) V q(c). Recall that the names of elements (ag, a;) cannot appear in

formulas: they are not part of the signature, and only matter when evaluating atomic

26
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formulas (e.g. p(c) — p(ag) — T). Essentially, the truth of a formula is determined
solely by the truth values of its atomic formulas, and so two structures that induce
the same truth values to all atomic formulas must be assigned the same truth value by

the separator. For M, we can enumerate all of the atomic formulas and their values:
QF(My) ={c=c— T,p(c) —~ T,q(c) — L} (4.2)

This list is isomorphic to the quantifier-free type of the empty tuple (Section 2.1.3),
so we will refer to such a list of atomic formula values as a QF-type. It is straightforward
to explicitly compute a representation of the QF-type for a structure, as long as we
bound the depth of function symbol nesting to ensure there are a finite number of
atomic formulas.

The algorithm for quantifier-free separation is thus to compute the QF-type of
each structure in A" and A~. If there is any overlap between the two QF-type sets,
then they are inseparable. If the sets of resulting QF-types are disjoint, then they
are separable. In the separable case, we can compute an explicit separator formula.
First, we can construct a formula that is true for exactly one QF-type by conjoining
all atomic formulas exactly once, with negations for atomic formulas the QF-type
maps to false (e.g., for QF (M) this is ¢ = ¢ A p(c) A =g(c)). Then we can take the
disjunction of all of these formulas for the QF-types in positive structures; essentially,
we are constructing a formula that is true exactly for the QF-types we observe in the
positive structures. Note that this construction produces extremely large formulas

and is prone to overfitting; we address this overfitting in Section 4.4.

4.2 Adding Quantification

Now we assume we want to separate with a single universal, i.e., find a formula V. ¢,
if it exists. One way of expressing the semantics of V is to say that M | Vz. ¢ is
equivalent to M U [a;/z] = ¢ for all a; € A. From the perspective of the quantifier-free
matrix ¢, we now have an additional symbol x to form atomic formulas, and this

quantified variable is treated the same as a constant from the original signature. We



CHAPTER 4. ALGORITHM FOR QUANTIFIED SEPARATION 28

(Vv arVa) AN gV a) A (gV g5V qy)

V@V DV g3 BV Vg,

do qQ () qs o qs [ qs qy

Figure 4.1: Example structure satisfaction formula, and the tree of assignments for a
3-element structure and the prefix V4. Each edge represents assigning one element
to a quantified variable. The specific pattern of QF-types in the leaves is purely for
illustration.

can thus reuse the reasoning about QF-types, as long as we compute the QF-types of

the input structures augmented with assignments to the quantified variables:

QF (M, Ulao/x]) ={c=c— T,p(c) = T,q(c) = T,p(x) = T,q(x) — L} (4.3)
QF (MU [ar/z]) ={c=cw T,p(c) = T,q(c) = L,p(x) — L,q(z) — L} (4.4)

If M, is a positive structure, then we require all of these QF-types to be true
under ¢, and if M; is a negative structure, we require at least one to be false. We
can extend the quantifier-free algorithm to handle a single universal by computing
the set of all QF-types of positive structures, and then reporting separable if for each
negative structure, there is at least one QF-type that is not among the positive types.

This reasoning by checking QF-type overlap is not sufficient for more complex
prefixes. If we have Vx. Jy., we need for every assignment to x, some assignment to
y that satisfies ¢, but which QF-type is picked as true might affect the choice in
other structures. Fortunately, there is already a tool for searching for these kinds of
consistent assignments of truth values: SAT queries. By translating to SAT, we can

ask a solver to compute which QF-types must satisfy .
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4.3 Separation Algorithm

We first introduce Boolean variables ¢;, the QF-type variables, which represent whether
MUo | ¢ for any M, o where QF (M Uo) =i.! We can then recursively construct a
Boolean formula for each structure M that represents whether the separator p satisfies
M in terms of the ¢;, using the correspondence between V, 3 and A, V. An example for
the prefix V4 and an unspecified 3-element structure is given in Figure 4.1. Starting
from the root, we assign each quantified variable to all possible elements, and going
back up we construct a formula by taking the conjunction or disjunction of the children
of each node depending on whether it is V or 4.

With these formulas, we can construct a query by asserting the formula directly
for positive structures, and asserting the negation for negative structures. Implication
constraints can be handled by asserting an implication between two formulas. To
complete the algorithm, we can add an outer loop that iterates over the possible
prefixes and tries to separate with each in turn.

Pseudocode for this algorithm is given in Figure 4.2. The algorithm enumerates
prefixes by size up to size k, and checks whether the given structures can be separated
by each one, exiting early if one is found. For each prefix, the algorithm constructs
and solves a SAT query built from a conjunction of formulas derived from all structure
constraints. The sat_ formula function recursively constructs a Boolean formula which
is true precisely when M |= p. The function recurses on the quantifiers in the prefix,
adding all possible values of its variable to the assignment o, and combining the
sub-formulas with A or V. When we reach ¢, the algorithm computes a b-bounded
QF-type for M, o by enumerating all finitely many well-sorted atoms a, and recording
whether M Uo = a.

To evaluate the complexity of this algorithm, we begin by observing the number
of atoms in each QF-type is a constant given the signature, b, and k. The size of

each structure formula is O(n*), where n is the number of elements in the structure.?

'Here the ¢; are indexed by the full QF-type, and so 4 is this full object and not a number.
Alternatively, we can imagine numbering the QF-types and then indexing ¢; by these numbers, which
is what our implementation actually does.

2With multiple sorts, we can take n to be the maximum size of any domain.
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def separate (structures):
prefic < "'
while size of prefir < k:
if check_prefix(prefix, structures):
return build _matriz(prefix, structures)
prefiz < next_ prefix(prefix)
return L
def check prefix(prefiz, structures):
F + {if mis positive thensat_ formula(prefiz, [|, m)
else —sat__formula(prefiz, [|, m) form € structures}
10 return A\ F is SAT?
11 // For prefix p, assignment o, structure m
12 def sat_formula(p, o, m):
13 if p is empty:

© 00 N O ok W

14 return SAT variable of QF-type of o in m
15 (Qu:S.rest) < p
16 f <+ {sat_formula(rest, o U [e/v], m) for e € mof sort S}

17 return if Q =V then (A f) else (\/ f)

Figure 4.2: Pseudocode for the separation algorithm including supporting functions.

There are O((2m)*) prefixes, where m is the number of sorts. Because the size of the
queries and number of queries are both polynomial, this reduction shows that k-SEP
is in NP. The remainder of this chapter discusses how to produce a concrete separator

formula from this reduction, as well as practical heuristics and optimizations.

4.4 Constraining Matrices

The construction of a matrix from an assignment to ¢; given in Section 4.1 will correctly
separate the structures, but it produces extremely large formulas and is prone to
overfitting. Instead of allowing arbitrary Boolean structure in matrices, we can limit
matrices to some desired syntactic form, and add constraints to the SAT query to
enforce this restriction.

For simplicity, we show how to build a matrix in conjunctive normal form, but any

desired form can be used. Our matrix will consist of n clauses of literals, and we can
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introduce variables y;, to mean literal j appears in clause k. We require that each
atom appears at most once per clause, i.e. =y, V —y; i for the two literals j, 5/ of the
same atom. If we let the constants T; ; mean that literal j is true in QF-type ¢, then
we can construct a formula which constrains the QF-type variable to have the same

truth value as the matrix in any assignment with that QF-type:

¢ < (Tio ANyoo VTig Ayro V...
AN(TioNyor VTia Ay V...)
VAN

Because the T’s are constants, this formula will simplify by effectively dropping
some of the y terms in each clause. The dropped literals will be the same between
clauses of ¢; but a different set of literals will be dropped in the definition of some
other gy. The variables y;; directly encode the resulting separator, which can be read
off directly from the assignment obtained from the SAT solver.

This process can still result in formulas that have extraneous literals, and are thus
likely to be overfit. To address this issue, we perform a local minimization step after
a successful SAT result by asking the solver if there is a solution with a strict subset
of the literals from the last solution. As long as a smaller solution exists, we repeat

this process until we find a locally minimal solution.

4.5 k-Term Pseudo-DNF

We now introduce a syntactic form for matrices that shrinks the search space relative
to other forms while still allowing common invariants with quantifier alternations to be
expressed. This form is inspired by the human-written invariants from our benchmark
(Section 8.1), but does not depend on the specifics of invariant inference. Using this
form introduces an explicit, useful bias towards formulas that are more likely to be
invariants.

Conjunctive and disjunctive normal forms (CNF and DNF) are formulas that

consist of a conjunction of clauses (CNF) or a disjunction of cubes (DNF), where
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clauses and cubes are disjunctions and conjunctions of literals, respectively: For
example, (a VbV —c)A(bVe)isin CNF and (a A —c)V (—a Ab) is in DNF. We further
define k-clause CNF and k-term DNF as formulas with at most k clauses and cubes,

respectively.
We find that both CNF and DNF are not good fits for the formulas in human-

written invariants. For example, consider the following formula from Paxos:

Vry, re, U1, Ve, q. In. (11 < 19 A proposal(ra, vy) A vy # vy

— member(n, ¢) A left-round(n, ) A =vote(n, r1,v1))

To write this in CNF, we need to distribute the antecedent over the conjunction,

obtaining the 3-clause formula:

(r1 < ro A proposal(ra, v2) A v1 # v9 — member(n, q)) A
(ry < 19 A proposal(re, ve) A vy # vy — left-round(n, 1)) A

(r1 < ro A proposal(ra, v2) A vy # vg — —vote(n, r1,v1))

When written without —, this matrix has the form —a VvV =bVcV (d Ae A —f),
which is already in DNF. Under the k-term DNF, however, the formula requires a
single-literal cube for each antecedent literal, i.e., kK = 4. Because of the quantifier
alternation, we cannot split this formula into cubes or clauses, and so a search over
either CNF or DNF must consider a significantly larger search space. To solve these
issues, we define a variant of DNF, k-term pseudo-DNF (k-pDNF), where one cube is

negated, yielding as many individual literals as needed:

Definition 5 (k-term pseudo-DNF). A quantifier-free formula ¢ is in k-term pseudo-
DNF fork>1if o =-c1Vea V... Vg, where ¢, ..., ¢, are cubes. Equivalently, ¢ is
in k-term pDNF if there exists n > 0 such that p =0,V ...V, Vo V...V ¢k, where

li,..., 0, are literals and ca, . .., c, are cubes.

Note that 1-term pDNF is equivalent to 1-clause CNF, i.e. a single clause. 2-
term pDNF correspond to formulas of the form (cube) — (cube). Such formulas are

sufficient for all but a handful of the lemmas required for invariants in our benchmark
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suite. One exception is the following formula, which has one free literal and two cubes
(so it is 3-term pDNF):

V'Ul. 3”17”27”3;”27”3'
(d(v1) = —m(n1) Au(ng,vr)) Vv

(=m(n2) A =m(ns) A u(ng, ve) A u(ng,vs) A ve # v3)

For a fixed k, k-clause CNF, k-term DNF, and k-term pDNF all have the same-size
search space, as the SAT query inside the separation algorithm will have one indicator
variable for each possible literal in each clause or cube. The advantage of pDNF is
that it can express more invariant lemmas with a small &k, reducing the size of the
search space while still being expressive. We can also see pDNF' as a compromise
between CNF and DNF, and we find that pDNF is a better fit to the matrices of

invariants with quantifier alternation (Section 8.3.3).

4.6 Lazy Exploration Optimization

One problem with the algorithm as described is that it always computes every
assignment to quantified variables, even if not all expansions are necessary. For
example, suppose we know that our matrix M satisfies p(x) = M. Then if our prefix
is VaVyVz, in a positive structure once we assign x to an element e that satisfies p(e),
we know the formula will be true without considering the assignments of y and z. We
modify the algorithm to take advantage of this fact by lazily expanding the set of
assignments: every time we get a new proposed matrix that does not actually separate
due to unconstrained assignments, we add the constraints which show why that matrix
does not work. The SAT query starts with no restrictions and is updated incrementally
until either UNSAT is produced, or a correct matrix is found. This optimization is
particularly effective if the separation problem can be solved by exploring a small
fraction of all assignments, which is often the case for prefixes with a large number of

leading universal quantifiers.



CHAPTER 4. ALGORITHM FOR QUANTIFIED SEPARATION 34

4.7 Separating in EPR

The formulas generated by separation must eventually be processed by an SMT solver
to check for a finished invariant and generate new constraints. Arbitrary quantification
can cause slow queries or divergence, as first-order logic is not decidable. To mitigate
this, we can use a fragment of many-sorted first-order logic, extended effectively-
propositional reasoning (EPR) in which satisfiability is decidable and satisfiable
formulas always have a finite model. We define EPR and then show how separation

can be modified to produce only formulas in EPR.

4.7.1 Definition of EPR

Classic effectively-propositional reasoning, also known as the Bernays-Schonfinkel-
Ramsey class, is a fragment of many-sorted first-order logic in which only constants
and relations are permitted in the signature, and formulas have a prefix 3*V* in prenex
normal form. The essence of EPR is to ensure only a finite number of ground terms can
be formed. For example, if we have a function f : s — s, i.e. from a sort s to itself, and
a constant x : s, we can form an infinite number of terms f(z), f(f(z)), f(f(f(x))),...,
which can name an infinite number of elements. By eliminating functions and severely
limiting quantifier alternations, the expressive power of this class is limited. We notice
however, that if we let f : s — ¢, then the infinite nesting issue disappears, as the
result of f has the wrong sort to nest with itself. Therefore, we can use function
symbols as long as we do not introduce a way to nest infinitely.

Formally, we define a directed graph for a formula p in negation normal form (i.e.

with all negations pushed inside quantifiers):

Definition 6 (EPR). The EPR graph of a negation normal formula p over a signature
with sorts S is a directed graph G = (S, E) sorts as vertices and directed edges E

where:

1. for every function f : (s1,...8,) — s in the signature, then (s;,s) € E for all
1<:<n
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2. for every existential quantifier 3x : s in the scope of universal quantifiers

Vay i s1,...,VT, @ Sy, then (s;,8) € E foralll1 <i<n
A formula p is in EPR if its EPR graph G is acyclic.

Note that the presence of f : s — s immediately creates a self-loop in the EPR
graph. Further, two functions f : s — t and g : t — s together create a cycle. The rule
for existentials can be seen as the rule for functions applied to the Skolem function of
the existential, e.g. the function f arising from the transformation of Vz.3y. ¢ to the
equisatisfiable second-order formula 3f.Vz. o[f(x)/y]. EPR preserves the decidability
of satisfiability and finite-model property of classic EPR.

The acyclicity requirement means that EPR is not closed under conjunction, and so
is best thought of as a property of the whole system, including axioms and transition
relations, rather than of individual formulas. This means that ensuring acyclicity of

the graph in the final system cannot be a local decision in each separation query.

4.7.2 Enforcing EPR

For invariant inference, the most straightforward way to enforce acyclicity is to decide
a priori which edges are allowed, and to not generate separators with disallowed
edges arising from quantifiers, in both the original formula and its negation.® In
practice, enforcing EPR in separation means simply skipping prefixes that would
create disallowed edges. Because separation produces prenex formulas, under this
scheme some EPR formulas would be disallowed without additional effort (e.g. a
prenex form of (Va:s. 1) V (Jy:s. pa) is Va:s. yis. (¢1) V (v2)).

To enable separation to find formulas that are in EPR only in non-prenex form,
we introduce an optional extension to separation that produces prenex formulas that
may not be in EPR directly, but where the scope of the quantifiers can be pushed
down into the disjunctions of the matrix to obtain an EPR formula.

We introduce extra scope Boolean variables s; ; that encode whether a particular

quantified variable indexed by 7 appears in disjunct 7, and add constraints that ensure

3The negation check is required as well as when checking I = wp(I), each formula will appear
both positively and negatively.
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the quantifiers are (1) nested consistently and (2) in such a way as to be free of
disallowed edges. First, we need to encode that if a literal [ containing quantified
variable i is present in a disjunct j, the scope variable is true: y; ; — s; ;. For (1), we
assert for all indices 7,4 in the prefix where ¢’ is universal, and j # j’ are disjuncts,
that ¢ < i’ A si; A sijy A syjr — s;p. If we did not have this constraint, then the scope
variables for a formula like Vx.3y.Vz.3w. p(x,y, 2) V q(z,w) would allow = to scope
only over p, which it cannot as z covers both disjuncts. For this formula, this would
be a problem if x and w have sorts that would create a disallowed EPR edge.* We
restrict ¢’ to universal formula because 3x. p(z) V ¢(x) = (Fz. p(x)) V (I2'. p(2’)), and
so only deeper universals can create new restrictions on the scope of outer quantifiers.
If we were instead pushing down over a conjunction, only inner existentials would
create scope constraints. To ensure condition (2), we need to assert for i, where
the sorts for ¢,4" are part of a disallowed edge and ¢ and ' are not the same kind of
quantifier that ¢ < ¢’ A's;; — —si;. We restrict both V3 and 3V so that both the
formula and its negation satisfy the EPR constraint.

One final complication is that the order of quantifiers as given may not permit
the most aggressive pushing down. For example, if we consider the previous ex-
ample without y, Vo.Vz.3w. p(z, 2) V q(z,w), then we can push quantifiers down to
Vz.(Vz.p(x, 2)) V (w. ¢(z,w)) by first swapping = and z, as these are both universal.
Rather than enumerating all of the permutations of variables in a block as separate
prefixes, we can replace i < ¢ in the above constraints with a set of order Boolean
variables o; , with constraints that they represent a total order over the quantified
variables and only permute variables within blocks of the same type of quantifier.
Thus we effectively ask the solver to decide on an order to push down the quantifiers
within each block of V or 3.

After we extract a separator from the SAT assignment, we explicitly push down the
quantifiers to minimal scope in the formula; the constraints we generated will ensure
this is always possible and results in a formula without disallowed edges. Because

this optional extension to separation makes separation queries more difficult, we only

4We introduce y to prevent the quantifiers for x, z from commuting and resolving the issue.
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enable this mode when required, and by default use prefix skipping to implement EPR

restrictions.



Chapter 5
Complexity Analysis

We now show k-SEP is NP-hard for a fixed k£ and signature by reduction from 3-SAT.
We fix k and the signature as this puts verification of a separator in P.! Our reduction
produces a set of structures My, as a function of the SAT formula, the prefix size k,
and the number of universal quantifiers ¢. For the reduction to be correct, we need
to show that the resulting structures are separable if and only if the original SAT

problem is satisfiable. We begin by developing intuition using the case where k = 2,
and then we generalize to fixed-k-SEP, and then full £-SEP.

5.1 Preprocessing the SAT Problem

We first transform the 3-SAT problem into uniform-3-SAT. If any clauses are not
uniform, i.e. contain only positive literals or only negative literals, we introduce a

fresh variable x to split the clause:

(aV-bVe)— (aVeVa)A(—xV-b)

IThis does not by itself imply the problem is in NP, as the separator could be exponentially
large. In Section 4.3 we showed the truth values of a separator matrix need only be specified on a
polynomial number of QF-types, ensuring the size of the separator is polynomial.

38
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moy + my —

X W X W

X|=|T X|=|F

Vi T]= VilF|=
X Vi Va W X W VW
X|=|A|B|C X|=|DJ|E|G
VilA|=|T|T VilD|=|F|F
Vo B| T |=|T WlE|F | =|F
V| ClIT|T|= V.| GIF | F | =

Figure 5.1: Set of structures M, ; for a formula (a VbV ) A (=dV —eV —g). Each table
specifies a structure, giving its polarity (+/—), elements (X, V1, etc.) and for each
pair of elements which binary relation holds. For example, the B in row V5, column
X in ms means that B(X,V5) holds in that structure, and necessarily —A(X, V),
-T'(X, Vs), ete.

In addition, we add fresh variables ¢ and f along with the clauses (¢), (—f). We will
use t and f to represent true and false. The resulting formula ¢ is equisatisfiable with

the original problem, and has only uniform clauses with at most three literals.

5.2 Example Construction for V4

We first show the special case of our reduction for one of the simplest alternating
prefixes, V4. Our structures are defined over a signature that includes binary relations
A;, one for each a; € dom(¢). Note ¢, f € dom(¢), so we consider T" and F to be
part of the A;, but will also refer to these relations directly. All structures ensure
that these relations are anti-reflezive (—A;(z, x)) and symmetric (A;(z,y) < Ai(y, x)).
Further, for any two distinct elements of the same structure, exactly one of the defined
relations or equality will hold between those two elements. Thus the defined relations
are total (every non-equal pair satisfies some relation) and mutually-exclusive (only
one relation holds for a pair).

These restrictions mean that for any assignment of x and y, either x = y and no

relations hold, or z # y and for some 14, exactly A;(z,y) and A;(y,x) hold. These are



CHAPTER 5. COMPLEXITY ANALYSIS 40

the only QF-types (Section 4.1) ever seen by the matrix ¢ of a separator: there is
one QF-type for x = y and one QF-type for each A;. As observed in Section 4.1, if
we have the same QF-types from different assignments to x,y, then the matrix must
have the same value. This observation justifies drawing a correspondence between an
assignment to Boolean variables and candidate separator formulas by equating the
Boolean variable a; to the truth value of ¢ on the QF-type for A;, which by abuse
of notation we denote p(A;). We also let ¢(=) be the truth value of ¢ on the z =y
QF-type.
We can now describe the actual structures for a particular input:

= (aVbVec)N(~dV —eV=g)A(t)A(=f)

The construction generates an s+ 1 sized structure with elements { X, V4, ..., V;} for a
clause with s literals. The polarity of the structure matches that of the literals in the
clause. If we have variables in the clause a;, a;, ag, we will assert A;(X, Vi) A A;(Vi, X),
A;(X, Vo) NAj(Va, X), and Ak(X, V3) A Ak(Vs, X). For positive clauses, all other
distinct pairs will assert 1" and negative clauses will assert F'. Note that we have used
pairs including X to encode the Boolean variables, and those that do not include
X get one of T or F' (T and F represent Boolean variables in the structures for (t)
and (—f)). We can represent these structures in tabular form, where the rows and
columns indicate which structure element corresponds to x and y, while the cell gives
the relation (or equality) that holds for that pair. As previously noted, these labels
indicate the QF-type for that assignment, and if we have a matrix ¢ in mind then we
can say the cell itself is true or false by applying . We show the structures for ¢ in
Figure 5.1.

With these tables in mind, we can now analyze a separator Vx.dy. ¢. In terms
of the table, a V3 formula satisfies the structure when every row has a true cell.?
Similarly, for a negative structure, the separator not satisfying the structure means
some row is entirely false. From m;, we conclude both —p(=) and = (F). In my, we

need one of (=) or T to be true, but since it cannot be (=), we know ¢(T).

2Due to symmetry, the tables in Figure 5.1 are symmetric and so we can reason about either rows
or columns.
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Now we inspect ma, the structure for (a V bV ¢). The bottom three rows all have
a T, and so are trivially satisfied. The first row needs a true cell, and therefore one
of p(A), p(B), or (C) holds which is exactly the same constraint as the original
clause. In mg, the structure for (—d V —e V —g), one of the rows must be entirely false.
Regardless of which row is picked, one of p(D), ¢(E), or ¢(G) must be false and the
negative clause constraint is enforced.

We now see that if a separator exists, then its matrix must produce a pattern of
truth values on the QF-types which gives rise to an assignment satisfying each clause.
In the other direction, we can easily construct a separator from a satisfying assignment
by letting ¢ = T'(x,y) V Ai(x,y) V Aj(z,y) ... where A; is included if @; is true in the
assignment. This shows that V4 separation is NP-hard.

5.3 Example Construction is the Same for JV

A somewhat surprising fact is the same construction of structures in Figure 5.1 is also
separable by the 3V prefix if and only if v is satisfiable. Under this prefix, positive
structures must have an entirely true row and negative structures must have a false
value in every row. When we look at mg, m;, this means that (=) is true while as
before T is true and F' is false. We can see this change to (=) interacts with the
change in prefix so that mq, ms still correspond to their clauses. For example, in mg,
the last three rows are trivially satisfied due to the F’s, but the first row must now
select one of D, E, or G to be false.

These two prefixes give us a taste of a property of our general construction: the
set of structures does not depend on the exact prefix. For k = 2, there are only two
prefixes with alternation and one set of structures. When we generalize, the structures

will depend on the parameter ¢, the number of universal quantifiers.
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5.4 General Construction

We define structures My (1)) over one k-ary relation symbol A;, for each Boolean
variable a; € dom(¢). In all structures, the relations A; are (1) symmetric, (2)
anti-reflexive, (3) total, and (4) mutually-exclusive.

Each structure M € My, () is constructed by a function Cy(c) of a clause ¢ € 1.
The polarity of M is that of the literals in c¢. Let s be the number of literals in ¢, so
1 < s < 3. The domain dom(M) = X UY UV will have k — 1 + s elements, labeled
X, Y;, and Vj, with cardinality of each depending on the polarity as follows:

XY V]
+ / k—1—/¢ s
— (-1 k- s

There will always be exactly k—1 total X and Y elements, collectively the auziliary
elements, and one V; element for each literal, the variable elements.® Depending on
k and ¢, it is possible that |X| = 0 or |Y'| = 0. We use the order of literals in ¢ to
associate both a Boolean variable and its relation with each V;, and we label the
V; with the j of this corresponding relation A;. To define the interpretations of the
relations, we first define our k-ary relations to be false when there are fewer than k
distinct elements as arguments, ensuring anti-reflexivity. When there are k& distinct
arguments, we use the following function to assign a relation A; (or one of T',F') to

such sets of exactly k elements (k-sets) S:

A; ifS=XUYU{V;}
R(S)= (F elseif XCS (5.1)
T  otherwise

These rules say if a k-set contains all X and Y, and thus necessarily exactly one
Vi, then the set will be assigned an A; that matches that V;. If they are not one
of these variable k-sets, they will be F' if they contain all X; and T" otherwise. The

3Note that the positive structure has the same number of X; as the universal quantifiers and
negative structures have the same number of Y; as existentials.



CHAPTER 5. COMPLEXITY ANALYSIS 43

assigned relation will be true when the elements of the k-set appear as arguments in
any permutation. All other relations are false for that k-set. This construction of the
relations ensures they are symmetric, total (when the arguments are a k-set), and

mutually exclusive. This completes our specification of My ().

5.5 Extracting a Satisfying Assignment from a Sep-

arator

We assume M, is separable by some formula ®, which in prenex normal form is
written with the given prefix of k quantifiers and ¢ universals and has matrix ¢. We
will construct our assignment A by Ala;] = ¢(A;), and our goal is to show that this
assignment satisfies . We will make heavy use of the game-theoretic semantics of
logic introduced in Section 2.1.2.

A first observation is that the QF-type for any assignment of k variables to distinct
elements in any structure is one of the A;. A second is that if the winning player plays
with the winning strategy, the game always ends in an assignment and QF-type, on
which the matrix ¢ assigns polarity of the structure itself. For example, in positive
structures, the structure satisfying ® implies 3 plays so the matrix is always true. By
carefully constructing a strategy for V, we will show the game must always end in the
k-set for a variable in the clause, showing a variable from the clause must be true in
A.

First we need to show that we can force the game to end in a k-set, using the

following definition and lemma:

Definition 7. A strategy for a prenex formula is uniqueness-preserving if, when it

plays T,41 in position (xy, ..., x,), distinct(xy, ..., x,) = distinct(zy, ..., Tn, Tpi1)

Another way to state this is that a strategy is uniqueness-preserving if it is never
the first to play a repeated element. Winning strategies for separators of our structures

must be uniqueness-preserving:*

4Note that it is always possible for a strategy to play distinct elements because our games have at
most k£ moves and there are always at least k elements.
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Lemma 1. If M M~ € My, ® is a prenex formula with k quantifiers, M |= ®,
and M~ = —®, then all winning strategies for 3 in M+ and ¥V in M~ are uniqueness-

preserving.

Proof. Consider any pair of positive and negative structures M+ and M, and logical
games played on both simultaneously, with 3 in M* and V in M~ playing with
winning strategies. On each move of this combined game, the winning player plays in
one sub-game and the losing player then plays in the other according to the prefix.
Assume the losing player always mirrors the equality of the winning player: either
both play new, distinct elements, or both play elements in their respective structure
that repeat the element of the same prior variable. If either winning strategy is not
uniqueness-preserving, then the games end with the same equalities between variables,
and thus the same QF type. But a winning strategy means that this common QF-type

must be false in M~ and true in M, which is a contradiction. O

We present a lemma which characterizes T" and F', followed by lemmas that show

the clause structures constrain ¢ like 1 constrains A:

Lemma 2. If & = Q1. - Qri. is a k-prenex formula separating My, then o(T)
and —p(F).

Proof. Consider the structures C'(t) and C'(—f). Each has exactly k elements, so if V
(or respectively 3) picks any available distinct element on its turn, then by Lemma 1,
the game will end on the only k-set in each structure. But this set corresponds to T’

in the positive structure and to F' in the negative structure, so the lemma holds. [J

Lemma 3. If ® separates My, and positive clause ¢ € 1, then p(A,) holds, for some

a € c.

Proof. Consider the positive structure C'(¢). 3 must have a winning strategy, and
consider the V strategy: “play any X; if not played, otherwise any remaining unplayed
element.” Both of these strategies are uniqueness-preserving, so by Lemma 1 the game
will end in a k-set. V has ¢ moves, and thus all X will be played. By Equation (5.1),
the resulting k-set is either a variable set for some A, or is assigned F'. By Lemma 2,

it will not end in F' because this would make the matrix false, and so ¢(A,) holds. [
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Lemma 4. If ® separates My, and negative clause ¢ € 1, then —p(A,) holds, for

some —a € C.

Proof. Consider the negative structure C'(c) and the strategy for 3: “play any Y; if
not played, otherwise any unplayed element.” 4 has k£ — [ moves, and so all Y will
be played. If not all X are played by some player, then the game ends on 7', which
is a contradiction. Thus all of X and Y are played, and so the games ends on some
variable set, say that of A,, and thus —p(A,). O

We can now state and prove our desired result:

Theorem 1. If ® separates My, then there exists assignment A which satisfies 1.

Proof. Let Ala;| = ¢(A4;) for all Boolean variables a;. By Lemma 2, A[t] = T and
A[f] = L, so clauses (t) and (—f) are satisfied. By Lemma 3, all other positive clauses

have a true variable and by Lemma 4, remaining negative clauses have a false variable.
Thus A satisfies 1. O

5.6 Constructing a Separator from an Assignment

We assume that 1) has satisfying assignment A, and we are given a prefix P = Qqxy. . . .
Qr_17,_1 with k£ quantifiers and ¢ universals. We then construct a formula ® = P. ¢
that separates My ¢(1)).

Because the prefix P is given, we need only specify the matrix ¢, which will be a
disjunction of cases. We add a disjunct A(zo,...,z_1) for each Boolean variable a
where Ala] is true. Note due to the clauses t and —f in ¢, T'(...) will always be a
disjunct and F(...) will never be. To cover the case when two bound variables are

the same element, we add a subset of the formula:

E; = distinct(xg, ..., x;i—1) A

($0:.Z'Z‘\/.ZU1:xiV"'Vl’i_lzxi)

E; expresses the fact that the variables bound before x; are all distinct, but x; is equal

to one of them. Equivalently, E; says that z; is the first repeated bound variable. We
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let Fy = 1 and note the F; are mutually exclusive with each other and the relations
Ai(...). We add E; as a disjunct if Q); =V, and omit F; otherwise. This completes the
specification of ¢, which consists of a disjunction of some of the F; and the relations
of variables A assigns true.

We now show that @ is true for positive structures in M}, and false for negative
structures. We do so by giving strategies for 3 in positive structures and V in negative

structures such that the game ends with a matrix of the correct polarity.
Lemma 5. C(c) = ® for a positive structure C(c) € My

Proof. We know A satisfies 1, so one of the variables a € ¢ satisfies Afa] and thus
A(...) € . To show @ is true we make the game end in A or 7. Let the element of C(c)
which represents a be V,. Our 3 strategy will be: “play the first unplayed element from
V., any Y, or any X, in that order.” Note that our strategy is uniqueness-preserving.
If V plays a repeated element, then the corresponding E; in ¢ is true regardless of the
rest of the played elements, and the matrix is true.

If all played elements are distinct, then note as 4 with k£ — ¢ moves we have ensured
that V, and all Y are played. If all X are played, then we end on A. If not, we end on
T. Both relations are in ¢, and so the matrix is true. Thus, we can always force the
game to end with a true matrix, and so our strategy is winning for 4 and the formula

is true. [
Lemma 6. C(c) = © for a negative structure C'(c) € My,

Proof. A assigns one of the variables —a € c false, so ® is false if as V we can force
the game to end in A or F, because neither will be in ¢. Now if 3 plays a repeated
element then one of the E; will be true, but now this time that F; is omitted from
. But because all F; and A are mutually exclusive, no disjunct will be true and the
matrix is false regardless of future moves. Now we give a strategy for V as: “play the
first unplayed of V,,, any X, or any Y, in that order.” Now our strategy ensures, due
to our ¢ moves, that all of X and V, will be played. Thus the game ends either in A
or F', both of which are absent from ¢, and so the matrix will always be false and

thus the formula is not true. O
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Theorem 2. If ¢ has satisfying assignment A, ® as defined above separates My, ,(1))

Proof. Follows from Lemmas 5 and 6. m

5.7 Extending to k-SEP

We have shown that given a particular prefix, we can reduce SAT to separability.
However, this does not immediately imply that k-SEP is also difficult, because now
the prefix is not fixed, and the extra flexibility might make the problem easier. We
extend our construction slightly by adding structures for the trivially satisfied clauses

(tV f) and (=t V = f). Then we can prove the following lemmas.

Lemma 7. If ® is a prenex formula with at most k quantifiers and ® separates M,

then ® has exactly k quantifiers.

Proof. Assume for sake of contradiction that ® has fewer than k£ quantifiers. Then it
does not have k distinct terms, so all defined relations are false in the matrix . Thus
the matrix ¢ is logically equivalent to some formula which only uses equality, and such
a formula cannot distinguish two structures of opposite polarity but equal cardinality,
such as C(t) and C(—f) from our construction. Thus, ¢ cannot be a separator and

we have a contradiction. O
Lemma 8. If ® is a k-prenex formula separating My, ¢, then ® must have ¢ universals.

Proof. Assume for sake of contradiction ® has u > ¢ universals. Consider the positive
structure C(t V f) and V strategy “pick V; if available, then any X;, then any Y;.” V
has at least ¢ + 1 moves, and so the element V; as well as all X will be picked. If
all £ — 1 auxiliary elements are picked, then the variable set corresponding to F' will
have been picked. If not all £ — 1 auxiliary elements are picked, then because all X;
were, the k-set will still be that of . Thus the game will always end in F', which is a
contradiction.

Assume for sake of contradiction ® has u < ¢ universals. Consider the negative
structure C'(—t V = f) and 3 strategy “pick V; if available, then any Y;, and finally X;.

Because this is a negative structure, 4 has £k — u > k — £ + 1 moves and element V}
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and all Y are picked. If all the X are picked by some player then the game ends in
the variable set for 7. Otherwise one of the X is missing, and so the k-set is assigned

T. The game always ending in 7" is a contradiction for a negative structure. O

Together, these lemmas establish that any separator must have the same number of
universal and existential quantifiers as suggested by k and ¢. Note the only assumption
about the prefix in Lemmas 3 and 4 was that there were ¢ universals and k£ — /¢
existentials, which we have now established. This means that Theorem 1 is also true
for k-SEP. Note that the separator ® can have any prefix with the right number of
existentials. For the other direction, we do not need to modify any reasoning because
the construction of a formula already made no assumptions about the prefix, and we
can use that reasoning to construct separators with any permutation of quantifiers in

the prefix.

5.8 Summary of Complexity Results

With Theorems 1 and 2, we have now shown there is a construction My, ,(¢) that
shows fixed-k-SEP and k-SEP are both NP-hard. In Section 4.3 we gave an algorithm
for solving k-SEP with an oracle for SAT, which shows that k-SEP is in NP, and

together these show separation is NP-complete.



Chapter 6
Invariant Inference

With the definition and algorithm for separation in hand, we now consider the problem
of invariant inference. We first define the problem, and then discuss two algorithms
for invariant inference, including how they can be adapted to use separation. We defer

a complete description of our algorithm to Chapter 7.

6.1 Definition of Invariant Inference

A central question in the design and verification of systems is whether they are safe,
i.e., whether some safety property is satisfied by all the reachable states of the system.
Further, simply knowing whether the system is safe or not is insufficient: we desire
an independently checkable proof of safety. For the transition systems (Section 2.1.4)
we are interested in, we represent this proof in the form of an inductive invariant
establishing safety for the given transition system.

A formula is invariant for a transition system if it is satisfied by all reachable states.
Invariantness is not a very useful notion because a formula may be invariant but not
provable within a given logic. Therefore, we use the weaker notion of inductiveness. A
formula p is inductive if it is satisfied by all initial states and preserved by all transition
edges, i.e. if p = wp(p). An inductive formula is necessarily invariant by induction
over the number of transition steps, but the reverse is not necessarily true. Finally, a

formula establishes safety if it implies Safe. These conditions can be summarized as:

49



CHAPTER 6. INVARIANT INFERENCE 50

Definition 8 (Invariant). An inductive invariant establishing safety is a formula I

satisfying:
Init=1 (6.1)
I = wp(I) (6.2)
I = Safe (6.3)

For brevity, we use the term invariant for such formulas.!

Together, Equations (6.1) and (6.2) mean that [ is inductive for the system, and
Equation (6.3) ensures I establishes safety. We can now define invariant inference
itself:

Definition 9 (Invariant Inference). Given a transition system (including a safety
property), invariant inference is the problem of computing a formula I satisfying
FEquations (6.1) to (6.3), if it exists. An invariant inference algorithm is sound if
it only returns formulas satisfying Equations (6.1) to (6.3), and it is complete if

whenever such an I exists, it returns such a formula without diverging.

We are interested in sound but not necessarily complete algorithms for invariant
inference. Further, we are only interested in invariant inference for safe systems, where
a suitable I exists. Although our implementation supports detecting and reporting
unsafe systems, existing techniques such as model checkers are more suitable for
determining if systems are unsafe. We expect these other techniques to be used in
concert with invariant inference, which means the focus of inference can be exclusively
on safe systems. Although we do not study unsafe systems formally, our algorithm
(Section 6.3) can opportunistically prove systems are unsafe by showing a bad state is
reachable.

For concreteness, we make the assumption that Safe and I can be broken into
conjuncts, i.e. Safe = Safe, N\ Safe; N...and I = IgAI; A.... We overload terminology

to refer to the conjuncts of Safe as safety properties, and refer to the conjuncts of I as

"'We do not have any use for the original notion of an invariant formula, so this overloading is not
ambiguous.
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invariants. We also assume that the conjuncts of / are a superset of those in Safe, e.g.
Iy = Safe,, etc. This assumption trivially ensures I = Safe. The invariant inference
problem can then be seen as the problem of generating zero or more invariants such

that the resulting I as a whole is an inductive invariant establishing safety.

6.2 ICE Learning with Separators

Possibly the simplest invariant inference algorithm using separators is ICE learning [15].
The algorithm works by refining a candidate invariant I by incrementally adding con-
straints derived from counterexamples to equations Equations (6.1) to (6.3). Positive
counterexamples arise from a first-order SAT query of the negation of Equation (6.1),
and negative examples likewise come from Equation (6.3). Equation (6.2) is interesting
because as observed in [41, 15], counterexamples are exactly implication constraints:
I is only required to be true on the post-state if it is true for the pre-state. These
SAT queries can be discharged by a standard SMT solver with support for quantified
formulas. After a new constraint is added, the separation procedure produces a new
I satisfying all known constraints. When no counterexamples exist, the candidate
satisfies Equations (6.1) to (6.3) and the algorithm succeeds.

This algorithm requires learning the invariant monolithically — it is not possible
to learn conjuncts of a larger invariant piece by piece. Nevertheless, this algorithm
is able to correctly infer the invariant for a few of the the smallest examples from
our evaluation (Section 8.3, Table 8.2), including ring-id and firewall. The firewall
example is notable for requiring an invariant with quantifier alternation while still
being solvable with ICE learning. To avoid this monolithic learning requirement, we
turn to a significantly more complex invariant inference algorithm that learns formulas

incrementally.

6.3 PDR/IC3

PDR/IC3 is an invariant inference algorithm first developed for finite state model

checking [4] and later extended to various classes of infinite-state systems. We
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Figure 6.1: Ilustration of lemmas (p;) and frames (F;) in PDR/IC3. Each lemma is
recorded as being in some finite frame (m) or in Fl, (—). In this example, py cannot
be pushed to F3 because of the transition s — ¢, where s |= F; and t [~ ps.

describe PDR/IC3 as in [25]. PDR/IC3 maintains frames F; as conjunctions of

formulas (lemmas) representing overapproximations of the states reachable in at most

i transitions from Ingt. Finite frames (i = 0,...,n) and the frame at infinity (i = o)
satisfy:
Init = Fy (6.4)
F,=Fi (6.5)
F, = Fx (6.6)
F; = wp(Fit1) (6.7)
Fo = wp(Fy) (6.8)

Equations (6.4) to (6.6) mean Init = F; for all i. We ensure Equations (6.5) and (6.6)
by restricting frames to subsets of the prior frame, when taken as sets of lemmas.
Equations (6.7) and (6.8) say each frame is relatively inductive to the prior frame,
except F,, which is relatively inductive to itself and thus inductive for the system.
To initialize, the algorithm adds the (conjuncts of) Init and Safe as lemmas to Fj.
The algorithm then proceeds by adding lemmas to frames using either pushing or
inductive generalization while respecting this meta-invariant, gradually tightening
the bounds on reachability until F,, = Safe. We can push a lemma p € F; to Fj,1,
provided F; = wp(p). When a formula is pushed, the stronger F;,; may permit us
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to push one or more other formulas, possibly recursively, and so we always push all
possible lemmas until a fixpoint is reached. Any mutually relatively inductive set of
lemmas does not have a finite fixpoint, and we detect such sets (by checking whether
F; = F;;1) and add these lemmas to F..

If the algorithm cannot push a lemma p,, there is a model of —(F; = wp(p,)),
which is a transition s — t where s € F; and ¢ [~ p,. If s has no predecessors in F;_;
(or i = 0), then we say s is the proof obligation for p,. If s does have predecessors in
the prior frame F;_;, we recursively follow the predecessor relation until either we find
a state s’ with no predecessors, or we get to F. Then s’ becomes the proof obligation
for p,. We keep track of which frame (labeled F}) we found s in. If s’ is in Fj, the
algorithm has discovered a chain of transitions showing that p, violates a reachable
state. If p, is a safety property, then this show the system is unsafe. If p, is any other
lemma, it shows that p, cannot be part of an inductive invariant.

To generate new lemmas, we block the proof obligation s in F; (or s’ in F}) by
using an inductive generalization (IG) query to learn a new lemma that eliminates s.

An IG query finds a formula p satisfying:

sfEp (6.9)
init = p (6.10)
F,_1 Ap= wp(p) (6.11)

If we can learn such a lemma p, it can be added to F; and all previous frames, and
removes at least the state s stopping p, from being pushed. With the addition of p,
Pq May or may not be immediately pushed, as it may have other proof obligations.
Classic PDR/IC3 always chooses to block the proof obligation of a safety property,
but other strategies have been considered (Section 7.4.1, [25]).

The technique used to solve the IG query controls what kind of invariants we are
able to discover (e.g. universal formulas as in [27]). In this work we use separation to
solve for p, which lets us infer invariants with quantifier alternations. PDR/IC3 has the
advantage of learning the invariant incrementally: in general, each IG query will learn

a lemma which may become one conjunct of the final invariant. This incrementality
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means that we can find invariants with dozens of conjuncts, but each separation query

can remain much smaller in scope.



Chapter 7

Adapting PDR/IC3 with Quantified

Separation

We now present our PDR/IC3-based invariant inference algorithm. We start with
a discussion of inductive generalization, followed by several optimizations we made
at the level of the overall algorithm. Finally, we put these pieces together to give a
full description of our algorithm. At a high level, our algorithm is composed of three
nested refinement loops, as shown in Figure 7.1. We have previously discussed the
innermost loop in presenting the separation algorithm, and we now turn to the middle

and outer loops.

7.1 Naive Inductive Generalization with Separa-
tion

We first discuss naively solving an IG query with separation (as in [28]), and then
discuss the problems with this strategy. An IG query can be solved with separation by
a simple iterative refinement loop. This loop performs a series of separation queries
with an incrementally growing set of structure constraints. Starting with a negative
constraint s for the state to block, we ask for a separator p and check if Equations (6.10)

and (6.11) hold for p using a standard SMT solver. If both hold, p is a solution to the

25
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states to block structures clauses
PDR/IC3 Ind. Gen. Separation SAT
new lemmas separators assignments

Figure 7.1: The three refinement loops of our algorithm. The PDR /IC3 provides states
to block in a particular frame, which are converted into structure constraints, which
become clauses in a SAT query. In the reverse direction, SAT assignments become
separators, which become new lemmas in a PDR/IC3 frame. Each loop continues
until a correct solution is found or the constraints are unsatisfiable.

IG query. Otherwise, the SMT solver produces a model that becomes either a positive
constraint (corresponding to an initial state p violates) or an implication constraint (a
transition edge that shows p is not relatively inductive to F;_;), respectively.

We observe a few key points about the algorithm for separation: (i) separation
considers each potential quantifier prefix essentially independently, (ii) complex IG
queries can result in hundreds or thousands of constraints, and (iii) prefixes, as
partitions of the space of possible separators, vary greatly in how quickly they can be
explored. Further, with the naive approach where the prefixes are considered internally
by the separation algorithm, even if the separation algorithm uses internal parallelism,
there is still a serialization step when a new constraint is required. As a consequence
of (ii) and (iii), a significant failure mode of this naive approach is that the search
becomes stuck generating more and more constraints for difficult parts of the search

space that ultimately do not contain an easy-to-discover solution to the IG query.

7.2 Prefix Search at the Inductive Generalization

Level

To fix the problems with the naive approach, we lift the choice of prefix to the IG
level, partitioning a single large separation query into a query for each prefix (e.g. use
fixed-k-SEP instead of k-SEP). Each sub-query can be explored in parallel, and each
can proceed independently by querying for new constraints (using Equations (6.10)

and (6.11) as before) without serializing by waiting for other prefixes. We call this new
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technique a breadth-first search, because the algorithm can spend approximately equal
time on many parts of the search space, instead of a depth-first search which exhausts
all possibilities in one region before moving on to the next. When regions have greatly
varying times to search, the breadth-first approach prevents expensive regions from
blocking the search in cheaper regions. This improvement relies on changing the
division between separation and inductive generalization: without the knowledge of
the formulas (Equations (6.10) and (6.11)) that generate constraints, the separation
algorithm cannot generate new constraints on its own.

A complicating factor is that in addition to prefixes varying in difficulty, sometimes
there are entire classes of prefixes that are difficult. For example, many IG queries
have desirable universal-only solutions, but spend a long time searching for separators
with alternations, as there are far more distinct prefixes with alternations than those
with only universals. To address this problem, we define possibly overlapping sets of
prefixes, called prefiz categories, and ensure the algorithm spends approximately equal
time searching for solutions in each category (e.g., universally quantified invariants,
invariants with at most one alternation and at most one repeated sort). Within each
category, we order prefixes to further bias towards likely solutions: first by smallest
quantifier depth, then fewest alternations, then those that start with a universal, and

finally by smallest number of existentials.

7.3 Algorithm for Inductive Generalization

We present our algorithm for IG using separation in Figure 7.2. Our algorithm has a
fixed number N of worker threads which take prefixes from a queue subject to prefix
restrictions, and perform a separation query with that prefix. Each worker thread calls
next-prefix() to obtain the next prefix to consider, according to the order discussed
in the previous section. To solve a prefix P, a worker performs a refinement loop as
in the naive algorithm, building a set of constraints C'(P) until a solution to the IG
query is discovered or separation reports UNSEP.

While we take steps to make SMT queries for new constraints as fast as possible

(Section 7.4.4), these queries are still expensive and we thus want to re-use constraints
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1 def IG(s: state, i: frame):

2 VP. C(P) = {Negative(s)};

3 for i =1...N in parallel:

4 while true:

5 P = next-prefix();

6 while true:

7 p = separate C(P);

8 if p is UNSEP:

9 break
10 elif any ¢ € Ro(P) and p - c:
11 add ¢ to C(P)
12 elif (¢ := SMT check Equations (6.10) and (6.11)) # UNSAT:
13 add ¢ to C(P)
14 else:
15 return p as solution

Figure 7.2: Pseudocode for our proposed inductive generalization algorithm.

between prefixes where it is beneficial. Re-using every constraint discovered so far is
not a good strategy as the cost of checking upwards of hundreds of constraints for
every candidate separator is not justified by how frequently they actually constrain
the search. Instead, we track a set of related constraints Ro(P) for a prefix P. We
define related constraints in terms of immediate sub-prefives of P, written S(P),
which are prefixes obtained by dropping exactly one quantifier from P, i.e. the
quantifiers of P’ € S(P) are a subsequence of those in P with one missing. We then
define Ro(P) = Upresp)C(P'), i.e. the related constraints of P are all those used by
immediate sub-prefixes. While S(P) considers only immediate sub-prefixes, constraints
may propagate from non-immediate sub-prefixes as the algorithm progresses.
Constraints from sub-prefixes are used because the possible separators for those
queries are also possible separators for the larger prefix. Thus the set of constraints
from sub-prefixes will definitely eliminate some potential separators, and in the usual
case where the sub-prefixes have converged to UNSEP, will rule out an entire section
of the search space. We also opportunistically make use of known constraints for the
same prefix generated in prior IG queries, as long as those constraints still satisfy the

current frame.
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Overall, the algorithm in Figure 7.2 uses parallelism across prefixes to generate
independent separation queries in a breadth-first way, while carefully sharing only
useful constraints. From the perspective of the global search for an inductive invariant
the algorithm introduces two forms of inductive bias: (i) explicit bias arising from
controlling the order and form of prefixes (Section 7.2), and (ii) implicit bias towards

formulas which are easy to discover.

7.4 An Algorithm for Invariant Inference

We now take a step back to consider the high-level PDR/IC3 structure of our algorithm.
As in all PDR/IC3 variants, we use IG to block backward reachable states (i.e., must-
proof obligations obtained from attempting to push a safety property). We next discuss
blocking states that are not backward reachable from a bad state as a heuristic for
finding additional useful lemmas, and a heuristic that blocks multiple states with one
lemma. We then discuss the impact of the EPR logic fragment and another technique
to increase the robustness of SMT solvers. Finally, we tie everything together to give

a complete description of our proposed algorithm.

7.4.1 May-proof obligations

In classic PDR/IC3, the choice of proof obligation to block is always that of a safety
property. [25] proposed a heuristic that in our terminology is to block the proof
obligation of other existing lemmas, under the heuristic assumption that current
lemmas in lower frames are part of the final invariant but lack a supporting lemma to
make them inductive. The classic blocked states are known as must-proof obligations,
as they are states that must be eliminated at some point to prove safety. In contrast,
these heuristic states are may-proof obligations, as they may or may not be necessary
to find a solution. Our algorithm selects these lemmas at random, biased towards
lemmas with smaller matrices and in later frames.

To compute a proof obligation, we recursively find any predecessors in the prior

frame, if they exist. For may-proof obligations, this recursion can potentially reach all
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the way to an initial state in Fy,! and thus proves that the entire chain of states is
reachable—i.e., the states cannot be blocked. This fact shows that the original lemma
is not part of any final invariant and cannot be pushed past its current frame; it also

provides a positive structure constraint useful for future IG queries.

7.4.2 Multi-block Generalization

After an IG query blocking state s is successful, the resulting lemma p may cause the
original lemma that created s to be pushed to the next frame. If not, there will be
a new proof obligation §'. If &’ is in the same frame, we can ask whether there is a
single IG solution formula p; which blocks both s and s’. If we can find such a py,
it is more likely to generalize past s and s’, and we should prefer p;. This search for
Py is straightforward to do with separation: we incrementally add another negative
constraint to the existing separation queries. To implement multi-block generalization,
we continue an IG query if the new proof obligation is suitable (i.e., exists and is in
the same frame), accumulating as many negative constraints as we can until we do
not have a suitable state or we have spent as much time as the original query. This
timeout guarantees we do not spend more than half of our time on generalization, and
protects us in the case that the new set of states cannot be blocked together with a

simple formula.

7.4.3 Enforcing EPR

As discussed in Section 4.7, EPR is a useful logic fragment due to its decidability
and finite model property. EPR requires acyclicity of a graph derived from both
the functions in the signature and Skolem functions from quantifiers. For invariant
inference with PDR/IC3, the most straightforward way to enforce acyclicity is to
decide a priori which edges are allowed, and to not infer lemmas with disallowed
Skolem edges. Without this fixed set of allowed edges, adding a lemma to a frame
may prevent a necessary lemma from being added to the frame in a later iteration, as

PDR/IC3 lacks a way to remove lemmas from frames. Requiring the set of allowed

'For unsafe transition systems, recursing to Fy can also occur for must-proof obligations.
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edges as input is a limitation of our technique and other state-of-the-art approaches
(e.g. [19]). We do note that not all algorithms admit invariants in EPR, and manual
translation of the transition system itself can be required to allow an EPR invariant.
We hope that future work expands the scope of decidable logic fragments, so that
systems require less effort to model in such a fragment. It is also possible that our

algorithm could be wrapped in an outer search over the possible acyclic sets of edges.

7.4.4 SMT Robustness

Even with EPR restrictions, some SMT queries we generate are difficult for the SMT
solvers we use (Z3 [7] and CVC5?), sometimes taking minutes, hours, or longer. This
wide variation of solving times is significant because separation, and thus IG queries,
cannot make progress without a new structure constraint. We adopt several strategies
to increase robustness: periodic restarts, running multiple instances of both solvers in
parallel, and incremental queries. Our incremental queries send the formulas to the
SMT solver one at a time, asserting a subset of the input. An UNSAT result from
a subset can be returned immediately, and a SAT result can be returned if there is
no un-asserted formula the model violates. Otherwise, one of the violated formulas
is asserted, and the process repeats. This process usually avoids asserting all the
discovered lemmas from a frame, which significantly speeds up many of the most

difficult queries, especially those with dozens of lemmas in a frame or those not in

EPR.

7.4.5 Complete Algorithm

Figure 7.3 presents the pseudocode for our algorithm, which consists of two parallel
tasks (learning and heuristic), each using half of the available parallelism to discharge
IG queries, and pushing to fixpoint after adding any lemmas. In this listing, the
obligation(¢) function computes the state and frame to perform an IG query in order
to push ¢, and the push() function pushes all lemmas until a fixpoint is reached, and

marks the invariant as found if all safety properties reach F,,. The heuristic task

2Successor to CVC4 [2].
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additionally may find reachable states, and thus mark lemmas as bad. We cancel an
IG query when it is solved by a lemma learned or pushed by another task.

Our algorithm is parameterized by the logic used for inductive generalization,
and thus the form of the invariant. We support universal, EPR, and full first-
order logic (FOL) modes. Universal mode restricts the matrices to clauses, and
considers predecessors of superstructures when computing obligation() (as in [27]).
EPR mode takes as input the set of allowed edges and whether to enable EPR pushdown

(Section 4.7). In FOL mode, there are no restrictions on separation prefixes.
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1 def P-For-Ic3():
2 Fy = Init U safety;
3 push();
4 start LEARNING(), HEURISTIC();
5 wait for invariant;
6 def MULTIBLOCK(/: lemma, s: state, ):
7 S={sh
8 while not timed out:
9 p = IG(S, i);
10 speculatively add p to frame i;
11 s',i' = obligation(?);
12 remove p from frame i;
13 if 1 =14’
14 add s’ to S;
15 else:
16 break
17 add p to frame i;
18 push();
19 def LEARNING():
20 while true:
21 s,1 = obligation(safety);
22 MULTIBLOCK (safety, s, ©);
23 def HEURISTIC():
24 while true:
25 ¢ = random lemma before safety;
26 s,1 = obligation(¥);
27 if i =0:
28 mark s reachable;
29 mark bad lemmas;
30 else:
31 MULTIBLOCK (Y, s, );

Figure 7.3: Pseudocode for our proposed inference algorithm, P-ForL-I1c3.



Chapter 8
Evaluation

We evaluate our separation algorithm and PDR/IC3-based invariant inference algo-
rithm on a benchmark of distributed protocols taken from prior work. We first describe
the benchmark, including exploring various properties of the human-written invariants
of each example. We then evaluate the separation algorithm by asking whether it
can reproduce each invariant conjunct solely from positive and negative structures.
Finally, we evaluate our invariant inference algorithm on our benchmark, compare our
algorithm to other techniques, and present an ablation study that investigates the

impact of several significant extensions to separation and PDR/IC3.

8.1 Invariant Inference Benchmark

Our benchmark is composed of invariant inference problems from prior work on
distributed protocols [39, 38, 12, 37, 43, 3, 13], written in or translated to the mypyvy
language [36]. Our benchmark contains a total of 30 problems, ranging from simple
(toy-consensus-forall, firewall) to complex (stoppable-paxos-epr, bosco-3t-safety). All
our examples are safe transition systems with a known, human-written invariant.
We give the names of the examples and some summary statistics in Table 8.1.
Some problems admit invariants that are purely universal, and others use universal
and existential quantifiers, with some of these in EPR. We also give the number of

conjuncts of the human-written invariant (|/]), the maximum number of quantifiers

64



CHAPTER 8. EVALUATION 65

in any individual conjunct (Quants.), the number of sorts in the signature (Sorts),
and the total number of constant, relation, and function symbols in the signature
(Symbols). The complexity of the examples, as measured by these statistics, varies
considerably between the various examples. Most Paxos variants include both an -epr
version and a -forall version, where the former requires an invariant with quantifier
alternations, and the latter has been augmented with ghost state such that it can be
proven with a universally quantified invariant.!

For the formula learning experiment, we used the existing division of the invariant,
by the author of each example, into a number of conjuncts. Each conjunct becomes a
golden formula GG. The golden formulas are not necessarily in prenex normal form
and have anywhere from no quantifiers to 7 quantifiers. The decomposition is not
necessarily minimal; some conjuncts could themselves be divided further into equivalent
conjuncts. We had a total of 268 formulas, and a histogram of formula counts by the

number of quantifiers can be seen in the total heights of bars in Figure 8.1.

8.2 Learning Formulas

To evaluate separation independently of any particular invariant inference procedure,
we use a process that learns some golden formula G from labeled structures. We start
with an empty set of structure constraints, and ask for a separator p. Then we ask
whether (p = G) A (G = p), by querying whether its negation is satisfiable using
CVC5 [2] and Z3 [7], SMT solvers that support quantifiers and producing models. If
the query is UNSAT, then p and G are equivalent, and we have learned GG. Otherwise,
the solver returns a model M of the query, which is a structure on which p and G
differ. We add M to our set of structure constraints labeled according to whether
M = G or M £~ G, and repeat with a new candidate p. Unlike the IG algorithm
given in Section 7.3, this process is sequential, except for the parallelism between SMT

solvers in a single query as described in Section 7.4.4.

IThis augmentation is performed by hand.
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Table 8.1: Statistics of invariant inference benchmark, including the logic of the
example (V for universal, v' for EPR, — for FOL), the number of conjuncts of the
human-written invariant (|7]), the maximum number of quantifiers in any individual
conjunct (Quants.), the number of sorts in the signature (Sorts), and the number of
symbols (Symbols).

Example Eer| |I| Quants. Sorts Symbols
lockserv v 8 2 1 5
toy-consensus-forall v 3 3 3 )
ring-id v 3 3 2 5
sharded-kv v 4 5 3 3
ticket 4 13 3 2 8
learning-switch v 2 4 1 2
consensus-wo-decide v 4 3 2 7
consensus-forall v 6 3 3 8
cache A4 36 6 3 13
paxos-forall v 6 5 4 11
flexible-paxos-forall v 6 5 5 12
stoppable-paxos-forall A 16 6 6 17
fast-paxos-forall v 13 5 5 16
vertical-paxos-forall v 13 6 5 18
firewall — 1 2 1 3
sharded-kv-no-lost-keys | v 1 4 3 3
toy-consensus-epr v 3 3 3 4
ring-id-not-dead — 4 3 2 6
consensus-epr v 6 3 3 7
client-server-ae v 1 3 3 4
client-server-db-ae — 4 3 4 7
hybrid-reliable-broadcast | — 7 4 3 11
paxos-epr v 5 6 4 9
flexible-paxos-epr v 5 6 5 10
multi-paxos-epr v 7 6 6 13
stoppable-paxos-epr v 16 6 6 15
fast-paxos-epr v 11 6 5 12
vertical-paxos-epr v 10 7 5 15
block-cache-async — 44 5 4 22
bosco-3t-safety v 10 6 5 13
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Figure 8.1: Stacked histogram of learning success (light) and failure (dark) by number
of quantifiers in the golden formula. There were only failures in 2, 3, and 6 quantifier
formulas.

8.2.1 Results and Discussion

We ran the learning process with function symbol depth bound b = 1 and overall
timeout of 1 hour for each formula, including the time to explore prefixes, construct
matrices, and check for equivalence using SMT solvers. Because the constraints only
grow, each prefix is eliminated at most once, but multiple formulas of the same prefix
are often generated with various matrices before the correct formula is found or the
prefix is eliminated. The overall success rate of this process is 97.4%, and success rate
by number of quantifiers in the golden formula can be seen in Figure 8.1.2

We give a cactus plot of the time to learn formulas in Figure 8.2. In this chart,
examples are ordered by their time to learn along the x-axis, while the logarithmic
y-axis shows the time to learn that formula. The shape of the chart depends on both
the distribution of difficulty in the problems and the performance of the algorithm, so

only general trends can be observed. This chart shows the time to solve is generally

2Qur results are different from those reported in [28] due to several factors, including a different
benchmark, improved SMT robustness, and a more efficient separation implementation.
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Figure 8.2: Cactus plot of time to learn formulas. Formulas are ordered by time to
learn, and timeouts (>3600 sec) are the blank area on the right.

low for most formulas, with only a small number taking significantly longer than about
60 seconds.

Our results show that separation successfully learns a vast majority of the formulas;
there were only 7 formulas that our technique did not learn. These failures are
due to either SMT solver divergence or the separation algorithm getting lost in a
large search space. The benchmark examples that had at least one failure are ring,
ring-id-not-dead, fast-paxos-epr, and block-cache-async. Of these, our technique for
invariant inference can solve all but block-cache-async (as presented below), which
highlights the fact that there is not necessarily a single invariant for each problem. In
the other direction, our technique does not find an overall invariant for some examples
with all learnable conjuncts (e.g. vertical-paxos-epr). While this learning experiment
gives us an indication of the performance of separation, it does not perfectly predict
the results of invariant inference: inference can be harder due to e.g. implication

constraints, or easier due to inferring a simpler invariant.
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8.3 Evaluation of Invariant Inference

We evaluate our algorithm and other approaches on our benchmark of invariant
inference problems. We discuss our experimental setup, and then the results of all the

techniques. Finally, we present our ablation study.

8.3.1 Experimental Setup

We compare our algorithm to the techniques Swiss [19], IC3PO [16, 17], and PDRY
[27]. We performed our experiments on a 56-thread machine with 64 GiB of RAM,
with each experiment restricted to 16 hardware threads, 20GiB of RAM, and a 6
hour time limit. Specifically, we used systems with dual-socket Intel(R) Xeon(R)
E5-2697 v3 CPUs running at 2.60GHz. To account for noise caused by randomness in
seed selection and non-determinism from parallelism, we ran each algorithm 5 times
and report the number of successes and the median time. PDR" and IC3PO are not
designed to use parallelism, while SWiss and our technique make use of parallelism.
For IC3PO, we use the better result from the two implementations [16] and [17].
For our technique, we ran the tool in universal-only, EPR, or full FOL mode as
appropriate. For k-pDNF, we use k£ = 1 for universal prefixes and k = 3 otherwise.
Our implementation uses five prefix categories (universal-only mode uses only the first
two): (i) universal formulas, (ii) universal formulas with each sort appearing in at most
two quantifiers, (iii) at most one quantifier alternation and each sort appearing in at
most two quantifiers, (v) at most two quantifier alternations and each sort appearing

in at most two quantifiers, and (vi) at most two quantifier alternations.

8.3.2 Results and Discussion

We present the results of our experiments in Table 8.2. In general, for examples
that converge with both prior approaches and our technique, we typically match or
exceed existing results in terms of time to solve each problem. Along with other
techniques, we solve paxos-epr and flexible-paxos-epr, which are the simplest variants

of Paxos in our benchmark, but nonetheless these examples represent a significant
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Table 8.2: Experimental results, giving both the median wall-clock time (seconds) of
run time and the number of trials successful, out of five for each technique. If there
were less than 3 successful trials, we report the slowest successful trial, indicated by
(>). A dash (-) indicates all trials failed or timed out after 6 hours (21600 seconds).
A blank indicates no data.

Example EPR Our Swiss  IC3PO PDRY
lockserv v 19 5 9573 4 55 6 5
toy-consensus-forall v 45 22 5 4 5 45
ring-id v 75 192 5 81 5 20 5
sharded-kv N 85 17291 5 45 6 5
ticket v 23 5 -0 -0 22 5
learning-switch v 76 5 1744 4 29 5 94 5
consensus-wo-decide v 50 5 52 5 6 5 29 5
consensus-forall v 1908 5 80 5 15 5 104 5
cache v 2492 4 -0 3906 5 2628 5
paxos-forall v 885 5 -0 -0 955 5
flexible-paxos-forall v 1961 5 -0 1654 5 423 5
stoppable-paxos-forall v 7779 5 -0 -0 -0
fast-paxos-forall v -0 -0 -0 20176 3
vertical-paxos-forall v -0 -0 -0 -0
firewall — 45 -0 35
sharded-kv-no-lost-keys | v 45 95 45
toy-consensus-epr v 45 10 5 45
ring-id-not-dead — 19 5 -0 -0
consensus-epr v 375 57 5 28 5
client-server-ae v 45 11 5 4 5
client-server-db-ae — 16 5 46 5 37 5
hybrid-reliable-broadcast | — 178 5 -0 -0
paxos-epr v 920 5 14332 4 -0
flexible-paxos-epr v 418 5 4928 5 -0
multi-paxos-epr v 4272 4 -0 -0
stoppable-paxos-epr v | >18297 2 -0 -0
fast-paxos-epr v 9630 3 -0 -0
vertical-paxos-epr v -0 -0 -0
block-cache-async — -0 -0 -0
bosco-3t-safety v | >11019' 1 -0 -0

'With EPR push down enabled.
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jump in complexity over the examples solved by the prior generation of PDR/IC3
techniques. Paxos and its variants are notable for having invariants with two quantifier
alternations (V3V) and a maximum of 6 or 7 quantifiers. We uniquely solve multi-,
fast-, and stoppable-paxos-epr, which add significant complexity in the number of sorts,
symbols, and quantifiers required. Due to variations in seeds and the non-determinism
of parallelism, our technique was only successful in some trials, but these results
nevertheless demonstrate that our technique is capable of solving these examples. Our
algorithm is unable to solve vertical-paxos-epr, as this example requires a 7 quantifier
formula that, while solved in the learning experiment, proved too expensive for our
IG solver.

For universal-only examples, our algorithm is able to solve all but one of the
examples® solved by other techniques, and is able to solve one that others cannot. In
some cases (e.g., consensus-forall), our solution is slower than other approaches, but

on the whole our algorithm is competitive in a domain it is not specialized for.

8.3.3 Ablation Study

Table 8.3 presents an ablation study investigating the effect of various features of our
technique. The first column of Table 8.3 repeats the full algorithm results, and the
remaining columns report the performance with various features disabled one at a
time. The most important individual contributions come from k-pDNF matrices and
EPR. Using a 5-clause CNF instead of pDNF matrix (No pDNF) causes many difficult
examples to fail and some (e.g., flexible-paxos-epr) to take significantly longer even
when they do succeed.* This difference is due to k-pDNF matching the forms of the
desired invariants more closely, while requiring less work from the separation algorithm
(i.e., smaller k). Similarly, using full FOL mode instead of EPR (No EPR) leads to
timeouts for all but the simplest Paxos variants, because the resulting lemmas are
outside a decidable logic fragment and cause the SMT solvers to diverge. Note that it

only takes a single solver divergence inside e.g. the pushing process to halt progress,

3fast-paxos-forall, which is solved by our technique in the ablation study, albeit rarely.
4With a single clause, there is no difference between CNF and k-pDNF so results are only given
for existential problems.
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Table 8.3: Ablation study, showing the results of our technique from Table 8.2 compared

with disabling k-pDNF (No pDNF), EPR restrictions (No EPR), incremental SMT
solving (No Inc.), and multi-block generalization (No Gen.). Entries are interpreted

as in Table 8.2. Blanks indicate that the particular combination of example and
experiment is not meaningful.

Example Our No pDNF No EPR No Inc. No Gen.
lockserv 19 5 34 5 13 5
toy-consensus-forall 45 55 45
ring-id 75 11 5 13 5
sharded-kv 8 5 11 5 75
ticket 23 5 42 5 21 5
learning-switch 76 5 338 5 288 5
consensus-wo-decide 50 5 50 5 51 5
consensus-forall 1908 5 2154 5 558 5
cache 2492 4 >16826 2 13116 5
paxos-forall 885 5 1071 5 10488 4
flexible-paxos-forall 1961 5 1014 5 >4168 2
stoppable-paxos-forall 7779 5 2820 5 >18727 1
fast-paxos-forall -0 >16573 1 -0
vertical-paxos-forall -0 -0 -0
firewall 45 45 45 45
sharded-kv-no-lost-keys 45 45 45 55 45
toy-consensus-epr 45 55 5 5 55 55
ring-id-not-dead 19 5 37 5 44 5 52 5
consensus-epr 37 5 126 5 724 5 45 5 233 5
client-server-ae 45 35 45 45 45
client-server-db-ae 16 5 13 5 20 5 10 5
hybrid-reliable-broadcast 178 5 98 5 173 5 629 5
paxos-epr 920 5 10135 4 >2895 1 609 5 3201 5
flexible-paxos-epr 418 5 13742 3 -0 775 5 799 5
multi-paxos-epr 4272 4 >15176 1 -0 15854 3 7326 4
stoppable-paxos-epr >18297 2 -0 -0 >20659 1 >11946 1
fast-paxos-epr 9630 3 -0 -0 8976 3  >20871 2
vertical-paxos-epr -0 -0 -0 -0 -0
block-cache-async -0 -0 -0 >20038 2
bosco-3t-safety >11019 1 -0 -0 >8581 1 >16689 1
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Table 8.4: Parallel vs sequential comparison. Each of 5 trials ran with 3 or 48 hour
timeouts, respectively. The number of successes, and the average number of IG queries
in each trial (including failed ones) are given.

Successes | IG Queries
Example Par. Seq. | Par. Seq. ‘
paxos-epr 5 5 61 76
flexible-paxos-epr 5 5| 64 72
multi-paxos-epr 3 1| 67 84

as without a model we cannot drive the next step of inference. Incremental SMT
queries (No Inc.) make the more difficult Paxos variants, and the universal-only cache
example, succeed much more reliably. Incremental SMT only has a noticeable effect
on the hardest queries, but it can make a subset of them much faster than waiting for
the monolithic query from the solver. Multi-block generalization (No Gen.) makes
many problems faster or more reliable, but disabling it does allow block-cache-async
to succeed. Multi-block generalization can improve results by learning a more general
lemma sooner, when there are multiple lemmas that could be added to the frame.
When the desired lemmas are numerous but relatively simple (as in block-cache-async),
the standard IG algorithm will find the right lemma, and the expense of multi-block
generalization is not warranted.

To isolate the benefits of parallelism, we ran several examples in both parallel and
serial mode with a proportionally larger timeout (Table 8.4). In both modes we use a
single prefix category containing all prefixes, with the same static order over prefixes.®
Beyond the wall-clock speedup, the parallel IG algorithm affects the quality of the
learned lemmas, that is, how well they generalize and avoid overfitting. The computed
lemma may be different in the parallel algorithm because the parallel algorithm
effectively selects the first prefix from the static order to finish with a solution, not
the first that is started. When there is more than one prefix that can solve the query,
and those prefixes take significantly different amounts of time to solve, the parallel
algorithm will be biased towards the solution that is solved faster. To estimate the

quality of generalization from this effect, we count the total number of IG queries

5To make the comparison cleaner, we also disabled multi-block generalization.
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performed by each trial and report the average over the five trials. In all examples,
the parallel algorithm learns fewer lemmas overall, which suggests it generalizes better.
We attribute this improved generalization to the implicit bias towards lemmas that are
faster to discover. For the more complicated example (multi-paxos-epr), this difference

has an impact on the success rate.



Chapter 9
Conclusion

We discuss the implications of our results and the possibilities for future work. Finally,

we summarize our contributions.

9.1 Discussion

Separation is in a sense dual to SMT: separation takes in structures and produces
a formula (or UNSEP), and SMT solvers take in formulas and produce a model (or
UNSAT). When combined in a refinement loop, these two algorithms work together
to produce invariants (ICE learning) or lemmas of invariants (PDR/IC3). Because
separation is indifferent to the quantifier structure, we can use separation to produce
formulas with quantifier alternations, which permits inference of invariants for complex
protocols without needing these protocols to be rewritten to eliminate existentials.
Separation, as introduced in [28], was the first technique able to infer invariants with
quantifier alternations; subsequently, additional techniques have been developed that
support alternations ([19, 16]).

Complex protocols require invariants that are quantified, and usually require alter-
nations. While existentials can often be eliminated by hand, this requires transforming
the system based on the invariant and is incompatible with the desire to increase
automation and reduce the cost of verification. Therefore, our contributions are a

significant step towards making verification practical for complex protocols and other

75
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software systems. Conventional wisdom says quantifiers are too expensive to be used
in verification tasks, but our experimental results show that even the long-standing
problem of invariant inference can be solved in the quantified domain. We infer
invariants for systems that are not trivial; these systems are complex enough that
it can take hours or days for a human to author a correct invariant. We hope our
work sparks interest in quantified reasoning in verification, including both from the

perspective of SMT solvers, and in how systems are designed, specified, and modeled.

9.2 Future Work

Practically, our invariant inference technique still has several gaps that need to be
addressed before it can be readily integrated into verification practice: lack of support
for theories, and use of EPR for reliable solutions. Solving these issues will greatly
expand the potential applications for separation, and by extension the scope of
automated verification techniques.

Separation is currently limited to uninterpreted first-order logic. While the restric-
tion to first-order logic presents few impediments to modeling, most interesting systems
(programs, protocols, hardware models, etc.) require interpreted theories, such as
bitvectors, theory of arrays, arithmetic, sequences, strings, etc. Such theories are useful
for modeling both the data that algorithms process and crucially the representation
of data structures. While the abstract definition of separation does not change when
theories are added, this addition will require a new algorithm for separation. In
particular, our algorithm makes the assumption of a finite signature, which is violated
by e.g., arithmetic where each number is essentially a distinct constant. Further,
models from an SMT solver are no longer guaranteed to be small or even finite, so the
algorithm cannot in general compute all assignments of model elements to quantified
variables. Even in domains that are not infinite, such as bitvectors, the number of
elements can be impractically large (e.g., 2" elements for n-bit bitvectors). Future
extensions of separation to interpreted domains will need some way to focus on the

relevant elements from such large domains.
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The large or infinite model issue is related to the use of EPR. Even in uninterpreted
domains, formulas such as Vx:S.Jy:S. ¢ create Skolem functions in an SMT solver
that can generate an infinite number of terms. The use of EPR is awkward for
invariant inference, as the transition system must sometimes be transformed to admit
an EPR invariant, using knowledge of the final invariant. Solving this issue may
involve generating more information from the separation algorithm, such as a finite
set of instantiations to use for the quantifiers in the separator. Fundamentally, using
EPR gives us decidability at the expense of expressiveness, and an ideal solution to
this problem will restore expressiveness while, if not preserving decidability, increasing
the reliability of SMT solving in domains of interest. It is likely that a solution to the
EPR problem will also play a role in supporting theories, as similar issues of model

size arise.

9.3 Summary

We present first-order quantified separation, a new computational primitive for gen-
erating formulas from examples. Separation naturally produces quantified formulas
with quantifier alternations. We present a practical algorithm for solving separation
using a SAT solver, and describe several optimizations. We show that separation
is NP-complete. We use separation to build a state-of-the-art invariant inference
algorithm based on PDR/IC3. Our algorithm is able to find invariants for complex
distributed protocols that are unsolved by other techniques. Our work is a significant

step towards practical automation using quantified formulas in software verification.
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