
EFFECTIVE STATIC RACE DETECTION FOR JAVA

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Mayur Hiru Naik

March 2008

c© Copyright by Mayur Hiru Naik 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Alex Aiken) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Dawson Engler)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Monica S. Lam)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Concurrent programs are notoriously difficult to write and debug, a problem that

is becoming acute with the recent shift in hardware from uniprocessors to multicore

processors. A fundamental concurrency bug is a race: a condition in a shared-memory

multithreaded program in which a pair of threads may access the same memory

location without any ordering enforced between the accesses, and at least one of

the accesses is a write. Despite thirty years of research on race detection, today’s

concurrent programs are still riddled with harmful races.

We present an effective approach to static race detection for Java. We dissect the

specification of a race to identify four natural conditions, each of which is sufficient

for proving a given pair of accesses race-free, and all of which are necessary in practice

as different pairs of accesses may be race-free for different reasons. We present four

static analyses each of which conservatively approximates a separate condition while

together enabling the overall algorithm to report a useful set of potential races. We

have implemented our approach and report upon our experience applying it to a

suite of eight multithreaded Java programs which includes a mix of libraries, complete

programs, previously studied programs, and newer, real-world, open-source programs.

For complete programs, the approach is sound in that it finds all races. On our

benchmark suite, the approach is precise in that it has a false positive rate of 25%

(only one in every four reported races is not in fact a race) and it is reasonably scalable

in that it is fully automatic and checks programs comprising hundreds of thousands

of Java bytecodes in a few minutes. Finally, the approach is effective, finding tens to

hundreds of previously unknown concurrency bugs in mature and widely used Java

programs in our benchmark suite, many of which were fixed upon reporting.

v

Acknowledgments

First and foremost, I am grateful to my adviser Alex Aiken for his guidance and help

on all aspects of doing research, ranging from how to select the right problems to how

to effectively communicate one’s solutions.

I thank Dawson Engler, Monica Lam, and Henny Sipma for taking the time to

serve on my thesis committee and providing useful feedback.

I am grateful to John Whaley for enthusiastically answering my innumerable ques-

tions about his work on BDD-based program analysis upon which my thesis work is

based.

I would like to thank my office mates Brian and Yichen, and other colleagues

at Stanford including Cristian, Junfeng, Peter, Sorav, and Suhabe for their cama-

raderie. I also thank my friends Anish, Dilys, Krishnaram, Kristina, Parag, Penka,

Rajat, Rajiv, Siddharth, Utkarsh, and Vijay for making my time at Stanford very

memorable.

I thank Jens Palsberg, my M.S. thesis adviser at Purdue, for introducing me to

the field of programming languages and software engineering. I also thank Jim Larus,

Tom Ball, Sriram Rajamani, and Jakob Rehof for teaching me much about program

analysis during two summer internships at Microsoft Research.

Finally, I thank my family for their support and my wife Sneha for her uncondi-

tional love. I dedicate this thesis to them.

vi

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.3 Our Approach . 3

1.4 Summary of Contributions . 6

1.5 Organization . 7

2 Basic Race Detection Algorithm 9

2.1 Introduction . 9

2.2 Example . 12

2.3 Preprocessing . 14

2.4 k-Object-Sensitive Analysis . 15

2.4.1 Computation of originalRaces 22

2.4.2 Computation of aliasingRaces 27

2.5 Thread Escape Analysis . 29

2.5.1 Intraprocedural Analysis . 31

2.5.2 Interprocedural Analysis . 33

2.5.3 Computation of escapingRaces 34

2.6 May-Happen-In-Parallel Analysis . 37

2.6.1 Computation of parallelRaces 38

vii

2.7 Lockset Analysis . 41

2.7.1 Computation of unlockedRaces 43

2.8 Putting it all together . 45

2.9 Usability Issues . 48

2.9.1 Counterexamples . 49

2.9.2 Open Programs . 51

2.10 Unsoundness . 54

2.11 Experiments . 54

2.12 Related Work . 59

2.12.1 Dynamic Race Detection . 59

2.12.2 Static Race Detection . 60

2.12.3 Atomicity Checking . 62

3 Conditional Must Not Aliasing 64

3.1 Introduction . 64

3.2 Example . 67

3.3 Language . 71

3.3.1 Syntax . 72

3.3.2 Semantics . 72

3.4 Type and Effect System . 76

3.5 Disjoint Reachability Analysis . 85

3.6 Practical Considerations . 89

3.7 Conditional Must Not Alias Analysis 90

3.7.1 Computation of globalUnlockedRaces 93

3.7.2 Computation of localUnlockedRaces 94

3.7.3 Computation of threadUnlockedRaces 97

3.8 Experiments . 97

3.9 Related Work . 100

4 A Demand-Driven Approach 103

4.1 Introduction . 103

4.2 Example . 105

viii

4.3 Language . 113

4.4 k-Object-Sensitive Analysis . 116

4.5 Demand-Driven Race Detection Algorithm 123

4.6 Experiments . 130

4.7 Related Work . 135

5 Conclusion 138

5.1 Future Work . 139

A Proof of Type Preservation 141

ix

List of Tables

2.1 Races in example program. 25

2.2 Benchmarks. 54

2.3 Experimental results: Running time. 55

2.4 Experimental results: Numbers of race pairs. 56

2.5 Experimental results: Classification of reported races. 56

3.1 Benchmarks. 98

3.2 Experimental results: Comparison of running time. 99

3.3 Experimental results: Comparison of numbers of unlocked race pairs. 100

3.4 Experimental results: Comparison of numbers of ultimate race pairs. 100

4.1 Benchmarks. 130

4.2 Experimental results: Comparison of running time. 131

4.3 Experimental results: Number of sites in Σ after last iteration. 132

4.4 Experimental results: Comparison of numbers of abstract contexts. . 133

4.5 Experimental results: Comparison of numbers of ultimate race pairs. 134

x

List of Figures

2.1 Example multithreaded Java program. 13

2.2 k-object-sensitive analysis of example program using k = 2. 19

2.3 May-happen-in-parallel analysis of example program. 40

2.4 Example multithreaded Java program accessing a static field. 41

2.5 Lockset analysis of example program. 42

2.6 Example harness. 53

3.1 Example multithreaded Java program. 68

3.2 Data structure created by example program. 68

3.3 Abstract syntax of WHILE language. 72

3.4 Semantic domains of WHILE language. 73

3.5 Instrumented operational semantics of WHILE language. 74

3.6 Syntax of types and effects. 77

3.7 Abstraction relations. 78

3.8 Type rules. 80

3.9 Disjoint reachability property and disjoint reachability analysis. . . . 84

4.1 Example multithreaded Java program. 106

4.2 Data structure built by example program. 108

4.3 Heap abstractions computed for example program. 109

4.4 Abstract syntax. 114

4.5 Analysis domains. 116

4.6 k-object-sensitive analysis. 118

4.7 Computation of A. 122

xi

4.8 Demand-driven static race detection algorithm. 124

xii

Chapter 1

Introduction

1.1 Motivation

Concurrent software is ubiquitous. Concurrency is the key to effective responsiveness,

resource utilization, and throughput in software we interact with routinely, such as

operating systems, web servers, databases, GUI applications, and games.

Concurrency is expected to become even more pervasive with the recent shift in

hardware from uniprocessors to multicore processors [66, 80]. Uniprocessor speeds

peaked around the beginning of 2003 due to physical issues such as heat dissipation

and power consumption. Since then, all major processor vendors have begun manu-

facturing multicore processors, which consist of two or more independent cores packed

onto a single chip. Moreover, the number of cores in multicore processors is expected

to grow exponentially, quite like uniprocessor speeds increased exponentially until

recently. This shift in hardware has major implications for software. In the past,

as uniprocessor speeds increased, even sequential programs ran faster without any

modification. In the future, however, as the number of cores in multicore processors

increases, primarily concurrent programs will be able to gain their performance bene-

fits. As a result, future software is expected to be increasingly written in a concurrent

fashion.

The benefits of concurrency, however, are counterbalanced by the notorious diffi-

culty of writing and debugging concurrent programs. A fundamental and particularly

1

2 CHAPTER 1. INTRODUCTION

insidious concurrency bug is a race: a condition in a shared-memory multithreaded

program in which a pair of threads may access the same memory location without

any ordering enforced between the accesses, and at least one of the accesses is a write.

While some races are benign, many are harmful violations of program invariants. In

the extreme, races can be disastrous, such as those deemed responsible for the failure

of the Therac-25 radiation therapy machine that led to the death of five patients and

injured several more, and the breakdown of the Energy Management System that

led to the North American Blackout of 2003. Despite three decades of work on race

detection, however, today’s concurrent programs are still riddled with harmful races.

1.2 Challenges

Races are typically triggered under very specific thread schedules, and the inherent

non-determinism of thread schedules renders races not only more likely to elude detec-

tion by prevalent industrial testing techniques, but also more difficult to reproduce

and fix once they have been detected. As a result, there has been a considerable

amount of work on tools for race detection.

Current race detection tools are predominantly based on dynamic (run-time) anal-

ysis. State-of-the-art dynamic race detectors are precise and scalable. Like any

dynamic analysis, however, they are inherently unsound and cannot be applied to

incomplete programs such as libraries.

Race detection tools based on static (compile-time) analysis typically sacrifice

some combination of soundness, precision, and scalability. Static race detectors face

two primary challenges: simultaneously approximating multiple conditions and infer-

ring the correlation between locks and the memory locations they guard. We next

elaborate upon each of these challenges.

Unlike the specification of most program analysis problems, the specification of a

race involves several conditions. For instance, a pair of statements in a Java program

is race-free if any of the following conditions is satisfied:

• The statements never access the same memory location.

1.3. OUR APPROACH 3

• The memory location accessed by either (or both) of the statements is always

thread-local (as opposed to thread-shared).

• The statements are ordered by the thread structure of the program.

• The statements are ordered by lock-based synchronization.

Each of these conditions is itself undecidable and the separate literature in static anal-

ysis for some of them is vast. Since different pairs of statements in a given program

may be race-free due to different conditions, an effective static race detection algo-

rithm must approximate all four conditions precisely. While imprecision is typically

tolerable when it arises out of a reasonable static analysis for one of these conditions

in isolation—the case in most static analysis clients—it can become unbearable for

race detection on large, real-world programs, even when reasonable static analyses

are used for each of them.

Determining whether a pair of statements is ordered by lock-based synchronization

is a particularly difficult problem: it requires inferring the correlation between locks

and the memory locations they guard. This problem is easy in the case of programs

with coarse-grained parallelism which use global, uniquely-named locks but quickly

becomes intractable in the case of programs with fine-grained parallelism which create

multiple locks at run-time that are stored in data structures and passed around by

functions. Indeed, folk wisdom that static race detection is intractable is primarily

attributed to this problem.

1.3 Our Approach

This thesis presents an effective approach to static race detection for Java. Our

algorithm consists of four static analyses, each of which conservatively approximates

a different condition sufficient for proving a given pair of statements race-free:

1. A pair of statements is race-free if the statements never access the same memory

location. We employ a may alias analysis for approximating this condition.

4 CHAPTER 1. INTRODUCTION

2. A pair of statements is race-free if the memory location accessed by either (or

both) of the statements is always thread-local (as opposed to thread-shared).

We employ a thread escape analysis for approximating this condition.

3. A pair of statements is race-free if the statements are ordered by the thread

structure of the program. We employ a may-happen-in-parallel analysis for

approximating this condition.

4. A pair of statements is race-free if the statements are ordered by lock-based syn-

chronization. We employ conditional must not alias analysis for approximating

this condition.

Each pair of statements in the given Java program that fails to satisfy the above four

conditions is output as a potential race.

We next elaborate upon the key aspects of our algorithm by means of the following

pseudo-code example:

// Thread t1 executes: // Thread t2 executes:

synchronized (l1) { synchronized (l2) {

s1: e1.f = ...; s2: e2.f = ...;

} }

Here, “synchronized (l) { s }” is Java’s lexically-scoped locking construct: the

thread executing it acquires a lock on the object denoted by l before executing s and

releases the lock upon finishing executing s. The statements labeled s1 and s2 write

to memory locations denoted by instance field f of the objects denoted by expressions

e1 and e2, respectively. By condition (1) above, s1 and s2 cannot be involved in

a race if e1.f and e2.f do not denote the same memory location in any execution,

which in turn is true if e1 and e2 do not denote the same object in any execution since

fields of different objects in Java have different memory locations. This condition can

be approximated using a may alias analysis (also called points-to analysis or pointer

analysis), and is denoted by the predicate ¬ MAY-ALIAS(e1, e2) in the literature.

The precision of the may alias analysis is key to the precision of our race detection

algorithm. The other three analyses used in our algorithm to approximate conditions

1.3. OUR APPROACH 5

(2)–(4) above, namely, thread escape analysis, may-happen-in-parallel analysis, and

conditional must not alias analysis, also use the points-to information and the call

graph computed by the may alias analysis. As a result, the precision of the may alias

analysis is not only important in its own right, but it also affects the precision of the

other analyses.

We employ a relatively recent form of may alias analysis for Java called k-object-

sensitive analysis introduced by Milanova et al. [60, 61] that provides the precision

necessary for our race detection approach. It is well known that k-object-sensitive

analysis is difficult to scale. We use two key insights to obtain a reasonably scalable

k-object-sensitive analysis. First, we leverage recent work on BDD-based techniques

for scaling context sensitive, whole-program static analyses [8, 51, 88, 94]. Secondly,

and more importantly, we employ a novel demand-driven approach to static race

detection that enables an adaptive k-object-sensitive analysis capable of analyzing

different parts of the same program with different degrees of precision. The approach

achieves scalability by guiding the analysis to use high precision (i.e., k values bigger

than one) for only a tiny fraction of (object allocation sites in) the program and low

precision (i.e., k values equal to one) for the vast majority of (object allocation sites

in) the program.

Returning to our running example, if ¬ MAY-ALIAS(e1, e2) holds, then s1 and s2

are race-free by condition (1) above. Otherwise, we can try to prove that s1 and s2

are race-free using one of conditions (2)–(4). In particular, we can try to prove that

l1 and l2 denote the same lock object in every execution, in which case s1 and s2

are race-free by condition (4). This condition can be approximated using a must alias

analysis, and is denoted by the predicate MUST-ALIAS(l1, l2) in the literature.

Must-alias analysis is perceived as a harder problem than may alias analysis, and

the literature on must alias analysis, unlike that on may alias analysis, is very small.

Hence, the apparent need for a must alias analysis in checking whether a pair of

statements is ordered by lock-based synchronization has been a major impediment to

many previous static race detection approaches. Our key insight is that must alias

analysis is not necessary for static race detection, and that a new analysis we call

conditional must not alias analysis suffices. The idea behind conditional must not

6 CHAPTER 1. INTRODUCTION

alias analysis is that, instead of proving that l1 and l2 denote the same object in

every execution, we can prove that whenever l1 and l2 denote different objects in

an execution, e1 and e2 also denote different objects in that same execution. If this

holds, then it is easy to see that s1 and s2 are race-free. Our conditional must not

alias analysis is based on a novel form of object reachability analysis called disjoint

reachability analysis that reasons about reachability in the heap between lock objects

like l1 and l2 and accessed objects like e1 and e2.

We have implemented our static race detection algorithm in a tool Chord and

applied it to a suite of eight multithreaded Java programs. The suite includes a mix

of open programs (incomplete programs such as libraries), closed programs (complete

programs with a main method), programs studied in previous work on race detection,

and newer, real-world, open-source programs. Modulo certain sources of unsoundness,

namely, dynamic class loading, reflection, unsound modeling of missing caller code

(e.g., main methods in the case of libraries), unsound modeling of missing callee code

(e.g., native methods), and any remaining bugs in our implementation, our approach

identifies all races in each of these programs, has a false positive rate of around 25%,

and checks each of these programs in under a few minutes, taking 132 minutes to

analyze our largest benchmark Apache Derby, a popular relational database engine

comprising over 700K lines of Java bytecode. Finally, our approach is effective, finding

tens to hundreds of previously unknown concurrency bugs in mature and widely used

programs in our benchmark suite, including 1018 distinct harmful races that exposed

319 distinct bugs in Apache Derby. The usefulness of our approach is attested by the

fact that many of these bugs were fixed by the programs’ developers upon reporting.

1.4 Summary of Contributions

This thesis makes the following contributions:

• It presents a novel algorithm for static race detection in Java programs. The

algorithm employs four static analyses, namely, a k-object-sensitive may alias

analysis, a thread escape analysis, a may-happen-in-parallel analysis, and a

1.5. ORGANIZATION 7

conditional must not alias analysis. Each of these analyses conservatively ap-

proximates a different condition sufficient for proving a given pair of statements

race-free while together enabling our algorithm to output a useful set of poten-

tial races.

• It introduces conditional must not alias analysis, a novel technique for corre-

lating locks with the memory locations they guard. It circumvents the need

for must alias analysis which has been a major impediment to many previous

static race detection approaches. The analysis is based on a novel form of ob-

ject reachability analysis called disjoint reachability analysis that reasons about

reachability in the heap between locks and the memory locations they guard.

Disjoint reachability analysis is essentially a lightweight shape analysis [90] and

may have applications beyond static race detection.

• It presents a novel demand-driven approach to static race detection that enables

an adaptive k-object-sensitive analysis capable of using different k values for

different object allocation sites in the same program. The approach guides

the analysis to use bigger k values for sites where it deems higher precision is

necessary and lower k values for sites where it deems lower precision suffices.

In practice, it uses bigger k values for few sites and smaller k values for the

vast majority of sites, thereby striking a good trade-off between precision and

scalability while retaining soundness.

• It describes the implementation of our static race detection algorithm in a tool

named Chord and reports upon our experience applying it to a suite of eight

diverse multithreaded Java programs. The effectiveness of our approach is vali-

dated by the discovery of tens to hundreds of previously unknown concurrency

bugs in mature and widely used programs in our benchmark suite.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 presents our basic race

detection algorithm with a focus on precision. It sacrifices soundness by employing an

8 CHAPTER 1. INTRODUCTION

unsound lockset analysis for checking whether a pair of statements is ordered by lock-

based synchronization, and it sacrifices scalability by using a non-adaptive k-object-

sensitive analysis that uses the same k value for all object allocation sites in the given

program. Chapter 3 presents conditional must not alias analysis which replaces the

lockset analysis and renders our race detection algorithm sound. Chapter 4 shows how

to make our race detection algorithm demand-driven, which improves its scalability

by enabling an adaptive k-object-sensitive analysis capable of using different k values

for different object allocation sites in the given program. Finally, Chapter 5 concludes

with directions for future work.

Chapter 2

Basic Race Detection Algorithm

This chapter presents our basic race detection algorithm with a focus on precision.

The algorithm consists of four static analyses—a may alias analysis, a thread escape

analysis, a may-happen-in-parallel analysis, and a lockset analysis—each of which ap-

proximates a separate condition in the specification of a race while together enabling

the algorithm to output a useful set of potential races. We have implemented the

algorithm in a tool Chord and report upon our experience applying it to a suite of

eight multithreaded Java programs.

2.1 Introduction

A race is a condition in a shared-memory multithreaded program in which a pair of

threads may access the same memory location without any ordering enforced between

the accesses, and at least one of the accesses is a write. Races often imply violations

of program invariants. However, races are typically triggered under very specific

thread schedules, and the inherent non-determinism of thread schedules renders races

not only more likely to elude detection by prevalent industrial testing techniques, but

also more difficult to reproduce and fix once they have been detected. As a result, race

detection tools are valuable for improving the reliability of multithreaded programs.

The large body of work on race detection, discussed in detail in Section 2.12, may

be broadly classified as dynamic or static. Briefly, dynamic race detectors are based

9

10 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

on either the happens-before relation [1, 19, 20, 22, 59, 71, 75], the lockset algorithm

[2, 14, 17, 64, 74, 83, 84], or a hybrid approach that combines the happens-before

and lockset approaches [23, 42, 65, 68, 92], while static race detectors are either

primarily flow insensitive type-based systems [11, 12, 28, 29, 69, 73], flow sensitive

static versions of the lockset algorithm [18, 26, 79], or path sensitive model checkers

[45, 70, 76].

Static race detectors typically sacrifice some combination of soundness, precision,

and scalability. The difficulty of effective static race detection is underscored by the

fact that race detection tools are predominantly dynamic. State-of-the-art dynamic

race detectors enjoy both precision and scalability. Like any dynamic analysis, how-

ever, they are inherently unsound and explore only a fraction of the space of the

program’s inputs and thread schedules. Furthermore, they cannot be applied to open

programs such as libraries, since such programs cannot be executed.

In this chapter, we present our basic approach to static race detection for Java. We

dissect the specification of a race to identify four natural conditions, each of which

is sufficient for proving a given pair of statements race-free, but all of which are

necessary in practice since different pairs of statements in a given Java program may

be race-free because of different conditions. Our race detection algorithm consists of

four static analyses each of which checks a separate condition while together enabling

the algorithm to report a useful set of potential races:

1. A pair of statements is race-free if they never access the same memory location.

We use a may alias analysis to approximate this condition.

2. A pair of statements is race-free if the memory location accessed by either (or

both) of the statements is always thread-local (as opposed to thread-shared).

We use a thread escape analysis to approximate this condition.

3. A pair of statements is race-free if they are ordered by the thread structure

of the program. We use a may-happen-in-parallel analysis to approximate this

condition.

2.1. INTRODUCTION 11

4. A pair of statements is race-free if they are ordered by lock-based synchroniza-

tion. We use a lockset analysis to approximate this condition.

Each pair of statements in the given Java program that fails to satisfy the above four

conditions is output as a potential race for manual inspection.

We have implemented our static race detection algorithm in a tool Chord and ap-

plied it to a suite of eight multithreaded Java programs, many of which are mature

and widely used. Our approach found 406 previously unknown concurrency bugs in

these programs, many of which were fixed by the programs’ developers upon report-

ing. In Apache Derby, an open-source relational database engine, Chord analyzed

over 700K lines of Java bytecode and reported races revealing 319 distinct bugs. Tens

of bug reports in two other open-source programs, JdbF (an object-relational map-

ping system) and jTDS (a JDBC driver), led the developers of those programs to

overhaul their synchronization. In Apache Commons Pool, an open-source generic

object-pooling library that enables optimizing usage of resources like threads, sock-

ets, database connections, etc., Chord exposed 17 bugs, all of which were fixed in five

immediate dedicated patches.

The rest of this chapter is organized as follows. Section 2.2 illustrates our approach

by means of an example Java program. Section 2.3 presents a preprocessing stage

which primarily constructs a context insensitive call graph of the given Java program.

Sections 2.4–2.7 present our may alias analysis, our thread escape analysis, our may-

happen-in-parallel analysis, and our lockset analysis, respectively. Section 2.8 shows

how to put all four analyses together to compute the set of potential races to be

reported. Section 2.9 discusses usability aspects of our algorithm, namely, how it

generates counterexamples to explain the detected races and how it checks open

programs such as libraries. Section 2.10 discusses unsoundness issues in our algorithm.

Section 2.11 describes our implementation of the algorithm in Chord and the results

of applying it to a suite of eight multithreaded Java programs. Finally, Section 2.12

discusses related work.

12 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

2.2 Example

In this section, we present a multithreaded Java program that we use as the running

example to illustrate our approach. The program, shown in Figure 2.1, begins by

executing the main method of class T in an implicit main thread. The main thread

first creates two integers, each encapsulated in a separate A object, each of which in

turn is encapsulated in a separate B object. The main thread then creates a bunch

of T objects in a loop. Whenever a T object is created in each iteration of the loop,

the two B objects are assigned to instance fields f1 and f2 of that T object, and

the start method of superclass java.lang.Thread is called on that T object. The

start method, which is not shown, invokes the run method of class T on that T object

in a fresh child thread. The calls to the start method are asynchronous: the main

thread continues executing the main method while each of the previously spawned

child threads executes the run method.

The main thread and the child threads communicate via the two integers created

upfront by the main thread. All accesses to one of the two integers are consistently

protected by a lock. In particular, the main thread and the child threads hold a lock

on the same B object while accessing the corresponding encapsulated integer: the main

thread holds the lock while writing to it and each child thread holds the lock while

reading it. As a result, there are no races on this integer. The other integer, however,

is accessed by all threads without holding any lock: the main thread repeatedly reads

the integer in a loop until it becomes non-zero, and each child thread writes to the

integer upon finishing executing the run method. As a result, there are races on

this integer. This pattern, called asynchronous notification, is commonly used in

real-world multithreaded Java programs. The race is seemingly benign but it is in

fact harmful: in the absence of consistent lock-based synchronization or a volatile

declaration of the integer, Java’s memory model [55] allows accesses to the integer to

be aggressively optimized, for instance, allowing the unprotected writes by the child

threads to a location in the register or cache of one processor on a multiprocessor

that is never flushed, thereby preventing the writes from ever becoming visible to the

main thread executing on a different processor and making it loop forever.

2.2. EXAMPLE 13

public class T extends java.lang.Thread {

public static void main(String[] a) {

h1,i1: B v1 = new B();

h2,i2: B v2 = new B();

for (int i = 0; i < *; i++) {

h3,i3: T v3 = new T(v1, v2);

i4: v3.start();

}

i5: while (v1.get() == 0) {

l1: synchronized (v2) {

i6: v2.set(...);

}

}

}

private B f1, f2;

public T(B v4, B v5) {

e1: this.f1 = v4;

e2: this.f2 = v5;

}

public void run() {

e3: B v6 = this.f1;

e4: B v7 = this.f2;

l2: synchronized (v7) {

i7: ... = v7.get();

}

i8: v6.set(1);

}

}

public class B {

private A f3;

public B() {

h4,i9: A v8 = new A();

e5: this.f3 = v8;

}

public int get() {

e6: A v9 = this.f3;

i10: return v9.get();

}

public void set(int i) {

e7: A v10 = this.f3;

i11: v10.set(i);

}

}

public class A {

private int f4;

public A() {

e8: this.f4 = 0;

}

public int get() {

e9: return this.f4;

}

public void set(int i) {

e10: this.f4 = i;

}

}

Figure 2.1: Example multithreaded Java program.

14 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

2.3 Preprocessing

Our race detection algorithm is whole-program and requires a call graph of the given

Java program. Hence, the first step in our algorithm is to obtain a context insensitive

call graph of the program from a user-specified main class containing the distinguished

main method and a user-specified class path specifying the location of all reachable

classes. (We show how our algorithm handles open programs, which typically lack

a main method, in Section 2.9.2.) We obtain this call graph using Spark [52], a

0-CFA-based may alias analysis with on-the-fly call graph construction provided in

the Soot compiler framework [81]. We next define some important program domains

we extract from this call graph:

• M is the set of all reachable methods in the call graph. We use mmain to denote

the element in M representing the distinguished main method, which is also the

root method of the implicitly spawned main thread, and we use mstart to denote

the element in M representing the start method in class java.lang.Thread,

which is the root method of each explicitly spawned thread. For our running

example from Figure 2.1, M contains T.main as mmain , T.run, B.get, B.set,

A.get, A.set, constructor and class initializer methods of application classes

T, B, and A, as well as methods of library classes such as java.lang.Thread

and java.lang.Object which are not shown. For the remaining domains as

well, we focus only on elements from application classes, although each domain

contains additional elements from library classes.

• I contains each method invocation site in the body of each method in M. For

our running example, I includes statements labeled i1 through i11.

• H contains each object allocation site in the body of each method in M. For

our running example, H includes statements labeled h1 through h4.

• V contains each local variable declared in each method in M. For our running

example, V includes local variables v1 through v10, and this. In our imple-

mentation, however, V has a separate element for each this variable in methods

T.run, B.get, B.set, A.get, A.set, T.<init>, B.<init>, and A.<init>. We

2.4. K-OBJECT-SENSITIVE ANALYSIS 15

use a single this variable in our presentation for brevity; the context always

makes it clear which this variable is being referenced.

• E contains each statement in the body of each method in M that reads or writes

an instance field, an array element, or a static field. For our running example,

E includes statements labeled e1 through e10.

• F contains each instance field read or written in the body of any method in

M, plus a hypothetical field felems that is regarded as read/written whenever an

array element is read/written; this field is necessary since we do not distinguish

between different elements of the same array. For our running example, F

includes fields f1 and f2 of class T, field f3 of class B, and field f4 of class A.

• G contains each static field read or written in the body of any method in M.

Our running example does not contain any static fields in application classes T,

B, and A.

• P contains each program point in the body of each method in M. This in-

cludes the program points of object allocation sites, method invocation sites,

and statements accessing instance fields, array elements, and static fields.

2.4 k-Object-Sensitive Analysis

The points-to information and call graph obtained using a 0-CFA-based analysis is

too imprecise for our race detection approach. Specifically, the points-to information

is context and object insensitive while the call graph is context insensitive.

The literature on may alias analysis is particularly extensive [46]. We experi-

mented with a variety of may alias analyses ranging from 0-CFA-based analysis to

Whaley and Lam’s k-CFA-based analysis [88] where k is the depth of the program’s

call graph obtained after collapsing strongly connected components to single nodes.

We eventually chose a relatively recent form of may alias analysis for Java called

k-object-sensitive analysis introduced by Milanova et al. [60, 61] that provides the

precision necessary for our race detection approach.

16 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

It is well known that k-object-sensitive analysis is difficult to scale. While k-CFA

is context sensitive and the number of abstract method contexts for a given program

grows exponentially with k, it is object insensitive in that the number of abstract

objects is independent of k. (The object insensitivity of k-CFA is the primary reason

it does not offer the precision necessary for our race detection approach.) In contrast,

k-object-sensitive analysis is not only context sensitive but also object sensitive, and

the number of abstract objects for a given program also grows exponentially with k (in

fact, as we shall see shortly, the set of abstract objects is the same as the set of abstract

method contexts). We use two key insights to obtain a reasonably scalable k-object-

sensitive analysis, namely, a Binary Decision Diagram (BDD) based implementation

of the analysis and a demand-driven approach to static race detection. In this chapter,

however, we focus only on the insight concerning the BDD-based implementation;

Chapter 4 further improves upon scalability by making the race detection algorithm

presented in this chapter demand-driven.

Recent work has demonstrated the effectiveness of BDD-based techniques in scal-

ing context sensitive, whole-program static analyses [8, 51, 88, 94]. Our implemen-

tation of k-object-sensitive analysis leverages these advances, in particular, we use

bddbddb [48, 87] to express the analysis declaratively using Datalog constraints over

program relations. A BDD is a graph-based data structure for representing and ma-

nipulating a boolean relation [13]. BDDs are particularly effective at compacting

representing and efficiently manipulating relations with high levels of redundancy,

such as those arising in context sensitive, whole program static analyses. Hence, all

relations used in our analysis, including input relations that encode basic program

facts and output relations that encode the points-to information and call graph, are

represented as BDDs, while the Datalog constraints over these relations are imple-

mented as operations on BDDs. The memory consumption of BDDs and the running

time of BDD operations depends upon how effectively the redundancy in the rep-

resented relations is exploited, which in turn depends heavily on a client-specified

ordering of the domains of those relations. In our analysis, an ordering of the various

program domains (e.g., M, I, H, etc. from Section 2.3) carefully chosen once and for

all enables the redundancy in program relations to be exploited effectively, reducing

2.4. K-OBJECT-SENSITIVE ANALYSIS 17

the memory consumption of BDDs and the running time of BDD operations and

thereby enabling the analysis to scale.

Our implementation of k-object-sensitive analysis is parameterized by a positive

integer k that may be instantiated differently for different programs. We call this vari-

ant of k-object-sensitive analysis non-adaptive. In Chapter 4, we present an adaptive

variant that allows different k values to be used for different object allocation sites

in the same program, which enables a demand-driven race detection algorithm that

strikes a good trade-off between scalability and precision by using bigger k values for

a few sites and smaller k values for the vast majority of sites in the program. In this

chapter, however, we presume a non-adaptive k-object-sensitive analysis.

The analysis is object sensitive, that is, it abstracts different objects allocated at

the same site by potentially different abstract objects. An abstract object o is a non-

empty sequence of at most k object allocation sites, denoted [hn :: ... ::h1]. We call hn

and h1 the most and least significant sites, respectively. Suppose o.car denotes the

head hn and o.cdr denotes the tail [hn−1 :: ... ::h1]. Then, different objects allocated at

site hn are abstracted by different abstract objects o1 and o2 iff o1.car = o2.car = hn

and o1.cdr 6= o2.cdr. We use O to denote the set of all abstract objects.

The analysis is context sensitive, that is, it analyzes each method in potentially

multiple abstract contexts. An abstract context is either a distinguished context ε

which denotes the sole context in which the main method mmain is analyzed, or it

is an abstract object. We use C to denote the set of all abstract contexts.

The analysis is flow insensitive. The lack of flow sensitivity, however, does not

adversely affect the precision of the analysis because our implementation operates on

an SSA-like representation of the given Java program.

The analysis outputs the following relations:

• ptsV : C × V × O, the points-to information for local variables, contains each

tuple (c, v, o) such that local variable v may point to abstract object o in abstract

context c of v’s declaring method. Note that the points-to information is both

context and object sensitive.

• ptsG : G × O, the points-to information for static fields, contains each tuple

18 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

(g, o) such that static field g may point to abstract object o. Note that the

points-to information is object sensitive but not context sensitive: static fields

in Java are akin to global variables that are declared outside of all methods,

and abstract contexts are associated only with methods.

• heap : O×F×O, the heap abstraction, contains each tuple (o1, f, o2) such that

instance field f or the hypothetical field felems of abstract object o1 may point

to abstract object o2.

• cscg : C × I × C × M, the call graph, contains each tuple (c1, i, c2, m) such

that method invocation site i in abstract context c1 of its containing method

may call method m in abstract context c2. Note that the call graph is context

sensitive.

The above relations computed for our running example from Figure 2.1 using k-

object-sensitive analysis instantiated with k = 2 are shown in Figure 2.2. The analysis

begins by regarding the main method T.main (as well as each class initializer method

in M) as reachable in abstract context ε. Whenever a method is deemed reachable in

a particular abstract context, so are all statements in the body of that method. Of

particular interest are object allocation sites, accesses to instance fields, accesses to

array elements, accesses to static fields, and method invocation sites; we next discuss

each of these cases in turn.

Object Allocation Sites

Suppose a method deemed reachable in abstract context c contains an object alloca-

tion site labeled h of the form v = new ... where v is a local variable of the method.

Then, the analysis adds tuple (c, v, o) to relation ptsV, where o is determined as

follows:

• If c is of the form ε, then o ≡ [h]. For instance, in our example, the tuple (ε,

v1, [h1]) is added to ptsV because site h1 is contained in method T.main

which is deemed reachable in abstract context ε.

2.4. K-OBJECT-SENSITIVE ANALYSIS 19

cscg : C × I × C × M = {
(ε, i1, [h1], B.<init>)

(ε, i2, [h2], B.<init>)

(ε, i3, [h3], T.<init>)

(ε, i4, [h3], T.run)

(ε, i5, [h1], B.get)

(ε, i6, [h2], B.set)

([h3], i7, [h2], B.get)

([h3], i8, [h1], B.set)

([h1], i9, [h4::h1], A.<init>)

([h2], i9, [h4::h2], A.<init>)

([h1], i10, [h4::h1], A.get)

([h2], i10, [h4::h2], A.get)

([h1], i11, [h4::h1], A.set)

([h2], i11, [h4::h2], A.set)

}

heap : C × F × C = {
([h3], f1, [h1])

([h3], f2, [h2])

([h1], f3, [h4::h1])

([h2], f3, [h4::h2])

}

ptsV : C × V × C = {
(ε, v1, [h1])

(ε, v2, [h2])

(ε, v3, [h3])

([h3], v4, [h1])

([h3], v5, [h2])

([h3], v6, [h1])

([h3], v7, [h2])

([h1], v8, [h4::h1])

([h2], v8, [h4::h2])

([h1], v9, [h4::h1])

([h2], v9, [h4::h2])

([h1], v10, [h4::h1])

([h2], v10, [h4::h2])

([h1], this, [h1])

([h2], this, [h2])

([h3], this, [h3])

([h4::h1], this, [h4::h1])

([h4::h2], this, [h4::h2])

}

ptsG : F × C = {
}

Figure 2.2: k-object-sensitive analysis of example program using k = 2.

20 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

• If c is of the form [hn :: ... :: h1] and n < k, then o ≡ [h :: hn :: ... :: h1]. For

instance, in our example, the tuple ([h1], v8, [h4::h1]) is added to ptsV

because site h4 is contained in method B.<init> which is deemed reachable in

abstract context [h1], and also because we have presumed that the analysis is

instantiated with k = 2.

• If c is of the form [hn :: ... :: h1] and n ≥ k, then o ≡ [h :: hn :: ... :: h2],

that is, the least significant site h1 is dropped. Consider the tuple ([h1],

v8, [h4::h1]) from the previous item. If we had instantiated the analysis

with k = 1 instead of k = 2, then the analysis would infer the abstract object

pointed to by v8 in abstract context [h1] as [h4] instead of [h4::h1]. This

example also illustrates why lower k values may result in imprecision: if the

analysis is instantiated using k = 1, the computed points-to information makes

fewer distinctions, namely, abstract objects [h4::h1] and [h4::h2] in each

tuple of relation ptsV shown in Figure 2.2 are replaced by abstract object [h4].

Reads of Instance Fields or Array Elements

Suppose a method deemed reachable in abstract context c contains a statement of the

form v2 = v1.f where v1 and v2 are local variables of the method and f is either an

instance field or the hypothetical field felems . Then, for each (c, v1, o1) ∈ ptsV and for

each (o1, f, o2) ∈ heap, the analysis adds tuple (c, v2, o2) to ptsV. For instance, in our

example, the tuple ([h3], v6, [h1]) gets added to ptsV because the heap read v6 =

this.f1 is contained in method T.run which is deemed reachable in abstract context

[h3], and because ptsV contains tuple ([h3], this, [h3]) and heap contains tuple

([h3], f1, [h1]).

Writes to Instance Fields or Array Elements

Suppose a method deemed reachable in abstract context c contains a statement of

the form v1.f = v2 where v1 and v2 are local variables of the method and f is either

an instance field or the hypothetical field felems . Then, for each (c, v1, o1) ∈ ptsV and

for each (c, v2, o2) ∈ ptsV, the analysis adds tuple (o1, f, o2) to heap. For instance, in

2.4. K-OBJECT-SENSITIVE ANALYSIS 21

our example, the tuple ([h1], f3, [h4::h1]) gets added to heap because the heap

write this.f3 = v8 is contained in method B.<init> which is deemed reachable in

abstract context [h1], and because ptsV contains tuples ([h1], this, [h1]) and

([h1], v8, [h4::h1]).

Reads of Static Fields

Suppose a method deemed reachable in abstract context c contains a statement of

the form v = g where g is a static field and v is a local variable. Then, for each

(g, o) ∈ ptsG, we add (c, v, o) to ptsV.

Writes to Static Fields

Suppose a method deemed reachable in abstract context c contains a statement of

the form g = v where g is a static field and v is a local variable. Then, for each

(c, v, o) ∈ ptsV, we add (g, o) to ptsG.

Method Invocation Sites

Suppose a method deemed reachable in abstract context c contains a method invo-

cation site i. There are two cases depending upon the kind of i:

• If i is an invokestatic call (a statically-dispatched call to a static method),

suppose its target is static method m. Then, the analysis deems method m

reachable in context c, and adds tuple (c, i, c, m) to relation cscg.

• If i is an invokespecial call (a statically-dispatched call to an instance method)

or an invokevirtual or invokeinterface call (a dynamically-dispatched call

to an instance method), then the points-to information is consulted. Specifically,

suppose the distinguished 0th this argument of i is local variable v. Then, for

every abstract object o pointed to by v in abstract context c, that is, for every

(c, v, o) ∈ ptsV, the analysis deems method m reachable in abstract context o,

and adds tuple (c, i, o, m) to relation cscg, where m is determined solely by i if

it is an invokespecial call, or by both i and o using class hierarchy analysis if

22 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

it is an invokevirtual or invokeinterface call (recall that invokespecial

is a statically-dispatched call and hence the abstract object o is not necessary

to determine the target method).

In our example, i1, i2, i3, and i9 are invokespecial calls and the rest are

invokevirtual calls. Consider, for instance, call site i10. It is contained in

method B.get, which is deemed reachable in abstract contexts [h1] and [h2].

The 0th argument of the call site, v9, may point to abstract objects [h4::h1]

and [h4::h2] in abstract contexts [h1] and [h2], respectively, as denoted

by the corresponding tuples in ptsV. Hence, tuples ([h1], i10, [h4::h1],

A.get) and ([h2], i10, [h4::h2], A.get) are added to cscg.

2.4.1 Computation of originalRaces

The call graph obtained from k-object-sensitive analysis is used to compute an initial

over-approximation of the set of races in the given Java program. This computation

is specified as Algorithm 2.1 using bddbddb notation [48, 87], which consists of three

sections: the DOMAINS section declares domains, the RELATIONS section declares

relations over the declared domains, and also specifies whether each relation is an

input relation, an output relation, or neither (in which case it is an intermediate rela-

tion), and the RULES section specifies the computation itself as Datalog constraints

over the declared relations.

Besides the context sensitive call graph relation cscg obtained from k-object-

sensitive analysis, the algorithm requires the following basic program relations:

• EF : E × F contains each tuple (e, f) such that statement e accesses instance

field f or an array element (in which case f is the hypothetical field felems).

• EG : E × G contains each tuple (e, g) such that statement e accesses static

field g.

• ME : M × E contains each tuple (m, e) such that statement e is contained in

method m.

2.4. K-OBJECT-SENSITIVE ANALYSIS 23

• wr : E contains each statement e that is a write (as opposed to a read) of an

instance field, a static field, or an array element.

Algorithm 2.1. Computation of originalRaces.

DOMAINS

C abstract contexts

E statements accessing a field or array element

F instance fields

G static fields

I method invocation sites

M methods

RELATIONS

input cscg : C × I × C × M

input EF : E × F

input EG : E × G

input ME : M × E

input wr : E

reaches : C × C × M

output originalRaces : C × C × E × C × C × E

RULES

reaches(ε, ε,mmain). (2.1)

reaches(c, c, m) :− reaches(, c′, m′), MI(m′, i), cscg(c′, i, c,mstart). (2.2)

reaches(t, c, m) :− reaches(t, c′, m′), MI(m′, i), cscg(c′, i, c, m),

m 6= mstart . (2.3)

originalRaces(t, c, e, t′, c′, e′) :− reaches(t, c, m), reaches(t′, c′, m′),

ME(m, e), ME(m′, e′), EF(e, f), EF(e′, f), wr(e), e < e′. (2.4)

24 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

originalRaces(t, c, e, t′, c′, e′) :− reaches(t, c, m), reaches(t′, c′, m′),

ME(m, e), ME(m′, e′), EF(e, f), EF(e′, f), wr(e′), e < e′. (2.5)

originalRaces(t, c, e, t′, c′, e′) :− reaches(t, c, m), reaches(t′, c′, m′),

ME(m, e), ME(m′, e′), EG(e, g), EG(e′, g), wr(e), e < e′. (2.6)

originalRaces(t, c, e, t′, c′, e′) :− reaches(t, c, m), reaches(t′, c′, m′),

ME(m, e), ME(m′, e′), EG(e, g), EG(e′, g), wr(e′), e < e′. (2.7)

originalRaces(t, c, e, t′, c′, e) :− reaches(t, c, m), reaches(t′, c′, m),

ME(m, e), wr(e), c < c′. (2.8)

originalRaces(t, c, e, t′, c, e) :− reaches(t1, c, m), reaches(t′, c, m),

ME(m, e), wr(e), t ≤ t′. (2.9)

�

The intermediate relation reaches is computed by Rules (2.1)–(2.3). It contains

each tuple (t, c, m) such that abstract thread t may execute method m in abstract

context c. Specifically, t is an abstract context of the root method of the thread being

abstracted, that is, it is an abstract context of either the main method mmain (in

the case in which the thread being abstracted is the implicit main thread) or mstart ,

the start method of class java.lang.Thread (in the case in which the thread being

abstracted is an explicitly spawned thread). In the former case, the abstract context

is always ε (since this is the sole abstract context of mmain), and in the latter case, it

is always of the form [hn :: ... :: h1] (since the start method is an instance method

and therefore all its abstract contexts under k-object-sensitive analysis are abstract

objects of its distinguished 0th this argument).

Rules (2.4)–(2.9) compute originalRaces, our initial over-approximation of the

set of races in the given Java program. It contains each tuple (t1, c1, e1, t2, c2, e2) such

that abstract threads t1 and t2 may execute statements e1 and e2 in abstract contexts

c1 and c2 of their containing methods, respectively. Moreover, the rules ensure that:

• e1 and e2 both access the same instance field, or both access array elements (that

is, both access the hypothetical field felems), or both access the same static field.

2.4. K-OBJECT-SENSITIVE ANALYSIS 25

originalRaces a
l
i
a
s
i
n
g
R
a
c
e
s

e
s
c
a
p
i
n
g
R
a
c
e
s

p
a
r
a
l
l
e
l
R
a
c
e
s

u
n
l
o
c
k
e
d
R
a
c
e
s

u
l
t
i
m
a
t
e
R
a
c
e
s

1 (ε, [h3], e1, ε, [h3], e1) X

2 (ε, [h3], e1, [h3], [h3], e3) X X X

3 (ε, [h3], e2, ε, [h3], e2) X

4 (ε, [h3], e2, [h3], [h3], e4) X X X

5 (ε, [h1], e5, ε, [h1], e5) X

6 (ε, [h1], e5, ε, [h2], e5)

7 (ε, [h2], e5, ε, [h1], e5)

8 (ε, [h2], e5, ε, [h2], e5) X

9 (ε, [h1], e5, ε, [h1], e6) X

10 (ε, [h1], e5, [h3], [h2], e6) X

11 (ε, [h2], e5, ε, [h1], e6)

12 (ε, [h2], e5, [h3], [h2], e6) X X

13 (ε, [h1], e5, ε, [h2], e7)

14 (ε, [h1], e5, [h3], [h1], e7) X X

15 (ε, [h2], e5, ε, [h2], e7) X

16 (ε, [h2], e5, [h3], [h1], e7) X

17 (ε, [h4::h1], e8, ε, [h4::h1], e8) X

18 (ε, [h4::h1], e8, ε, [h4::h2], e8)

19 (ε, [h4::h2], e8, ε, [h4::h1], e8)

20 (ε, [h4::h2], e8, ε, [h4::h2], e8) X

21 (ε, [h4::h1], e8, ε, [h4::h1], e9) X

22 (ε, [h4::h2], e8, ε, [h4::h1], e9)

23 (ε, [h4::h1], e8, [h3], [h4::h2], e9) X

24 (ε, [h4::h2], e8, [h3], [h4::h2], e9) X X

25 (ε, [h4::h1], e8, ε, [h4::h2], e10)

26 (ε, [h4::h2], e8, ε, [h4::h2], e10) X

27 (ε, [h4::h1], e8, [h3], [h4::h1], e10) X X

28 (ε, [h4::h2], e8, [h3], [h4::h1], e10) X

29 (ε, [h4::h2], e10, ε, [h4::h2], e10) X X

30 (ε, [h4::h2], e10, [h3], [h4::h1], e10) X X X

31 ([h3], [h4::h1], e10, ε, [h4::h2], e10) X X X

32 ([h3], [h4::h1], e10, [h3], [h4::h1], e10) X X X

33 (ε, [h4::h1], e9, ε, [h4::h2], e10) X

34 (ε, [h4::h1], e9, [h3], [h4::h1], e10) X X X X X

35 ([h3], [h4::h2], e9, ε, [h4::h2], e10) X X X

36 ([h3], [h4::h2], e9, [h3], [h4::h1], e10) X X

Table 2.1: Races in example program.

26 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

Java’s semantics ensures that these are the only three cases in which a pair of

statements may access the same memory location, and hence these are the only

three cases in which a pair of statements may be involved in a race.

• At least one of e1 and e2 is a write (since there cannot be a race between two

reads).

• There is no duplication, for instance, it is never the case that originalRaces

contains both tuples (t1, c1, e1, t2, c2, e2) and (t2, c2, e2, t1, c1, e1).

The relation originalRaces computed for our running example from Figure 2.1

is shown in the leftmost column of Table 2.1. There are two abstract threads in this

example: ε abstracting the implicit main thread and [h3] abstracting each explicitly

spawned child thread. The first two tuples in the table are potential races on field

f1, the next two tuples are potential races on field f2, tuples 5–16 are potential races

on field f3, and tuples 17–36 are potential races on field f4. This distribution of

exponentially increasing numbers of potential races from fields of “external” classes

like T to those of “internal” classes like A is typical in real-world Java programs for two

reasons. First, viewing the heap as a tree-like structure, methods of external classes

like T directly operate only on parts of the heap closer to the root while methods of

internal classes like A directly operate only on parts of the heap closer to the leaves,

and most heap manipulation typically occurs closer to the leaves while the parts of

the heap closer to the root remain relatively unchanged. Secondly, internal classes are

more heavily reused than external classes, and so more abstract contexts are needed

to disambiguate accesses occurring in methods of internal classes, resulting in more

potential races on fields of internal classes.

Note that we have merely shown potential races for the application classes in

this example; the majority of potential races in practice come from library code that

is exercised by application code because when considering the entire program, all

application classes may be viewed as external classes while the library classes may be

viewed as internal classes.

2.4. K-OBJECT-SENSITIVE ANALYSIS 27

2.4.2 Computation of aliasingRaces

The points-to information computed by k-object-sensitive analysis is used to approx-

imate the first of the four conditions, namely, that a pair of statements cannot be

involved in a race if they never access the same memory location. This computation

is specified as Algorithm 2.2.

Algorithm 2.2. Computation of aliasingRaces.

DOMAINS

C abstract contexts

E statements accessing a field or array element

G static fields

V local variables

RELATIONS

input ptsV : C × V × C

input EG : E × G

input EV : E × V

output aliasingRaces : C × C × E × C × C × E

RULES

aliasingRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

EG(e1, g), EG(e2, g). (2.10)

aliasingRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

EV(e1, v1), ptsV(c1, v1, o), EV(e2, v2), ptsV(c2, v2, o). (2.11)

�

Besides the context and object sensitive point-to relation ptsV obtained from k-

object-sensitive analysis, the algorithm requires basic program relations EG : E × G

containing each tuple (e, g) such that statement e accesses static field g, and EV : E×V

28 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

containing each tuple (e, v) such that statement e accesses an instance field or array

element, and e reads local variable v to refer to the object whose instance field or

array element is accessed.

Rules (2.10) and (2.11) compute aliasingRaces, a subset of originalRaces ob-

tained by eliminating each (t1, c1, e1, t2, c2, e2) ∈ originalRaces that is deemed race-

free because e1 and e2 never access the same memory location in abstract contexts

c1 and c2 of their respective containing methods. (Note that this computation does

not inspect abstract threads t1 and t2 in the tuple.) Recall from the computation

of originalRaces in Algorithm 2.1 that e1 and e2 either both access the same in-

stance field or both access array elements or both access the same static field; we next

consider each of these cases in turn.

Rule (2.10) considers the case in which a static field is accessed. In this case, the

tuple cannot be eliminated because static fields in Java are akin to global variables,

and all accesses to the same global variable refer to the same global location.

Rule (2.11) considers the case in which an instance field or an array element (that

is, the hypothetical field felems) is accessed. Suppose e1 and e2 contain accesses of the

form v1.f and v2.f . The rule says that the tuple is retained if v1 and v2 may point

to the same abstract object o in abstract contexts c1 and c2, respectively. If this

condition does not hold, then k-object-sensitive analysis ensures that v1 and v2 can

never refer to the same object in abstract contexts c1 and c2, and Java’s semantics

ensures that if v1 and v2 do not refer to the same object, then fields f of those objects

do not have the same memory location, and hence e1 and e2 cannot be involved in a

race and the tuple can be eliminated.

The relation aliasingRaces computed for our running example from Figure 2.1 is

shown in the second column of Table 2.1. A X mark in a particular row in that column

indicates that the corresponding tuple in originalRaces (shown in the first column

of the same row) is retained in aliasingRaces. For instance, consider tuples #9 and

#10, both of which are potential races involving accesses e5 and e6, which are of

the form this.f3 = v8 and v9 = this.f3. Tuple #9 is retained because it involves

accesses e5 and e6 in the same abstract context [h1] of their containing methods,

and the this variable in both accesses points to the same abstract object [h1] in

2.5. THREAD ESCAPE ANALYSIS 29

abstract context [h1]. But tuple #10 is eliminated since it involves accesses e5 and

e6 in different abstract contexts [h1] and [h2], respectively, and the this variable

in accesses e5 and e6 points to distinct abstract objects [h1] and [h2] in abstract

contexts [h1] and [h2], respectively. In all, this computation alone eliminates 44%

(16/36) of the tuples in originalRaces in our example.

2.5 Thread Escape Analysis

In this section, we present our thread escape analysis and its application to our race

detection algorithm.

The goal of a thread escape analysis is to determine whether an object allocated

by a thread may be visible to another thread. The classic application of thread

escape analysis for Java is elimination of unnecessary lock-based synchronization

[6, 9, 10, 15, 72, 89]. Such unnecessary synchronization occurs frequently in Java pro-

grams, for instance, the lock-based synchronization provided in methods of a thread-

safe library class like java.util.Vector is clearly unnecessary when such methods

are called from a single-threaded context, and it is redundant when such methods are

called from a multithreaded context that provides its own synchronization. In our

experience, however, static race detection demands a thread escape analysis of signif-

icantly higher precision than that required for lock-based synchronization elimination

for two reasons. First, an imprecise thread escape analysis for lock-based synchroniza-

tion elimination causes fewer lock operations to be eliminated, which in turn simply

causes the program to run slower. An imprecise thread escape analysis for static race

detection, on the other hand, causes fewer non-races to be eliminated, which in turn

causes more false races to be reported. Manually inspecting race reports, however, is

a very time-consuming task (see Section 2.9.1). Secondly, the set of objects on which

locks are held is typically a small fraction of the set of objects on which races may

occur and, likewise, the (static) number of lock operations is typically a small fraction

of the (static) number of operations that may be involved in races. For these reasons,

our thread escape analysis is context, object, and flow sensitive. All previous thread

escape analyses we are aware of are context and object insensitive, though many are

30 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

flow sensitive. Our thread escape analysis is context and object sensitive in the same

sense as our k-object-sensitive analysis, namely, the set of abstract contexts is C and

the set of abstract objects is O.

Our thread escape analysis produces the following relations:

• ptsIn, ptsOut : C × P × V × O represents the the points-to sets of local

variables at the entry and exit, respectively, of each program point in each

abstract context of its containing method. Specifically, relation ptsIn (resp.

ptsOut) contains each tuple (c, p, v, o) such that local variable v may point to

abstract object o at the entry (resp. exit) of program point p in abstract context

c of p’s containing method.

• heapIn, heapOut : C × P × O × F × O represents the heap abstraction at the

entry and exit, respectively, of each program point in each abstract context of

its containing method. Specifically, relation heapIn (resp. heapOut) contains

each tuple (c, p, o1, f, o2) such that field f of abstract object o1 may point to

abstract object o2 at the entry (resp. exit) of program point p in abstract context

c of p’s containing method, where f is either an instance field or the hypothetical

field felems .

• escIn, escOut : C × P × O represents the thread-escaping sets at the entry

and exit, respectively, of each program point in each abstract context of its

containing method. Specifically, relation escIn (resp. escOut) contains each

tuple (c, p, o) such that abstract object o may escape the current thread at the

entry (resp. exit) of program point p in abstract context c of p’s containing

method.

We describe the intraprocedural and interprocedural components of the analysis

separately. We assume that each method has a unique entry point without any

predecessors and a unique exit point without any successors.

2.5. THREAD ESCAPE ANALYSIS 31

2.5.1 Intraprocedural Analysis

Consider any program point p other than the entry point of a method in any abstract

context c of that method.

The analysis computes the points-to sets of local variables, the heap abstraction,

and the thread-escaping set at the entry of p in abstract context c as the union of the

points-to sets of the corresponding local variables, the union of the heap abstractions,

and the union of the thread-escaping sets, respectively, at the exit of each immediate

predecessor of p in the same abstract context c.

The analysis computes the points-to sets of local variables, the heap abstraction,

and the thread-escaping set at the exit of p in abstract context c as follows, depending

upon the kind of statement at p.

Object Allocation Sites

Suppose the statement is an object allocation site labeled h of the form v = new ...

where v is a local variable. Recall that our k-object-sensitive analysis computes the

abstract object pointed to by v as either [h] (if c is ε) or [h :: hn :: ... :: h1] (if c is of the

form [hn :: ... :: h1] and n < k) or [h :: hn :: ... :: h2] (if c is of the form [hn :: ... :: h1]

and n ≥ k). Suppose this abstract object is denoted o. Then, the points-to set of v at

exit is {o}. The points-to sets of local variables other than v, the heap abstraction,

and the thread-escaping set at exit are the same as those at entry.

Reads of Instance Fields or Array Elements

Suppose the statement is of the form v2 = v1.f where v1 and v2 are local variables

and f is either an instance field or the hypothetical field felems . Then, the points-to

set of each local variable other than v2 at exit is the same as that at entry. The heap

abstraction at exit is also the same as that at entry. The points-to set of v2 at exit

is determined as follows. Suppose v1 contains abstract object o in its points-to set at

entry. There are two cases:

• If o is not in the thread-escaping set at entry, then the points-to set of v2 at

exit contains each abstract object to which field f of o may point in the heap

32 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

abstraction at entry.

• If o is in the thread-escaping set at entry, however, then the points-to set of v2

at exit contains each abstract object o′ to which field f of o may point in the

global heap abstraction represented by relation heap computed by our k-object-

sensitive alias analysis. In this case, o′ is also added to the thread-escaping set

at exit.

In either case, the thread-escaping set at exit contains every abstract object in the

thread-escaping set at entry.

Writes to Instance Fields or Array Elements

Suppose the statement is of the form v1.f = v2 where v1 and v2 are local variables and

f is either an instance field or the hypothetical field felems . The points-to sets of local

variables at exit are the same as those at entry. The heap abstraction at exit extends

the heap abstraction at entry to capture the effect of the heap write: for each pair of

abstract objects o1 and o2 to which v1 and v2 respectively may point at entry, field f of

o1 may point to o2 in the heap abstraction at exit. The thread-escaping set at exit

contains every abstract object in the thread-escaping set at entry. Furthermore, if o1

is in the thread-escaping set at entry but o2 is not, then each abstract object reachable

from o2 in the heap abstraction at exit is added to the thread-escaping set at exit.

Reads of Static Fields

Suppose the statement is of the form v = g where g is a static field and v is a local

variable. The points-to sets of local variables other than v at exit are the same

as those at entry. The heap abstraction at exit is the also same as that at entry.

The points-to set of v at exit is the same as the points-to set of g represented by

relation ptsG computed by our k-object-sensitive analysis. The thread-escaping set

at exit contains each abstract object in the thread-escaping set at entry, plus each

abstract object reachable in the heap abstraction at exit from any abstract object in

the points-to set of v at exit, as it may be reachable from any thread via g.

2.5. THREAD ESCAPE ANALYSIS 33

Writes to Static Fields

Suppose the statement is of the form g = v where g is a static field and v is a local

variable. The points-to sets of all local variables at exit are the same as those at

entry. The heap abstraction at exit is also the same as that at entry. Finally, the

thread-escaping set at exit contains each abstract object in the thread-escaping set

at entry, plus each abstract object reachable in the heap abstraction at exit from any

abstract object in the points-to set of v at exit, as it may be reachable from any

thread via g.

2.5.2 Interprocedural Analysis

We now present the interprocedural component of our thread escape analysis. We

first describe how information at the entry of a method is computed from its callers

and next describe how information at the exit of a method invocation site is computed

from its callees.

Consider a method m with unique entry point p in abstract context c. The points-

to set of each local variable of m at the entry of p in abstract context c is the empty

set if it is not a formal argument. Otherwise, it is the union of the points-to sets

of the corresponding actual argument at the entry of each method invocation site

i in abstract context c′ such that (c′, i, c, m) ∈ cscg (recall that cscg represents

the context-sensitive call graph of the program computed by our k-object-sensitive

analysis). The treatment of the 0th formal argument is different if m is an instance

method (as opposed to a static method); in this case, the points-to set of the 0th

formal argument contains only those abstract objects in the points-to set of the 0th

actual argument of i that are either c or c∗. This is because k-object-sensitive analysis

ensures that for other abstract objects in the points-to set of the 0th actual argument

of i, either the target method of i in abstract context c′ is different from m or it is m

in an abstract context different from c.

The heap abstraction and thread-escaping set at the entry of p in abstract context

c is the union of the heap abstractions and the union of the thread-escaping sets,

respectively, at the entry of each method invocation site i in abstract context c′ such

34 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

that (c′, i, c, m) ∈ cscg. Furthermore, if m = mstart , that is, m is the start method of

class java.lang.Thread, then each abstract object reachable in the heap abstraction

from any abstract object in the points-to set of the 0th formal argument is added to

the thread-escaping set. Note that our thread escape analysis is not summary-based.

We reduce imprecision by eliminating parts of the heap abstraction and the thread-

escaping set computed at the entry of p in abstract context c that are not be read by

any statement in the body of m and any method called directly or transitively by m.

Next, consider a method invocation site i in abstract context c of its containing

method. Suppose local variable v is a return variable of i. The points-to sets of local

variables other than v at the exit of i in abstract context c are the same as those at

the entry of i, while that of v is the union of the points-to sets of the return variable

at the exit of the unique exit point of each method m in abstract context c′ such that

(c, i, c′, m) ∈ cscg.

The heap abstraction and thread-escaping set at the exit of i in abstract context

c is the union of the heap abstractions and the union of the thread-escaping sets,

respectively, at the exit of the unique exit point of each method m in abstract context

c′ such that (c, i, c′, m) ∈ cscg, as well as that at the entry of i in abstract context

c. The latter is necessary because, as we argued above, we may eliminate parts of

the heap abstraction and the thread escaping set while propagating it from callers

to callees. Finally, if m = mstart , then each abstract object reachable in the heap

abstraction from any abstract object in the points-to set of the 0th actual argument

of i is added to the thread-escaping set.

2.5.3 Computation of escapingRaces

The result of our thread escape analysis is used to approximate the second of our four

conditions for race freedom, namely, that a pair of statements cannot be involved in

a race if the memory location accessed by either (or both) of the statements is always

thread-local. This computation is specified as Algorithm 2.3.

Algorithm 2.3. Computation of escapingRaces.

DOMAINS

2.5. THREAD ESCAPE ANALYSIS 35

C abstract contexts

E statements accessing a field or array element

G static fields

O abstract objects

P program points

V local variables

RELATIONS

input ptsIn : C × P × V × O

input escIn : C × P × O

input EG : E × G

input EV : E × V

input EP : E × P

output escapingRaces : C × C × E × C × C × E

RULES

escapingRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

EG(e1, g), EG(e2, g). (2.12)

escapingRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

EV(e1, v2), EP(e1, p1), ptsIn(c1, p1, v1, o1), escIn(c1, p1, o1),

EV(e2, v2), EP(e2, p2), ptsIn(c2, p2, v2, o2), escIn(c2, p2, o2). (2.13)

�

Besides the point-to relation ptsIn and the thread escape relation escIn, both

obtained from our thread escape analysis, the algorithm requires the following basic

program relations:

• EG : E × G contains each tuple (e, g) such that statement e accesses static

field g.

36 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

• EV : E×V contains each tuple (e, v) such that statement e accesses an instance

field or array element, and e reads local variable v to refer to the object whose

instance field or array element is accessed.

• EP : E × P contains each tuple (e, p) such that statement e occurs at program

point p.

Rules (2.12) and (2.13) compute escapingRaces, a subset of originalRaces ob-

tained by eliminating each (t1, c1, e1, t2, c2, e2) ∈ originalRaces that is deemed a

non-race because either e1 or e2 (or both) always access a memory location that is

thread-local during the access, in abstract contexts c1 and c2 of their containing meth-

ods, respectively. (Notice that this computation does not inspect abstract threads t1

and t2 in the tuple.) Recall from the computation of originalRaces in Algorithm

2.1 that e1 and e2 either both access the same instance field or both access array

elements or both access static fields; we next consider each of these cases in turn.

Rule (2.12) considers the case in which a static field is accessed. In this case, the

tuple cannot be eliminated because static fields in Java are akin to global variables,

and our thread escape analysis regards each access to a global variable as thread-

shared.

Rule (2.13) considers the case in which an instance field or an array element (that

is, the hypothetical field felems) is accessed. Suppose e1 and e2 contain accesses of

the form v1.f and v2.f at program points p1 and p2, respectively. The rule says that

the tuple cannot be eliminated if v1 and v2 may point to abstract objects o1 and

o2 in abstract contexts c1 and c2 just before program points p1 and p2, respectively,

and both may be thread-shared during the accesses. If this condition does not hold,

then the thread escape analysis guarantees that either v1 or v2 (or both) never refer

to an object that is thread-shared during the access in abstract contexts c1 and c2,

respectively. The field f of a thread-local object has a memory location that is thread-

local and hence it follows that e1 and e2 cannot be involved in a race and the tuple

can be eliminated.

2.6. MAY-HAPPEN-IN-PARALLEL ANALYSIS 37

2.6 May-Happen-In-Parallel Analysis

In this section, we present our may-happen-in-parallel analysis and its application to

our race detection algorithm.

In the literature, the term may-happen-in-parallel analysis (also called MHP anal-

ysis, concurrency analysis, and non-concurrency analysis) is broadly used for any

analysis that approximates the set of statements in a concurrent program that may

be executed simultaneously [4, 47, 53, 56, 62, 63]. The analysis typically analyzes the

task and synchronization structure of the program. Since different languages have di-

verse ways for expressing tasks and synchronization, however, the analysis is typically

very language-specific.

Our may-happen-in-parallel analysis is tailored to Java, which uses asynchronous

threads to express tasks and primarily locks to express synchronization. Furthermore,

our analysis is tailored to the application of static race detection, and only models the

thread structure of the program, ignoring locks and any other synchronization idioms

used, such as fork-join, wait-notify, barrier synchronization, etc. Our race detection

algorithm uses a separate analysis for handling lock-based synchronization, namely,

the lockset analysis in Section 2.7, which is further improved upon by a so-called

conditional must not alias analysis in Chapter 3.

Our may-happen-in-parallel analysis produces relation parallel : C×C×E×C

which contains each tuple (t1, c, e, t2) such that some thread abstracted by t1 may

execute statement e in abstract context c of e’s containing method while a different

thread abstracted by t2 may be running in parallel.

The relation parallel computed for our running example from Figure 2.1 is

shown in Figure 2.3. Recall that there are two abstract threads in this example: ε

abstracting the implicit main thread and [h3] abstracting all the explicitly spawned

child threads. The first two tuples in relation parallel capture the fact that the main

thread executes statements e1 and e2 in T.<init> in the process of creating a new

child thread, while the previously spawned child threads abstracted by [h3] may be

running in parallel. The next four tuples occur because the main thread calls B.get

and B.set on objects abstracted by [h1] and [h2], respectively, which call A.get

38 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

and A.set on objects abstracted by [h4::h1] and [h4::h2], respectively. In each of

these four cases, child threads abstracted by [h3] may be running parallel. The next

six tuples occur because each child thread calls B.run on an object abstracted by

[h3], which in turn calls B.get and B.set on objects abstracted by [h2] and [h1],

respectively, which call A.get and A.set on objects abstracted by [h4::h2] and

[h4::h1], respectively. In each of these six cases, the main thread may be running

in parallel. The last six tuples are similar to the preceding six tuples but capture the

fact that another child thread (besides the main thread) may be running in parallel

while one child thread executes the denoted statements.

2.6.1 Computation of parallelRaces

The relation parallel computed by our may-happen-in-parallel analysis is used

to approximate the third of our four conditions for race freedom, namely, that a

pair of statements cannot be involved in a race if they are ordered by the thread

structure of the program. This computation is specified as Algorithm 2.4. Rule

(2.14), the only rule in the algorithm, computes parallelRaces as containing each

(t1, c1, e1, t2, c2, e2) ∈ originalRaces such that a thread abstracted by t1 may exe-

cute e1 in abstract context c1 while a thread abstracted by t2 is running in parallel

and, likewise, a thread abstracted by t2 may execute e2 in abstract context c2 while

a thread abstracted by t1 may be running in parallel. If this condition does not hold,

our may-happen-in-parallel analysis ensures that any pair of threads abstracted by

t1 and t2 can never simultaneously execute e1 and e2 in abstract contexts c1 and c2,

respectively, and hence the tuple is race-free and can be eliminated.

The relation parallelRaces computed for our running example from Figure 2.1 is

shown in the fourth column of Table 2.1. A X mark in a particular row in that column

indicates that the corresponding tuple in originalRaces (shown in the first column

of the same row) is retained in parallelRaces. For instance, consider tuples #3 and

#4. Tuple #4 is retained because e2 may be executed in abstract context [h3] by

the main thread while some child thread is running in parallel and, likewise, e4 may

be executed by some child thread in abstract context [h3] while the main thread is

2.6. MAY-HAPPEN-IN-PARALLEL ANALYSIS 39

running in parallel. But tuple #3 is eliminated because e2 cannot be executed by

one thread abstracted by ε while a different thread also abstracted by ε is running in

parallel (note that unlike [h3] which abstracts all child threads, ε abstracts the lone

main thread). In all, this computation alone eliminates 78% (28/36) of the tuples in

originalRaces in our example.

Algorithm 2.4. Computation of parallelRaces.

DOMAINS

C abstract contexts

E statements accessing a field or array element

RELATIONS

input originalRaces : C × C × E × C × C × E

input parallel : C × C × E × C

output parallelRaces : C × C × E × C × C × E

RULES

parallelRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

parallel(t1, c1, e1, t2), parallel(t2, c2, e2, t1). (2.14)

�

Our may-happen-in-parallel analysis is particularly effective at eliminating two

kinds of non-races. First, it eliminates each tuple of the form (t, c1, e1, t, c2, e2) where

t abstracts at most one thread. For instance, in our running example, ε abstracts the

lone main thread. As a result, the relation parallel never contains a tuple of the form

(ε, , , ε) and so by Rule (2.14) of Algorithm 2.4, the relation parallelRaces never

contains a tuple of the form (ε, , , ε, ,). Tuple #3 we discussed above illustrates

this case.

Secondly, our may-happen-in-parallel analysis is effective at eliminating non-races

on static fields. Our running example does not have any static fields but we illustrate

40 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

parallel : C × C × E × C = {
(ε, [h3], e1, [h3])

(ε, [h3], e2, [h3])

(ε, [h1], e6, [h3])

(ε, [h2], e7, [h3])

(ε, [h4::h1], e9, [h3])

(ε, [h4::h2], e10, [h3])

([h3], [h3], e3, ε)

([h3], [h3], e4, ε)

([h3], [h2], e6, ε)

([h3], [h1], e7, ε)

([h3], [h4::h2], e9, ε)

([h3], [h4::h1], e10, ε)

([h3], [h3], e3, [h3])

([h3], [h3], e4, [h3])

([h3], [h2], e6, [h3])

([h3], [h1], e7, [h3])

([h3], [h4::h2], e9, [h3])

([h3], [h4::h1], e10, [h3])

}

Figure 2.3: May-happen-in-parallel analysis of example program.

this case for another example, shown in Figure 2.4. For this example, there are two

abstract threads, namely, ε abstracting the lone main thread and [h1] abstracting all

child threads, and we have originalRaces = { (ε, ε, e1, ε, ε, e1), (ε, ε, e1,

[h1], [h1], e2) }. Neither the may alias analysis nor the thread escape analysis

is capable of eliminating either of the two tuples as they are incapable of eliminating

races on static fields (recall Rule (2.10) in Algorithm 2.2 and Rule (2.12) in Algorithm

2.3). But our may-happen-in-parallel analysis eliminates both these tuples: the first

because it is of the form (ε, , , ε, ,) and ε abstracts the lone main thread, and the

second because relation parallel for this example contains ([h1], [h1], e2, ε)

but not (ε, ε, e1, [h1]).

2.7. LOCKSET ANALYSIS 41

public class T {

private static int g;

public class main(String[] a) {

T.g = ...; // e1 (write to static field T.g)

while (*) {

T t = new T(); // h1

t.start();

}

}

public void run() {

... = T.g; // e2 (read of static field T.g)

}

}

Figure 2.4: Example multithreaded Java program accessing a static field.

2.7 Lockset Analysis

In this section, we present our lockset analysis and its application to our race detection

algorithm. This analysis is essentially a static approximation of the lockset algorithm

[74] used by a class of dynamic race detectors. The lockset algorithm is tailored to

the common lock-based synchronization discipline: a memory location is race-free if

every thread holds some common lock while accessing that location.

Our lockset analysis computes relation guarded : C × C × E × C containing each

tuple (t, c, e, o) such that each thread abstracted by t may hold a lock on some object

abstracted by o while executing statement e in abstract context c of e’s containing

method.

The relation guarded computed for our running example from Figure 2.1 is shown

in Figure 2.5. The lockset analysis computes this relation by simulating the execution

of each abstract thread on the context sensitive call graph of the program constructed

by our k-object-sensitive analysis, accumulating the set of abstract locks held by each

abstract thread while executing each statement. Recall that there are two abstract

threads in our example, namely, ε abstracting the main thread and [h3] abstracting

all child threads; we consider each of these in turn.

42 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

guarded : C × C × E × C = {
(ε, [h2], e7, [h2])

(ε, [h4::h2], e10, [h2])

([h3], [h2], e6, [h2])

([h3], [h4::h2], e9, [h2])

}

Figure 2.5: Lockset analysis of example program.

We first consider abstract thread ε. The analysis begins simulating the execution

of method T.main in abstract context ε as this is the root method of the main thread.

Note that the main thread acquires a lock on the object pointed to by local variable

v2 when it executes the statement labeled l1. The analysis uses points-to information

computed by our k-object-sensitive analysis to infer that v2 may point to abstract

lock [h2] in abstract context ε (recall that relation ptsV for this example, shown

in Figure 2.2, contains the tuple (ε, v2, [h2])). The analysis then follows call site

[i6] and descends into method B.set in abstract context [h2] while holding abstract

lock [h2], where it encounters statement e7 and adds tuple (ε, [h2], e7, [h2])

to relation guarded. It next follows call site i11 and descends into method A.set in

abstract context [h4::h2] while still holding abstract lock [h2], where it encounters

statement e10 and adds tuple (ε, [h4::h2], e10, [h2]) to relation guarded.

Next consider abstract thread [h3]. The analysis begins simulating the execution

of method T.run in abstract context [h3] as this is the root method of each child

thread. Each child thread acquires a lock on the object pointed to by local variable v7

when it executes the statement labeled l2. The analysis uses points-to information

computed by our k-object-sensitive analysis to infer that v7 may point to abstract

lock [h2] in abstract context [h3] (recall that relation ptsV for this example, shown

in Figure 2.2, contains the tuple ([h3], v7, [h2])). Similar to the case of the

main thread, the analysis then proceeds to add tuples ([h3], [h2], e6, [h2]) and

([h3], [h4::h2], e9, [h2]) to relation guarded.

2.7. LOCKSET ANALYSIS 43

2.7.1 Computation of unlockedRaces

The relation guarded is used to approximate the final of our four conditions for race

freedom, namely, that a pair of statements cannot be involved in a race if they are

ordered by lock-based synchronization. This computation is specified as Algorithm

2.5. Rules (2.15) and (2.16) compute intermediate relation unlikelyRaces as con-

taining each (t1, c1, e1, t2, c2, e2) ∈ originalRaces that satisfies any of the following

two conditions:

1. the pair of threads abstracted by t1 and t2 may hold a common lock abstracted

by o while executing statements e1 and e2, respectively.

2. the pair of threads abstracted by t1 and t2 may be one and the same.

Then, Rule (2.17) computes relation unlockedRaces as containing each tuple in

originalRaces that satisfies neither of the above conditions. This computation of

unlockedRaces, however, is unsound: if a tuple is not retained in unlockedRaces,

then it is not necessarily the case that the tuple is race-free, because condition (1)

merely requires that the pair of threads may hold a common lock, whereas for sound-

ness, it should insist that the threads must hold a common lock and, similarly, con-

dition (2) merely requires that the pair of threads may be the same, whereas for

soundness, it should insist that the threads must be the same. In Chapter 3, we

replace this unsound lockset analysis with conditional must not alias analysis which

computes conditions (1) and (2) soundly.

The relation unlockedRaces computed for our running example from Figure 2.1

is shown in the fifth column of Table 2.1. A X mark in a particular row in that

column indicates that the corresponding tuple in originalRaces (shown in the first

column of the same row) is retained in unlockedRaces. For instance, consider tuples

#32, #34, and #35. Tuple #34 is retained because it satisfies neither condition

(1) (clearly no common lock is held when the main thread executes e9 in abstract

context [h4::h1] and a child thread executes e10 in abstract context [h4::h1])

nor condition (2) (the main thread is clearly distinct from any child thread). But

tuple #35 is eliminated because it satisfies condition (1) above, namely, a common

44 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

lock may be held when a child thread executes e9 in abstract context [h4::h2] and

the main thread executes e10 in abstract context [h4::h2]. Likewise, tuple #32 is

eliminated because it satisfies condition (2) above, namely, the pair of child threads

abstracted by [h3] may be one and the same. In all, this computation alone eliminates

64% (23/36) of the tuples in originalRaces in our example. As we explained above,

however, this computation is unsound in that the eliminated tuples are not necessarily

race-free. For instance, of the tuples discussed above, the elimination of tuple #35

is correct because a common lock is indeed held, but the elimination of tuple #32

is incorrect because two different child threads can simultaneously write to the same

shared integer. In fact, tuple #32 is a real race that our algorithm fails to report.

Algorithm 2.5. Computation of unlockedRaces.

DOMAINS

C abstract contexts

E statements accessing a field or array element

RELATIONS

input originalRaces : C × C × E × C × C × E

input guarded : C × C × E × C

output unlockedRaces : C × C × E × C × C × E

RULES

unlikelyRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

guarded(t1, c1, e1, o), guarded(t2, c2, e2, o). (2.15)

unlikelyRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

t1 = t2. (2.16)

unlockedRaces(t1, c1, e1, t2, c2, e2) :− originalRaces(t1, c1, e1, t2, c2, e2),

¬unlikelyRaces(t1, c1, e1, t2, c2, e2). (2.17)

�

2.8. PUTTING IT ALL TOGETHER 45

2.8 Putting it all together

We have presented four static analyses, namely, a may alias analysis, a thread escape

analysis, a may-happen-in-parallel analysis, and a lockset analysis, and shown how

each of these analyses approximates a different condition for race freedom to prune

originalRaces, our initial set of potential races in the given Java program. In this

section, we show how to put these analyses together to compute ultimateRaces,

the final set of potential races that is output by our race detection algorithm. The

computation is presented in Algorithm 2.6.

Algorithm 2.6. Computation of ultimateRaces.

DOMAINS

C abstract contexts

E statements accessing a field or array element

F instance fields

O abstract objects

P program points

V local variables

RELATIONS

input parallelRaces : C × C × E × C × C × E

input unlockedRaces : C × C × E × C × C × E

input ptsIn : C × P × V × O

input escIn : C × P × O

input EG : E × G

input EV : E × V

input EP : E × P

output ultimateRacesWithObject : C × C × E × C × C × E × O

output ultimateRaces : C × C × E × C × C × E

46 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

RULES

ultimateRacesWithObject(t1, c1, e1, t2, c2, e2, ε) :−

parallelRaces(t1, c1, e1, t2, c2, e2), unlockedRaces(t1, c1, e1, t2, c2, e2),

EG(e1, g), EG(e2, g). (2.18)

ultimateRacesWithObject(t1, c1, e1, t2, c2, e2, o) :−

parallelRaces(t1, c1, e1, t2, c2, e2), unlockedRaces(t1, c1, e1, t2, c2, e2),

EV(e1, v1), EP(e1, p1), ptsIn(c1, p1, v1, o), escIn(c1, p1, o),

EV(e2, v2), EP(e2, p2), ptsIn(c2, p2, v2, o), escIn(c2, p2, o). (2.19)

ultimateRaces(t1, c1, e1, t2, c2, e2) :−

ultimateRacesWithObject(t1, c1, e1, t2, c2, e2,). (2.20)

�

Rules (2.18) and (2.19) compute relation ultimateRacesWithObject as contain-

ing each tuple (t1, c1, e1, t2, c2, e2, o) such that there is a potential race on a field of

abstract object o accessed by statements e1 and e2 in abstract contexts c1 and c2 by

abstract threads t1 and t2, respectively. We compute this relation because we need

the sets of abstract objects on whose fields potential races occur, for two reasons.

First, we wish to group race reports by these sets of abstract objects (we explain in

Section 2.9.1 why such a grouping is useful). Secondly, recall that in this chapter, we

have presumed a non-adaptive k-object-sensitive analysis that uses the same k value

for all object allocation sites in the given Java program, which affects precision if a

small k value is used, and affects scalability if a large k value is used. In Chapter 4,

we present an adaptive k-object-sensitive analysis capable of using different k values

for different object allocation sites in the same program. It enables a demand-driven

race detection algorithm that uses bigger k values for a few sites and smaller k values

for the vast majority of sites and thereby strikes a good trade-off between scalabil-

ity and precision. The demand-driven algorithm is iterative, and runs the current

race detection algorithm in each iteration but it uses a k-object-sensitive analysis

with k = 1 for all object allocation sites in the first iteration, and it uses the sets

2.8. PUTTING IT ALL TOGETHER 47

of abstract objects on whose fields potential races are reported in iteration N − 1 to

determine what k value to use for each object allocation site in iteration N .

Returning to our computation of relation ultimateRacesWithObject, recall that

for any tuple we consider, e1 and e2 either both access the same instance field or both

access array elements or both access the same static field; we consider each of these

cases in turn.

Rule (2.18) considers the case in which a static field is accessed. It states that

ultimateRacesWithObject contains each tuple that could not be eliminated by both

the may-happen-in-parallel analysis and the lockset analysis (recall that neither our

may alias analysis nor our thread escape analysis can eliminate potential races on

static fields). We regard ε as the hypothetical abstract object on whose field the race

occurs.

Rule (2.19) considers the case in which an instance field or an array element (that

is, the hypothetical field felems) is accessed. It states that ultimateRacesWithObject

contains each tuple that could not be eliminated by any of our four static analyses.

It explicitly uses the results of the may-happen-in-parallel analysis and the lockset

analysis (that is, relations parallelRaces and unlockedRaces, respectively) but it

uses the results of the may alias analysis and the thread escape analysis implicitly,

as follows. Suppose accesses e1 and e2 are of the form v1.f and v2.f , respectively,

where v1 and v2 are local variables and f is an instance field or the hypothetical field

felems . Let O1 and O2 be the thread-escaping subsets of the points-to sets of v1 and

v2, respectively. Then, the rule states that if there is indeed a race between e1 and

e2, then the race must occur on field f of an object abstracted by some object in

O1 ∩ O2.

Finally, rule (2.20) computes relation ultimateRaces as containing each (t1, c1, e1,

t2, c2, e2) such that there is some abstract object o such that (t1, c1, e1, t2, c2, e2, o) ∈

ultimateRacesWithObject.

Our race detection algorithm is not sound primarily because it uses an unsound

lockset analysis: if a tuple is eliminated from ultimateRaces only because of the

lockset analysis (that is, the tuple does not occur in unlockedRaces but occurs in

each of aliasingRaces, escapingRaces, and parallelRaces), then the tuple may

48 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

not be race-free (that is, it may be a false negative). Otherwise, the eliminated tuple

is guaranteed to be race-free. Our race detection algorithm is also not complete in

that a tuple retained in ultimateRaces may not be a real race (that is, it may be a

false positive).

The relation ultimateRaces for our running example from Figure 2.1 is shown in

the last column of Table 2.1. A X mark in a particular row in that column indicates

that the corresponding tuple in originalRaces (shown in the first column of the same

row) is retained in ultimateRaces. This example does not have any false positives:

tuple #34, the only tuple retained, is indeed a real race because the main thread

executes e9, which reads from a heap location, and each child thread executes e10,

which writes to the same location, and there is no ordering enforced between the

two accesses. However, this example has a false negative: tuple #32 is eliminated

only due to the lockset analysis, which infers that two different child threads may not

execute e10 to write to the same heap location, and therefore the tuple is likely to

be race-free. The tuple is not race-free, however, because different child threads do

in fact write to the same location without any ordering enforced between the writes.

Finally, note that tuple #35 is also eliminated only due to the lockset analysis, which

infers that a common lock may be held when the main thread executes e10, which

writes to a heap location, and a child thread executes e9, which reads from the same

location, and therefore the tuple is likely to be race-free. The tuple is indeed race-free,

because a common lock is in fact held when the main thread writes to the location

and each child thread reads from that location.

2.9 Usability Issues

In this section, we address usability issues in our race detection algorithm, namely,

how it generates counterexamples to explain the detected races and how it checks

open programs such as libraries.

2.9. USABILITY ISSUES 49

2.9.1 Counterexamples

Our algorithm outputs each (t1, c1, e1, t2, c2, e2) ∈ ultimateRaces as a potential race.

Reporting races found by a static race detection tool in a useful manner poses several

challenges:

• Since a race involves a pair of accesses, there is a potentially quadratic blowup

in the output of the tool.

• Races are symptoms as opposed to causes of bugs. Thus, a single race may

indicate multiple bugs and, conversely, multiple races may indicate the same

bug.

• Determining whether a reported race manifests a real race or a false positive

involves manually inspecting various aspects such as the memory location on

which the race occurs, the pair of threads executing the statements involved in

the race, and the call stack and the set of locks held by either thread at the

point of the race.

• Even if a reported race is real, manual inspection is needed to determine whether

it is a harmful race, that is, a violation of a program invariant, or a benign race.

The problem is exacerbated by the subtleties of the Java memory model [55].

We address the above issues by grouping related race reports together and reporting

counterexamples along with each race report.

Our algorithm reports each (t1, c1, e1, t2, c2, e2) ∈ ultimateRaces in one of three

categories, namely, races on instance fields, races on array elements, and races on

static fields, depending upon whether e1 and e2 access an instance field, array elements

(that is, the hypothetical field felems), or a static field, respectively. Within each of

these categories, we provide two views: a field-based view that groups race reports

in the category by the field on which the race occurs, and a object-based view that

groups race reports in the category by the set of abstract objects on whose field the

race occurs. However, the field-based view is not useful for the category of races on

array elements as all races in this category are on the same hypothetical field felems

50 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

and therefore would belong to a single group in the field-based view. Likewise, the

object-based view is not useful for the category of races on static fields as all races in

this category are on the singleton set consisting of the hypothetical abstract object ε

and therefore would belong to a single group in the object-based view.

The field-based view is the conventional grouping approach used by previous race

detection techniques. It helps in, for instance, quickly ignoring all intentional races

on a field that are benign because the field is declared volatile (e.g., an integer-valued

field that tracks statistics approximately, a boolean field that one thread periodically

polls and another writes to notify it, etc.) Our object-based view is novel, and it is

useful for:

• quickly identifying all false positives arising from a single source of imprecision

in our may alias analysis or thread escape analysis (such races are scattered

over multiple groups in the field-based view but belong to the same group in

the object-based view)

• reporting races on elements of different arrays in separate groups (as we men-

tioned above, all such races belong to a single group in the field-based view)

• reporting races triggered on the same instance field by different clients in sep-

arate groups, for instance, if a class C has an instance field f and there are

two different sites h1 and h2 allocating objects of class C, then reporting races

triggered on field C.f of objects allocated at sites h1 and h2 in separate groups.

Besides grouping related races together, our algorithm reports various aspects for

each (t1, c1, e1, t2, c2, e2) ∈ ultimateRaces, namely, the field on which the race occurs,

the set of abstract objects on whose field the race occurs, the pair of statements e1

and e2 involved in the race, and the abstract threads t1 and t2 that execute those

statements. It also reports each pair of cycle-free paths in the context sensitive call

graph of the program, obtained from the k-object-sensitive analysis, starting from

the root methods of abstract threads t1 and t2 in abstract contexts t1 and t2, respec-

tively, and terminating in the containing methods of e1 and e2 in abstract contexts c1

and c2, respectively. Each path denotes a possible call stack of the corresponding

2.9. USABILITY ISSUES 51

thread at the point of the race. Along with each path is also specified the set of

abstract locks held by the thread along that path at the point of the race.

2.9.2 Open Programs

Our race detection algorithm performs a whole-program analysis and therefore needs

a complete Java program. Many multithreaded Java programs, however, are open

programs (e.g., libraries) that provide an interface to interact with their environment.

It is beneficial to detect races in such programs before deploying them in specific

environments. There are two problems with analyzing open programs: missing callee

code (e.g., native methods in Java) and missing caller code (e.g., a missing main

method in the case of a library).

We model missing callees using “stubs” in place of commonly used native methods

in the Java standard library (e.g., the start method of class java.lang.Thread) and

treat all other missing and native methods unsoundly as no-ops. We model missing

callers by automatically synthesizing a harness that simulates many scenarios in which

the environment might exercise the program’s interface. Due to the complexity of the

Java language, our current harness synthesis algorithm is not sound in that it does not

simulate all possible scenarios. Nevertheless, it is much easier in principle to construct

a sound harness for our technique than for a model checker that also performs whole-

program analysis, because model checkers are typically path sensitive whereas none of

the static analyses used in our technique is path sensitive and so the harness required

by our technique need not be as elaborate.

Our harness synthesis algorithm takes as input an open Java program and a user-

specified set of public interfaces or classes in the program, denoted I, and builds a

class Harness that:

1. declares a private static field of each type allowed as an argument type or return

type of any public method declared in any interface or class in I, and

2. declares a public static main method that:

52 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

(a) non-deterministically assigns to each instance field of reference type gener-

ated in step (1) above an object of any public concrete class in the program

having a compatible type, by invoking any public constructor method(s)

of that class, and

(b) executes a loop whose body non-deterministically invokes in a fresh child

thread any public non-constructor method declared in any interface or

class in I on any combination of instance fields generated in step (1) that

respects the argument types of the method and assigns the return value

to any instance field generated in step (1) that respects the return type of

the method.

For our running example from Figure 2.1, suppose class T is missing and only

classes A and B are provided, and suppose I = {B}. Then, our harness synthesis

algorithm generates the harness shown in Figure 2.6. It is easy to see that our race

detection algorithm reports the following two races in the resulting program, both on

field f4 of class A:

• A race between two different threads allocated at site ht1. Both threads call

method B.set which in turn calls method A.set writes to field f4. Both threads

operate on the same B object allocated at site hb and hence write to the same

memory location denoted by field f4.

• A race between a thread allocated at site ht1 and a thread allocated at site ht2.

The former thread calls method B.set which in turn calls method A.set which

writes to field f4 while the latter thread calls method B.get which in turn calls

method A.get which reads field f4. Again, both threads operate on the same B

object allocated at site hb and hence access the same memory location denoted

by field f4.

Both races are real and indicate that class B is not thread-safe, that is, clients of the

class must use their own synchronization whenever they call method B.set concur-

rently on the same B object from different threads and whenever they call methods

B.set and B.get concurrently on the same B object from different threads.

2.9. USABILITY ISSUES 53

import java.lang.Thread;

public class Harness {

private static int i;

private static B b;

public static void main(String[] args) {

if (*) {

b = new B();

}

while (*) {

if (*) {

h1: Thread t = new Thread {

public void run() { i = b.get(); }

};

t.start();

}

if (*) {

h2: Thread t = new Thread {

public void run() { b.set(i); }

};

t.start();

}

}

}

}

Figure 2.6: Example harness.

54 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

classes # bytecodes brief description
elevator 1066 109831 Discrete event simulator
tsp 1068 110582 TSP solver from ETH
hedc 1592 278010 Web crawler from ETH
ftp 1905 348813 Apache FTP server
pool 1121 122187 Apache pooling library
jdbf 1739 291392 Object-relational mapping system
jtds 1801 301231 JDBC driver
derby 3428 721912 Apache relational database engine

Table 2.2: Benchmarks.

2.10 Unsoundness

Our race detection algorithm has the following three sources of unsoundness:

1. It uses an unsound lockset analysis to check whether a pair of accesses is ordered

by lock-based synchronization (see Section 2.7). In Chapter 3, we replace this

unsound lockset analysis with a sound conditional must not alias analysis.

2. It does not analyze open programs soundly (see Section 2.9.2). We hope to

address sound race detection for open programs in future work.

3. It ignores the effects of dynamic class loading and reflection.

2.11 Experiments

We have implemented our race detection algorithm in a tool Chord and applied it to

a suite of eight multithreaded Java programs. Table 2.2 provides a brief description

of each program along with the number of classes and the number of bytecodes in

the program. The numbers correspond to code that is deemed reachable from the

main method of each program in a context insensitive call graph that is computed by

Spark [52], a 0-CFA-based may alias analysis with on-the-fly call graph construction

provided in the Soot compiler framework [81]. The experiments were performed on a

2.4GHz machine with 4GB memory.

2.11. EXPERIMENTS 55

benchmark running time
elevator 7m11s
tsp 6m04s
hedc 15m13s
ftp 22m24s
pool 8m02s
jdbf 11m45s
jtds 15m39s
derby 46m29s

Table 2.3: Experimental results: Running time.

The benchmark suite includes four closed programs: elevator, tsp, hedc, and

ftp. The remaining four benchmarks pool, jdbf, jtds, and derby are open programs

that provide interfaces to interact with their environments. Benchmark elevator

is a discrete event simulator program, tsp is an implementation of the Traveling

Salesman Problem from ETH Zurich, hedc is a web crawler from ETH Zurich, ftp

is the Apache FTP Server, pool is Apache Commons Pool (a generic object-pooling

library), jdbf denotes JdbF (an object-relational mapping system which simplifies

the work of retrieving, saving, and deleting objects from a relational database), jtds

denotes jTDS (the fastest open-source JDBC driver for Microsoft SQL Server and

Sybase), and derby is Apache Derby (a relational database management system).

Benchmarks elevator, tsp, and hedc have been analyzed in previous work on race

detection; the rest are mature and widely used programs, except for jdbf, which is

in its developmental stages.

Table 2.3 presents the total running time of Chord for each benchmark. Recall from

Section 2.4 that our implementation of k-object-sensitive analysis is parameterized

by a positive integer k that may be instantiated differently for different programs; we

have used k = 3 for each experiment.

Table 2.4 presents the sizes of the initial and final sets of potential races as well

as the contribution of each of the four static analyses. The “original” and “ultimate”

columns presents the sizes of sets π3,6(originalRaces) and π3,6(ultimateRaces), re-

spectively, that is, the number of original and ultimate race pairs. These sets are

56 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

benchmark original % of original pairs deemed race-free ultimate
aliasing escaping parallel unlocked

elevator 139850 76% 74% 52% 39% 0
tsp 155094 75% 71% 51% 41% 8
hedc 420656 72% 73% 48% 43% 143
ftp 707898 67% 69% 43% 48% 247
pool 205625 73% 70% 46% 45% 27
jdbf 516906 69% 62% 45% 40% 266
jtds 651923 65% 53% 41% 47% 248
derby 1261750 72% 64% 39% 42% 1018

Table 2.4: Experimental results: Numbers of race pairs.

benchmark ultimate racing pairs bugs
real false

harmful benign
elevator 0 0 0 0
tsp 6 0 2 0
hedc 107 17 19 4
ftp 199 14 34 32
pool 24 3 0 17
jdbf 258 0 8 18
jtds 227 14 7 16
derby 1018 0 0 319

Table 2.5: Experimental results: Classification of reported races.

2.11. EXPERIMENTS 57

obtained by projecting away abstract threads ct
1 and ct

2 and abstract contexts cm
1 and

cm
2 from each tuple (ct

1, c
m
1 , e1, c

t
2, c

m
2 , e2) in sets originalRaces and ultimateRaces,

respectively. The “aliasing”, “escaping”, “parallel”, and “unlocked” columns denote

the fraction of original race pairs that were deemed race-free by our may alias anal-

ysis, thread escape analysis, may-happen-in-parallel analysis, and lockset analysis,

respectively. The may alias analysis and thread escape analysis are most effective,

eliminating around 60-70% of original race pairs, while the may-happen-in-parallel

analysis and lockset analysis eliminate around 40-50% of original race pairs. Note,

however, that the four analyses eliminate different subsets of original race pairs, since

the number of ultimate race pairs for each benchmark is less than 0.001% of the

number of original race pairs.

Table 2.5 classifies each ultimate race pair as a real race or a false positive, and

further classifies each real race as harmful or benign. The classification is done by

manually inspecting the counterexamples generated by Chord. Finally, the “bugs”

column reports the number of distinct fixes that were needed in the source code to

eliminate all harmful races. Most fixes involved one of the following: (1) adding

synchronization to a piece of code where none existed, (2) extending the scope of an

existing synchronized block, (3) changing the expression on which the lock was held by

a synchronized block, (4) declaring a field volatile, or (5) removing synchronization

because one of the above rendered it redundant (letting it remain could degrade

performance or introduce deadlocks). In many cases, a harmful race was triggered

in code far apart from the code where synchronization was needed to eliminate the

race, for instance, we found many harmful races in library code that were eliminated

by adding synchronization to application code. The false positives are primarily due

to the fact that our race detection algorithm does not track the values of primitives

such as integers and booleans. We next describe each experiment briefly.

Of the programs that have been analyzed in previous work on race detection,

Chord did not report any harmful races in elevator and tsp, but it reported 107

harmful races in hedc. The harmful races in hedc indicate four bugs of which only

one has been reported in previous work. The remaining three bugs are due to races

triggered in library code by application code, in particular, the application code stores

58 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

in each of three static fields a different object of library class java.util.Calendar

and spawns multiple threads which simultaneously invoke seemingly read-only library

methods on the three objects, but these methods in reality mutate the state of the

objects and result in races if application methods calling them do not use appropriate

synchronization. The reason previous race detectors missed these bugs is that most

of them do not analyze library code, typically for scalability reasons, e.g., static race

detectors routinely elide checking library code while dynamic race detectors routinely

elide instrumenting library code.

Chord reported 199 harmful races in Apache FTP Server (ftp) that revealed 32

distinct bugs, of which 11 bugs were fixed within a day of reporting. Another bug

that was reported was acknowledged by developers but was not fixed because doing

so involves making widespread changes. The remaining 20 bugs were not reported at

the time because they eluded detection by an early, buggy version of Chord.

Chord reported 24 harmful races in Apache Commons Pool (pool), a generic

object-pooling library that provides five reference implementations. The races ex-

posed bugs in each of the five implementations, for a total of 17 distinct bugs. All

bugs were fixed and five patches were released in less than a week from reporting

the bugs. The developers deemed the bug fixes significant enough to release a new

version of the library.

Chord reported 227 harmful races revealing 16 distinct bugs in the jTDS JDBC

driver (jtds). The developers initially expressed concerns about degrading perfor-

mance and introducing deadlocks in the process of fixing the bugs in what they said

was fairly mature code that seems to work well enough for most people. However,

the seriousness of the bugs manifested in the counterexamples reported by our tool

led them to conclude that it was dangerous to let the races lurk, and they fixed all

of them and released a patch.

Finally, in our single largest benchmark Apache Derby (derby), Chord reported

1018 races revealing 319 distinct bugs. The developers acknowledged the bugs, re-

quested us to file bug reports, and promised to look at them in detail in the future.

They also inquired about the possibility of running our tool regularly on their source

code to prevent new races from being introduced over time.

2.12. RELATED WORK 59

2.12 Related Work

In this section, we discuss related work, including dynamic race detection techniques

(Section 2.12.1), static race detection techniques (Section 2.12.2), and recent work on

atomicity (Section 2.12.3).

2.12.1 Dynamic Race Detection

Race detection tools are predominantly dynamic. State-of-the-art dynamic race detec-

tors are precise and scalable. Like any dynamic analysis, however, they are inherently

unsound and explore only a fraction of the space of the program’s inputs and thread

schedules. Furthermore, they cannot be applied to open programs such as libraries,

since such programs cannot be executed in the absence of client code.

Dynamic race detectors may be broadly classified into happens-before-based, lockset-

based, and hybrid. Happens-before-based dynamic race detectors [1, 19, 20, 22, 59, 71,

75] are based on Lamport’s happens-before relation [49] which is a partial order on all

events of all threads in a concurrent execution such that if a pair of accesses performed

by a pair of threads on a memory location are not ordered by this relation, then they

are deemed to be involved in a race because there exists a concurrent execution in

which they can occur simultaneously. The key problems with happens-before-based

race detection are that it is difficult to implement efficiently and, although it produces

no false positives, it produces many false negatives.

The lockset algorithm is tailored to the common lock-based synchronization dis-

cipline: a race is deemed to occur on a memory location if a common lock is not

held by each thread while accessing the location. The original implementation in

the Eraser tool [74] incurred a slow-down of 10–30X but several static and dynamic

optimization techniques, e.g., [2, 64, 83, 84], have reduced it significantly, with a re-

cent implementation having a run-time overhead of only 13–42% [17]. The primary

problems with lockset-based race detection are that it produces many false positives

when synchronization idioms other than lock-based synchronization are used, as well

as having the usual potential for false negatives of any dynamic analysis.

Dinning and Schonberg [23] first proposed combining happens-before-based and

60 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

lockset-based race detection (in fact, they originated the lockset-based approach in

order to improve the happens-before-based approach). Since then, several hybrid

techniques have been proposed that gain the benefits of both approaches without

suffering the disadvantages of either [42, 65, 68, 92].

2.12.2 Static Race Detection

Static race detectors are either primarily flow insensitive type-based systems [11, 12,

28, 29, 69, 73], flow sensitive static versions of the lockset algorithm [18, 26, 79], or

path sensitive model checkers [45, 70].

The most closely related work is that of Choi et al. [18]. Their approach has the

same basic inspiration as ours: using a combination of static analyses, the pairs of

statements potentially involved in a race can be filtered to a precise set. Also, at a

high level, the static analyses they use are similar to ours (may alias analysis, thread

escape analysis, etc.). However, their implementation apparently was never applied

beyond small Java programs, most likely because their algorithm is context and object

insensitive, whereas we have found context and object sensitivity central to producing

precise results; indeed, they conclude that even for small Java programs, more precise

analysis is needed. Also, they do not address the other aspects of usability, such as

handling open programs and reporting counterexamples.

Two static versions of the lockset algorithm we are aware of for C are Warlock [79]

and RacerX [26]. Warlock does not trace paths through loops or recursive functions

while RacerX targets operating systems code and uses unsound heuristics specific to

such code to determine which locks guard which accesses, which code is multithreaded,

and which unguarded accesses are benign.

Type-based and model-checking-based approaches to race detection are appealing

in part because of their ability to check open programs and to produce counterex-

amples, respectively. Our approach possesses both these abilities. The key difference

between our approach and the type-based ones is that the latter focus on specifying

the synchronization discipline by means of types. Inferring this information auto-

matically has proven difficult and, although significant advances have been made, it

2.12. RELATED WORK 61

remains an active area of research [3, 30, 32, 73]. The key difference between our

approach and the model-checking-based ones is that the latter are typically path sen-

sitive. As a result, they can handle various synchronization idioms whereas we handle

only lock-based synchronization and fork-based synchronization. However, path sen-

sitivity, besides affecting scalability, tends to limit model checkers to closed programs

since they require an elaborate harness for open programs.

Finally, our technique finds more bugs than all previous static race detection tech-

niques. RacerX [26] found 16 bugs in all in two operating systems (Linux comprising

1.8 MLOC and “System X” comprising 500 KLOC) which, to the best of our knowl-

edge, is the largest number of bugs reported in any previous work on static race

detection. Tools like RacerX handle large programs but apparently imprecisely so

that not many bugs are found. The other class of static tools, including those based

on type systems and model checking, perform a relatively precise analysis but have

only been applied to small programs. However, there are just not many bugs to find

in such programs, as the results of these tools, many of which are sound, indicate.

Unlike the above techniques which address lock-based synchronization and fork-

based synchronization, Aiken and Gay [5] address barrier-based synchronization,

namely, they present an effect inference system for statically checking whether SPMD

programs are free of barrier synchronization problems.

Other static approaches to preventing races include language-based ones such as

nesC for C and Guava for Java, which we describe next.

NesC [37] is a race-free subset of C for networked embedded systems. It classifies

code as either asynchronous code (AC), meaning reachable from at least one inter-

rupt handler, or synchronous code (SC), meaning reachable only from tasks. Tasks

(but not interrupt handlers) are guaranteed to execute without interruption. Hence,

unguarded accesses to shared memory are allowed in SC. However, in AC, such ac-

cesses must occur only in atomic sections, which are guaranteed to execute without

interruption.

Guava [7] is a race-free dialect of Java. It distinguishes three kinds of data:

monitors, which are thread-shared and are always accessed by synchronized methods;

values, which cannot have references and hence are thread-local; and objects, which

62 CHAPTER 2. BASIC RACE DETECTION ALGORITHM

can have multiple references but only from within a single thread and hence are

thread-local as well. Guava provides type annotations and type rules for stating and

statically checking the above kinds of data.

2.12.3 Atomicity Checking

Recent work on verification of shared-memory multithreaded programs has focused on

checking atomicity [2, 27, 31, 34–36, 73, 85, 86]. Atomicity introduces a specification

of the form “atomic { s }” which states that code fragment s is atomic if every

run of the program in which the execution of s by any thread t is interrupted by the

actions of other threads is equivalent to a run in which the execution of s by thread

t is uninterrupted. Atomicity checkers then check whether each such specification in

the given program is indeed atomic.

A more recent idea, called atomic sets [82], introduces a specification of the form

“atomic (D) { s }” which states that code fragment s is atomic with respect to the

chunk of data denoted by D (called an atomic set). Unlike the atomicity construct

which is code-centric in that it only specifies a code fragment s, the atomic sets

construct is data-centric in that it also specifies the chunk of data D with respect to

which s is atomic. The atomicity specification can be viewed as a special case of

the atomic sets specification, namely, “atomic { s }” can be viewed as specifying

that s is atomic with respect to the entire program data. Thus, atomic sets are

more flexible, allowing different code fragments to be atomic with respect to different

chunks of data.

The motivation behind atomicity and atomic sets is that race freedom is neither

sound nor complete: the presence of races does not necessarily indicate the presence of

concurrency bugs (so-called benign races) and the absence of races does not necessarily

indicate the absence of concurrency bugs. However, we believe race detection is

important because of the following reasons:

1. Race freedom is a natural property for existing languages. Atomicity requires

programmers to specify which code fragments are intended to be atomic, and

atomic sets additionally require programmers to specify the chunks of data with

2.12. RELATED WORK 63

respect to which the code fragments are intended to be atomic. In the absence

of such specifications, atomicity checkers may check whether every synchronized

block “synchronized (l) { s }” in the program is atomic (in the hope that

programmers use lock l to make s atomic), while atomic sets checkers may

check whether instance methods of a class are atomic with respect to instance

fields of the class (in the hope that programmers intend methods of a class

to atomically manipulate its encapsulated data). However, such automatically

inferred specifications have the same shortcoming as race freedom: their viola-

tions do not necessarily indicate concurrency bugs and, conversely, the lack of

their violations does not necessarily indicate the absence of concurrency bugs.

2. Many concurrency bugs manifested as violations of atomicity and atomic sets

specifications are also manifested as races. As a result, from the perspective

of finding bugs in existing programs that lack these specifications, checking for

races is a viable alternative.

3. Race detection is a first step in many atomicity checkers. In particular, atom-

icity checkers based on Lipton’s theory of reduction [54] must show that each

statement accessing a memory location is both a left mover and a right mover,

which is done by proving the absence of races on that location. The notion of a

race is so fundamental that race detection techniques are likely to be leveraged

also in checkers for the more recent and more natural atomic sets specification.

Chapter 3

Conditional Must Not Aliasing

Race detection algorithms for shared-memory multithreaded programs using lock-

based synchronization must correlate locks with the memory locations they guard.

The heart of a proof of race freedom for such programs is showing that if two locks are

distinct, then the memory locations they guard are also distinct. This is an example

of a general property we call conditional must not aliasing: under the assumption

that two objects are not aliased, prove that two other objects are not aliased. This

chapter introduces the conditional must not aliasing property, presents an analysis

that conservatively approximates the property in the context of static race detection

for Java, and demonstrates its effectiveness at sound race detection on a suite of seven

multithreaded Java programs.

3.1 Introduction

Most approaches to proving race freedom for shared-memory multithreaded programs

focus on checking lock-based synchronization [11, 12, 28, 29, 39, 69, 73]. This style of

synchronization requires that any pair of otherwise unordered accesses from different

threads to the same memory location m must be guarded by a lock l in that each

thread must hold lock l while accessing m. Since at most one thread can hold lock l

at any instant, there are no races on m if lock-based synchronization is used correctly.

A challenge in proving race freedom in the presence of locks lies in the apparent

64

3.1. INTRODUCTION 65

need for a form of must alias analysis. Consider the following pseudo-code example:

// Thread t1 executes: // Thread t2 executes:

synchronized (l1) { synchronized (l2) {

s1: e1.f = ...; s2: e2.f = ...;

} }

Here, “synchronized (l) { s }” is Java’s lexically-scoped locking construct: the

thread executing it acquires a lock on the object denoted by l before executing s and

releases the lock upon finishing executing s. The statements labeled s1 and s2 write

to memory locations denoted by instance field f of the objects denoted by expressions

e1 and e2, respectively. Suppose it is possible that e1 = e2 in some execution, that

is, e1 and e2 may alias. Then, to prove that s1 and s2 are race-free, it suffices to

prove that l1 = l2 in every execution, that is, l1 and l2 must alias.

Must alias analysis is perceived as a harder problem than may alias analysis,

and the literature on must alias analysis, unlike that on may alias analysis, is very

small. Hence, the apparent need for a must alias analysis to prove that a pair of

statements is ordered by lock-based synchronization has been a major impediment to

many previous static race detection approaches. Indeed, folk wisdom that static race

detection is intractable is primarily attributed to this problem.

In Chapter 2, we presented a static race detection algorithm for Java that consists

of four static analyses each of which checks a different condition for race freedom while

together enabling the algorithm to output a useful set of potential races. We used a

lockset analysis for checking the condition that a pair of statements is race-free if it is

ordered by lock-based synchronization. Our lockset analysis, however, is unsound as

it is based upon a may alias analysis instead of a must alias analysis. In particular,

for the above example, it infers that a common lock may be held by threads t1 and

t2 while executing statements s1 and s2, respectively, if l1 and l2 may alias, that

is, if the intersection of the points-to sets of l1 and l2 is non-empty.

Some static race detection approaches based on alias analysis (e.g., [17, 18]) check

whether l1 and l2 must alias by checking whether the points-to sets of l1 and l2

are equal and contain a single abstract object and, furthermore, at most one concrete

66 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

object is abstracted by that lone abstract object in any execution. For instance,

if the abstract object is an object allocation site, then it is sufficient to prove that

the site is executed at most once in any execution. Such approaches are sound but

they are suitable only for programs with coarse-grained parallelism which use global,

uniquely named locks; they are ineffective on programs with fine-grained parallelism

which create multiple locks at run-time that are stored in data structures and passed

around by functions.

In this chapter, we present a novel approach to sound race detection in the presence

of locks. The key idea is that instead of attacking the problem directly using a must

alias analysis, we reformulate it as a dual must not alias analysis problem. Consider

the above example once again. Instead of starting with accessed objects e1 and e2

and reasoning about lock objects l1 and l2, we start with the lock objects and try to

reason about the accessed objects. In particular, if under the assumption that objects

l1 and l2 are not the same (the lock objects must not alias), we can prove that objects

e1 and e2 are not the same (the accessed objects must not alias), then s1 and s2

are race-free. Intuitively, if whenever two locks are different, the memory locations

they guard are also different, then there are no races. This approach to proving race

freedom is an application of a property we call conditional must not aliasing: Under

the assumption that two objects are not aliased, prove that two other objects are not

aliased. Note that this property also handles the case of global, uniquely named locks:

in the above example, if l1 and l2 must alias, the antecedent of the conditional must

not aliasing property is false and hence the property is trivially true, from which it

follows that s1 and s2 are race-free.

We have devised a sound conditional must not alias analysis that replaces the un-

sound lockset analysis in our static race detection algorithm. The analysis is based on

a disjoint reachability analysis that uses a type and effect system to construct an ab-

straction of how objects are created and linked in the heap. The disjoint reachability

analysis answers queries posed by the conditional must not alias analysis regarding

reachability in the heap between lock objects such as l1 and l2 and accessed objects

such as e1 and e2 in the above example.

We have implemented our static race detection algorithm using conditional must

3.2. EXAMPLE 67

not alias analysis and applied it to a suite of seven multithreaded Java programs.

Our experiments demonstrate that the approach has a false positive rate of 25%, that

is, only one in every four reported races is a non-race. Also, because the approach

is sound for complete programs (namely, programs that do not have missing callers

or callees and that do not use dynamic class loading and reflection), it does not have

false negatives.

The rest of this chapter is organized as follows. Section 3.2 explains the idea

of conditional must not aliasing for proving race freedom for an example Java pro-

gram. Section 3.3 presents a WHILE language, Section 3.4 presents a type and effect

system for the language, and Section 3.5 presents our disjoint reachability analy-

sis built upon the type and effect system. Section 3.6 discusses features that are

elided in the WHILE language but are necessary for handling realistic Java programs.

Section 3.7 presents our conditional must not alias analysis in the context of our

static race detection algorithm. Section 3.8 shows the effectiveness of the analysis at

performing sound race detection on a suite of seven multithreaded Java programs.

Finally, Section 3.9 surveys related work.

3.2 Example

In this section, we elucidate the idea of conditional must not aliasing in the context

of proving race freedom for an example multithreaded Java program using various

locking idioms. The program is shown in Figure 3.1. It begins by executing the main

method of class T in an implicit main thread. The main thread creates an array of

T objects at object allocation site labeled h1 and stores the array in static field g of

class T, which may be viewed as a global variable. It then creates a bunch of T objects

in a loop. While constructing each T object, which is allocated at the site labeled h2,

instance field f1 of that T object is assigned a fresh C object, which is allocated at the

site labeled h3. Each C object has an integer field f2. The resulting data structure is

shown in Figure 3.2. It uses (i, h) to denote the object allocated at site labeled h in

the ith iteration of the loop; i = 0 means the object was allocated outside the loop.

Immediately after creating a T object in a particular iteration of the loop, the main

68 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

public class T extends java.lang.Thread {

public static void main(String[] a) {

h1: T.g = new T[*];

for (int i = 0; i < *; i++) {

h2: T vt = new T();

T.g[i] = vt;

vt.start();

}

}

private static T[] g;

private C f1;

public T() {

h3: this.f1 = new C();

}

public void run() {

T vt = thrd; // Choices for thrd: T.g[*], this

C ve = vt.f1;

? vl = lock; // Choices for lock: T.g, vt, ve

synchronized (vl) {

e: ve.f2 = ...;

}

}

}

public class C {

public int f2;

}

Figure 3.1: Example multithreaded Java program.

Figure 3.2: Data structure created by example program.

3.2. EXAMPLE 69

thread calls the start method of superclass java.lang.Thread on that T object. The

start method, which is not shown, invokes the run method of class T on that T object

in a fresh child thread. The calls to the start method are asynchronous: the main

thread continues executing the main method while each of the previously spawned

child threads executes the run method.

Each child thread executing the run method first assigns the object denoted by

expression thrd to local variable vt. We consider two scenarios. In the first scenario,

expression thrd is T.g[*], that is, each child thread non-deterministically chooses

a T object corresponding to one of the child threads. Note that since the choice is

non-deterministic, one child thread may choose a T object corresponding to a child

thread other than itself. In the second scenario, the expression thrd is this, that is,

each child thread chooses the T object corresponding to itself.

Each child thread then follows field f1 of its chosen T object to access the cor-

responding C object, and stores the C object in local variable ve. Finally, the child

thread assigns the object denoted by expression lock to local variable vl, acquires

a lock on that object, writes to the memory location denoted by field f2 of the C

object it stored in local variable ve, and releases the lock.

Note that in the scenario in which expression thrd is T.g[*], this program has

a potential race: two different child threads can non-deterministically choose the

same T object, follow its f1 field to access the same C object and, if the lock next

acquired by the two threads is not the same, then they can write to the same memory

location denoted by field f2 of the accessed C object. We next illustrate three different

choices for expression lock, so far left unspecified, that prevent this race.

Consider the case where expression lock is T.g, that is, each child thread holds

a lock on the array of T objects. This case represents a coarse-grained locking style

in which global, uniquely named locks are used, namely, each such lock is created at

an object allocation site that is executed exactly once. For instance, the array of T

objects on which the lock is held by each child thread is allocated at site h1, which is

executed exactly once. Some static race detection approaches based on alias analysis

(e.g., [17, 18]) rely on such object allocation sites which are executed exactly once for

proving race freedom. From the point of view of conditional must not aliasing, this

70 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

case is uncomplicated. Recall that under the assumption that two locks are different,

if we can prove that the memory locations they guard are also different, then the

conditional must not aliasing property holds and there are no races. Consider any

two different child threads. Since the assumption that the locks they hold are different

is false (they always hold the same lock on the array of T objects), the antecedent

of the property is false and hence the property is trivially true and the program is

race-free.

Now consider the case where expression lock is ve, that is, each child thread

holds a lock on the C object to whose field f2 it writes. This case represents the

extreme of fine-grained locking, and once again, reasoning using conditional must not

aliasing to prove race freedom is straightforward. Consider any two different child

threads. Assume that they hold locks on different C objects. Then, the f2 fields of

those C objects to which the threads write are also different memory locations (fields

of distinct objects in Java have distinct memory locations), and hence the conditional

must not aliasing property holds and the program is race-free.

Now consider the case where expression lock is vt, that is, each child thread holds

a lock on the T object it chose non-deterministically, and follows its f1 field to access

the C object to whose field f2 it writes. We call this case “medium-grained locking”,

and once again, we can show using conditional must not aliasing that the program is

race-free, though in this case the reasoning is subtle. Consider any two different child

threads. Assume that they hold locks on different T objects. Then, the f2 fields of

the C objects to which the threads write are different memory locations because the

f1 fields of different T objects always point to different C objects, and hence the

program is race-free. Automatically inferring this fact, however, requires reasoning

about different objects allocated at the same syntactic site in the program, such as

different T objects allocated at site h2 and different C objects allocated at site h3, and

how these objects are linked in pointer-based data structures. We employ a disjoint

reachability analysis that uses a type and effect system to build an abstraction of how

objects are created and linked in the heap. The disjoint reachability analysis answers

conditional must not aliasing queries regarding reachability in the heap between lock

objects and accessed objects. In the above example, for instance, it answers that the

3.3. LANGUAGE 71

same C object allocated at site h3 is not reachable in the heap from different T objects

allocated at site h2 or, equivalently, from different T objects allocated at site h2 only

different C objects allocated at site h1 may be reachable in the heap (hence the name

“disjoint reachability”).

Each of the above three locking styles is fairly common in realistic Java programs.

Note that we have so far considered the scenario in which expression thrd is T.g[*].

This scenario exhibits a style in which a group of child threads operating on a data

structure use lock-based synchronization to prevent races whenever they access shared

parts of the structure. For the other scenario, in which expression thrd is this, the

locking is redundant because each child thread deterministically chooses the T object

corresponding to itself, and so any two different child threads always choose different

T objects, follow their f1 fields to access different C objects, and then write to their

f2 fields which are different memory locations. This scenario is also fairly common

in real-world Java programs and exhibits a style in which a group of child threads

operate on disjoint parts of a data structure, and the main thread consolidates the

result after they are done. Note, however, that although locking is not necessary

to prevent races in this scenario, a conditional must not aliasing style of reasoning

is still required to prove race freedom. The only difference is that instead of lock

objects we now have thread objects, namely, under the assumption that two threads

are different, if we can prove that the memory locations they access are also different,

then the program is race-free.

3.3 Language

In this section, we present the abstract syntax and operational semantics of a sequen-

tial, intraprocedural WHILE language that we use in subsequent sections to formalize

our conditional must not alias analysis.

72 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

3.3.1 Syntax

The abstract syntax of the language is shown in Figure 3.3. A program has a fixed

set of variables V with global scope and a single class with instance fields F. Each

object allocation site in the program is labeled with a unique h ∈ H and each loop in

the program is labeled with a unique integer w ∈ W. There are no threads or locks;

conditional must not aliasing is not a concurrency property and the presentation is

simplest in a single-threaded language.

v ∈ V (variable)
f ∈ F (instance field)
h ∈ H (object allocation site)
w ∈ W (loop)
s ∈ S (statement)
s ::= v = null

| v = new h

| v1 = v2

| v2 = v1.f

| v1.f = v2

| s1 ; s2

| if (∗) then s1 else s2

| while
w (∗) do s

Figure 3.3: Abstract syntax of WHILE language.

3.3.2 Semantics

We next develop an operational semantics for the language. Figure 3.4 defines the

semantic domains. A loop vector π is a tuple of |W| non-negative integers which track

how many times each loop in the program has executed. Specifically, the iteration

count of a loop while
w (∗) do s in the program is π(w) (treating the tuple π as a map

from indices to elements of π). A (non-null) object o, then, is uniquely identified

as a pair 〈h, π〉 consisting of the site h at which it was allocated and a loop vector

π recording the time (in loop execution counts) when the object was allocated. We

explain the motivation behind using loop vectors shortly.

3.3. LANGUAGE 73

N 3 n ::= 0 | 1 | 2 | . . . (loop iteration count)
π ∈ W → N (loop iteration count vector)
W ∈ P(W) (loop set)

O 3 o ::= 〈h, π〉 (non-null object)
O⊥ 3 ō ::= o | ⊥ (object)

ρ ∈ V → O⊥ (environment)
σ ∈ (O × F) ⇀ O⊥ (heap)
C ::= ∅ | C ∪ { o1 B o2 } (heap effect set)

〈h, π〉.h , h

〈h, π〉.π , π

Figure 3.4: Semantic domains of WHILE language.

Environments and heaps are standard. An environment ρ maps each variable

to an object (or null). A heap σ records the object (or null) to which each field

of each non-null object points. A heap effect o1 B o2 records that at some point in

the execution, some field of object o1 was assigned object o2. The field itself is not

recorded as we are only interested in object reachability, namely, that object o2 was

reachable by one field dereference from object o1.

The motivation behind loop vectors and heap effects is that in Section 3.4, we

will present a type and effect system that is used by a disjoint reachability analysis

to answer conditional must not aliasing queries such as whether the same object

allocated at a site in the program may be reachable in the heap from different objects

allocated at another site. The type and effect system uses abstractions of the loop

vectors to reason about different objects allocated at the same site and abstractions

of the heap effects to reason about reachability between them in the heap.

Figure 3.5 presents a big-step operational semantics for our WHILE language.

Judgments have the form:

s, W, π, ρ, σ ⇓ π′, ρ′, σ′, C

Each step of execution begins with the statement s to be executed, the set W of all

loops lexically enclosing s, the current loop vector π, the current environment ρ, and

74 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

s, W, π, ρ, σ ⇓ π′, ρ′, σ′, C

v = null, W, π, ρ, σ ⇓ π, ρ[v 7→ ⊥], σ, ∅ (3.1)

v = new h, W, π, ρ, σ ⇓ π, ρ[v 7→ o], σ[(o, f1) 7→ ⊥, ..., (o, fn) 7→ ⊥], ∅

[o = 〈h, λw.(if w ∈ W then π(w) else 0)〉] (3.2)

v1 = v2, W, π, ρ, σ ⇓ π, ρ[v1 7→ ρ(v2)], σ, ∅ (3.3)

v2 = v1.f, W, π, ρ, σ ⇓ π, ρ[v2 7→ σ(o, f)], σ, ∅ if ρ(v1) = o (3.4)

v1.f = v2, W, π, ρ, σ ⇓ π, ρ, σ[(o1, f) 7→ ō2], C if ρ(v1) = o1
[

ρ(v2) = ō2 and C =

{

{o1 B o2} if ō2 = o2

∅ if ō2 = ⊥

]

(3.5)

s1, W, π, ρ, σ ⇓ π′, ρ′, σ′, C1 s2, W, π′, ρ′, σ′ ⇓ π′′, ρ′′, σ′′, C2

s1; s2, W, π, ρ, σ ⇓ π′′, ρ′′, σ′′, C1 ∪ C2
(3.6)

s1, W, π, ρ, σ ⇓ π′, ρ′, σ′, C

if (∗) s1 else s2, W, π, ρ, σ ⇓ π′, ρ′, σ′, C
(3.7)

s2, W, π, ρ, σ ⇓ π′, ρ′, σ′, C

if (∗) s1 else s2, W, π, ρ, σ ⇓ π′, ρ′, σ′, C
(3.8)

while
w (∗) do s, W, π, ρ, σ ⇓ π, ρ, σ, ∅ (3.9)

s, W ∪ {w}, π[w 7→ π(w) + 1], ρ, σ ⇓ π′, ρ′, σ′, C1

while
w (∗) do s, W, π′, ρ′, σ′ ⇓ π′′, ρ′′, σ′′, C2

while
w (∗) do s, W, π, ρ, σ ⇓ π′′, ρ′′, σ′′, C1 ∪ C2

(3.10)

Figure 3.5: Instrumented operational semantics of WHILE language.

3.3. LANGUAGE 75

the current heap σ. Note that W records which loops are currently executing while π

records the execution count of all loops in the program and not just of loops that are

currently active. Since loops may execute as part of a step of execution, the semantics

must record a new loop vector as well as an updated environment and heap. Thus, a

step of execution terminates with a final loop vector π′, a final environment ρ′, and

a final heap σ′, plus the set of heap effects C recording all object reachability facts

resulting from heap updates that occurred during the execution of s.

We explain the most interesting rules in Figure 3.5. Rule (3.2), which creates a new

object, does not simply use the current loop vector as the time stamp recorded in the

object. Instead, counters for loops not in W (that is, those not currently executing)

are set to 0, giving a way to determine later whether or not a particular loop was

executing when the object was allocated.1 While this property is not exploited in

the instrumented operational semantics, it is used in the abstractions discussed in

Section 3.4. Assigning to a field of an object (Rule (3.5)) generates a heap effect

recording the reachability between the two objects involved in the assignment. Finally,

consider Rules (3.9) and (3.10), which give the semantics of while statements. Loops

execute a non-deterministic number of times, which saves us the trouble of defining

how loop termination conditions (as well as the predicates of if statements, see Rules

(3.7) and (3.8)) are evaluated. Also note that when a loop executes an additional time

(Rule (3.10)), the appropriate loop counter in the current loop vector is incremented.

We conclude this section with a small example in our WHILE language:

Example 3.1. while
1 (*) do { v1 = new h1; v2 = new h2; v1.f = v2 }

If the loop executes twice, the judgment at the root of the derivation tree is:

while
1 . . . , ∅, 〈0〉, [v1 7→ ⊥, v2 7→ ⊥], [] ⇓ 〈2〉, [v1 7→ o3, v2 7→ o4], σ, {o1 B o2, o3 B o4}

where o1 = 〈h1, 〈1〉〉, o2 = 〈h2, 〈1〉〉, o3 = 〈h1, 〈2〉〉, o4 = 〈h2, 〈2〉〉, the initial empty

heap is denoted [], and the final heap is σ = [(o1, f) 7→ o2, (o2, f) 7→ ⊥, (o3, f) 7→

o4, (o4, f) 7→ ⊥].

1The object allocation site could also be used to determine the set of lexically enclosing loops;

using W is clearer if less economical.

76 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

3.4 Type and Effect System

In this section, we present a type and effect system for our WHILE language. The

syntax of types and effects is shown in Figure 3.6. They are parallel with the def-

initions in Figure 3.4 but the semantics are significantly different. Objects have

types 〈ĥ, Π〉 recording information about where and when they were allocated. The

main goal of the type and effect system is to compute abstract heap effects such as

〈ĥ1, Π1〉 D 〈ĥ2, Π2〉. As in the operational semantics, the effect implies an object of

type 〈ĥ2, Π2〉 may be reachable from an object of type 〈ĥ1, Π1〉 by one field deref-

erence. In a type, loop iterations are abstracted as 0, 1, or >. If Π1(w) = 0, then

loop w was not executing when the object with that type was allocated (similarly for

Π2(w)). If Π1(w) = > then nothing is known about the iteration of loop w in which

the object was allocated (and similarly for Π2(w)). In either case nothing is known

about the relative time at which objects of the two types were allocated. However,

if Π1(w) = Π2(w) = 1, then the type and effect system ensures the two objects were

allocated in the same iteration of loop w. This property allows us to show disjoint

reachability: intuitively, if objects of types 〈ĥ1, Π1〉 and 〈ĥ2, Π2〉 are allocated and

linked in the same iteration of a loop, then different objects of type 〈ĥ1, Π1〉 (allo-

cated in different iterations n1 and n2 of the loop) may only reach different objects of

type 〈ĥ2, Π2〉 (allocated in iterations n1 and n2, respectively).

This discussion is made precise in Figure 3.7, which defines an abstraction relation

� stating when types, abstract heap effects, and type environments abstract objects,

concrete heap effects, and concrete environments, respectively. The third clause in

Figure 3.7(b) requires that the iteration counts in position w of the loop vectors of

two objects match if the values in position w of the loop vectors of their types are 1.

Likewise, the third clause of Figure 3.7(c) requires that iteration counts in position

w of the loop vectors of all objects in environment ρ match if the values in position

w of the loop vectors of their types in environment Γ are 1. Thus, in both abstract

heap effects and type environments, any two types with a 1 in position w of their

loop vectors always abstract objects allocated in the same, but unknown, iteration of

loop w.

3.4. TYPE AND EFFECT SYSTEM 77

N> 3 n̂ ::= 0 | 1 | > (abstract loop iteration count)
Π ∈ W → N> (abstract loop iteration count vector)

H> 3 ĥ ::= h | > (abstract object allocation site)

T 3 τ ::= 〈ĥ, Π〉 (non-null type)
T⊥ 3 τ̄ ::= τ | ⊥ (type)

Γ ∈ V → T⊥ (type environment)
K ::= ∅ | K ∪ {τ1 D τ2} (abstract heap effect set)

〈ĥ, Π〉.ĥ , ĥ

〈ĥ, Π〉.Π , Π

Figure 3.6: Syntax of types and effects.

Before we can give the type rules we need two operations on type environments.

The join of type environments is pointwise. Nulls are absorbed, and if either loop

iterations or object allocation sites fail to match, the result is > in the appropriate po-

sition. The second operation handles the increment of loop vectors; in a while
w (∗) do s

statement, if the value in position w of the loop vector is 1, it is incremented to >

when the loop iterates.

78 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

ō � τ̄ ⇔ (ō = ⊥) ∨ (ō = o ∧ τ̄ = τ ∧ o � τ)

o � τ ⇔ (o.h � τ.ĥ) ∧ (∀w ∈ W : o.π(w) � τ.Π(w))

n � n̂ ⇔ (n = 0 ∧ n̂ = 0) ∨ (n > 0 ∧ n̂ = 1) ∨ (n̂ = >)

h � ĥ ⇔ (h = ĥ) ∨ (ĥ = >)

(a) Object abstraction.

C � K ⇔ ∀(o1 B o2) ∈ C : ∃(τ1 D τ2) ∈ K : (o1, o2) ∝ (τ1, τ2)

(o1, o2) ∝ (τ1, τ2) ⇔









(1) o1 � τ1

∧ (2) o2 � τ2

∧ (3) ∀w ∈ W : ((τ1.Π(w) = 1 ∧ τ2.Π(w) = 1) ⇒
o1.π(w) = o2.π(w))









(b) Heap effect abstraction.

W ` (π, ρ) � (Π, Γ) ⇔

















(1) ∀w ∈ W : π(w) � Π(w)
∧ (2) ∀v ∈ V : ρ(v) � Γ(v)
∧ (3) ∀w ∈ W : ∃n ∈ N :





(a) Π(w) = 1 ⇒ π(w) = n

∧ (b) ∀v ∈ V : ((ρ(v) = o ∧ Γ(v) = τ ∧
τ.Π(w) = 1) ⇒ o.π(w) = n)





















(c) Environment abstraction.

Figure 3.7: Abstraction relations.

3.4. TYPE AND EFFECT SYSTEM 79

Definition 3.2. (Join of Environments)

(Γ1 t Γ2)(v) = Γ1(v) t Γ2(v)

τ̄1 t τ̄2 =















τ̄1 if τ̄2 = ⊥

τ̄2 if τ̄1 = ⊥

τ1 t τ2 if τ̄1 = τ1 ∧ τ̄2 = τ2

τ1 t τ2 = 〈τ1.ĥ t τ2.ĥ, τ1.Π t τ2.Π〉

ĥ1 t ĥ2 =

{

ĥ1 if ĥ1 = ĥ2

> otherwise

(Π1 t Π2)(w) = Π1(w) t Π2(w)

n̂1 t n̂2 =

{

n̂1 if n̂1 = n̂2

> otherwise

�

Definition 3.3. (Loopback Environment)

Γw+(v) = Γ(v)w+

τw+ = 〈τ.ĥ, τ.Πw+〉

⊥w+ = ⊥

Πw+(w′) =

{

> if w′ = w ∧ Π(w) = 1

Π(w′) otherwise

�

The upper bound of two types implicitly defines a type lattice, which is ordered

pointwise on loop vectors and object allocation sites. Integers and object allocation

sites are all less than > and incomparable to each other. The maximal type is then

〈>, λw.>〉, that is, it consists of a > object allocation site and a loop vector with a

> in each position; the minimal type is the type ⊥ of null, and since any program

has a finite number of loops and object allocation sites, the type lattice is also finite.

80 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

W, Π, Γ ` s : Γ′, K

W, Π, Γ ` v = null : Γ[v 7→ ⊥], ∅ (3.11)

W, Π, Γ ` v = new h : Γ[v 7→ 〈h, Π′〉], ∅

[Π′ = λw.(if w ∈ W then Π(w) else 0)] (3.12)

W, Π, Γ ` v1 = v2 : Γ[v1 7→ Γ(v2)], ∅ (3.13)

W, Π, Γ ` v2 = v1.f : Γ[v2 7→ 〈>, λw.>〉], ∅ (3.14)

W, Π, Γ ` v1.f = v2 : Γ, K
[

K =

{

{τ1 D τ2} if Γ(v1) = τ1 and Γ(v2) = τ2

∅ otherwise

]

(3.15)

W, Π, Γ ` s1 : Γ′, K1 W, Π, Γ′ ` s2 : Γ′′, K2

W, Π, Γ ` s1; s2 : Γ′′, K1 ∪ K2

(3.16)

W, Π, Γ ` s1 : Γ1, K1 W, Π, Γ ` s2 : Γ2, K2

W, Π, Γ ` if (∗) then s1 else s2 : Γ1 t Γ2, K1 ∪ K2

(3.17)

W ∪ {w}, Π, Γw+ ` s : Γ, K

W, Π, Γ ` while
w (∗) do s : Γ, K

[Π(w) 6= 0] (3.18)

Figure 3.8: Type rules.

3.4. TYPE AND EFFECT SYSTEM 81

The type rules are given in Figure 3.8. A type judgment has the form:

W, Π, Γ ` s : Γ′, K

W is the set of all loops lexically enclosing statement s. The type system is flow

sensitive: if statement s begins executing with initial loop vector Π and initial type

environment Γ, then upon termination the final type environment is Γ′. Note that

unlike in the judgment for the operational semantics, the final loop vector is the same

as the initial loop vector; the type rules ensure that any conclusion that is drawn holds

for any number of iterations of loops executed during the execution of s. Finally, K

denotes the set of abstract heap effects that may occur during the execution of s.

The type rules are parallel with the operational semantics in Figure 3.5 and for

brevity we point out only a few interesting features. Rule (3.12) uses W to distinguish

active loops from inactive ones. The type of a newly allocated object has 0’s in

loop vector positions of inactive loops, just as in Rule (3.2) of Figure 3.5, and the

values for loop vector positions of active loops are taken from the current loop vector

Π. Rule (3.14) gives no information about heap reads, which is sound, but overly

conservative in practice. We discuss improvements in Section 3.8, which we omit

from the formal development for simplicity. The most interesting rule, Rule (3.18), has

three important aspects. First, the condition Π(w) 6= 0 reflects that the loop vectors of

the types of objects allocated inside loop w should not have 0 at position w (and Rule

(3.12) already ensures that the loop vectors of the types of objects allocated outside

loop w have a 0 at position w). Second, the fact that the environment Γ is the same

before and after the loop reflects that any conclusion must be valid for any number of

executions of the loop, that is, the entire loop may be executed multiple times (e.g.,

because it is nested inside of another loop) and the environment Γ must be an invariant

for all of those executions. For example, a proof W, Π, Γ ` while
w . . . : Γ, K where

Γ = [v1 7→ 〈h1, 〈. . . , 1, . . .〉〉, v2 7→ 〈h2, 〈. . . , 1, . . .〉〉] implies that if the loop starts

execution in an environment where v1 and v2 were allocated in the same iteration of

some earlier execution of the loop (e.g., because it is nested inside of another loop),

then the loop terminates with v1 and v2 assigned objects from the same loop iteration.

82 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

Note that the final concrete loop iteration associated with v1 and v2 may be different

than the initial one; the value 1 in both types only requires that the concrete loop

iterations of v1 and v2 be equal before and after the loop, but the loop may assign new

objects to v1 and v2 from the same iteration and maintain this property. Third and

finally, the types of objects in the environment at the start of a loop iteration must

be carried over from previous iterations. Thus, the body s of loop w is checked in

the environment Γw+, which ensures that the types of objects in the environment at

the start of a new iteration do not have a 1 in position w of their loop vectors; Π(w),

however, can be 1, which allows the types of any objects s allocates to be recognized

as the types of objects allocated together in the same iteration.

As an aside, for a single loop the only correlation this type and effect system can

recognize is when objects are allocated and linked in the same iteration of the loop

(Rule (3.15)). By allowing loop vector positions of types to take a finite number of

additional values (that is, values 2,3,4, . . . besides the currently allowed values 0,1,

and >) and adjusting definitions (e.g., Definition 3.3) the system can be extended to

recognize when a value is allocated in one iteration and linked to an object allocated

in the next iteration, or two iterations later, and so on. However, so far we have

not found this extra power necessary, at least for race detection, and so we have

presented and implemented the simpler system. Much more important is correctly

handling non-nested and multiple nested loops and this is the focus of our system.

The purpose of the type and effect system is to compute the set of abstract heap

effects which is used by our disjoint reachability analysis presented in the following

section. We first prove the soundness of abstract heap effects with respect to concrete

heap effects. The key lemma in this proof is type preservation.

Lemma 3.4. (Type Preservation) If s, W, π, ρ, σ ⇓ π′, ρ′, σ′, C and W, Π, Γ ` s :

Γ′, K and W ` (π, ρ) � (Π, Γ) then W ` (π′, ρ′) � (Π, Γ′) and C � K.

Proof. By induction on the structure of the derivation of s, W, π, ρ, σ ⇓ π′, ρ′, σ′, C.

See the proof of Lemma A.2 in Appendix A for details. �

Then, the following theorem proves the soundness of the set of abstract heap effects

K for a well-typed program with respect to the set of concrete heap effects C of any

3.4. TYPE AND EFFECT SYSTEM 83

execution of that program.

Theorem 3.5. (Soundness of Heap Effect Abstraction)

If s, ∅, λw.0, λv.⊥, [] ⇓ π, ρ, σ, C and ∅, Π, Γ ` s : Γ′, K then C � K.

Proof. Suppose:

(a) s, ∅, λw.0, λv.⊥, [] ⇓ π, ρ, σ, C

(b) ∅, Π, Γ ` s : Γ′, K

To prove:

(I) C � K

From Figure 3.7 (c), we have:

(c) ∅ ` (λw.0, λv.⊥) � (Π, Γ)

From (a), (b), (c), and Lemma 3.4, we have (I). �

We will use this theorem to prove the soundness of our disjoint reachability anal-

ysis with respect to the disjoint reachability property in the following section (see

Theorem 3.13).

Returning to Example 3.1 at the end of Section 3.3, the type system can prove:

∅, 〈1〉, [v1 7→ τ1, v2 7→ τ2] ` while
1 . . . : [v1 7→ τ1, v2 7→ τ2], {τ1 D τ2}

where τ1 = 〈h1, 〈1〉〉 and τ2 = 〈h2, 〈1〉〉.

Example 3.6. Consider the following nested loop, with two possible statements (A)

and (B) for the body of the inner loop:

while
1 (*) do

v1 = new h1;

while
2 (*) do

v2 = new h2;

(A) v1.f = v2 OR (B) v2.f = v1

Statement (A) abstracts a typical programming pattern for containers: the outer

object v1 controls access to objects v2 allocated in an inner loop (in realistic examples

84 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

h ∈ DRC(H) ⇔

























(o1 B o) ∈ C+

∧ (o2 B o) ∈ C+

∧ o1.h ∈ H

∧ o2.h ∈ H

∧ o.h = h













⇒ o1 = o2













h ∈ DRK(H) ⇔













































(τ1 D τ3) ∈ K+

∧ (τ2 D τ4) ∈ K+

∧ τ1.ĥ ∈ H ∪ {>}

∧ τ2.ĥ ∈ H ∪ {>}
∧ τ3 ∼ τ4

∧ τ3.ĥ ∈ {h,>}

∧ τ4.ĥ ∈ {h,>}























⇒









τ1 = τ2

∧ τ1 < >
∧ ∀w ∈ W : (τ1.Π(w) = 1 ⇒

τ3.Π(w) = τ4.Π(w) = 1)































Figure 3.9: Disjoint reachability property and disjoint reachability analysis.

all the v2 objects would be retained in, for instance, a list). With statement (A), the

type system can prove:

∅, 〈1, 1〉, [v1 7→ τ1, v2 7→ τ2] ` while
1 . . . : [v1 7→ τ1, v2 7→ τ2], {τ1 D τ2}

where τ1 = 〈h1, 〈1, 0〉〉 and τ2 = 〈h2, 〈1, 1〉〉.

Statement (B) abstracts another common pattern where many objects allocated

in the inner loop point to a single object allocated in the outer loop (for instance,

parent or root pointers in tree data structures). Using statement (B), the type system

can prove:

∅, 〈1, 1〉, [v1 7→ τ1, v2 7→ τ2] ` while
1 . . . : [v1 7→ τ1, v2 7→ τ2], {τ2 D τ1}

where τ1 = 〈h1, 〈1, 0〉〉 and τ2 = 〈h2, 〈1, 1〉〉.

3.5. DISJOINT REACHABILITY ANALYSIS 85

3.5 Disjoint Reachability Analysis

In this section, we present disjoint reachability, a form of object reachability that is

used to compute conditional must not aliasing facts. We first formalize the disjoint

reachability property in terms of the set of concrete heap effects C of a program

execution and then present disjoint reachability analysis in terms of the set of abstract

heap effects K of a well-typed program. Finally, we prove the disjoint reachability

analysis sound with respect to the disjoint reachability property.

Consider the set of concrete heap effects C of a program execution. Recall from

Section 3.3.2 that it contains an effect (o1 B o2) if and only if some field of object o1

was assigned object o2 during the execution. We define the (non-reflexive) transitive

closure of C, denoted C+, as follows:

Definition 3.7. (Closure of C) C+ =
⋃

n≥1 Cn, where Cn is:

1. C1 = C

2. If (o1 B o2) ∈ Cn and (o2 B o3) ∈ C then (o1 B o3) ∈ Cn+1

�

If (o1 B o2) ∈ Cn, then o2 may be reachable from o1 by n field dereferences. Hence, if

(o1 B o2) ∈ C+, then o2 may be reachable from o1 by one or more field dereferences.

The disjoint reachability property is presented as the first equation in Figure 3.9. It

states that h ∈ DRC(H) if and only if whenever an object o allocated at site h may be

reachable by one or more field dereferences from each of objects o1 and o2 allocated at

any sites in H , then o1 and o2 are one and the same object. In other words, the

same object o allocated at site h is not reachable by one or more field dereferences

from different objects o1 and o2 allocated at any sites in H .

We next define two notations we use in formulating our disjoint reachability anal-

ysis. We say types τ1 and τ2 are compatible, denoted τ1 ∼ τ2, if they agree in

all components where neither is >:

Definition 3.8. τ1 ∼ τ2 ⇔ ((τ1.ĥ = τ2.ĥ ∨ τ1.ĥ = > ∨ τ2.ĥ = >) ∧

∀w ∈ W : (τ1.Π(w) = τ2.Π(w) ∨ τ1.Π(w) = > ∨ τ2.Π(w) = >)) �

86 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

We say a type τ is less than > if no component of τ is >:

Definition 3.9. τ < > ⇔ (τ.ĥ 6= > ∧ ∀w ∈ W : τ.Π(w) 6= >) �

To define disjoint reachability analysis, we define the transitive closure of a set of

abstract heap effects K, denoted K+, in a manner analogous to the transitive closure

C+ of a set of concrete heap effects C. Since abstract heap effects in K may correspond

to multiple concrete heap effects, however, the transitive closure of K is more involved

than that of C. Consider two abstract heap effects (τ1 D τ2) and (τ3 D τ4). If τ2 ∼ τ3

then τ2 and τ3 may abstract the same object and hence there is a some transitive

relationship between τ1 and τ4. Simple transitivity is sound in all but one case: if

τ1.Π(w) = τ4.Π(w) = 1 and either τ2.Π(w) 6= 1 or τ3.Π(w) 6= 1, then we cannot

conclude that the objects abstracted by τ1 and τ4 are allocated in the same iteration

of loop w. In this case it is sound to replace τ4.Π(w) by >, ensuring that there is no

information about the relative allocation times with respect to loop w.

Definition 3.10. (Closure of K) K+ =
⋃

n≥1 Kn, where Kn is:

1. K1 = K

2. If (τ1 D τ2) ∈ Kn and (τ3 D τ4) ∈ K and τ2 ∼ τ3 then (τ1 D τ5) ∈ Kn+1 where

(a) τ5.ĥ = τ4.ĥ

(b) ∀w ∈ W :

τ5.Π(w) =















> if τ1.Π(w) = 1 ∧ τ4.Π(w) = 1 ∧

(τ2.Π(w) 6= 1 ∨ τ3.Π(w) 6= 1)

τ4.Π(w) otherwise

�

The following lemma proves the soundness of K+ with respect to C+.

Lemma 3.11. If C � K then ∀n ≥ 1 : Cn � Kn.

Proof. By induction on n. See the proof of Lemma A.3 in Appendix A for details.

�

3.5. DISJOINT REACHABILITY ANALYSIS 87

Out disjoint reachability analysis is presented as the second equation in Figure 3.9.

Recall that Theorem 3.5 states that for any well-typed program with set of abstract

heap effects K and for any execution of that program with set of concrete heap effects

C, we have C � K. The disjoint reachability analysis fact h ∈ DRK(H) is sufficient

to prove the disjoint reachability property fact h ∈ DRC(H) for every C � K.

The disjoint reachability analysis test is analogous to the disjoint reachability

property test. It considers every relevant pair of abstract heap effects (τ1 D τ3) and

(τ2 D τ4) in K+. Types τ1 and τ2 abstract objects o1 and o2, respectively, in the

disjoint reachability property test. Since o1 and o2 are objects allocated at sites in

H , τ1 and τ2 must also abstract objects allocated at sites in H , that is, we must

have τ1.ĥ, τ2.ĥ ∈ H ∪ {>} (a type whose object allocation site is > may abstract an

object allocated at any site, including one in H). Types τ3 and τ4 abstract the same

object o in the disjoint reachability property test. Hence, we must have τ3 ∼ τ4 (if

this condition does not hold then types τ3 and τ4 can never both abstract the same

object) and since o is allocated at site h, we must have τ3.ĥ, τ4.ĥ ∈ {h,>}.

Intuitively, the test must now check that under the assumptions that τ3 and τ4

abstract the same object o and τ1 and τ2 abstract objects o1 and o2 such that o may be

reachable by one or more field dereferences from each of o1 and o2, it is the case that

o1 = o2. This is done by the three conditions on the right-hand side of the implication.

In order for τ1 and τ2 to abstract the same object, the types must first be equal

(τ1 = τ2), and secondly, they must have no top elements (τ1 < >), since a top

element in any position of the loop vector or in the object allocation site would allow

the type to abstract more than one object and hence the objects abstracted by the two

types could not be shown to be the same. The third condition is an implication whose

antecedent τ1.Π(w) = 1 (and hence τ2.Π(w) = 1 since we have just ensured τ1 = τ2)

states that τ1 and τ2 may still abstract different objects o1 and o2, namely, o1 and

o2 may be allocated in different iterations of loop w, but in this case, the consequent

τ3.Π(w) = τ4.Π(w) = 1 ensures that o1 = o2, by the following reasoning. Since

(τ1 D τ3) in K+ and τ1.Π(w) = τ3.Π(w) = 1, the object o abstracted by τ3 and the

object o1 abstracted by τ1 are guaranteed to be allocated in the same iteration of

loop w (recall that the computation of K+ enforces this condition). Likewise, since

88 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

(τ2 D τ4) in K+ and τ2.Π(w) = τ4.Π(w) = 1, the object o abstracted by τ4 and the

object o2 abstracted by τ2 are guaranteed to be allocated in the same iteration of

loop w. Combining the above two arguments, it follows that o1 and o2 are allocated

in the same iteration of loop w, whence o1 = o2.

We are now ready to prove the soundness of our disjoint reachability analysis

with respect to the disjoint reachability property. The key lemma in this proof is the

following:

Lemma 3.12. If C � K and h ∈ DRK(H) then h ∈ DRC(H).

Proof. From Lemma 3.11 and the definitions of DRC and DRK in Figure 3.9. See the

proof of Lemma A.4 in Appendix A for details. �

Theorem 3.13. (Soundness of Disjoint Reachability Analysis)

If s, ∅, λw.0, λv.⊥, [] ⇓ π, ρ, σ, C and ∅, Π, Γ ` s : Γ′, K and h ∈ DRK(H) then

h ∈ DRC(H).

Proof. Immediate from Theorem 3.5 and Lemma 3.12. �

Recall from the end of Section 3.4 that our type and effect system derives the set

of abstract heap effects K = {〈h1, 〈1〉〉 D 〈h2, 〈1〉〉} for Example 3.1. In this simple

example, we have K+ = K, and using the disjoint reachability analysis in Figure 3.9,

we have h2 ∈ DRK({h1}), that is, the same object allocated at site h2 is not reachable

by one or more field dereferences from different objects allocated at site h1.

Now consider the nested loops in Example 3.6. Using statement (A), we have

K = {〈h1, 〈1, 0〉〉 D 〈h2, 〈1, 1〉〉} and again K+ = K. Because the loop vector of the

type on the left side of this effect does not have a > in any position and because the

loop vector of the type on the right side of this effect has a 1 in every position where

that on the left side has a 1, our analysis infers that the same object allocated at site

h2 in the inner loop is not reachable by one or more field dereferences from different

objects allocated at site h1 in the outer loop; thus h2 ∈ DRK({h1}). Finally, using

statement (B), we have K = {〈h2, 〈1, 1〉〉 D 〈h1, 〈1, 0〉〉} and K+ = K. Because the

loop vector of the type on the right side of this effect has a 0 in a position where that

on the left side has a 1, our analysis infers that the same object allocated at site h1

3.6. PRACTICAL CONSIDERATIONS 89

in the outer loop may be reachable by one or more field dereferences from different

objects allocated at site h2 in the inner loop; thus h1 6∈ DRK({h2}).

3.6 Practical Considerations

Our presentation thus far has elided some features that are indispensable for precision

in a static race detection algorithm for a realistic language like Java. We discuss these

features in this section.

As discussed in Chapter 2, our static race detection algorithm uses a k-object-

sensitive analysis [60, 61] for precision. Hence, object allocation sites in our presenta-

tion become points-to sets computed by our k-object-sensitive analysis, namely, sets

of sequences of upto k object allocation sites [hn :: ... :: h1] where 1 ≤ n ≤ k. Also,

the join operator in our presentation, which yields > when applied to two different

object allocation sites, is now applied to points-to sets and computes set union.

Our WHILE language lacks methods. For Java programs, we must handle not

only loops but also methods since the effect of looping may be achieved by recursive

methods. Our solution is to transform all loops to tail-recursive methods upfront.

Our k-object-sensitive analysis constructs a context sensitive call graph, that is, each

method may be called in multiple abstract contexts. Then, loop vectors in our presen-

tation become vectors containing one position for each (m, c) pair such that method

m may be called in abstract context c. This enables us to handle both loops and

recursive methods uniformly.

Combining the features discussed so far, a type 〈ĥ, Π〉 which consisted of an object

allocation site and a loop vector now consists of a points-to set and a vector of

(method, abstract context) pairs.

Finally, another source of imprecision in our presentation is the treatment of heap

reads; consider the following example:

1. v1.f = v2

2. ... no writes to aliases of v1.f ...

3. v3 = v1.f

90 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

According to Rule (3.14) in Figure 3.8, the type of v3 on line 3 is 〈λw.>,>〉, that

is, no useful information is known for v3. Unfortunately, this rule is too coarse in

practice, as there are situations similar to the one given above in real-world Java

programs.

To improve precision, we compute flow sensitive, must alias facts, for instance,

after line 3, we want to know that v3 = v2, that is, the type of v3 has the same

method vector and points-to set as that of v2. The approach we use is a standard

(but interprocedural) dataflow algorithm to track must alias facts on names of the

form v.f1.f2.f3...; there are similar algorithms in the literature [24].

This extension also introduces a new problem for a race detection algorithm that

aims to be sound. Consider the read again on line 3 above. The conclusion that

v3 = v2 after line 3 is only valid if line 2 contains no writes to aliases of v1.f and,

moreover, no other thread writes to an alias of v1.f. It is not surprising that a

flow sensitive computation must reason about potential races, but it does lead to a

recursively defined notion of race detection, as computing the set of races now depends

on knowing the set of races to begin with. We solve this problem by using our thread

escape analysis. In particular, if the analysis determines that v1 always points to a

thread-local object, then we can conclude that v3 = v2 after line 3 (presuming line 2

contains no writes to aliases of v1.f). If the analysis determines that v1 may point

to a thread escaping object, however, then we kill the must alias dataflow fact v3 =

v2, that is, the type of v3 after line 3 is 〈O, λw.>〉 where O is the points-to set of v3

computed by our thread escape analysis.

3.7 Conditional Must Not Alias Analysis

We now present our conditional must not alias analysis in the framework of our

static race detection algorithm presented in Chapter 2. The algorithm begins with

a relation originalRaces which is an initial over-approximation of the set of races

in the given Java program. It contains each tuple of the form (ct
1, c

m
1 , e1, c

t
2, c

m
2 , e2)

such that abstract threads ct
1 and ct

2 may execute statements e1 and e2 in abstract

contexts cm
1 and cm

2 of their containing methods, respectively. The abstract threads

3.7. CONDITIONAL MUST NOT ALIAS ANALYSIS 91

and abstract contexts arise from k-object-sensitive analysis [60, 61], namely, each of

them is either a distinguished element ε (which may be viewed both as the thread

abstracting the implicit main thread of the program and as the lone abstract context

of the main method) or a sequence of at most k object allocation sites [hn :: ... :: h1]

(1 ≤ n ≤ k). Statements e1 and e2 in each tuple either access the same instance or

static field of a class or they both access array elements. In either case, at least one

of those accesses is a write. These are the only cases in which a pair of statements

in a Java program may be involved in a race. The set of real races is typically a tiny

fraction of originalRaces. Our original race detection algorithm uses the following

four static analyses which check different conditions for race freedom to eliminate

tuples from originalRaces:

• A may alias analysis eliminates each tuple such that e1 and e2 never access the

same memory location in abstract contexts cm
1 and cm

2 , respectively. The set of

tuples retained is denoted aliasingRaces.

• A thread escape analysis eliminates each tuple such that either e1 always ac-

cesses a thread local memory location in abstract context cm
1 , or e2 always

accesses a thread local memory location in abstract context cm
2 , or both. The

set of tuples retained is denoted escapingRaces.

• A may-happen-in-parallel analysis eliminates each tuple such that the thread

structure of the program prevents abstract threads ct
1 and ct

2 from simultane-

ously executing e1 and e2 in abstract contexts cm
1 and cm

2 , respectively. The set

of tuples retained is denoted parallelRaces.

• A lockset analysis eliminates each tuple such that either ct
1 and ct

2 may abstract

one and the same thread or a common lock may be held by the threads while ex-

ecuting e1 and e2 in abstract contexts cm
1 and cm

2 , respectively. The set of tuples

retained is denoted unlockedRaces.

92 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

Finally, our algorithm computes the set of potential races to be reported, denoted

ultimateRaces, as containing each tuple in originalRaces that could not be elimi-

nated by any of the above four analyses:

ultimateRaces = aliasingRaces ∩ escapingRaces ∩

parallelRaces ∩ unlockedRaces

The algorithm is precise in practice in that ultimateRaces contains few false posi-

tives, but it is unsound in that it may have false negatives because, as discussed in

Section 3.1, the lockset analysis it uses is unsound, namely, tuples not retained in

unlockedRaces are not necessarily race-free. We next describe how to compute

unlockedRaces soundly using conditional must not alias analysis, rendering our race

detection algorithm sound.

Our conditional must not alias analysis consists of three independent analyses each

of which targets a different locking idiom to prove tuples in originalRaces race-free.

All three analyses are based on the concept of conditional must not aliasing but

differ operationally. We denote the sets of tuples retained by these three analyses

as globalUnlockedRaces, localUnlockedRaces, and threadUnlockedRaces. Then,

unlockedRaces is computed soundly as follows:

unlockedRaces = globalUnlockedRaces ∩ localUnlockedRaces ∩

threadUnlockedRaces

We illustrate these three analyses using the example Java program from Figure 3.1.

As discussed in Section 3.2, the example illustrates four scenarios in all: three scenar-

ios in which expression thrd is T.g[*], that is, each child thread non-deterministically

chooses a T object corresponding to any of the child threads, and expression lock is

one of T.g, vt, and ve, illustrating the coarse-, fine-, and medium-grained locking

styles, respectively, plus a fourth scenario in which expression thrd is this, that is,

each child thread deterministically chooses the T object corresponding to itself. In

each of these scenarios, relation originalRaces includes the tuple ([h2],[h2],e,

[h2],[h2],e) since each child thread, abstracted by [h2], executes statement e

3.7. CONDITIONAL MUST NOT ALIAS ANALYSIS 93

in abstract context [h2]. None of the other sound analyses in our race detection

algorithm, namely, the may alias analysis, the thread escape analysis, and the may-

happen-in-parallel analysis, can eliminate this tuple. We next present the three anal-

yses comprising our conditional must not alias analysis and show how different of

those analyses eliminate this tuple under the different scenarios discussed above.

3.7.1 Computation of globalUnlockedRaces

This analysis specializes in proving race freedom in the presence of global, uniquely

named locks. An example is the coarse-grained locking scenario in the above example.

This style of locking is fairly common in real-world Java programs. Java programmers

not only create global locks explicitly but also use such locks created by the virtual

machine, for instance, by using static synchronized methods or by synchronizing

on class fields.

This analysis is similar to the lockset analysis in our original race detection algo-

rithm from Chapter 2. Conceptually, for each (ct
1, c

e
1, e1, c

t
2, c

e
2, e2) ∈ originalRaces,

the analysis considers each pair of cycle-free paths in the context-sensitive call graph

of the program of the form:

(ct
1, m

t
1) →

i1 ... →ij (ce
1, m

e
1)

(ct
2, m

t
2) →

i′
1 ... →i′

k (ce
2, m

e
2)

where edge (c, m) →i (c′, m′) means that call site i in abstract context c of its con-

taining method m may call method m′ in abstract context c′, and mt
1 and mt

2 are

the root methods of abstract threads ct
1 and ct

2, respectively, and me
1 and me

2 are

the methods containing e1 and e2, respectively. Suppose a lock is held along each

path by a synchronized statement lexically enclosing one of i1, ..., ij or e1 (resp. one

of i′1, ..., i
′
k or e2) on local variable vl

1 (resp. vl
2) in abstract context cl

1 (resp. cl
2).

Let P (v, c) denote the points-to set of local variable v in abstract context c of its con-

taining method. Then, this analysis eliminates the above tuple provided the following

condition holds:

• P (vl
1, c

l
1) = P (vl

2, c
l
2) = {o} and o abstracts at most one concrete object in any

94 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

execution.

Note that this lockset analysis, unlike that in our original race detection algorithm,

is sound because it only considers lock expressions whose points-to sets are singleton

and also checks that the lone abstract object in each such points-to set abstracts at

most one concrete object in any execution. The set of tuples retained by this analysis

is denoted globalUnlockedRaces.

Consider the coarse-grained locking scenario in the above example, that is, sup-

pose expression lock is T.g (and expression thrd is T.g[*]). Consider the tuple

([h2],[h2],e,[h2],[h2],e) in originalRaces. There is only one pair of paths

to consider for this tuple and both paths in this pair are of the form ([h2],start)

→ ([h2],run), that is, each child thread begins executing in abstract context [h2]

of the start method of class java.lang.Thread which calls the method containing

statement e, that is, the run method of class T, in the same abstract context. A

lock is held along this path by the synchronized statement lexically enclosing e on

local variable vl in abstract context [h2]. We have P (vl, [h2]) = {[h1]}, and

moreover, site h1 which allocates the array of T objects is executed exactly once in

every execution. Hence, the above condition holds and the tuple is eliminated by this

analysis.

3.7.2 Computation of localUnlockedRaces

This analysis specializes in proving race freedom in the presence of non-global locks.

Examples include the fine-grained and medium-grained locking scenarios in the above

example. This style of locking is also fairly common in real-world Java programs, for

example, a lock on an object o is often used to guard fields of o (the fine-grained

locking scenario) or to guard fields of objects pointed to by fields of o and so on (the

medium-grained locking scenario).

Conceptually, for each (ct
1, c

e
1, e1, c

t
2, c

e
2, e2) ∈ originalRaces such that e1 and e2

are of the form ve
1.f and ve

2.f where ve
1 and ve

2 are local variables and f is an instance

field or a hypothetical field that is regarded as accessed whenever an array element is

accessed, the analysis considers each pair of cycle-free paths in the context-sensitive

3.7. CONDITIONAL MUST NOT ALIAS ANALYSIS 95

call graph of the program of the form:

(ct
1, m

t
1) →

i1 ... →ij (ce
1, m

e
1)

(ct
2, m

t
2) →

i′
1 ... →i′

k (ce
2, m

e
2)

where edge (c, m) →i (c′, m′) means that call site i in abstract context c of its con-

taining method m may call method m′ in abstract context c′, and mt
1 and mt

2 are

the root methods of abstract threads ct
1 and ct

2, respectively, and me
1 and me

2 are

the methods containing e1 and e2, respectively. Suppose a lock is held along each

path by a synchronized statement lexically enclosing one of i1, ..., ij or e1 (resp. one

of i′1, ..., i
′
k or e2) on local variable vl

1 (resp. vl
2) in abstract context cl

1 (resp. cl
2).

We first consider the easier case of fine-grained locking. This analysis eliminates

the above tuple provided the following condition holds:

• ve
1 is must aliased with vl

1 and, similarly, ve
2 is must aliased with vl

2.

Recall from Section 3.6 that we already compute must alias facts of this form. The

reason the above tuple is race-free if the above condition holds is as follows. The

argument presumes that there is a race under the above condition and derives a

contradiction. In order for a race to occur, two different threads must execute the

above paths and acquire locks on different objects denoted by vl
1 and vl

2 (otherwise

there is no race). The threads must proceed to execute the paths until they reach e1

and e2, respectively, where they must access field f of the same object denoted by ve
1

and ve
2 (otherwise there is no race). Now, under the assumption that the lock objects

are different and the above condition that ve
1 (resp. ve

2) is must aliased with vl
1 (resp.

vl
2), it follows that the accessed objects are different, a contradiction.

Consider the fine-grained locking scenario in the above example, that is, sup-

pose expression lock is ve (and expression thrd is T.g[*]). Consider the tuple

([h2],[h2],e,[h2],[h2],e) in originalRaces. As discussed above, there is only

one pair of identical paths to consider, and along this path, each thread holds a lock

on the object denoted by local variable vl while accessing the object denoted by local

variable ve. In this case, we have vl = ve. Hence, the above condition holds and the

tuple is eliminated by this analysis.

96 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

We next consider the harder case of medium-grained locking. Once again consider

the above tuple. This analysis eliminates it provided the following conditions hold:

• ve
1 is obtained by one or more field dereferences from vl

1, and similarly for ve
2

and vl
2.

• (P (ve
1, c

e
1) ∩ P (ve

2, c2)) ⊆ DRK(P (vl
1, c

l
1) ∪ P (vl

2, c
l
2)) where K is the set of

abstract heap effects of the program.

In the first condition, we mean that ve
1 is assigned vl

1.f1 or vl
1.f1.f2 or vl

1.f1.f2.f3

and so on (and similarly for ve
2 and vl

2). Such expressions are split using temporary

local variables to store intermediate results and once again, we use must alias facts

as illustrated in Section 3.6 to check whether this condition holds. Note that the

second condition uses our disjoint reachability analysis from Section 3.5. The reason

the above tuple is race-free if the above conditions hold is as follows. As in the case

for fine-grained locking above, the argument presumes that there is a race under the

above conditions and derives a contradiction. In order for a race to occur, two threads

must execute the above paths and acquire locks on different objects denoted by vl
1

and vl
2 (otherwise there is no race). Since the points-to information we compute is

sound, these objects must be abstracted by abstract objects in the set L = (P (vl
1, c

l
1)∪

P (vl
2, c

l
2)). The threads must proceed to execute the paths until they reach e1 and

e2, respectively, where they must access field f of the same object denoted by ve
1 and

ve
2 (otherwise there is no race). Since the points-to information we compute is sound,

this object must be abstracted by some abstract object in the set E = (P (ve
1, c

e
1) ∩

P (ve
2, c

e
2)). Now, from the first condition above, it follows that the same accessed

object is obtained by one or more field dereferences from each of the two different

lock objects. But from the second condition above (E ⊆ DRK(L)), it follows that

the same accessed object is unreachable by one or more field dereferences from each

of the two different lock objects, a contradiction.

Consider the medium-grained locking scenario in the above example, that is, sup-

pose expression lock is vt (and expression thrd is T.g[*]). Consider the tuple

([h2],[h2],e,[h2],[h2],e) in originalRaces. As discussed above, there is only

one pair of identical paths to consider, and along this path, each thread holds a lock

3.8. EXPERIMENTS 97

on the object denoted by local variable vl while accessing the object denoted by lo-

cal variable ve. In this case, we have vl = vt and ve = vt.f1, satisfying the first

condition above. Also, we have P (vl, [h2]) = {[h2]}, P (ve, [h2]) = {[h3]}, and

it is easy to see that {[h3]} ⊆ DRK({[h2]}), satisfying the second condition above.

Thus, both conditions are satisfied and hence the tuple is eliminated by this analysis.

In summary, this analysis handles both the fine-grained and medium-grained lock-

ing cases, using the disjoint reachability analysis only in the latter case. The set of

tuples collectively retained by this stage is denoted localUnlockedRaces.

3.7.3 Computation of threadUnlockedRaces

This analysis is identical to the analysis presented in Section 3.7.2 except that it rea-

sons about thread objects instead of lock objects, in particular, it tries to prove that

whenever two thread objects are different, the objects they access are also different.

We illustrate this analysis by the final scenario in the above example, in which expres-

sion thrd is this. (Recall that locking is redundant in this scenario and so the value

of expression lock is immaterial.) Consider the tuple ([h2],[h2],e,[h2],[h2],e)

in originalRaces. As discussed above, there is only one pair of identical paths to

consider, and along this path, each thread corresponding to the object denoted by

local variable vt accesses the object denoted by local variable ve. In this case, we

have ve = vt.f1, satisfying the first condition. Also, P (vt, [h2]) = {[h2]}, P (ve,

[h2]) = {[h3]}, and {[h3]} ⊆ DRK({[h2]}), satisfying the second condition. Thus,

both conditions are satisfied and hence the tuple is eliminated by this analysis.

3.8 Experiments

We have evaluated our conditional must not alias analysis on a suite of seven multi-

threaded Java programs. Table 3.1 provides a brief description of each program along

with the number of classes and the number of bytecodes in the program. The numbers

correspond to code that is deemed reachable from the main method of each program

in a context insensitive call graph that is computed by Spark [52], a 0-CFA-based may

98 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

classes # bytecodes brief description
elevator 1066 109831 Discrete event simulator
tsp 1068 110582 TSP solver from ETH
hedc 1592 278010 Web crawler from ETH
ftp 1905 348813 Apache FTP server
pool 1121 122187 Apache pooling library
jdbf 1739 291392 Object-relational mapping system
jtds 1801 301231 JDBC driver

Table 3.1: Benchmarks.

alias analysis with on-the-fly call graph construction provided in the Soot compiler

framework [81]. The experiments were performed on a 2.4GHz machine with 4GB

memory.

Figure 3.2 presents the total running time of our previous race detection algo-

rithm using the unsound lockset analysis under the “unsound” column and the total

running time of our current race detection algorithm using conditional must not alias

analysis under the “sound” column. Recall from Chapter 2 that our implementation

of k-object-sensitive analysis is parameterized by a positive integer k that may be

instantiated differently for different programs; we have used k = 3 for each program.

We call this variant of k-object-sensitive analysis non-adaptive since it uses the same

k value for all object allocation sites in the program. Our current race detection

algorithm runs out of memory using k = 3 for our single largest benchmark, Apache

Derby (derby), which our previous race detection algorithm is capable of analyzing.

In Chapter 4, we present an adaptive variant of k-object-sensitive analysis that allows

different k values to be used for different object allocation sites in the same program,

which enables a demand-driven race detection algorithm that is capable of analyzing

derby. The demand-driven algorithm strikes a good trade-off between scalability and

precision by using bigger k values for a few sites and smaller k values for the vast

majority of sites in the program.

Table 3.3 compares the effectiveness of conditional must not alias analysis to the

lockset analysis used in our previous race detection algorithm. The “unsound” col-

umn presents the fraction of original race pairs that were deemed race-free by the

3.8. EXPERIMENTS 99

unsound sound
elevator 4m57s 12m14s
tsp 4m12s 10m41s
hedc 13m11s 38m12s
ftp 17m32s 54m15s
pool 4m17s 9m43s
jdbf 9m41s 29m31s
jtds 12m52s 37m12s

Table 3.2: Experimental results: Comparison of running time.

lockset analysis while the “total” sub-column under the “sound” column presents the

fraction of original race pairs that were proven race-free by conditional must not alias

analysis. Note that the latter numbers are smaller than the former because (1) the

lockset analysis is unsound (and therefore can eliminate pairs that are in fact not

race-free) and (2) the conditional must not alias analysis is sound (and therefore can

fail to eliminate pairs that are in fact race-free). Each pair proven race-free by condi-

tional must not alias analysis is further categorized under the “global”, “local”, and

“thread” sub-columns, depending upon which of the three sub-analyses computing

globalUnlockedRaces, localUnlockedRaces, and threadUnlockedRaces, respec-

tively, eliminated the pair. The sum of the three columns typically exceeds 100%

because certain pairs are proven race-free by more than one of the above three sub-

analyses. For instance, library classes like java.util.Vector and java.io.* use

synchronization extensively to ensure thread-safety when used in multi-threaded con-

texts but application classes often use them in single-threaded contexts. Such code

causes pairs to appear under both the “local” and “thread” sub-columns.

Finally, Table 3.4 presents the impact of conditional must not alias analysis on the

ultimate race pairs reported by our race detection algorithm. In particular, the “un-

sound” column presents the number of ultimate race pairs reported by our previous

race detection algorithm using the lockset analysis while the “sound” column presents

the number of ultimate race pairs reported by our current race detection algorithm

using conditional must not alias analysis. Each column is further partitioned into

“real” and “false”, denoting the number of real races and false positives, respectively.

100 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

unsound sound
global local thread total

elevator 39% 42% 35% 34% 37%
tsp 41% 43% 34% 32% 39%
hedc 43% 39% 39% 29% 40%
ftp 48% 36% 42% 32% 45%
pool 45% 31% 44% 26% 41%
jdbf 40% 32% 46% 31% 36%
jtds 47% 34% 45% 29% 42%

Table 3.3: Experimental results: Comparison of numbers of unlocked race pairs.

unsound sound
real false real false

elevator 0 0 0 1
tsp 6 2 11 8
hedc 124 19 159 56
ftp 213 34 271 107
pool 27 0 29 2
jdbf 258 8 282 20
jtds 241 7 288 34

Table 3.4: Experimental results: Comparison of numbers of ultimate race pairs.

The increase in the number of real races reported by our current algorithm over that

reported by our previous algorithm is because of false negatives resulting from the

unsound lockset analysis used by our previous algorithm. Likewise, the increase in

the number of false positives is because of false positives resulting from the sound

conditional must not alias analysis used by our current algorithm.

3.9 Related Work

We have already discussed related work on race detection in Chapter 2. In this

section, we survey the literature on problems related to conditional must not aliasing

and disjoint reachability. We begin by noting that our notion of loop vectors harkens

back to the ideas of iteration space and dependence distance in work on vectorizing

3.9. RELATED WORK 101

compilers. Loop vectors are points in the iteration space of the program and our

algorithm can be thought of as tracking dependent statements of distance 0 (that

is, in the same iteration). We are not aware of any deeper connections to the large

literature on program parallelization; our focus is on pointer-based data structures

while parallelizing compilers focus primarily on array-based data structures.

Disjoint reachability for pointer-based data structures (e.g., proving that two lists

constructed of separate elements are disjoint) is an old problem. Algorithms in this

area range from flow sensitive approximations of heap shape ([21] is an early example)

to very powerful decision procedures [50, 58]. Our notion of disjoint reachability is

less precise (e.g., it is flow insensitive) but easier to scale to large programs and gives

good results for static race detection for Java programs.

Ownership types express the idea that among all pointers to an object, one is often

special in that it has more operations than other pointers. In the context of static

race detection, ownership can be used to prove encapsulation (that an object is the

exclusive access to another object), which in turn can prove conditional must not

aliasing facts: if two objects are distinct, then any objects they encapsulate must be

distinct. There are algorithms for inferring ownership [43] and encapsulation [38] and

ownership types have been exploited in static race detectors [11]. While encapsulation

is sufficient to prove conditional must not aliasing, it is not necessary. Roughly

speaking, ownership/encapsulation are properties of how an object is constructed,

while conditional must not aliasing also considers the specific pointers through which

an object is used; this more refined treatment can fully automatically check race

freedom for objects that are not encapsulated and without ownership types. Indeed,

our approach is fully automatic, while to the best of our knowledge current ownership

systems for static race detection require at least some manual annotations.

Another related approach is that a correlation exists between two objects if they

are used consistently together [69]. For race detection, correlation means a particular

lock is always used to guard a particular memory location. Correlation analysis infers

which locks always guard which memory locations. Our approach does not require

locks and memory locations to be correlated; because each pair of statements poten-

tially involved in a race is handled separately, different locks may be used to prove

102 CHAPTER 3. CONDITIONAL MUST NOT ALIASING

race freedom for the same memory location accessed by different pairs of statements.

Chapter 4

A Demand-Driven Approach

This chapter presents a demand-driven approach to static race detection for Java.

The key idea underlying the approach is the application of an adaptive k-object-

sensitive may alias analysis capable of using different k values for different object

allocation sites in the same program, in contrast to our previous approach which em-

ploys a non-adaptive k-object-sensitive may alias analysis that uses the same k value

for all sites, requiring that approach to sacrifice scalability, precision, or soundness.

We demonstrate the effectiveness of our demand-driven approach at striking a good

balance between scalability and precision without sacrificing soundness on a suite of

eight multithreaded Java programs.

4.1 Introduction

Race detection algorithms for shared-memory multithreaded programs using lock-

based synchronization involve checking necessary conditions for a race such as whether

different threads can access the same memory location without holding a common

lock. Such algorithms must reason about aliasing relationships between threads,

locks, and memory locations, as alluded to by requirements such as the threads must

be different, any locks they hold must be different, and the memory location they

access must be the same.

Much recent work on race detection has focused on Java which supports the style

103

104 CHAPTER 4. A DEMAND-DRIVEN APPROACH

of concurrency embodied in shared-memory multithreaded programs using lock-based

synchronization [11, 12, 28, 29, 73]. Java, an object-oriented language, pervasively

uses objects for this purpose. For instance, threads are themselves objects of (any

subclass of) java.lang.Thread. Locks are even more pervasive since a lock can be

held on any object. Finally, the vast majority of memory locations on which races

can occur in a Java program are either array elements or instance fields of objects,

and since arrays in Java are themselves objects, array elements may be viewed as

instance fields of objects.1

Since threads, locks, and memory locations are all accessed through objects, it is

natural for a race detection algorithm for Java to reason about aliasing relationships

between objects. We showed in Chapters 2 and 3 that a relatively recent form of may

alias analysis for Java, called k-object-sensitive analysis introduced by Milanova et

al. [60, 61] is effective at statically approximating such relationships. The variant of

the analysis we employed, however, is non-adaptive in that it uses the same k value

for all object allocation sites in a given program, which in turn requires our race

detection approach to sacrifice scalability, precision, or soundness, as smaller k values

hurt precision and larger k values impair scalability. In particular, we have shown

how to achieve scalability and precision at the cost of soundness in Chapter 2 and

how to achieve precision and soundness at the cost of scalability in Chapter 3, but

we have not shown how to achieve a good trade-off between scalability and precision

while retaining soundness.

In this chapter, we extend our static race detection algorithm to employ an adap-

tive k-object-sensitive analysis capable of using different k values for different object

allocation sites in the same program. The algorithm is demand-driven: it guides

the k-object-sensitive analysis to use bigger k values for sites where it deems higher

precision is necessary and smaller k values for sites where it deems lower precision

suffices. In practice, it uses bigger k values for few sites and smaller k values for

the vast majority of sites, thereby striking a good trade-off between scalability and

precision while retaining soundness.

1The remaining memory locations on which races can occur in Java are static fields, which may

be viewed as global variables.

4.2. EXAMPLE 105

Given the complexity of our static race detection algorithm which uses four dif-

ferent analyses, namely, may alias analysis, thread escape analysis, may-happen-in-

parallel analysis, and conditional must not alias analysis, our demand-driven approach

is not optimal—it may choose bigger k values for sites where smaller k values suffice

and, more likely and worse, it may choose smaller k values for sites where bigger

k values are necessary—but it is effective in practice. We have implemented and

applied it to eight multithreaded Java programs and its key contributions may be

summarized as follows:

1. It is scalable in practice: it uses a k value greater than one for less than 0.01%

of all sites in each program. In contrast, our earlier algorithm using a k value

of more than one for all sites runs out of memory for our largest program.

2. It is precise in practice: for five of the seven smaller programs, it reports equal

or fewer false races than our earlier algorithm using a k value of three for all

sites, and for the largest program, it reports five times fewer false races than

our earlier algorithm using a k value of one for all sites.

3. It is fully automatic: it saves the user the effort of providing a k value to be

used for all sites in each program, which is required in our earlier algorithm

and involves a manual iterative process in which the user supplies increasingly

bigger k values until it yields precise enough results or fails to scale.

The rest of this chapter is organized as follows. Section 4.2 illustrates our approach

by means of an example Java program. Section 4.3 presents a language to formalize

our approach. Section 4.4 presents our implementation of k-object-sensitive analysis.

Section 4.5 presents our demand-driven race detection algorithm. Section 4.6 demon-

strates its effectiveness on our benchmark suite. Finally, Section 4.7 discusses related

work.

4.2 Example

In this section, we present a multithreaded Java program that we use as the running

example to illustrate our approach. The program, shown in Figure 4.1, begins by

106 CHAPTER 4. A DEMAND-DRIVEN APPROACH

public class T extends java.lang.Thread {

public static void main(String[] args) {

hg: T.g = new C[*];

for (int i = 0; i < *; i++)

T.g[i] = C.newInstance();

for (int i = 0; i < *; i++) {

ht: T t = new T();

t.start();

}

}

private static C[] g;

private C f1;

public T() { this.f1 = C.newInstance(); }

public void run() {

C v1 = this.f1;

int[] v2 = v1.f2;

p1: v2[*] = *;

C[] v3 = T.g;

C v4 = v3[*];

int[] v5 = v4.f2;

synchronized (lock) { // Choices for lock: v3, v4, v5

p2: v5[*] = *;

}

}

}

public class C {

public int[] f2;

private C() {

hi: this.f2 = new int[*];

}

public static C newInstance() {

hc: return new C();

}

}

Figure 4.1: Example multithreaded Java program.

4.2. EXAMPLE 107

executing the main method of class T in an implicit main thread. The main thread

first creates an array of C objects and stores it in static field g of class T, which may

be viewed as a global variable. The main thread then executes two loops. The first

loop initializes the elements of the created array with fresh C objects while the second

loop creates a bunch of T objects each of whose field f1 is set to a fresh C object.

Whenever a C object is created in each iteration of either loop, its field f2 is set

to a fresh integer array. The resulting data structure is shown in Figure 4.2. For

convenience, we label each object in the figure with the site at which it was allocated.

In each iteration of the second loop, the main thread also calls the start method of

superclass java.lang.Thread on the T object created in the same iteration. Each call

to the start method, whose body is not shown, spawns a fresh child thread which

calls the run method of class T on the corresponding T object. The calls to the start

method are asynchronous. Thus, all child threads execute the run method in parallel.

Each child thread first executes the statement labeled p1, which writes to a non-

deterministically chosen element of the integer array pointed to by field f2 of the C

object pointed to by field f1 of the T object corresponding to that thread. Observe

that statement p1 executed by any two different child threads writes to different

memory locations and so there are no races.

Each child thread next non-deterministically chooses one of the C objects in the

global array of C objects stored in static field T.g, acquires a lock on the object denoted

by expression lock, left unspecified for now, executes the statement labeled p2 which

writes to a non-deterministically chosen element of the integer array pointed to by

field f2 of the chosen C object, and releases the lock. Statement p2 executed by two

different child threads may write to the same memory location, namely, both threads

may choose the same C object in the global array and then choose the same element

of the integer array. Thus, if a common lock is not held by the two threads, the

program has a race. We consider three choices for the object denoted by expression

lock: the global array of C objects, the non-deterministically chosen C object, and

the integer array pointed to by field f2 of the chosen C object. Observe that in each

of these cases, each pair of child threads hold a common lock if they write to the same

memory location, and so there are no races.

108 CHAPTER 4. A DEMAND-DRIVEN APPROACH

Figure 4.2: Data structure built by example program.

Our example program highlights object-oriented idioms used in real multithreaded

Java programs that motivate our demand-driven race detection approach. First, such

programs create multiple threads at run-time that operate concurrently on two kinds

of deeply nested data structures:

• thread-local structures like the T objects and the identical but disjoint parts of

the heap reachable from them, depicted on the right-hand side of Figure 4.2.

Concurrent accesses such as those by statement p1 from different threads to

such structures that are local to those threads do not need any synchronization.

• thread-shared structures like the global array of C objects stored in static field

T.g and the parts of the heap reachable from it, depicted on the left-hand side

of Figure 4.2. Concurrent accesses such as those by statement p2 from different

threads to such structures use lock-based synchronization to prevent races.

Secondly, the threads heavily reuse the same library code to create and manipu-

late parts of these structures. For instance, class C may be a library class like

java.lang.Integer or java.util.ArrayList that may be used to create and manip-

ulate parts of both thread-local and thread-shared structures. Concurrent accesses

such as those by statements p1 and p2 from different threads to thread-local and

thread-shared structures, respectively, do not need any synchronization since they

operate on disjoint structures, although parts of both are created using the same

class C.

Such heavily reused code operating on deeply nested data structures poses signif-

icant challenges to static race detection, which we elucidate next by giving specific

4.2. EXAMPLE 109

(a) non-adaptive k = 1 (b) non-adaptive k = 2

(c) non-adaptive k = 3 (d) adaptive

Figure 4.3: Heap abstractions computed for example program.

instances in the above example:

• The algorithm must reason about must not aliasing relationships between mem-

ory locations, namely, it must infer that statements p1 and p2 do not write to

the same memory location (and hence are not involved in a race) although both

write to elements of integer arrays allocated at the same site hi by following

field f2 of C objects allocated at the same site hc.

• The algorithm must reason about conditional must not aliasing relationships

between threads/locks and memory locations:

1. It must correlate threads with the memory locations they access in thread-

local structures, namely, it must infer that whenever statement p1 is ex-

ecuted by distinct threads, it writes to distinct memory locations (and

hence there is no race).

2. It must correlate locks with the memory locations they guard in thread-

shared structures, namely, it must infer that whenever statement p2 is

110 CHAPTER 4. A DEMAND-DRIVEN APPROACH

executed by threads holding distinct locks, it writes to distinct memory

locations (and hence there is no race).

We showed in Chapters 2 and 3 that a relatively recent form of may alias analysis

for Java called k-object-sensitive analysis by Milanova et al. [60, 61] is effective at

approximating aliasing relationships for static race detection. This analysis computes,

besides the call graph and points-to information, an abstraction of the heap for a given

program. We depict the heap abstraction as a graph with nodes as abstract objects

and a labeled directed edge o1
f
→ o2 whenever field f of an object abstracted by o1

may point to an object abstracted by o2. An abstract object in k-object-sensitive

analysis is a sequence [hn :: ... :: h1] where the hi’s are object allocation sites, hn and

h1 being the most and least significant, respectively, and the length of the sequence

is at most the k value of site hn which in turn is at least one. Field f is either an

instance field or a hypothetical field felems that is regarded as read/written whenever

an array element is read/written; this field is necessary since we do not distinguish

between different elements of the same array.

Our earlier race detection algorithm employs a non-adaptive k-object-sensitive

analysis that uses the same user-supplied k value for all object allocation sites in the

given program. Figures 4.3 (a)–(c) show the heap abstraction it computes for our

example program using k = 1, k = 2, and k = 3, respectively. They abstract with

increasing precision the data structure shown in Figure 4.2 that is created by the

program at run-time. For instance, from Figure 4.2, it is evident that the objects

labeled hc in the thread-shared structure are different from those labeled hc in the

thread-local structure. But heap abstraction (a) cannot make this distinction since

it abstracts all objects allocated at site hc by the same abstract object [hc]. Heap

abstractions (b) and (c), however, can make this distinction as they abstract objects

labeled hc in the thread-shared and thread-local structures by [hc] and [hc::ht],

respectively.

Likewise, from Figure 4.2, it is evident that the objects labeled hi in the thread-

shared structure are different from those labeled hi in the thread-local structure.

4.2. EXAMPLE 111

Neither heap abstraction (a) nor (b) can make this distinction since each of them ab-

stracts all objects allocated at site hi by the same abstract object [hi] or [hi::hc],

respectively. Only heap abstraction (c) can make this distinction since it abstracts

objects labeled hi in the thread-shared and thread-local structures by [hi::hc] and

[hi::hc::ht], respectively. Hence, our earlier algorithm using k=1 or k=2 reports

a false race between statements p1 and p2, namely, it concludes that two different

child threads executing them may concurrently write to the same element of the same

integer array allocated at site hi. Our earlier algorithm using k = 3, however, does

not report a false race between p1 and p2, but it uses the user-supplied k value of

three for all object allocation sites in the program, when a k value of three is needed

just for site hi (and a k value of two is needed for site hc). In practice, the number of

abstract objects grows exponentially with the user-supplied k value. For instance, for

our second-largest benchmark ftp containing 11,081 sites, the number of abstract ob-

jects in the heap abstraction computed by our earlier algorithm using k=1 is 11,081,

using k=2 is 36,040, and using k=3 is 364,747, and for our largest benchmark derby

containing 21,690 sites, our earlier algorithm using k = 2 (and k = 3) runs out of

memory.

In contrast, our demand-driven algorithm uses an adaptive k-object-sensitive anal-

ysis capable of using different k values for different object allocation sites in the same

program. It begins with our earlier algorithm using k=1 and computes the set R of

potential races. It then increments the k values for only those allocation sites of ob-

jects on whose fields races are retained in R and repeats the procedure. In successive

iterations, false races retained in R due to smaller k values used in previous iterations

for those allocation sites get eliminated. The process terminates either when R be-

comes empty, in which case the program is race-free, or when the k value for none of

the allocation sites of objects on whose fields races continue to be retained in R can

be increased, in which case it outputs each potential race in R for manual inspection.

We next illustrate our demand-driven algorithm for the above example. In the first

iteration, it computes heap abstraction (a) which is the same as that computed by our

earlier algorithm using k=1. Since this heap abstraction cannot distinguish between

objects labeled hi in the thread-shared and thread-local structures in Figure 4.2 (it

112 CHAPTER 4. A DEMAND-DRIVEN APPROACH

abstracts all these objects by the same abstract object [hi]), a false race between

p1 and p2 is reported in R. Unlike our earlier algorithm using k = 1 which outputs

this false race, our demand-driven algorithm increments the k value of site hi to two,

since that race is deemed to occur on a field (felems) of abstract object [hi], and

repeats the procedure. In the second iteration, it computes heap abstraction (d) but

R still contains the false race since this heap abstraction also abstracts all objects

allocated at site hi by the same abstract object [hi::hc]. This time, our algorithm

increments the k values of both sites hi and hc (that is, their k values become

three and two respectively), and repeats the procedure. In the third iteration, it

computes heap abstraction (c) which is the same as that computed by our earlier

algorithm using k=3, and R does not contain the false race between p1 and p2 since

this heap abstraction distinguishes between objects labeled hi in the thread-shared

and thread-local structures in Figure 4.2 (it abstracts them by different abstract

objects [hi::hc] and [hi::hc::ht], respectively). In practice, our algorithm uses

k values bigger than one for less than 0.01% of all object allocation sites in a given

program. For instance, for our largest benchmark derby containing 21,690 sites, the

heap abstraction computed in the last iteration of our algorithm uses a k value greater

than one for only 185 sites, but uses k values as high as eight for those sites.

We have illustrated how k-object-sensitive analysis can be used to statically ap-

proximate must not aliasing relationships for race detection, in particular, how it can

distinguish between objects labeled hi in the thread-shared and thread-local struc-

tures in Figure 4.2 and thereby prove that statements p1 and p2 executed by two

different child threads cannot be involved in a race. It can be used to statically ap-

proximate conditional must not aliasing relationships as well, namely, it can be used

to prove that:

• From any pair of different objects labeled ht in the thread-local structure in

Figure 4.2, we can only reach different objects labeled hi, from which it is easy

to prove that whenever statement p1 is executed by distinct threads, it writes

to distinct memory locations, and hence there is no race.

• From any pair of different objects labeled hc in the thread-shared structure in

4.3. LANGUAGE 113

Figure 4.2, we can only reach different objects labeled hi, from which it is easy

to prove that whenever statement p2 is executed by threads holding distinct

locks, it writes to distinct memory locations, and hence there is no race.

Perhaps unintuitively, even k = 1 suffices for reasoning about conditional must not

aliasing relationships, regardless of how distant the thread objects (labeled ht) or lock

objects (labeled hc) are in the heap from the accessed objects (labeled hi). Thus, our

earlier algorithm using even k =1 (and hence only a single iteration of our demand-

driven algorithm as well) suffices to prove that there is no race in each of the above

two cases.

In summary, reasoning about must not aliasing relationships between memory

locations in deeply-nested data structures that are created and manipulated by heavily

reused code requires high k values for certain sites, but they constitute a tiny fraction

of all the sites in the program, whereas a k value of one is sufficient for reasoning

about conditional must not aliasing relationships between threads/locks and memory

locations. It is this insight that our demand-driven approach exploits to strike a good

trade-off between scalability and precision without sacrificing soundness.

4.3 Language

In this section, we present a language for formalizing k-object-sensitive analysis and

our demand-driven race detection algorithm. The abstract syntax of the language

is shown in Figure 4.4. A program consists of a set of methods M = Mstat] Minst

where Mstat includes all static methods and Minst includes all instance methods. The

difference between a static and an instance method is that the latter has an implicit 0th

formal argument, called this in Java. We presume that Mstat includes a distinguished

main method denoted mmain at which the program begins execution.

Each method declares a set of local variables which also includes its formal ar-

guments and return/throw variables (exception handling code in Java is compiled

away). We use V to denote the set of all local variables in all methods. Function

marg0 maps each instance method to its 0th this argument while functions marg and

114 CHAPTER 4. A DEMAND-DRIVEN APPROACH

m ∈ M = Mstat] Minst (method)
v ∈ V (local variable)
f ∈ F (instance field)
g ∈ G (static field)
p ∈ P (program point)
h ∈ H (object allocation site)
i ∈ I = Istat] Iinst (call site)
s ∈ S (statement)

s ::= v1 = v2 | v = new h | v2 = v1.f | v1.f = v2 |
v = g | g = v | istat | iinst

N
+ = { 1, 2, 3, ... }

marg0 : Minst → V (this arg of method)
marg,mret : (M × N+) ⇀ V (args/rets of method)

meth : P → M (containing method of point)
stmt : P → S (statement at point)
iarg0 : Iinst → V (this arg of call site)

iarg, iret : (I × N+) ⇀ V (args/rets of call site)
trgt : (Istat → Mstat)] (method resolution)

((Iinst × H) ⇀ Minst)

Figure 4.4: Abstract syntax.

4.3. LANGUAGE 115

mret provide the formal arguments (other than this) and return/throw variables,

respectively, of each method.

We use F to denote the set of all instance fields. Both k-object-sensitive analysis

and our race detection algorithm does not distinguish between different elements

of the same array; hence, F includes a hypothetical field felems that is treated as

read/written whenever an array element is read/written. We use G to denote the set

of all static fields, which are akin to global variables.

We use P to denote the set of all program points in all methods. Function meth

provides the containing method of each point and function stmt provides the state-

ment at each point, which may be a copy of a local variable v1 = v2, an object

allocation v = new h, a heap read v2 = v1.f , a heap write v1.f = v2, a read of a

global variable v = g, a write to a global variable g = v, a static method call istat, or

an instance method call iinst.

We use H to denote the set of all object allocation sites and I = Istat]Iinst to denote

the set of all call sites, where Istat contains calls to static methods and Iinst contains

calls to instance methods. Functions iarg0, iarg, and iret provide actual arguments and

return/throw variables of call sites analogously to functions marg0, marg, and mret

which provide formal arguments and return/throw variables of methods. Function

trgt performs method resolution. The target method of a call site istat is uniquely

determined statically given the call site itself whereas the target method of a call site

iinst is uniquely determined statically given both the call site and the object allocation

site of iinst’s 0th argument.

Our language elides operations on primitive types (e.g., boolean, int, etc.) as

well as concurrency constructs such as operations for acquiring/releasing locks since

k-object-sensitive analysis treats them as no-ops and the presentation of our race

detection approach does not require them.

It is easy to transform the program in our running example from Figure 4.1 into

our language. We have mmain = T.main, Mstat = { T.main, C.newInstance, ... },

Minst = { T.<init>, T.run, C.<init>, ... } where <init> denotes a constructor,

F = { felems , T.f1, C.f2, ... }, G = { T.g, ... }, and H = { hg, ht, hc, hi, ... }. Note

that Figure 4.1 only shows the application code for the example; the ellipses in the

116 CHAPTER 4. A DEMAND-DRIVEN APPROACH

n ∈ N+ (k value)
o ∈ O = H

n (abstract object)
c ∈ C = {ε} ∪ O (abstract context)
Σ : H → N+ (k value map)

R ⊆ C × P (reachable code)
PV ⊆ C × V × O (points-to info for local variables)
PG ⊆ G × O (points-to info for static fields)
H ⊆ O × F × O (heap abstraction)
G ⊆ C × I × C × M (call graph)

Figure 4.5: Analysis domains.

above sets indicate that they contain additional elements arising from library code

not shown in the figure.

4.4 k-Object-Sensitive Analysis

In this section, we present our implementation of k-object-sensitive analysis. Figure

4.5 presents the analysis domains. The analysis is object sensitive, that is, it abstracts

different objects allocated at the same site by potentially different abstract objects.

An abstract object o is a non-empty sequence of object allocation sites of the form

[hn :: ... ::h1]. We call hn and h1 the most and least significant sites, respectively. We

use o.car to denote the head hn and o.cdr to denote the tail [hn−1 :: ... ::h1]. Then,

different objects allocated at site hn are abstracted by different abstract objects o1

and o2 iff o1.car = o2.car = hn and o1.cdr 6= o2.cdr. We use O to denote the set of

all abstract objects.

The analysis is context sensitive, that is, it analyzes each method in potentially

multiple abstract contexts. An abstract context is either a distinguished context ε

which denotes the sole context in which the main method mmain is analyzed or it is

an abstract object. We use C to denote the set of all abstract contexts.

The analysis is parameterized by a function Σ which maps each object allocation

site in H to a positive integer which we call its k value. This parameterization allows

us to uniformly express both non-adaptive and adaptive k-object-sensitive analysis:

4.4. K-OBJECT-SENSITIVE ANALYSIS 117

a non-adaptive analysis uses the same k value for all sites whereas an adaptive one

can use different k values for different sites.

The analysis computes sets PV , PG, H , and G where:

• PV , the points-to information for local variables, contains each tuple (c, v, o)

such that local variable v may point to abstract object o in abstract context c

of v’s declaring method. Note that the points-to information is both context

and object sensitive.

• PG, the points-to information for static fields, contains each tuple (g, o) such

that static field g may point to abstract object o. Note that the points-to

information is object sensitive but not context sensitive: static fields in Java

are akin to global variables that are declared outside of all methods, and abstract

contexts are associated only with methods.

• H , the heap abstraction, contains each tuple (o1, f, o2) such that instance field

f (or the hypothetical field felems) of abstract object o1 may point to abstract

object o2.

• G, the call graph, contains each tuple (c1, i, c2, m) such that call site i in abstract

context c1 of its containing method may call method m in abstract context c2.

Note that the call graph is context sensitive.

Besides the form of parameterization manifested in Σ, Milanova et al. [60, 61]

present several dimensions to parameterize k-object-sensitive analysis, e.g., the points-

to information for certain local variables may be context insensitive, that is, PV may

contain tuples of the form (v, o) instead of (c, v, o). One of the challenges in devising

a client (like a static race detector) of an alias analysis which provides many forms of

parameterization (like k-object-sensitive analysis) lies in choosing from those forms of

parameterization and devising a technique that automatically instantiates the chosen

form of parameterization (e.g., a technique that decides what k value to use for

each object allocation site for the form of parameterization manifested in Σ) in a

manner that makes the client effective in practice. We have chosen only the form of

parameterization provided in Σ for our static race detection algorithm. We present

118 CHAPTER 4. A DEMAND-DRIVEN APPROACH

Σ ` (R, PV , PG, H, G) iff:

meth(p) = mmain ⇒ (ε, p) ∈ R (4.1)

((c, p) ∈ R ∧ stmt(p) ≡ v1 = v2 ∧ (c, v2, o) ∈ PV) ⇒ (c, v1, o) ∈ PV (4.2)

((c, p) ∈ R ∧ stmt(p) ≡ v = new h) ⇒ (c, v, h ⊕Σ(h) c) ∈ PV (4.3)

((c, p) ∈ R ∧ stmt(p) ≡ v2 = v1.f ∧ (c, v1, o1) ∈ PV ∧ (o1, f, o2) ∈ H) ⇒
(c, v2, o2) ∈ PV

(4.4)

((c, p) ∈ R ∧ stmt(p) ≡ v1.f = v2 ∧ (c, v1, o1) ∈ PV ∧ (c, v2, o2) ∈ PV) ⇒
(o1, f, o2) ∈ H

(4.5)

((c, p) ∈ R ∧ stmt(p) ≡ v = g ∧ (g, o) ∈ PG) ⇒ (c, v, o) ∈ PV (4.6)

((c, p) ∈ R ∧ stmt(p) ≡ g = v ∧ (c, v, o) ∈ PV) ⇒ (g, o) ∈ PG (4.7)

((c, p1) ∈ R ∧ stmt(p1) ≡ istat ∧ trgt(istat) = m) ⇒












(1) meth(p2) = m ⇒ (c, p2) ∈ R

∧ (2) (c, iarg(istat, n), o) ∈ PV ⇒ (c,marg(m, n), o) ∈ PV

∧ (3) (c,mret(m, n), o) ∈ PV ⇒ (c, iret(istat, n), o) ∈ PV

∧ (4) (c, istat, c, m) ∈ G













(4.8)









(a) (c, p1) ∈ R

∧ (b) stmt(p1) ≡ iinst

∧ (c) (c, iarg0(iinst), o0) ∈ PV

∧ (d) trgt(iinst, o0.car) = m









⇒













(1) meth(p2) = m ⇒ (o0, p2) ∈ R

∧ (2) (o0,marg0(m), o0) ∈ PV

∧ (3) (c, iarg(iinst, n), o) ∈ PV ⇒ (o0,marg(m, n), o) ∈ PV

∧ (4) (o0,mret(m, n), o) ∈ PV ⇒ (c, iret(iinst, n), o) ∈ PV

∧ (5) (c, iinst, o0, m) ∈ G













(4.9)

Figure 4.6: k-object-sensitive analysis.

4.4. K-OBJECT-SENSITIVE ANALYSIS 119

a technique that automatically instantiates Σ in Section 4.5 and demonstrate its

effectiveness on static race detection for real-world multithreaded Java programs in

Section 4.6.

Before presenting the k-object-sensitive analysis itself, we define how an abstract

object o is built given an abstract context c, an object allocation site h, and a k value

n (recall that k values are positive integers, that is, n ≥ 1).

o = h ⊕n c iff:
(

|o| = min(n, |c| + 1) ∧ o.car = h ∧

∀n′ ∈ [1..|o| − 1] : o.cdr
n′

.car = c.cdr
n′−1.car

)

Intuitively, we say o = h ⊕n c iff o is a (non-empty) sequence whose head is h and

whose tail comprises at most the n − 1 most significant sites in c in order.

Our k-object-sensitive analysis is presented in Figure 4.6. The judgment Σ `

(R, VP , VG, H, G) holds if (R, VP , VG, H, G) is the least solution of Rules (4.1)–(4.9).

R is an intermediate set containing each tuple (c, p) such that program point p may

be reachable in context c of its containing method, while VP , VG, H , and G are output

sets described above. We explain the rules using our running example from Figure

4.1. From Rule (4.1), the analysis infers that each program point p in method T.main

may be reachable in context ε. Then, one of Rules (4.2)–(4.9) is applied for each such

p, depending upon the kind of statement at p.

Rule (4.3) says that if statement v = new h may be reachable in context c, then

v may point to abstract object h ⊕n c, where n is the k value of h, that is, n=Σ(h).

Method T.main, deemed reachable in context ε, contains two such statements, namely,

T.g = new C[*] labeled hg and t = new C() labeled ht. From the former, the

analysis infers that static field T.g may point to abstract object [hg] since hg ⊕n ε

= [hg] for any k value n. Likewise, from the latter, the analysis infers that local

variable t may point to abstract object [ht].

Rule (4.9) says that if call site iinst may be reachable in context c (items (a)

and (b)) and its 0th argument may point to abstract object o0 in context c (item

(c)) and m is the target instance method of iinst when the object allocation site

of iinst’s 0th argument is o0.car (item (d)), then each program point in m may be

120 CHAPTER 4. A DEMAND-DRIVEN APPROACH

reachable in context o0 (item (1)) and, moreover, the this argument of m may point

to abstract object o0 in that context (item (2)). The rule also propagates points-to

information from the remaining arguments of iinst to those of m (item (3)) and from

return/throw variables of m to those of iinst (item (4)), and reflects the call in the

call graph (item (5)). For our example, method T.main, deemed reachable in context

ε, contains two call sites to instance methods, namely, the calls to C.<init> and

T.run in the body of the second loop (strictly, the second call is to the start method

of class java.lang.Thread but for brevity, we regard it as a call to T.run as the

start method simply calls T.run). Also, the analysis has already inferred that the

0th argument of both calls, local variable t, may point to abstract object [ht] (see

above). Hence, it next infers that each program point in C.<init> and T.run may

be reachable in context [ht], and the this argument of those methods may point to

abstract object [ht] in that context. The special treatment of the this argument

in Rule (4.9) is a hallmark of k-object-sensitive analysis that exploits object-oriented

idioms in Java for precision. An instance method is analyzed in a separate context

for each abstract object to which its this argument may point, and in that context,

the this argument points to only one abstract object.

Static methods, however, do not possess a this argument. A key difference be-

tween our implementation of k-object-sensitive analysis and Milanova et al.’s lies in

determining the contexts in which such methods are analyzed. Milanova et al. claim

that analyzing static methods in multiple contexts leads to small gains in precision

for their clients (side-effect analysis and call graph construction) while making their

analysis more complex, and they therefore analyze each static method in a single

context ε. In our experiments, however, this is a significant source of imprecision

(note that in our case the client is race detection). For instance, for our example,

objects of class C are created by calling the public static method C.newInstance since

C.<init> is private, a pattern commonly used in Java. If C.newInstance is analyzed

in a single context ε, then all objects allocated at site hc occurring in C.newInstance

are abstracted by the single abstract object [hc] (since hc ⊕n ε = [hc] for any k

value n), which causes Rule (4.5) applied to writes T.g[i] = C.newInstance() and

this.f1 = C.newInstance() to create the edges labeled felems and f1, respectively,

4.4. K-OBJECT-SENSITIVE ANALYSIS 121

that have the same target [hc] in heap abstraction (a) in Figure 4.3. Moreover,

it causes method C.<init>, called from C.newInstance, to be analyzed in a single

context [hc] as the 0th argument of that call site points to the single abstract object

[hc]. Finally, all objects allocated at site hi occurring in C.<init> are abstracted by

the same abstract object [hi] or [hi::hc] depending upon whether the k value of

that site is one or greater than one, respectively, and Rule (4.5) applied to the write

this.f2 = new int[*] creates the single edge labeled f2 in heap abstraction (a).

Recall from Section 4.2 that this heap abstraction causes a false race to be reported

between statements p1 and p2.

In contrast, our implementation analyzes each static method in potentially mul-

tiple contexts, namely, Rule (4.8) causes each static method to be analyzed in each

context of each of its callers. For our example, this causes method C.newInstance,

called from methods T.main and T.<init>, to be analyzed in contexts ε and [ht]

since the analysis has inferred that T.main and T.<init> may be reachable in con-

texts ε and [ht], respectively (see above). Then, if the k value of site hc occurring in

C.newInstance is at least two, objects allocated at that site are abstracted by one of

abstract objects [hc] and [hc::ht], and method C.<init> is analyzed in contexts

[hc] and [hc::ht]. Finally, if the k value of site hi occurring in C.<init> is at least

three, then objects allocated at that site are abstracted by one of abstract objects

[hi::hc] and [hi::hc::ht], yielding heap abstraction (c) in Figure 4.3. Recall from

Section 4.2 that this heap abstraction does not report a false race between p1 and p2.

Another novel idea in our implementation is the pre-computation of a set A that

is a close over-approximation of both sets C and O of abstract contexts and ab-

stract objects, respectively, that will be used by the analysis. For scalability, our

k-object-sensitive analysis is expressed and solved using bddbddb [87], a Binary De-

cision Diagram (BDD) based Datalog solver, in particular, the rules in Figure 4.6

are expressed as Datalog rules and all relations, including input relations that encode

basic program facts such as stmt and trgt, temporary relations such as R, and output

relations such as PV , PG, H , and G are represented as BDDs. BDDs are particularly

effective at compactly representing and efficiently manipulating relations with high

122 CHAPTER 4. A DEMAND-DRIVEN APPROACH

Σ ` ctxts iff:
ε ∈ ctxts(mmain) (4.10)









(a) c ∈ ctxts(m1)
∧ (b) meth(p) = m1

∧ (c) stmt(p) ≡ istat

∧ (d) trgt(istat) = m2









⇒ c ∈ ctxts(m2) (4.11)













(a) c ∈ ctxts(m1)
∧ (b) meth(p) = m1

∧ (c) stmt(p) ≡ v = new h

∧ (d) (iarg0(iinst), h) ∈ P ′
V

∧ (e) trgt(iinst, h) = m2













⇒ (h ⊕Σ(h) c) ∈ ctxts(m2) (4.12)

Σ ` A iff:
ε ∈ A (4.13)

(c ∈ ctxts(m) ∧ meth(p) = m ∧ stmt(p) ≡ v = new h) ⇒
(h ⊕Σ(h) c) ∈ A

(4.14)

Figure 4.7: Computation of A.

levels of redundancy, such as those arising in context sensitive, whole-program anal-

yses. BDDs, however, require relations over integer domains. It is straightforward

to map each element in a domain like H (or M, V, F, etc.), that is linear in the size

of the program, to an integer in the range [0..|H| − 1] but it is not so for domains

O = Hn and C = {ε} ∪ O since it is not practical to enumerate each element in Hn

for n > 1.

Our insight is that we need to map to integers only those elements in Hn that will

be used by the analysis, in particular, we only need to map to integers elements in

a subset of H
n such that whenever the Datalog solver executes Rule (4.3) in Figure

4.6 while performing the analysis for a given program and a given Σ, the element

h ⊕Σ(h) c is guaranteed to belong to that subset. Now, it is not possible to compute

the subset exactly (that is, the subset contains an element in Hn iff it will be used

by the analysis) without performing the analysis itself. We therefore compute an

over-approximation A of the subset (that is, if an element in Hn will be used by the

analysis then A contains it).

4.5. DEMAND-DRIVEN RACE DETECTION ALGORITHM 123

The computation of A is shown in Figure 4.7. The first two rules compute the

least function ctxts such that ctxts(m) is an over-approximation of the set of contexts

in which method m will be analyzed during the analysis. Rule (4.10) is the base

case and states that mmain will be analyzed in context ε. Rules (4.11) and (4.12),

the inductive cases, are mutually recursive and estimate the contexts in which static

methods (besides mmain) and instance methods may be analyzed, respectively. They

are analogous to Rules (4.8) and (4.9) from Figure 4.6. The key difference is that

Rule (4.9) uses context and object sensitive points-to information PV ⊆ (C×V×O)

computed during k-object-sensitive analysis itself whereas Rule (4.12) uses context

and object insensitive points-to information P ′
V ⊆ (V × H) computed by a 0-CFA-

based analysis which also constructs the initial context insensitive call graph of the

given program. The k-object-sensitive analysis essentially refines the 0-CFA-based

analysis by computing context and object sensitive points-to information PV and a

context sensitive call graph G.

Finally, A is computed as the smallest set satisfying Rules (4.13) and (4.14). It

is an over-approximation of both C and O, in particular, Rule (4.13) states that A

contains ε since clearly this element it used during the analysis (see Rule (4.1) in

Figure 4.6) while Rule (4.14) states that if a method m may be analyzed in context c

and m contains an object allocation site h, then A contains h⊕Σ(h) c as Rule (4.3) in

Figure 4.6 will use this element if m is indeed deemed reachable in context c during

the analysis.

4.5 Demand-Driven Race Detection Algorithm

In this section, we present our demand-driven race detection algorithm. The algo-

rithm is shown in Figure 4.8. The outermost loop first performs the k-object-sensitive

analysis presented in Section 4.4, denoted by function kObjectSensitiveAnalysis.

Recall that the analysis is parameterized by a function Σ mapping each object

allocation site in the given program to its k value; in the first iteration, our al-

gorithm uses Σ = λh.1. In addition to Σ, function kObjectSensitiveAnalysis

takes inputs (not shown in the figure) representing facts about the given Java program

124 CHAPTER 4. A DEMAND-DRIVEN APPROACH

var Σ : H → N+ = λh.1
var ptsG : set of (G ×A)
var heap : set of (A× F ×A)
var cscg : set of (A× I ×A× M)
var ptsV : set of (A× P × V ×A)
var escO : set of (A× P ×A)
var originalRaces, parallelRaces, unlockedRaces,

ultimateRaces : set of (A×A× P ×A×A× P)
var ultimateRacesWithObject :

set of (A×A× P ×A×A× P ×A)
var A : set of A = ∅
var H : set of H

do
(ptsG, heap, cscg) = kObjectSensitiveAnalysis(Σ, ...);
originalRaces = computeOriginalRaces(cscg, ...);
(ptsV, escO) = mayAliasAndThreadEscapeAnalysis(

ptsG, heap, cscg, ...);
parallelRaces = computeParallelRaces(

originalRaces, cscg, ...);
unlockedRaces = computeUnlockedRaces(

originalRaces, cscg, ...);
ultimateRacesWithObject = computeUltimateRaces(

ptsV, escO, parallelRaces, unlockedRaces);
H = ∅;
for each [hn :: ... ::h1] ∈ π7(ultimateRacesWithObject) do

if [hn :: ... ::h1] 6∈ A then
A = A ∪ {[hn :: ... ::h1]}
if n = |{h1, ..., hn}| then

H = H ∪ {h1, ..., hn}
for each h ∈ H do

Σ = Σ[h 7→ (Σ(h) + 1)]
while H 6= ∅
ultimateRaces = π1,2,3,4,5,6(ultimateRacesWithObject)
output each race in ultimateRaces

Figure 4.8: Demand-driven static race detection algorithm.

4.5. DEMAND-DRIVEN RACE DETECTION ALGORITHM 125

such as functions stmt and trgt as well as the context insensitive points-to information

and context insensitive call graph computed by a 0-CFA-based analysis. The output

of kObjectSensitiveAnalysis includes sets ptsG, heap, and cscg, denoting object

sensitive points-to information for static fields, the heap abstraction, and the context

sensitive call graph, that is, sets PG, H , and G from Section 4.4.

The algorithm next computes an initial over-approximation of the set of races in

the program, denoted originalRaces, using function computeOriginalRaces. The

set contains each tuple of the form (ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) such that the statements at

program points p1 and p2 may be involved in a race in abstract contexts cm
1 and cm

2

of their containing methods, respectively, when executed by abstract threads ct
1 and

ct
2, respectively. An abstract thread is the abstract context of the thread’s starting

method. In the case of the implicit main thread, the starting method is mmain , and

the abstract thread is ε (recall that mmain is analyzed in the sole context ε). In the

case of any explicit child thread, the starting method is the start method of class

java.lang.Thread, and the abstract thread is some abstract context of the start

method (it is never ε since this method is an instance method).

Then, (ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ originalRaces if the containing method of p1 (resp.

p2) may be reachable in abstract context cm
1 (resp. cm

2) in the context sensitive call

graph cscg from its thread’s starting method in abstract context ct
1 (resp. ct

2). An

additional condition that must be satisfied is that the statements at p1 and p2 must

both access the same field and at least one of them must be a write (Java’s semantics

ensures that they cannot be involved in a race otherwise). Thus, we must have either

of the following:

• stmt(p1) ≡ v′
1 =v1.f or v1.f =v′

1 and stmt(p2) ≡ v2.f =v′
2.

• stmt(p1) ≡ v1 = g or g = v1 and stmt(p2) ≡ g = v2.

For our running example from Figure 4.1, we focus on the following three tuples

to illustrate our race detection algorithm:

126 CHAPTER 4. A DEMAND-DRIVEN APPROACH

T1: ([ht], [ht], p1, [ht], [ht], p1)

T2: ([ht], [ht], p2, [ht], [ht], p2)

T3: ([ht], [ht], p1, [ht], [ht], p2)

Program points p1 and p2 both occur in method T.run which may be executed by

abstract thread [ht] in abstract context [ht]. Also, the statements at both p1 and

p2 write to array elements, that is, to the same field felems . Thus, each of these tuples

satisfies the conditions necessary for inclusion in originalRaces. Note, however,

that all three tuples are false races.

The algorithm next performs a combined may alias and thread escape analysis,

denoted by function mayAliasAndThreadEscapeAnalysis, that computes set escO

containing each tuple (c, p, o) such that abstract object o may escape the current

thread just before program point p in abstract context c of p’s containing method,

and set ptsV containing each tuple (c, p, v, o) such that local variable v may point to

abstract object o just before program point p in abstract context c of p’s containing

method. The function takes as input besides cscg, sets ptsG and heap computed

by k-object-sensitive analysis: the combined may alias and thread escape analysis

falls back upon the flow insensitive information in ptsG for reads from static fields

(which, being global variables, are globally thread-escaping) and in heap for reads

from instance fields of abstract objects it deems as possibly thread-escaping.

The algorithm next performs a may-happen-in-parallel analysis, denoted by func-

tion computeParallelRaces, which outputs set parallelRaces containing each tuple

(ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ originalRaces such that the program’s thread structure does

not prevent abstract threads ct
1 and ct

2 from simultaneously executing the statements

at p1 and p2 in abstract contexts cm
1 and cm

2 , respectively. Tuples not retained in

parallelRaces are race-free. For our running example, tuples T1, T2, and T3 are

all retained in parallelRaces since the program’s thread structure allows the pair

of statements in each of them to execute simultaneously.

The algorithm next performs conditional must not alias analysis, denoted by func-

tion computeUnlockedRaces, which outputs set unlockedRaces containing each tuple

(ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ originalRaces such that the program’s lock structure does

4.5. DEMAND-DRIVEN RACE DETECTION ALGORITHM 127

not prevent abstract threads ct
1 and ct

2 from simultaneously executing the statements

at p1 and p2 in abstract contexts cm
1 and cm

2 , respectively. Tuples not retained in

unlockedRaces are race-free. Returning to our running example, tuples T1 and T2

are not retained in unlockedRaces even in the first iteration of our algorithm because

a k value of one suffices to reason about conditional must not aliasing, namely, T1

is race-free since whenever the statement at p1 is executed by distinct threads, it

writes to distinct locations, and T2 is race-free since whenever the statement at p2 is

executed by threads holding distinct locks, it writes to distinct locations.

Suppose the partial function base : P ⇀ V is defined such that if stmt(p) is of the

form v2 = v1.f or v1.f = v2 then base(p) = v1. Then, our earlier algorithm computes

the following sets besides parallelRaces and unlockedRaces:

aliasingRaces = { (ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ originalRaces |

(base(p1) = v1 ∧ base(p2) = v2) ⇒

(∃o : (cm
1 , p1, v1, o) ∈ ptsV ∧ (cm

2 , p2, v2, o) ∈ ptsV) }

escapingRaces = { (ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ originalRaces |

(base(p1) = v1 ∧ base(p2) = v2) ⇒

((∃o1 : (cm
1 , p1, v1, o1) ∈ ptsV ∧ (cm

1 , p1, o1) ∈ escO) ∧

(∃o2 : (cm
2 , p2, v2, o2) ∈ ptsV ∧ (cm

2 , p2, o2) ∈ escO)) }

aliasingRaces contains each tuple such that both statements in it may access the

same location and escapingRaces contains each tuple such that each statement in

it may access a thread-escaping location. A tuple not retained in aliasingRaces or

escapingRaces is race-free. For our running example, tuples T1, T2, and T3 are all

retained in both aliasingRaces and escapingRaces because we have:

([ht], p1, v2, [hi]) ∈ ptsV ([ht], p1, [hi]) ∈ escO

([ht], p2, v5, [hi]) ∈ ptsV ([ht], p2, [hi]) ∈ escO

that is, local variables v2 and v5 may point to abstract object [hi] just before

program points p1 and p2, respectively, in abstract context [ht], and moreover,

abstract object [hi] may be thread-escaping just before program points p1 and p2 in

128 CHAPTER 4. A DEMAND-DRIVEN APPROACH

abstract context [ht]. Our earlier algorithm then computes the final set of potential

races as:

ultimateRaces = aliasingRaces ∩ escapingRaces ∩

parallelRaces ∩ unlockedRaces

and terminates after reporting each race in ultimateRaces. For our running example,

it reports tuple T3 (recall that tuples T1 and T2 are not retained in unlockedRaces).

In contrast, our demand-driven algorithm uses ultimateRaces to potentially re-

fine Σ and execute another iteration of the outermost loop in Figure 4.8 to yield a

potentially smaller set of races to be reported. The smaller set is sound but more

precise in that it eliminates false races that are deemed to occur in the previous iter-

ation due to smaller k values used in the Σ in that iteration for the allocation sites

of objects on whose fields those races are deemed to occur. To refine Σ, we compute

the following set which makes explicit the abstract objects on whose fields the races

are deemed to occur:

ultimateRacesWithObject = { (ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2, o) |

(ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ (parallelRaces ∩ unlockedRaces)

∧













if (base(p1) = v1 ∧ base(p2) = v2) then

((cm
1 , p1, v1, o) ∈ ptsV ∧ (cm

1 , p1, o) ∈ escO ∧

(cm
2 , p2, v2, o) ∈ ptsV ∧ (cm

2 , p2, o) ∈ escO)

else o = ε













}

This set essentially contains each tuple (ct
1, c

m
1 , p1, c

t
2, c

m
2 , p2) ∈ ultimateRaces along

with each abstract object o such that:

• If the statements at p1 and p2 access the same instance field or array elements,

then base(p1)=v1 and base(p2)=v2, in which case o is an abstract object such

that both v1 and v2 may point to o just before p1 and p2 in abstract contexts

cm
1 and cm

2 , respectively, and moreover, o may be thread-escaping just before p1

and p2 in abstract contexts cm
1 and cm

2 , respectively.

• If the statements at p1 and p2 access the same static field, then base(p1) and

4.5. DEMAND-DRIVEN RACE DETECTION ALGORITHM 129

base(p2) are undefined and o does not exist, but for the sake of uniformity, we

use o = ε.

For our running example, the above set contains the lone tuple T3 in ultimateRaces

along with abstract object [hi].

Our algorithm next computes the set H of object allocation sites whose k values

must be incremented in the refined Σ to be used in the next iteration as follows.

Suppose ultimateRacesWithObject contains a tuple manifesting a potential race on

an instance field or array element of abstract object o, in which case o is a non-empty

sequence of object allocation sites of the form [hn :: ... :: h1]. For termination, the

algorithm must check for two conditions:

1. o must not have been considered in a previous iteration (denoted by the check

[hn :: ... ::h1] 6∈ A).

2. o must not contain duplicate sites, that is, sites h1, ..., hn must be distinct

(denoted by the check n = |{h1, ..., hn}|).

If both these conditions hold, the algorithm adds each of sites h1, ..., hn to H . After

performing the above two checks for each tuple in ultimateRacesWithObject, the

algorithm refines Σ by incrementing the k value for each site in the resulting H ,

and repeats the entire procedure if H is non-empty. If H is empty, it means that

the algorithm is unable to increment the k value for any of the allocation sites of

objects on whose fields races are deemed to occur. At this point, it projects away the

abstract object in each tuple in ultimateRacesWithObject and reports the potential

race manifested in each tuple in the resulting set ultimateRaces.

For our running example, recall that at the end of the first iteration, the set

ultimateRacesWithObject contains the lone tuple T3 along with abstract object

[hi], that is, local variables v2 and v5 are deemed to point to that thread-escaping

abstract object just before program points p1 and p2, respectively (see heap abstrac-

tion (a) in Figure 4.3). Since [hi] satisfies the above two checks, we have H = {hi}

and A = {[hi]}, and the refined Σ uses a k value of two for site hi and one for all

other sites. Since H is non-empty, our algorithm iterates using the refined Σ.

130 CHAPTER 4. A DEMAND-DRIVEN APPROACH

classes # bytecodes brief description
elevator 1066 109831 Discrete event simulator
tsp 1068 110582 TSP solver from ETH
hedc 1592 278010 Web crawler from ETH
ftp 1905 348813 Apache FTP server
pool 1121 122187 Apache pooling library
jdbf 1739 291392 Object-relational mapping system
jtds 1801 301231 JDBC driver
derby 3428 721912 Apache relational database engine

Table 4.1: Benchmarks.

At the end of the second iteration, ultimateRacesWithObject still contains tuple

T3, but this time with abstract object [hi::hc], that is, v2 and v5 are deemed to

point to that thread-escaping abstract object just before p1 and p2, respectively (see

heap abstraction (d) in Figure 4.3). Since [hi::hc] satisfies the above two checks,

we have H = {hi, hc} and A = {[hi], [hi::hc]}, and the refined Σ uses a k value

of three for site hi, two for site hc, and one for all other sites. Once again, since H

is non-empty, our algorithm iterates using the refined Σ.

At the end the third iteration, ultimateRacesWithObject is empty since v2 is

deemed to point to thread-escaping abstract object [hi::hc::ht] just before p1 in

abstract context [ht], whereas v5 is deemed to point to a different thread-escaping

abstract object [hi::hc] just before p2 in abstract context [ht] (see heap abstraction

(c) in Figure 4.3). Thus, H is empty and our algorithm terminates without reporting

a false race.

4.6 Experiments

We have implemented our demand-driven race detection algorithm and applied it to

a suite of eight multithreaded Java programs. Table 4.1 provides a brief description

of each program along with the number of classes and the number of bytecodes in

the program. The numbers correspond to code that is deemed reachable from the

main method of each program in a context insensitive call graph that is computed by

4.6. EXPERIMENTS 131

running time # iters. avg. time per
k=1 k=2 k=3 d.d. in d.d. iter. in d.d.

elevator 3m21s 3m45s 12m14s 8m24s 5 1m41s
tsp 3m37s 4m03s 10m41s 5m00s 2 2m30s
hedc 10m04s 9m31s 38m12s 23m17s 7 3m20s
ftp 15m15s 13m51s 54m15s 30m23s 8 3m48s
pool 4m48s 3m40s 9m43s 7m59s 5 1m36s
jdbf 8m40s 8m52s 29m31s 20m52s 7 2m59s
jtds 11m33s 14m28s 37m12s 31m19s 7 4m28s
derby 34m31s ? ? 132m 8 16m30s

Table 4.2: Experimental results: Comparison of running time.

Spark [52], a 0-CFA-based may alias analysis with on-the-fly call graph construction

provided in the Soot compiler framework [81]. The experiments were performed on a

2.4GHz machine with 4GB memory.

Table 4.2 presents the total running time of our previous algorithm using k = 1,

k = 2, and k = 3, and our demand-driven algorithm, denoted d.d. Notice that

our previous algorithm using k = 2 and k = 3 runs out of memory for the largest

program derby. The “# iters. in d.d.” column denotes the total number of times

our demand-driven algorithm iterates for each program. It ranges from two for tsp

to eight for ftp and derby. The “avg. time per iter. in d.d.” column denotes the

average time per iteration, computed by dividing the total running time by the total

number of iterations. Notice that it is less than the total running time of our previous

algorithm using k = 1 for each program. This is because the results computed

in the first iteration of our demand-driven algorithm (which is equivalent to our

previous algorithm using k = 1) such as those computed using Soot are reused in

subsequent iterations and, more importantly, each subsequent iteration increases the

k value for only a tiny fraction of the object allocation sites in each program. This

is evident from the numbers in Table 4.3 which presents for each program the profile

of function Σ after our demand-driven algorithm terminates, namely, each column

labeled n = 1, 2, ..., 8 provides the size of the set { h | Σ(h) = n }. Note that our

demand-driven algorithm uses a k value greater than one for less than 0.01% of all

132 CHAPTER 4. A DEMAND-DRIVEN APPROACH

k value
1 2 3 4 5 6 7 8

elevator 3152 0 1 4 2 - - -
tsp 3246 1 - - - - - -
hedc 8720 32 16 11 13 10 8 -
ftp 10976 21 18 15 11 15 14 11
pool 3079 2 1 6 2 - - -
jdbf 9131 27 19 10 12 9 5 -
jtds 9507 39 14 7 5 3 1 -
derby 21505 97 34 21 9 11 8 5

Table 4.3: Experimental results: Number of sites in Σ after last iteration.

sites in each program.

To compare scalability, Table 4.4 presents the size of A used by each of the three

variants of our previous algorithm as well as that used in each iteration of our demand-

driven algorithm. Recall from Section 4.4 that A is a close over-approximation of

both sets C and O of abstract contexts and abstract objects, respectively, that is

pre-computed before performing k-object-sensitive analysis. The exponential growth

in the size of A is evident in our previous algorithm as the user-supplied k value is

increased from one to three. In contrast, the size of A even after the last iteration

of our demand-driven algorithm for each program is much smaller than the size of A

for our previous algorithm using k = 2.

To compare precision, Table 4.5 presents the size of set π3,6(ultimateRaces),

that is, the number of ultimate race pairs reported by the three variants of our

previous algorithm as well as that computed after each iteration of our demand-driven

algorithm (though only that computed after the last iteration is reported for manual

inspection). The “false” column presents the number of false races reported by our

previous algorithm using k = 3 and our demand-driven algorithm. An exception

is derby for which we present the number of false races reported by our previous

algorithm using k = 1 since it runs out of memory using k = 3. The numbers of

real races reported by both algorithms are the same since both are sound (under

the assumption that the programs are complete, that is, they do not have missing

4.6. EXPERIMENTS 133

k=1 k=2 k=3
elevator 3160 8801 133961
tsp 3248 9026 134500
hedc 8811 28019 273201
ftp 11082 36041 364748
pool 3091 8726 133885
jdbf 9214 31312 296017
jtds 9577 34210 310321
derby 21691 ? ?

in d.d. after iteration #
1 2 3 4 5 6 7 8

elevator 3160 3160 3160 3160 3160 - - -
tsp 3248 3248 - - - - - -
hedc 8811 9439 9847 11181 11982 11993 11993 -
ftp 11082 11983 12382 14060 14885 14901 14907 14907
pool 3091 3200 3200 3200 3200 - - -
jdbf 9214 10292 10994 11376 11412 11415 11415 -
jtds 9577 11321 11430 11526 11592 11592 11592 -
derby 21691 24102 25124 25441 25523 25523 25523 25523

Table 4.4: Experimental results: Comparison of numbers of abstract contexts.

134 CHAPTER 4. A DEMAND-DRIVEN APPROACH

k=1 k=2 k=3 false
elevator 1 1 1 1
tsp 19 19 19 8
hedc 864 257 215 56
ftp 1105 451 378 107
pool 141 31 31 2
jdbf 930 381 302 20
jtds 1003 423 322 34
derby 1445 ? ? 427

in d.d. after iteration # false
1 2 3 4 5 6 7 8

elevator 1 1 1 1 1 - - - 1
tsp 19 19 - - - - - - 8
hedc 864 334 276 228 207 207 207 - 48
ftp 1105 525 431 382 368 368 368 368 97
pool 141 37 37 37 37 - - - 8
jdbf 930 441 397 335 311 311 311 - 29
jtds 1003 482 402 356 342 322 322 34
derby 1445 1218 1176 1121 1096 1096 1096 1096 28

Table 4.5: Experimental results: Comparison of numbers of ultimate race pairs.

callers or callees and they do not use dynamic class loading and reflection). For

pool and jdbf, our demand-driven algorithm reports more false positives than our

previous algorithm using k = 3, illustrating the non-optimality of our demand-driven

algorithm, but for the remaining six programs, it reports an equal or fewer number

of false positives.

Finally, notice that the number of pairs of ultimate races remains constant in later

iterations of our demand-driven algorithm for each program although the k values

for certain allocation sites are increased in those iterations. This is because tuples

manifesting races on fields of objects allocated at these sites continue to be retained in

set ultimateRaces either because they are real races (and will never be eliminated) or

they are false positives arising because of a different source of imprecision than small

k values of the sites we increment. The computation performed by these iterations,

however, does not go in vain: suppose a race is deemed to occur on a field f of an

4.7. RELATED WORK 135

object abstracted by [hn :: ... :: h1] in iteration i of our algorithm. Then, increasing

the k value of each of h1, ..., hn is useful even if the race is not eliminated in iteration

(i + 1), because in that iteration, we have more information to report to the user, in

particular, we can now report that the abstract object on whose field f the race is

deemed to occur is [hn :: ... ::h1 ::h0]. This is useful regardless of whether the reported

race turns our to be a real race or a false positive, because sites h1, ..., hn are typically

increasingly deeply nested sites occurring in library code and the race itself occurs

between accesses in library code, and providing a “shallower” site like h0 occurring

in application code helps the user comprehend how the (presumably more familiar)

application code causes the race in the (presumably less familiar) library code. This

also explains why the size of A is constant in later iterations although the k values for

certain allocation sites are increased in those iterations: abstract object [hn :: ... ::h1]

in A in iteration i gets replaced by [hn :: ... ::h1 ::h0] in iteration (i + 1).

4.7 Related Work

We have already discussed related work on race detection in Chapter 2. In this

section, we survey related work on demand-driven alias analysis and its applications.

We have already mentioned that Milanova et al. [60, 61] present several dimensions

in which their k-object-sensitive analysis is parameterized. A key challenge lies in

choosing a form of parameterization and instantiating it in a manner that is most

effective for a client of the analysis. Our race detection client only exploits the form of

parameterization which allows different k values for different object allocation sites.

Our iterative demand-driven approach is inspired by that of Plevyak and Chien

[67] and Guyer and Lin [40, 41]. Plevyak and Chien present an iterative demand-

driven approach to strike a trade-off between scalability and precision in the context

of type inference for a dynamically-typed object-oriented language. The approach

attempts to resolve type conflicts in successive iterations by performing function

splitting which provides context sensitivity or container splitting which divides ob-

ject allocation sites so that a single site can generate objects of different types. It

inserts run time type checks for conflicts that cannot be eliminated. A key difference

136 CHAPTER 4. A DEMAND-DRIVEN APPROACH

between our approach and theirs is that we do not need to distinguish between the

two kinds of splitting since we use k-object-sensitive analysis which treats abstract

contexts and abstract objects uniformly: increasing the k values for object allocation

sites increases both the number of abstract contexts (i.e., performs function splitting)

and the number of abstract objects (i.e., performs container splitting).

Guyer and Lin [40, 41] present a client-driven alias analysis for C and its effec-

tiveness on five temporal safety property checking clients. The approach begins with

a flow and context insensitive alias analysis. It consists of a monitor that builds a

dependence graph during the analysis to keep track of the effects of imprecision that

occur during the analysis due to flow and context insensitivity. A client of the analy-

sis reports back to an adaptor the set of memory locations for which it requires more

precision, which for our race detection client may be viewed as the allocation sites

of objects on whose fields races deemed to occur. The adaptor views these memory

locations as symptoms of imprecision and uses the dependence graph built by the

monitor to determine their causes, in particular it determines which assignments to

treat flow sensitively and which methods to treat context sensitively in the subsequent

iteration. A key difference between our approach and theirs is that our approach lacks

a monitor and treats each symptom itself as a cause of imprecision. This is indeed

mostly the case for us in practice, but as illustrated for the pool and jdbf bench-

marks in Section 4.6, it can cause our approach to report more false positives than

a non-demand-driven approach. Another key difference is that our approach cannot

eliminate imprecision arising due to flow insensitivity though the need for it seems

more critical to their clients which check temporal safety properties for C.

Heintz and Tardieu [44] present a demand-driven alias analysis for C that performs

provably optimal computation to determine the points-to sets for variables provided

by a client. They show how to apply their analysis to a call graph construction client

for C in the presence of function pointers. The key difference between this approach

and the ones discussed above is that it computes a partial solution sufficient to answer

the client’s queries whereas the rest compute an exhaustive solution with varying

precision for different parts of the program.

Sridharan et al. [77, 78] present a refinement-based alias analysis for Java and

4.7. RELATED WORK 137

apply it to a type cast checking client. Their approach computes a partial solution

sufficient to determine the points-to sets for variables provided by a client but it

also successively refines parts of the solution to precisely handle those method calls/

returns and field reads/writes that are key to precisely answering the client’s queries.

Zheng and Rugina [93] present a demand-driven alias analysis for C that also

computes a partial solution sufficient to answer may alias queries posed by clients.

Unlike most approaches, however, their approach does not require computing and

intersecting points-to sets for answering such queries.

Chapter 5

Conclusion

We set out to develop a static race detection tool for Java with five criteria we felt

such a tool must address to be effective:

1. Precision. Does the tool have a tolerable false positive rate on real-world Java

programs?

2. Soundness. Does the tool detect all races, modulo standard unsoundness as-

sumptions made by static analyses for Java?

3. Scalability. Is the tool fully automatic and capable of checking large programs?

4. Open Programs. Does the tool handle open programs such as libraries?

5. Counterexamples. Does the tool provide sufficient information to identify and

fix the bugs manifested in its race reports?

The techniques proposed in this thesis have reasonably addressed all of the above

five criteria. Chapter 2 presented a novel static race detection algorithm that fo-

cused on precision and described how to handle open programs and generate coun-

terexamples. Chapter 3 presented a novel technique for soundly correlating locks

with the memory locations they guard, called conditional must not alias analysis,

and used it to replace the unsound lockset analysis employed in the original race

detection algorithm. Lastly, Chapter 4 presented a novel demand-driven approach,

138

5.1. FUTURE WORK 139

which improved the scalability of the race detection algorithm by enabling an adap-

tive k-object-sensitive analysis capable of using different k values for different object

allocation sites in the given program.

We implemented the resulting algorithm in a tool Chord and applied it to a suite

of eight multithreaded Java programs. Our approach found tens to hundreds of

previously unknown concurrency bugs in mature and widely used programs in our

benchmark suite. The usefulness of our approach was attested by the fact that many

of these bugs were fixed by the programs’ developers upon reporting.

5.1 Future Work

The work presented in this thesis can be extended in several ways. First, developers

of our benchmark programs were often reluctant to fix the races we reported due to

concerns of introducing deadlocks. Since races do not have fail-stop behavior unlike

deadlocks, however, they eventually chose to fix the races, but this experience con-

vinced us that static deadlock detection is an important open problem. Furthermore,

the static analyses required for proving deadlock freedom for Java bear many simi-

larities to those for proving race freedom, for instance, a precise may alias analysis is

required to distinguish statically between different locks and a precise form of must

alias analysis is required to statically identify reentrant locks. Imprecision in either

analysis leads to false lock cycles such as those reported by existing state-of-the-art

static deadlock detectors for Java [91].

Besides race freedom and deadlock freedom, another desirable lightweight con-

currency correctness property that has gained significant attention in recent years is

atomicity [35, 36] and atomic sets [82]. Race detection is a first step in many atom-

icity checkers, in particular, atomicity checkers based on Lipton’s theory of reduction

[54] must show that each statement accessing a memory location is both a left mover

and a right mover, which is done by proving the absence of races on that location.

Existing static atomicity checkers, however, are limited by the effectiveness of the

underlying static race detector. We hope to apply our static race detection algorithm

to perform effective static atomicity checking.

140 CHAPTER 5. CONCLUSION

Another line of work we intend to pursue is exploiting the global information

about locks that is at the disposal of our static race detection algorithm to:

1. automatically remove unnecessary synchronization [6, 9, 10, 16, 72, 89], which

in turn would improve performance and address the other most significant com-

plaint developers raised while fixing the races we reported,

2. automatically suggest fixes to incorrect synchronization in legacy programs [33],

which would alleviate the manual burden of inspecting and fixing races, and

3. automatically introduce necessary synchronization in future programs [25, 57].

Solving each of these problems would require taking into account performance metrics

as well as correctness metrics like race freedom, deadlock freedom, and atomicity. To

the best of our knowledge, all existing work addresses only a subset of the above

metrics. We believe it would be more useful, however, to address all these concerns

simultaneously, if possible integrating results on static race detection, static deadlock

detection, and static atomicity checking.

Finally, our current static race detection algorithm does not handle open pro-

grams such as libraries soundly. Even specifying a concurrency property like race

freedom, deadlock freedom, atomicity, and, more generally, “thread safety”, for an

open program is challenging. It would be useful to design formal specifications for

these problems and devise sound static analyses for solving them.

Appendix A

Proof of Type Preservation

We state a useful fact of environment abstraction (Figure 3.7 (c)) that is needed in

proving type preservation.

Fact A.1. (Weakening of loop set) If W ` (π, ρ) � (Π, Γ) and W ′ ⊆ W then

W ′ ` (π, ρ) � (Π, Γ).

Lemma A.2. (Type Preservation) If s, W, π, ρ, σ ⇓ π′, ρ′, σ′, C and W, Π, Γ ` s :

Γ′, K and W ` (π, ρ) � (Π, Γ) then W ` (π′, ρ′) � (Π, Γ′) and C � K.

Proof. By induction on the structure of the derivation of s, W, π, ρ, σ ⇓ π′, ρ′, σ′, C.

There are ten cases depending on which one of rules (3.1)–(3.10) in Figure 3.5 is

used last in the derivation. For brevity, we only provide the proof for the two most

interesting cases.

1. Rule (3.5). We have s ≡ v1.f = v2. There are two sub-cases depending upon

whether ρ(v2) is null or non-null. We only prove the latter more interesting

sub-case. We have:

(a) ρ(v1) = o1 and ρ(v2) = o2

(b) s, W, π, ρ, σ ⇓ π, ρ, σ[(o1, f) 7→ o2], {o1 B o2}

From s ≡ v1.f = v2 and hypothesis W, Π, Γ ` s : Γ′, K of the lemma and rule

(3.15) in Figure 3.8, we have:

(c) K =

{

{τ1 D τ2} if Γ(v1) = τ1 and Γ(v2) = τ2

∅ otherwise

141

142 APPENDIX A. PROOF OF TYPE PRESERVATION

To prove:

(I) W ` (π, ρ) � (Π, Γ)

(II) {o1 B o2} � K

We have (I) immediately from hypothesis W ` (π, ρ) � (Π, Γ) of the lemma.

We will next prove that ∃τ ′
1, τ

′
2:

(III) (τ ′
1 D τ ′

2) ∈ K

(IV) (o1, o2) ∝ (τ ′
1, τ

′
2)

From (III), (IV), and the definition of � in Figure 3.7 (b), we will have (II).

Proof of (III) and (IV):

From hypothesis W ` (π, ρ) � (Π, Γ) of the lemma and item (2) and item (3)(b)

in Figure 3.7 (c), we have:

(d) ∀v ∈ V : ρ(v) � Γ(v)

(e) ∀w ∈ W : ∃n ∈ N : ∀v ∈ V : ((ρ(v) = o ∧ Γ(v) = τ ∧ τ.Π(w) = 1) ⇒

o.π(w) = n)

From (a), (d), and the definition of � in Figure 3.7 (a), we have:

(f) Γ(v1) = τ1 and Γ(v2) = τ2

(g) o1 � τ1 and o2 � τ2

From (c) and (f), we have:

(h) K = {τ1 D τ2}

From (e), (a), and (f), we have:

(i) ∀w ∈ W : ∃n ∈ N : ((τ1.Π(w) = 1 ⇒ o1.π(w) = n) ∧ (τ2.Π(w) = 1 ⇒

o2.π(w) = n))

Choose τ ′
1 = τ1 and τ ′

2 = τ2. Then, we have (III) from (h) and we have (IV)

from (g), (i), and the definition of ∝ in Figure 3.7 (b).

2. Rule (3.10). We have s ≡ while
w (∗) do s′ and:

(a) s′, W ∪ {w}, π[w 7→ π(w) + 1], ρ, σ ⇓ π′, ρ′, σ′, C1

(b) s, W, π′, ρ′, σ′ ⇓ π′′, ρ′′, σ′′, C2

From s ≡ while
w (∗) do s′ and hypothesis W, Π, Γ ` s : Γ′, K of the lemma and

143

rule (3.18) in Figure 3.8, we have:

(c) W, Π, Γ ` s : Γ, K

(d) W ∪ {w}, Π, Γw+ ` s′ : Γ, K

(e) Π(w) 6= 0

To prove:

(I) W ` (π′′, ρ′′) � (Π, Γ)

(II) (C1 ∪ C2) � K

From hypothesis W ` (π, ρ) � (Π, Γ) of the lemma and Figure 3.7 (c), we have:

(f) ∀w′ ∈ W : π(w′) � Π(w′)

(g) ∀v ∈ V : ρ(v) � Γ(v)

(h) ∀w′ ∈ W : ∃n′ ∈ N :

(Π(w′) = 1 ⇒ π(w′) = n′) ∧

(∀v ∈ V : ((ρ(v) = o ∧ Γ(v) = τ ∧ τ.Π(w′) = 1) ⇒ o.π(w′) = n′))

We will next prove:

(III) W ∪ {w} ` (π[w 7→ π(w) + 1], ρ) � (Π, Γw+)

Then, from (a), (d), (III), and the induction hypothesis, we will have:

(i) W ∪ {w} ` (π′, ρ′) � (Π, Γ)

(j) C1 � K

From (i) and Fact A.1, we will have:

(k) W ` (π′, ρ′) � (Π, Γ)

From (b), (c), (k), and the induction hypothesis, we will have:

(l) W ` (π′′, ρ′′) � (Π, Γ)

(m) C2 � K

From (l), we will have (I). From (j), (m), and the definition of � in Figure 3.7

(b), we will have (II).

Proof of (III):

From (e), we have:

(n) Π(w) = 1 ∨ Π(w) = >

144 APPENDIX A. PROOF OF TYPE PRESERVATION

From (π(w) + 1) > 0, (n), and the definition of � in Figure 3.7 (a), we have:

(o) (π(w) + 1) � Π(w)

From (f) and (o), we have:

(p) ∀w′ ∈ W ∪ {w} : π[w 7→ π(w) + 1](w′) � Π(w′)

From (g), Definition 3.3, and the definition of � in Figure 3.7 (a), we have:

(q) ∀v ∈ V : ρ(v) � Γw+(v)

We will next prove:

(IV) ∃n ∈ N :

(Π(w) = 1 ⇒ (π[w 7→ π(w) + 1])(w) = n) ∧

(∀v ∈ V : ((ρ(v) = o ∧ Γw+(v) = τ ∧ τ.Π(w) = 1) ⇒ o.π(w) = n))

From (h) and (IV), we will have:

(r) ∀w′ ∈ W : ∃n′ ∈ N :

(Π(w′) = 1 ⇒ (π[w 7→ π(w) + 1])(w′) = n′) ∧

(∀v ∈ V : ((ρ(v) = o ∧ Γw+(v) = τ ∧ τ.Π(w′) = 1) ⇒ o.π(w′) = n′))

From (p), (q), (r), and Figure 3.7 (c), we will have (III).

Proof of (IV):

Choose n = (π[w 7→ π(w) + 1])(w), whence we trivially have:

(s) Π(w) = 1 ⇒ (π[w 7→ π(w) + 1])(w) = n

From Definition 3.3, we have ∀v ∈ V : (Γw+(v) = τ ⇒ τ.Π(w) 6= 1) whence

we trivially have:

(t) ∀v ∈ V : ((ρ(v) = o ∧ Γw+(v) = τ ∧ τ.Π(w) = 1) ⇒ o.π(w) = n)

From (s) and (t), we have (IV).

�

Lemma A.3. If C � K then ∀n ≥ 1 : Cn � Kn.

Proof. By induction on n.

145

Base case (n = 1): Suppose C � K. To prove C1 � K1. From item (1) of Def-

inition 3.7, we have C1 = C. Likewise, from item (1) of Definition 3.10, we have

K1 = K. From C � K and C1 = C and K1 = K, we have C1 � K1.

Inductive step: Suppose:

(a) C � K

To prove Cn+1 � Kn+1. Consider any o1 and o3 such that:

(b) (o1 B o3) ∈ Cn+1

Then, from the definition of � in Figure 3.7 (b), it suffices to prove that ∃τ1, τ5:

(I) (τ1 B τ5) ∈ Kn+1

(II) (o1, o3) ∝ (τ1, τ5)

From (b) and item (2) of Definition 3.7, we have ∃o2:

(c) (o1 B o2) ∈ Cn

(d) (o2 B o3) ∈ C

From the induction hypothesis and (a), we have:

(e) Cn � Kn

From (c), (e), and the definition of � in Figure 3.7 (b), we have ∃τ1, τ2:

(f) (τ1 D τ2) ∈ Kn

(g) (o1, o2) ∝ (τ1, τ2)

From (d), (a), and the definition of � in Figure 3.7 (b), we have ∃τ3, τ4:

(h) (τ3 D τ4) ∈ K

(i) (o2, o3) ∝ (τ3, τ4)

From (g) and item (2) in Figure 3.7 (b), we have:

(j) o2 � τ2

From (i) and item (1) in Figure 3.7 (b), we have:

(k) o2 � τ3

From (j) and the definitions in Figure 3.7 (a), we have:

(l) (o2.h = τ2.ĥ ∨ τ2.ĥ = >) ∧ ∀w ∈ W : ((o2.π(w) = 0 ∧ τ2.Π(w) = 0) ∨

(o2.π(w) > 0 ∧ τ2.Π(w) = 1) ∨ τ2.Π(w) = >)

146 APPENDIX A. PROOF OF TYPE PRESERVATION

From (k) and the definitions in Figure 3.7 (a), we have:

(m) (o2.h = τ3.ĥ ∨ τ3.ĥ = >) ∧ ∀w ∈ W : ((o2.π(w) = 0 ∧ τ3.Π(w) = 0) ∨

(o2.π(w) > 0 ∧ τ3.Π(w) = 1) ∨ τ3.Π(w) = >)

From (l) and (m), we have:

(n) (τ2.ĥ = τ3.ĥ ∨ τ2.ĥ = > ∨ τ3.ĥ = >) ∧

∀w ∈ W : (τ2.Π(w) = τ3.Π(w) ∨ τ2.Π(w) = > ∨ τ3.Π(w) = >)

From (n) and Definition 3.8, we have:

(o) τ2 ∼ τ3

From (f), (h), (o), and item (2) of Definition 3.10, we have ∃τ5:

(p) (τ1 D τ5) ∈ Kn+1

(q) τ5 satisfies conditions (a) and (b) in item (2) of Definition 3.10

From (p), we have (I).

From (g) and item (1) in Figure 3.7 (b), we have:

(r) o1 � τ1

From (h) and item (2) in Figure 3.7 (b), we have:

(s) o3 � τ4

From (s), (q), and the definitions in Figure 3.7 (a), we have:

(t) o3 � τ5

We will next prove:

(III) ∀w ∈ W : ((τ1.Π(w) = 1 ∧ τ5.Π(w) = 1) ⇒ o1.π(w) = o3.π(w))

From (r), (t), (III), and the definition of ∝ in Figure 3.7 (b), we will have (II). Con-

sider any w ∈ W and suppose:

(u) τ1.Π(w) = 1 ∧ τ5.Π(w) = 1

To prove (III), it suffices to prove:

(IV) o1.π(w) = o3.π(w)

From (u), we have τ5.Π(w) = 1, which combined with (q) yields (see condition (b) in

item (2) of Definition 3.10):

(v) τ4.Π(w) = 1

147

(w) τ1.Π(w) 6= 1 ∨ τ5.Π(w) 6= 1 ∨ τ2.Π(w) = τ3.Π(w) = 1

From (u) and (w), we have:

(x) τ2.Π(w) = τ3.Π(w) = 1

From (g), τ1.Π(w) = 1 obtained from (u), τ2.Π(w) = 1 obtained from (x), and item

(3) in Figure 3.7 (b), we have:

(y) o1.π(w) = o2.π(w)

From (i), τ3.Π(w) = 1 obtained from (x), τ4.Π(w) = 1 obtained from (v), and item

(3) in Figure 3.7 (b), we have:

(z) o2.π(w) = o3.π(w)

From (y) and (z), we have (IV). �

Lemma A.4. If C � K and h ∈ DRK(H) then h ∈ DRC(H).

Proof. Suppose:

(a) C � K

(b) h ∈ DRK(H)

To prove h ∈ DRC(H). Consider any o1, o2, and o such that:

(c) (o1 B o) ∈ C+

(d) (o2 B o) ∈ C+

(e) o1.h ∈ H

(f) o2.h ∈ H

(g) o.h = h

Then, from the first equation in Figure 3.9, it suffices to prove: (I) o1 = o2, that is:

From (a) and Lemma A.3, we have:

(h) ∀n ≥ 1 : Cn ≤ Kn

From (c) and definition 3.7, we have:

(i) ∃n1 ≥ 1 : (o1 B o) ∈ Cn1

From (d) and definition 3.7, we have:

(j) ∃n2 ≥ 1 : (o2 B o) ∈ Cn2

From (h), (i), and the definition of � in Figure 3.7 (b), we have ∃τ1, τ3:

148 APPENDIX A. PROOF OF TYPE PRESERVATION

(k) (τ1 D τ3) ∈ Kn1

(l) (o1, o) ∝ (τ1, τ3)

From (h), (j), and the definition of � in Figure 3.7 (b), we have ∃τ2, τ4:

(m) (τ2 D τ4) ∈ Kn2

(n) (o2, o) ∝ (τ2, τ4)

From (l) and the definition of ∝ in Figure 3.7 (b), we have:

(o) o1 � τ1

(p) o � τ3

(q) ∀w ∈ W : ((τ1.Π(w) = 1 ∧ τ3.Π(w) = 1) ⇒ o1.π(w) = o.π(w))

From (n) and the definition of ∝ in Figure 3.7 (b), we have:

(r) o2 � τ2

(s) o � τ4

(t) ∀w ∈ W : ((τ2.Π(w) = 1 ∧ τ4.Π(w) = 1) ⇒ o2.π(w) = o.π(w))

From (o), (e), and the definition of � in Figure 3.7 (a), we have:

(u) τ1.ĥ ∈ H ∪ {>}

From (r), (f), and the definition of � in Figure 3.7 (a), we have:

(v) τ2.ĥ ∈ H ∪ {>}

From (p), (s), the definition of � in Figure 3.7 (a), and Definition 3.8, we have:

(w) τ3 ∼ τ4

From (p), (g), and the definition of � in Figure 3.7 (a), we have:

(x) τ3.ĥ ∈ {h,>}

From (s), (g), and the definition of � in Figure 3.7 (a), we have:

(y) τ4.ĥ ∈ {h,>}

From (k), (m), (u), (v), (w), (x), (y), and the second equation in Figure 3.9, we have:

(z) τ1 = τ2

(a’) τ1 < >

(b’) ∀w ∈ W : (τ1.Π(w) = 1 ⇒ τ3.Π(w) = τ4.Π(w) = 1)

From (z), (a’), and Definition 3.9, we have:

149

(c’) τ1.ĥ = τ2.ĥ 6= >

(d’) ∀w ∈ W : (τ1.Π(w) = τ2.Π(w) = 0 ∨ τ1.Π(w) = τ2.Π(w) = 1)

From (o), (r), (c’), and the definition of � in Figure 3.7 (a), we have:

(e’) o1.h = o2.h

(f’) ∀w ∈ W : (τ1.Π(w) = τ2.Π(w) = 0 ⇒ o1.π(w) = o2.π(w))

From (q), (t), and (b’), we have:

(g’) ∀w ∈ W : (τ1.Π(w) = τ2.Π(w) = 1 ⇒ o1.π(w) = o2.π(w))

From (d’), (f’), and (g’), we have:

(h’) ∀w ∈ W : o1.π(w) = o2.π(w)

From (e’) and (h’), we have (I). �

Bibliography

[1] S. Adve, M. Hill, B. Miller, and R. Netzer. Detecting data races on weak mem-

ory systems. In Proceedings of the 18th Annual International Symposium on

Computer Architecture (ISCA’91), pages 234–243, 1991.

[2] R. Agarwal, A. Sasturkar, Wang L, and S. Stoller. Optimized run-time race

detection and atomicity checking using partial discovered types. In Proceedings

of the 20th IEEE/ACM International Conference on Automated Software Engi-

neering (ASE’05), pages 233–242, 2005.

[3] R. Agarwal and S. Stoller. Type inference for parameterized race-free Java. In

Proceedings of the 5th International Conference on Verification, Model Checking,

and Abstract Interpretation (VMCAI’04), pages 149–160, 2004.

[4] S. Agarwal, R. Barik, V. Sarkar, and R. Shyamasundar. May-happen-in-parallel

analysis of x10 programs. In Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP’07), pages 183–193,

2007.

[5] A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’98), pages 342–354, 1998.

[6] J. Aldrich, E. Sirer, C. Chambers, and S. Eggers. Comprehensive synchronization

elimination for Java. Science of Computer Programming, 47(2-3):91–120, 2003.

[7] D. Bacon, R. Strom, and A. Tarafdar. Guava: A dialect of Java without data

races. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

150

BIBLIOGRAPHY 151

Programming, Systems, Languages, and Applications (OOPSLA’00), pages 382–

400, 2000.

[8] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis

using BDDs. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’03), pages 103–114, 2003.

[9] B. Blanchet. Escape analysis for object-oriented languages: Application to Java.

In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA’99), pages 20–34, 1999.

[10] J. Bogda and U. Hölzle. Removing unnecessary synchronization in Java. In

Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’99), pages 35–46, 1999.

[11] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:

Preventing data races and deadlocks. In Proceedings of the ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’02), pages 211–230, 2002.

[12] C. Boyapati and M. Rinard. A parameterized type system for race-free Java

programs. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’01), pages 56–

69, 2001.

[13] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[14] G. Cheng, M. Feng, C. Leiserson, K. Randall, and A. Stark. Detecting data

races in Cilk programs that use locks. In Proceedings of the 10th Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA’98), pages 298–309,

1998.

[15] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis

for Java. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

152 BIBLIOGRAPHY

Programming, Systems, Languages, and Applications (OOPSLA’99), pages 1–19,

1999.

[16] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Stack allocation and

synchronization optimizations for Java using escape analysis. ACM Transactions

on Programming Languages and Systems, 25(6):876–910, 2003.

[17] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Effi-

cient and precise datarace detection for multithreaded object-oriented programs.

In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’02), pages 258–269, 2002.

[18] J. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded

object-oriented programs. Technical Report RC22146, IBM Research, 2001.

[19] J. Choi, B. Miller, and R. Netzer. Techniques for debugging parallel programs

with flowback analysis. ACM Transactions on Programming Languages and Sys-

tems, 13(4):491–530, 1991.

[20] M. Christiaens and K. Brosschere. TRaDe: A topological approach to on-the-fly

race detection in Java programs. In Proceedings of the 1st Java Virtual Machine

Research and Technology Symposium (JVM’01), pages 105–116, 2001.

[21] P. Cousot and R. Cousot. Static determination of dynamic properties of gener-

alized type unions. In Proceedings of an ACM Conference on Language Design

for Reliable Software (LDRS’77), pages 77–94, 1977.

[22] A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms

for access anomaly detection. In Proceedings of the ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’90), pages 1–10,

1990.

[23] A. Dinning and E. Schonberg. Detecting access anomalies in programs with

critical sections. In Proceedings of the 1991 ACM/ONR Workshop on Parallel

and Distributed Debugging (PADD’91), pages 85–96, 1991.

BIBLIOGRAPHY 153

[24] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via scalable path-

sensitive value flow analysis. In Proceedings of the ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA’04), pages 12–22, 2004.

[25] M. Emmi, J. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In Proceedings

of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’07), 2007.

[26] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions

and deadlocks. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP’03), pages 237–252, 2003.

[27] C. Flanagan. Verifying commit-atomicity using model-checking. In Proceedings of

the 11th International SPIN Workshop on Model Checking Software (SPIN’04),

pages 252–266, 2004.

[28] C. Flanagan and M. Abadi. Types for safe locking. In Proceedings of the 8th

European Symposium on Programming (ESOP’99), pages 91–108, 1999.

[29] C. Flanagan and S. Freund. Type-based race detection for Java. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’00), pages 219–232, 2000.

[30] C. Flanagan and S. Freund. Detecting race conditions in large programs. In

Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering (PASTE’01), pages 90–96, 2001.

[31] C. Flanagan and S. Freund. Atomizer: a dynamic atomicity checker for multi-

threaded programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL’04), pages 256–267,

2004.

[32] C. Flanagan and S. Freund. Type inference against races. In Proceedings of the

11th International Static Analysis Symposium (SAS’04), pages 116–132, 2004.

154 BIBLIOGRAPHY

[33] C. Flanagan and S. Freund. Automatic synchronization correction. In Workshop

on Synchronization and Concurrency in Object-Oriented Language (SCOOL’05),

2005.

[34] C. Flanagan, S. Freund, and M. Lifshin. Type inference for atomicity. In Pro-

ceedings of the ACM SIGPLAN Workshop on Types in Language Design and

Implementation (TLDI’05), pages 47–58, 2005.

[35] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’03), pages 338–349, 2003.

[36] C. Flanagan and S. Qadeer. Types for atomicity. In Proceedings of the ACM SIG-

PLAN Workshop on Types in Language Design and Implementation (TLDI’03),

pages 1–12, 2003.

[37] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The

nesC language: A holistic approach to networked embedded systems. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’03), pages 1–11, 2003.

[38] S. Ghemawat, K. Randall, and D. Scales. Field analysis: Getting useful and

low-cost interprocedural information. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’00),

pages 334–344, 2000.

[39] D. Grossman. Type-safe multithreading in Cyclone. In Proceedings of the

ACM SIGPLAN Workshop on Types in Language Design and Implementation

(TLDI’03), pages 13–25, 2003.

[40] S. Guyer and C. Lin. Client-driven pointer analysis. In Proceedings of the 10th

International Static Analysis Symposium (SAS’03), pages 214–236, 2003.

[41] S. Guyer and C. Lin. Error checking with client-driven pointer analysis. Science

of Computer Programming, 58(1-2):83–114, 2005.

BIBLIOGRAPHY 155

[42] J. Harrow. Runtime checking of multithreaded applications with visual threads.

In Proceedings of the 7th International SPIN Workshop on Model Checking Soft-

ware (SPIN’00), pages 331–342, 2000.

[43] D. Heine and M. Lam. A practical flow-sensitive and context-sensitive C and

C++ memory leak detector. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’03), pages 168–

181, 2003.

[44] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI’01), pages 24–34, 2001.

[45] T. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.

In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’04), pages 1–13, 2004.

[46] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings

of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering (PASTE’01), pages 54–61, 2001.

[47] A. Kamil and K. Yelick. Concurrency analysis for parallel programs with tex-

tually aligned barriers. In Proceedings of the 18th International Workshop on

Languages and Compilers for Parallel Computing (LCPC’05), pages 185–199,

2005.

[48] M. Lam, J. Whaley, B. Livshits, M. Martin, D. Avots, M. Carbin, and C. Unkel.

Context-sensitive program analysis as database queries. In Proceedings of the

24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (PODS’05), pages 1–12, 2005.

[49] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.

156 BIBLIOGRAPHY

[50] T. Lev-Ami, N. Immerman, T. Reps, S. Sagiv, S. Srivastava, and G. Yorsh.

Simulating reachability using first-order logic with applications to verification of

linked data structures. In Proceedings of the 20th International Conference on

Automated Deduction (CADE’05), pages 99–115, 2005.

[51] O. Lhoták and L. Hendren. Jedd: a BDD-based relational extension of Java.

In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’04), pages 158–169, 2004.

[52] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s

thesis, McGill University, 2002.

[53] L. Li and C. Verbrugge. A practical MHP information analysis for concurrent

Java programs. In Proceedings of the 17th International Workshop on Languages

and Compilers for Parallel Computing (LCPC’04), pages 194–208, 2004.

[54] R. Lipton. Reduction: A method of proving properties of parallel programs.

Communications of the ACM, 18(12):717–721, 1975.

[55] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’05), pages 378–391, 2005.

[56] S. Masticola and B. Ryder. Non-concurrency analysis. In Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPOPP’93), pages 129–138, 1993.

[57] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchronization in-

ference for atomic sections. In Proceedings of the 33rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’06), pages 346–358,

2006.

[58] S. McPeak and G. Necula. Data structure specifications via local equality ax-

ioms. In Proceedings of the 17th International Conference on Computer Aided

Verification (CAV’05), pages 476–490, 2005.

BIBLIOGRAPHY 157

[59] J. Mellor-Crummey. On-the-fly detection of data races for programs with nested

fork-join parallelism. In Proceedings of the 4th Annual Conference on Supercom-

puting (SC’91), pages 24–35, 1991.

[60] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for

points-to and side-effect analyses for Java. In Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA’02), pages 1–11, 2002.

[61] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for

points-to analysis for Java. ACM Transactions on Software Engineering Method-

ology, 14(1):1–41, 2005.

[62] G. Naumovich and G. Avrunin. A conservative data flow algorithm for detect-

ing all pairs of statements that may happen in parallel. In Proceedings of the

ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing (SIGSOFT’98), pages 24–34, 1998.

[63] G. Naumovich, G. Avrunin, and L. Clarke. An efficient algorithm for computing

MHP information for concurrent Java programs. In Proceedings of the 7th Euro-

pean Software Engineering Conference held jointly with the 7th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE’99), pages

338–354, 1999.

[64] H. Nishiyama. Detecting data races using dynamic escape analysis based on

read barrier. In Proceedings of the 3rd Virtual Machine Research and Technology

Symposium (VM’04), pages 127–138, 2004.

[65] R. O’Callahan and J. Choi. Hybrid dynamic data race detection. In Proceed-

ings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’03), pages 167–178, 2003.

[66] K. Olukotun and L. Hammond. The future of microprocessors. ACM Queue,

3(7):26–29, 2005.

158 BIBLIOGRAPHY

[67] J. Plevyak and A. Chien. Precise concrete type inference for object-oriented

languages. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’94), pages 324–

340, 1994.

[68] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in multi-

threaded C++ programs. In Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP’03), pages 179–190,

2003.

[69] P. Pratikakis, J. Foster, and M. Hicks. LOCKSMITH: Context-sensitive correla-

tion analysis for race detection. In Proceedings of the ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI’06), pages

320–331, 2006.

[70] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI’04), pages 14–24, 2004.

[71] M. Ronsse and K. Bosschere. RecPlay: A fully integrated practical record/replay

system. ACM Transactions on Computer Systems, 17(2):133–152, 1999.

[72] Erik Ruf. Effective synchronization removal for Java. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’00), pages 208–218, 2000.

[73] A. Sasturkar, R. Agarwal, L. Wang, and S. Stoller. Automated type-based analy-

sis of data races and atomicity. In Proceedings of the ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’05), pages 83–94,

2005.

[74] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

dynamic data race detector for multi-threaded programs. In Proceedings of the

16th ACM Symposium on Operating System Principles (SOSP’97), pages 27–37,

1997.

BIBLIOGRAPHY 159

[75] E. Schonberg. On-the-fly detection of access anomalies. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI’89), pages 285–297, 1989.

[76] K. Sen and G. Agha. A race-detection and flipping algorithm for automated

testing of multi-threaded programs. In Haifa Verification Conference (HVC’06),

pages 166–182, 2006.

[77] M. Sridharan and R. Bod́ık. Refinement-based context-sensitive points-to analy-

sis for Java. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’06), pages 387–400, 2006.

[78] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-driven points-to

analysis for Java. In Proceedings of the ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’05),

pages 59–76, 2005.

[79] N. Sterling. WARLOCK - a static data race analysis tool. In Proceedings of the

Usenix Winter 1993 Technical Conference, pages 97–106, 1993.

[80] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobbs Journal, 30(3), 2005.

[81] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot

- a Java optimization framework. In Proceedings of the 1999 Conference of the

Centre for Advanced Studies on Collaborative Research (CASCON’99), pages

125–135, 1999.

[82] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints with

data in an object-oriented language. In Proceedings of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’06),

pages 334–345, 2006.

[83] C. von Praun and T. Gross. Object race detection. In Proceedings of the ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA’01), pages 70–82, 2001.

160 BIBLIOGRAPHY

[84] C. von Praun and T. Gross. Static conflict analysis for multi-threaded object-

oriented programs. In Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI’03), pages 115–128,

2003.

[85] L. Wang and S. Stoller. Static analysis of atomicity for programs with non-

blocking synchronization. In Proceedings of the ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’05), pages 61–71,

2005.

[86] L. Wang and S. Stoller. Runtime analysis of atomicity for multi-threaded pro-

grams. IEEE Transactions on Software Engineering, 32(2):93–110, 2006.

[87] J. Whaley. Context-Sensitive Pointer Analysis using Binary Decision Diagrams.

PhD thesis, Stanford University, 2007.

[88] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In Proceedings of the ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI’04), pages

131–144, 2004.

[89] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java

programs. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’99), pages 187–

206, 1999.

[90] R. Wilhelm, S. Sagiv, and T. Reps. Shape analysis. In Proceedings of the 9th

International Conference on Compiler Construction (CC’00), pages 1–17, 2000.

[91] A. Williams, W. Thies, and M. Ernst. Static deadlock detection for Java libraries.

In Proceedings of the 19th European Conference on Object-Oriented Programming

(ECOOP’05), pages 602–629, 2005.

[92] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection of data race

conditions via adaptive tracking. In Proceedings of the 20th ACM Symposium on

Operating Systems Principles (SOSP’05), pages 221–234, 2005.

BIBLIOGRAPHY 161

[93] X. Zheng and R. Rugina. Demand-driven alias analysis for C. In Proceedings

of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 197–208, 2008.

[94] J. Zhu and S. Calman. Symbolic pointer analysis revisited. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI’04), pages 145–157, 2004.

