USING INFLUENCE TO UNDERSTAND COMPLEX SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Adam Jamison Oliner
September 2011

Abstract

This thesis is concerned with understanding the behavior of complex systems, par-
ticularly in the common case where instrumentation data is noisy or incomplete. We
begin with an empirical study of logs from production systems, which characterizes
the content of those logs and the challenges associated with analyzing them automat-
ically, and present an algorithm for identifying surprising messages in such logs.

The principal contribution is a method, called influence, that identifies relation-
ships among components—even when the underlying mechanism of interaction is
unknown—by looking for correlated surprise. Two components are said to share an
influence if they tend to exhibit surprising behavior that is correlated in time. We
represent the behavior of components as surprise (deviation from typical or expected
behavior) over time and use signal-processing techniques to find correlations. The
method makes few assumptions about the underlying systems or the data they gen-
erate, so it is applicable to a variety of unmodified production systems, including
supercomputers, clusters, and autonomous vehicles.

We then extend the idea of influence by presenting a query language and online
implementation, which allow the method to scale to systems with hundreds of thou-
sands of signals. In collaboration with system administrators, we applied these tools
to real systems and discovered correlated problems, failure cascades, skewed clocks,
and performance bugs. According to the administrators, it also generated information

useful for diagnosing and fixing these issues.

v

Acknowledgements

It would be impossible to provide a complete list of the people and experiences that
shaped this thesis, but what follows is my best attempt to express some semblance
of attribution and gratitude to those who made this document what it is and made
me who I am.

My first research experience was with Boris Katz at the MIT InfoLab, where
I worked on parsing tools for the START project under the supervision of Jimmy
Lin. This was my foot in the door, so to speak, and I am grateful to Boris for
giving a bright-eyed but fundamentally unqualified undergraduate the opportunity
to participate in world-class research.

As part of the MIT VI-A program, a Masters that involves a series of industry
internships and a research thesis, I spent three summers and a semester at IBM
Research in Yorktown Heights. Under the supervision of Ramendra Sahoo and the
management of José Moreira and Manish Gupta, I found my own research passions.
Together, we published work on job scheduling, checkpointing, quality of service
guarantees, and critical event prediction. My group at IBM (the Blue Gene/L System
Software team) struck a truly remarkable balance between generating new research
contributions and building a system that took and then held, for an unprecedented
amount of time, the #1 spot on the Top 500 Supercomputers list.

Many people at MIT helped form me into the kind of scientist I am today. Larry
Rudolph taught me how to do academic research while supervising my VI-A Program
Masters thesis. Many of our conversations contained nuggets of wisdom that guided
my later work. Over the years, he has been a steadfast advisor and a friend. Patrick

Henry Winston taught me how to communicate my ideas more effectively. Martin

Rinard, standing in for my undergraduate advisor, helped me choose the path of
academic research and checked in on me regularly during this journey.

The first four years of my Ph.D. were supported by a U.S. Department of Energy
High Performance Computer Science Fellowship. This facilitated the beginning of a
relationship with Sandia National Labs that made much of this thesis work possible.
I spent the summer of 2006 at the Lab in Albuquerque, supervised by Jon Stearley
and managed by Jim Ang. The Nodeinfo algorithm (see Chapter 3) is based on a
method Jon used in his Sisyphus tool, and the work on that algorithm and the study
of supercomputer system logs (see Chapter 2) were both done in close collaboration.

There were numerous additional collaborations that are not represented as explic-
itly in this thesis, but which nonetheless contributed to it. Some of these people I
wish to thank are Elizabeth Stinson, Patrick Lincoln, Steve Dawson, Linda Briese-
meister, Jim Thornton, John Mitchell, Peter Kwan and the rest of the VERNIER
Team; Kaustubh Joshi, Matti Hiltunen, and Rick Schlichting of AT&T Research;
and Jim Larus and Moises Goldszmidt of MSR.

My work on understanding complex systems would not have been possible without
access to production systems, especially to the instrumentation data they generate.
I am indebted to a staggering number of system managers and administrators who
provided access to and interpretation of such data. These people include Sue Kelly,
Bob Ballance, Sophia Corwell, Ruth Klundt, Dick Dimock, Michael Davis, Jason
Repik, Victor Kuhns, Matt Bohnsack, Jerry Smith, Randall LaViolette, and Josh
England of SNL; Kim Cupps, Adam Bertsch, Mike Miller, and Greg Bronevetsky of
LLNL; John Daly of LANL; Russ Allbery and Kevin Hall of Stanford IT; Sebastian
Gutierrez and Miles Davis of Stanford CS IT; Jonathan Mooser and Peter Kravtsov
of Facebook; and Mike Montemerlo, Sebastian Thrun, and the rest of the Stanford
Racing Team.

I was fortunate to work with four excellent Masters students during my time at
Stanford: Naeim Semsarilar, Ashutosh Kulkarni, Anton Vogt, and James Fosco. Their
hard work and keen insights shrunk implementation times from months to weeks.

I would also like to thank the members of my thesis committee: John Ousterhout,

Dawson Engler, Subasish Mitra, and Lera Boroditsky.

vi

Many of my collaborators also became good friends, or vice versa. Thank you
Kathleen Fisher, Daniel Ramage, Peter Hawkins, Eric Schkufza, Paul Heymann,
Philip Guo, Mike Bauer, and Xuan V1.

I am immensely thankful to my family and friends for their years of dedicated
support. I love you all.

Finally, I want to express deep gratitude toward my advisor, Alex Aiken. The
opportunity to work with Alex was one of the main reasons I chose to come to
Stanford, and the years we worked together proved this to be the correct decision.
I was a systems researcher in a programming languages group, truly a black sheep.
This gave me an opportunity to see problems from a new perspective and consider
solutions that might not have occurred to someone in a more typical position.

Thank you, everyone. Thank you.

vil

Contents

Abstract
Acknowledgements
1 Introduction

2 System Logs

2.1 Supercomputer Logs
2.1.1 Log Collection
2.1.2 Identifying Alerts
2.1.3 Filtering

2.2 Analysis

2.3 Lessons Learned

3 Alert Detection

3.1 The Challenge
3.1.1 Objective
3.1.2 Metrics
3.1.3 Optimal and Baseline

3.2 Nodeinfo

3.3 Results.
3.3.1 Data Refinement
3.3.2 Tagging Limitations
3.3.3 Similar Nodes

iv

© N G

3.4 Online Detection 35

3.5 Contributions 38
Influence 39
4.1 The Method 41
4.1.1 Modeling 42
4.1.2 Anomaly Signal 43
4.1.3 Correlation and Delay 44
4.1.4 Structure-of-Influence Graph (SIG) 46
4.1.5 Interpreting a SIG 47
4.2 Controlled Experiments, . 48
4.2.1 System Components 49
4.2.2 Component Behavior 50
4.2.3 Methodology 51
4.2.4 Experiments 51
4.3 Stanley and Junior oL 54
4.3.1 Stanley’sBug 55
4.3.2 Experiments 55
4.3.3 Anomaly Signals L 58
4.3.4 Cross-correlation Lo 59
4.3.5 SIGs 59
4.3.6 Swerving Bugo Lo 61
4.4 Thunderbird Supercomputer 63
4.5 Contributions 64
Query Language 65
5.1 The Query Language 66
5.1.1 Query Mathematics 68
5.1.2 Query Examples L 70
5.1.3 Query Syntax 73
5.2 QI Implementation 74
5.3 Systems 74

X

5.3.1 Supercomputers 75

5.3.2 Mail-Routing Cluster 76
5.3.3 Autonomous Vehicles 7
534 Log Contents 7

54 Results 79
5.4.1 Alert Discovery on Blue Gene/L 80
5.4.2 Correlated Alerts on Liberty 82

5.4.3 Obscured Influences on Spirit 84
5.4.4 Thunderbird’s “CPU” Bug 85
5.4.5 Mail-Routing Cluster 87
5.4.6 Stanley’s Swerve Bug oo 88
5.4.7 Performance and Scaling 91

5.5 Contributions oL 92
6 Online Algorithm 94
6.1 Method 96
6.1.1 Anomaly Signals 0oL 98
6.1.2 Stage 1: Signal Compression 100
6.1.3 Stage 2: Lag Correlation 102
6.1.4 Output. 103

6.2 Systems 103
6.3 Results. 104
6.3.1 Performance oo 106

6.3.2 Eigensignal Quality 109
6.3.3 Behavioral Subsystems 113
6.3.4 Delays, Skews, and Cascades 119
6.3.5 Results Summaryo 122

6.4 Contributions 123
7 Related Work 124

8 Conclusions
8.1 Thesis Contributions

Bibliography

xi

List of Tables

2.1
2.2
2.3
24
2.6
2.7

3.1
3.2

5.1
5.2
9.3

6.1
6.2

System characteristics Lo 7
Log characteristicso 7
Message breakdowno 8
Filtering alert classes oL 9
Distribution of mesage severity for BG/L 13
Distribution of mesage severity for Red Storm 14
Discovered alert messages oo 32
Distribution of total and alert nodehours 34
System characteristics oL 75
Example log messages oo 78
Query execution time summary 92
System characteristicso 104
Anomaly signal characteristics 105

x1i

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Operational context example 15
Message sources in Libertyo 16
Message frequencies in Liberty 17
Related alert classes in Liberty 18
Categorized filtered alerts on Liberty 19
Critical ECC memory alerts on Thunderbird 23
Distribution of interarrival times on BG/L 24
Precision-recall of Nodeinfo on BG/L 36
Precision-recall of Nodeinfo on Spirit 37
Signal cross-correlationo oo 45
Structure-of-Influence Graph (SIG) 45
Input semantics can affect timing 48
Resource contention can affect timing 49
Simulated system componentso 49
Simulated component behaviorso 52
Influence can arise from resource contention 53
Graceful degradation under timestamp noise 54
Robust to message loss oL 55
Robust to tainted training data 56
Anomaly signal distribution for a vehicle component 57
Cross-correlation of two vehicle components 57
Stanley’s dependencieso oL 58

4.14 Stanley’s SIGo 58

4.15 Dynamic changes in Junior’s SIG 61
4.16 Synthetic SWERVE component 61
5.1 An example influence chain 0L 66
5.2 Hypothetical anomaly signals 67
5.3 Cross-correlation of hypothetical signals 69
5.4 Masking a componento 73
5.5 Synthetic CRASH component 81
5.6 Components correlated with CRASH 81
5.7 Correlated alert types on Llberty 83
5.8 Correlated alerts using synthetic components 84
5.9 Masking for hypothesis testing 85
5.10 Binary components reveal a spatial correlation 86
5.11 Shared influence in a cluster 87
5.12 Stanley’s SIGo 89
5.13 Cross-correlation between two laser sensors 89
5.14 Components correlated with swerving 90
5.15 Inferring a component from a clique 90
5.16 Scaling characteristics of QU L. 91
6.1 Three example anomaly signals 95
6.2 The first eigensignal and swap 96
6.3 Online method diagram 97
6.4 Constant compression rate 106
6.5 Constant lag correlation rate 107
6.6 Signal compression scales well with number of signals 107
6.7 Ratio of compression rate to data generation rate 108
6.8 Lag correlation scales poorly with number of signals 108
6.9 Cumulative energy fractions in Stanley 110
6.10 Incremental energy increases 110
6.11 Cumulative energy fractions in BG/L 111

Xiv

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

Compression versus energy loss 112

Better behavior tracking with decay 112
Weights for Stanley’s first three subsystems 113
Weights of Stanley’s first three subsystems, with decay 114
Weights of Spirit’s first subsystem, sorted by weight magnitude 115
Sorted weights of Spirit’s third subsystem 116
Representative anomaly signals for the SQL cluster 117
Signal reconstruction example 118
Signal reconstruction example, with decay 119
Relative reconstruction error 120
Delayed influence in the SQL cluster 121
Cascade detection in the SQL cluster 122

XV

Chapter 1
Introduction

Complex systems are pervasive: data centers drive our economy, telecommunication
networks support our emergency services, and robots build many of the products we
buy. Our dependence on such systems is increasing, and so is their complexity. There
is a pressing need to gain insight into the behavior of such systems so we can diagnose
misbehavior, fix bugs, optimize performance, and build better systems. This thesis
focuses on understanding complex systems, particularly in the real-world case of large
production systems where instrumentation data is noisy and incomplete.

Consider the computing infrastructure at a company like Facebook. Each data
center consists of thousands of networked machines and each machine, in turn, has
subsystems for memory, communication, and computation. This system receives in-
put from and generates output for hundreds of millions of users and is always chang-
ing due to failures, upgrades, and other modifications. Misbehavior is often caused
by complex component interactions. For example, recently an error checker for a
configuration-value cache brought the entire site down for more than two hours'.
These kinds of interactions occur even when, as is the case with Facebook, the sys-
tem is constructed using current best software practices. Some components are in-
strumented to generate metrics (e.g., the throughput over a particular link) or console
messages (e.g., “file settings.conf appears to be corrupt”); some components are pro-

prietary or critical to performance and therefore generate no such data. These logs

1http ://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919

CHAPTER 1. INTRODUCTION 2

are the primary source of insight into the behavior of production systems, yet there
has been relatively little research on how to effectively use the raw data these systems
generate, primarily due to the difficulty of obtaining such data.

This thesis begins, in Chapter 2, with a study of raw logs from multiple supercom-
puters [46]: Blue Gene/L, Thunderbird, Red Storm, Spirit, and Liberty. We present
details about the systems, methods of log collection, and how important messages
were identified; propose a simpler and more effective filtering algorithm; and define
operational context to encode crucial information that was found to be missing from
most logs. The chapter explains the practical challenges of log analysis and suggests
promising research directions for work in data mining, filtering, root cause analysis,
and critical event prediction. System logs are the first place system administrators
go when they are alerted to a problem, and are one of the few resources available to
them for gaining visibility into the behavior of a machine. Studying these logs was a
crucial first step toward understanding the behavior of complex systems.

Building on these results, Chapter 3 presents an unsupervised algorithm called
Nodeinfo for identifying important messages called alerts in system logs [38], which
we use to create the first verifiable and reproducible performance baseline for alert
detection. Using data from four production supercomputers, in which alerts were
manually tagged for testing, the results demonstrate Nodeinfo’s effectiveness. That
chapter formalizes the alert detection task, describes how Nodeinfo uses the informa-
tion entropy of message terms to identify alerts, and presents an online version of this
algorithm that is now in production use on at least three supercomputers. In addi-
tion to finding known alerts more accurately than existing methods, Nodeinfo also
discovered several kinds of alerts that were previously unknown to the administrators
and that enabled them to take remedial action.

Chapter 4 proposes a method for identifying the sources of problems in complex
production systems where the data available for analysis may be noisy or incomplete
(recall the Facebook example). The results on systems like supercomputers, clusters,
and autonomous vehicles show that our approach identifies important relationships
among components, even for very large systems, and that this information is useful to

system administrators. We define influences as a class of component interactions that

CHAPTER 1. INTRODUCTION 3

includes direct communication and resource contention [39]. Intuitively, the method
infers influences by looking for correlated surprise; we represent the behavior of each
component as surprise-over-time and use signal-processing techniques to find pairs of
components with time-correlated anomalous behavior. (One source of such surprise
signals is the alert detection results of Chapter 3.) For example, a hard disk might
regularly generate a strange log message seconds before an unusual increase in request
latency, leading the method to infer that the disk has a (likely causal) influence on
responsiveness.

To facilitate the process of computing influence, Chapter 5 introduces a query
language and a method for computing queries that makes few assumptions about the
available data [44]. In collaboration with the system administrators, we tested this
method of querying influence on billions of lines of logs from unmodified systems.
Some of these systems (e.g., Blue Gene/L) had hundreds of thousands of signals.
The tool discovered correlated problems, failure cascades, skewed clocks, and perfor-
mance bugs. According to the administrators, it also generated information useful
for diagnosing and fixing these issues.

Finally, Chapter 6 extends the idea of computing influence by making the analysis
online and more scalable [45]. Using recent results in algorithms for principal com-
ponents analysis and lag correlation detection, we implemented a real-time method
for computing influence in production systems. The process scales to systems with
hundreds of thousands of components and, by virtue of being an online algorithm,
empowers an administrator to perform tasks that would be impossible in an offline
setting. For example, in one experiment, our analysis detected a failure cascade in
a database cluster, with a duration of several hours, that culminated in a machine
crash. After detecting this cascade pattern, our tool was able to set an alarm for
the second half of the log that would have warned the administrator more than three
hours in advance of the crashes, with no false positives or false negatives.

The primary lessons of this thesis are as follows:

e Instrumentation in large systems is noisy and incomplete, but does contain

useful information.

CHAPTER 1. INTRODUCTION 4

e Similar components running similar workloads tend to generate similar logs.
Messages that deviate from this regularity tend to be subjectively interesting

to system administrators and often indicate misbehavior.

e [t is possible to glean an understanding of high-level component and subsys-
tem interactions using such low-level measurements. These interactions can be

crucial clues for diagnosing misbehavior.

e Correlation can be a powerful diagnosis tool, especially in the common case
where the data is insufficient to imply causality. Our approach correlates sur-
prise (deviation from expectation or regularity) rather than the noisy, raw mea-

surements.

e Representing behavior with real-valued signals, rather than discretized cate-
gorical data, provides greater power to detect time-delayed effects and subtle

variations.

We support these observations with data from a variety of production systems and
with experiments that involved close collaboration with the system administrators.
The results show that our influence method can produce valuable results even under

conditions where alternative methods are inapplicable.

Chapter 2
System Logs

The reliability and performance challenges of large, complex systems cannot be ade-
quately addressed until the behavior of the machines is better understood. Progress
has been hampered by the inaccessibility of data from such production systems. In
this chapter, we study system logs from five of the world’s most powerful supercom-
puters. The machines we consider (and the number of processors) are: Blue Gene/L
(131072), Red Storm (10880), Thunderbird (9024), Spirit (1028), and Liberty (512).
The analysis encompasses more than 111.67 GB of data containing 178,081,459 alert
messages in 77 categories. The system logs are the first place system administrators
go when they are alerted to a problem, and are one of the few mechanisms available
to them for gaining visibility into the behavior of the machine. Particularly as sys-
tems grow in size and complexity, there is a pressing need for better techniques for
processing, understanding, and applying these data.

We define an alert to be a message in the system logs that merits the attention of
the system administrator, either because immediate action must be taken or because
there is an indication of an underlying problem. Many alerts may be symptomatic of
the same failure. Failures may be anything from a major filesystem malfunction to a
transient connection loss that kills a job.

Using results from the analysis, we give lessons learned for future research in this

area. Most importantly, we discuss the following issues:

e Logs do not currently contain sufficient information to do automatic detection

CHAPTER 2. SYSTEM LOGS 6

of failures, nor root cause diagnosis, with acceptable confidence. Although iden-
tifying candidate alerts is tractable, disambiguation in many cases requires ex-
ternal context that is not available. The most salient missing data is operational

context, which captures the system’s expected behavior.

e There is a chaotic effect in these systems, where small events or changes can
dramatically impact the logs. For instance, an OS upgrade on Liberty in-
stantaneously increased the average message traffic. On Spirit, a single node

experiencing disk failure produced the majority of all log messages.

e Different categories of failures have different predictive signatures (if any). Event
prediction efforts should produce an ensemble of predictors, each specializing in

one or more categories.

e Along with the issues above, automatic identification of alerts must deal with:
corrupted messages, inconsistent message structure and log formats, asymmetric

alert reporting, and the evolution of systems over time.

Section 2.1 describes the five supercomputers, the log collection paths, and the
logs themselves. Section 2.1.2 explains the alert tagging process and notes what chal-
lenges will be faced by those hoping to do such tagging (or detection) automatically.
Section 2.2 contains graphical and textual examples of the data and a discussion
of the implications for filtering and modeling. Finally, Section 6.4 summarizes the
contributions and lessons learned.

The purpose of this chapter is not to argue for a particular reliability, availability,
and serviceability (RAS) architecture, nor to compare the reliability of the supercom-
puters. The systems we study are real, and the logs are in the form used by (and
familiar to) system administrators. Our intention is to elucidate the practical chal-
lenges of log analysis for supercomputers, and to suggest fruitful research directions
for work in data mining, filtering, root cause analysis, and critical event prediction.
This is the first study, to our knowledge, that has considered raw logs from multiple

supercomputing systems.

CHAPTER 2. SYSTEM LOGS 7

’ System H Owner \ Vendor \ Rank | Procs | Memory (GB) \ Interconnect ‘
Blue Gene/L LLNL IBM 1| 131072 32768 Custom
Thunderbird SNL Dell 6 9024 27072 Infiniband
Red Storm SNL Cray 9 10880 32640 Custom
Spirit (ICC2) SNL HP 202 1028 1024 | GigEthernet

Liberty SNL HP 445 512 944 Myrinet

Table 2.1: System characteristics at the time of collection. External system names are
indicated in parentheses. Information such as Rank was obtained from the Top500
Supercomputer list [71]. The machines are representative of the design choices and
scales seen in current supercomputers.

| System || Start Date | Days | Size (GB) | Compressed | Rate (bytes/sec) |
Blue Gene/L 2005-06-03 215 1.207 0.118 64.976
Thunderbird 2005-11-09 244 27.367 5.721 1298.146
Red Storm 2006-03-19 104 29.990 1.215 3337.562
Spirit (ICC2) || 2005-01-01 558 30.289 1.678 628.257
Liberty 2004-12-12 315 22.820 0.622 835.824

Table 2.2: Log characteristics. Compression was done using the Unix utility gzip.

2.1 Supercomputer Logs

The broad range of supercomputers considered in this study are summarized in Ta-
ble 2.1. All five systems are ranked on the Top500 Supercomputers List as of June
2006 [71], spanning a range from #1 to #445. They vary by two orders of magnitude
in the number of processors and by one order of magnitude in the amount of main
memory. The interconnects include Myrinet, Infiniband, GigEthernet, and custom
or mixed solutions. The various machines are produced by IBM, Dell, Cray, and HP.
All systems are installed at Sandia National Labs (SNL) in Albuquerque, NM, with
the exception of BG/L, which is at Lawrence Livermore National Labs (LLNL) in

Livermore, California.

2.1.1 Log Collection

It is standard practice to log messages and events in a supercomputing system; no

special instrumentation nor monitoring was added for this study. Tables 2.2 and

CHAPTER 2. SYSTEM LOGS

| System [Messages Alerts | Categories
Blue Gene/L 4,747,963 348,460 41
Thunderbird || 211,212,192 | 3,248,239 10
Red Storm 219,096,168 1,665,744 12
Spirit (ICC2) || 272,298,969 | 172,816,564 8
Liberty 265,569,231 2,452 6

Table 2.3: Message breakdown. The number of alerts reflects redundant reporting
and the preferences of the system administrators more than it indicates the reliability
of the system. Alerts were tagged into categories according to the heuristics supplied
by the administrators for the respective systems, as described in Section 2.1.2. Two
alerts are in the same category if they were tagged by the same expert rule; the
categories column indicates the number of categories that were actually observed in
each log.

2.3 present an overview of the logs. The remainder of this section focuses on the
infrastructure that generated them.

On Thunderbird, Spirit, and Liberty, logs are generated on each local machine by
syslog-ng and both stored to /var/log/ and sent to a logging server. The logging
servers (tbird-adminl on Thunderbird, sadmin2 on Spirit, and ladmin2 on Liberty)
process the files with syslog-ng and place them in a directory structure according
to the source node. We collected the logs from that directory. As is standard syslog
practice, the UDP protocol is used for transmission, resulting in some messages being
lost during network contention.

Red Storm has several logging paths. Disk and RAID controller messages in
the DDN subsystem pass through a 100 Megabit network to a DDN-specific RAS
machine, where they are processed by syslog-ng and stored. Similarly, all Linux
nodes (login, Lustre I/O, and management nodes) transmit syslog messages to a
different syslog-ng collector node for storage. All other components (compute nodes,
SeaStar NICs, and hierarchical management nodes) generate messages and events
which are transmitted through the RAS network (using the reliable TCP protocol) to
the System Management Workstation (SMW) for automated response and storage.
Our study includes all of these logs.

On BG/L, logging is managed by the Machine Management Control System

CHAPTER 2. SYSTEM LOGS 9

Raw | Filtered
Type Count | % | Count | %
Hardware 174,586,516 | 98.04 1,999 | 18.78
Software 144,899 0.08 6,814 | 64.01
Indeterminate 3,350,044 1.88 1,832 | 17.21

Table 2.4: Hardware was the most common type of alert, but not the most common
type of failure (as estimated by the filtered results). Filtering dramatically changes
the distribution of alert types.

(MMCS), which runs on the service node, of which there are two per rack [1]. Com-
pute chips store errors locally until they are polled, at which point the messages are
collected via the JTAG-mailbox protocol. The polling frequency for our logs was set
at around one millisecond. The service node MMCS process then relays the messages
to a centralized DB2 database. That RAS database was the source of our data, and
includes hardware and software errors at all levels, from chip SRAM parity errors to
fan failures. Events in BG/L often set various RAS flags, which appear as separate
lines in the log. The time granularity for BG/L logs is down to the microsecond, un-
like the one-second granularity of typical syslogs. This study does not include syslogs
from BG/L’s Lustre I/O cluster and shared disk subsystem.

2.1.2 Identifying Alerts

For each of the systems, we worked in consultation with the respective system admin-
istrators to determine the subset of log entries that they would tag as being alerts.
Thus, the alerts we identify in the logs are certainly alerts by our definition, but
the set is (necessarily) not exhaustive. In all, we identified 178,081,459 alerts across
the logs; see Table 2.2 for the breakdown by system and Table 2.1.2 for the alerts,
themselves. Alerts were assigned types based on their ostensible subsystem of origin
(hardware, software, or indeterminate); this is based on each administrator’s best
understanding of the alert, and may not necessarily be root cause. Table 2.4 presents
the distribution of types both before and after filtering (described in Section 2.1.3).

Table 2.1.2 provides example alert messages from the supercomputers. System

names are listed with the total number alerts before and after filtering. “Cat.” is the

CHAPTER 2. SYSTEM LOGS

10

alert category. Types are H (Hardware), S (Software), and I (Indeterminate). Indeter-

minate alerts can originate from both hardware and software, or have unknown cause.

Due to space, we list only the most common of the 41 BG/L alert categories. Brack-

eted text indicates information that is omitted; a bracketed ellipsis indicates sundry

text. Alert categories vary among machines as a function of system configurations,

logging mechanisms, and what each system’s administrators deem important.

| Alert Type/Cat. | Raw | Filtered | Example Message Body (Anonymized) |
| BG/L | 348,460 | 1202 |
H / KERNDTLB 152,734 37 | data TLB error interrupt
H / KERNSTOR 63,491 8 | data storage interrupt
S / APPSEV 49,651 138 | ciod: Error reading message prefix
after LOGIN_MESSAGE on CioStream [...]
S / KERNMNTF 31,531 105 | Lustre mount FAILED : bglioll : block_id
location
S / KERNTERM 23,338 99 | rts: kernel terminated for reason
1004rts: bad message header: [..]
S / KERNREC 6145 9 | Error receiving packet on tree network,
expecting type 57 instead of [..]
S / APPREAD 5983 11 | ciod: failed to read message prefix on
control stream |...]
S / KERNRTSP 3983 260 | rts panic! - stopping execution
S / APPRES 2370 13 | ciod: Error reading message prefix
after LOAD_MESSAGE on CioStream [..]
I / APPUNAV 2048 3 | ciod: Error creating node map from file
I / 31 Others 7186 519 | machine check interrupt
| Thunderbird | 3,248,239 2088
I/ VAPI 3,229,194 276 | kernel: [KERNEL_IB]]...] (Fatal error
(Local Catastrophic Error))
S / PBS_.CON 5318 16 | pbsmom: Connection refused (111) in
open_demux, open demux: cannot ...
I/ MPT 4583 157 | kernel: mptscsih: ioc0O: attempting
task abort! (sc=00000101bddee480)
H / EXT_FS 4022 778 | kernel: EXT3-fs error (device sdab):
[...] Detected aborted journal
S / CPU 2741 367 | kernel: Losing some ticks... checking
if CPU frequency changed.
H / SCSI 2186 317 | kernel: scsiO (0:0): rejecting I/0 to
offline device
H / ECC 146 143 | Server Administrator: Instrumentation
Service EventID: 1404 Memory device |[...]

CHAPTER 2. SYSTEM LOGS

11

S / PBS_BFD 28 28 | pbsmom: Bad file descriptor (9) in
tm_request, job [job] not running

H / CHK_DSK 13 2 | check-disks: [node:time] , Fault Status
assert [..]

I/ NMI 8 4 | kernel: Uhhuh. NMI received. Dazed
and confused, but trying to continue

| Red Storm | 1,665,744 1430 \

H / BUS_PAR 1,550,217 5 | DMT_HINT Warning: Verify Host 2 bus
parity error: 0200 Tier:5 LUN:4 [..]

I / HBEAT 94,784 266 | ec_heartbeat_stop|src:: :[node]
|svc:::[nodelwarn|node heartbeat faultl]...]

I / PTL_EXP 11,047 421 | kernel: LustreError: [..] Q@@ timeout
(sent at [time], 300s ago) [...]

H / ADDR_ERR 6763 1 | DMT_102 Address error LUN:0 command:28
address:£000000 length:1 Anonymous |...]

H / CMD_ABORT 1686 497 | DMT_310 Command Aborted: SCSI cmd:2A LUN
2 DMT_310 Lane:3 T:299 a: [.]

I/ PTL_ERR 631 54 | kernel: LustreError: [..] 000 type ==

I / TOAST 186 9 | ec_console_loglsrc:::[node]lsvc:::[nodell
PANIC_SP WE ARE TOASTED!

1/ EW 163 58 | kernel: Lustre:[..| Expired watchdog for
pid[job] disabled after [#]|s

I/ WT 107 45 | kernel: Lustre:|..] Watchdog triggered
for pid[job]: it was inactive for [#|ms

I/ RBB 105 19 | kernel: LustreError: [...] A1l mds
cray_kern nal request buffers busy (Ous
idle)

H / DSK_FAIL 54 54 | DMTDINT Failing Disk 2A

I/ 0ST 1 1 | kernel: LustreError: [.|] Failure to
commit OST tramsaction (-5)7

| Spirit 172,816,564 | 4875 \

H / EXT_CCISS 103,818,910 29 | kernel: cciss: cmd 0000010000a60000
has CHECK CONDITION, sense key = 0x3

H / EXT_FS 68,986,084 14 | kernel: EXT3-fs error (device[device]) in
ext3_reserve_inode write: I0 failure

S / PBS_CHK 8388 4119 | pbs_mom: task_check, cannot tm_reply to
[job] task 1

S / GM_LANAI 1256 117 | kernel: GM: LANai is not running.
Allowing port=0 open for debugging

S / PBS_.CON 817 25 | pbsmom: Connection refused (111) in
open_demux, open_demux: connect [IP:port]

S / GM_MAP 596 180 | gm_mapper[[#]]: assertion failed.
[path]/1x_mapper.c:2112 (m->root)

S / PBS_BFD 346 296 | pbsmom: Bad file descriptor (9) in
tm_request, job [job] not running

CHAPTER 2. SYSTEM LOGS 12

H / GM_PAR 166 95 | kernel: GM: The NIC ISR is reporting an

SRAM parity error.
| Liberty \ 2452 | 1050 |

S / PBS_CHK 2231 920 | pbs_mom: task_check, cannot tm_reply to
[job] task 1

S / PBS_BFD 115 94 | pbsmom: Bad file descriptor (9) in
tm_request, job [job] not running

S / PBS_.CON 47 5 | pbsmom: Connection refused (111) in
open_demux, open_demux: connect [IP:port]

H / GM_PAR 44 19 | kernel: GM: LANAI[0]: PANIC: [path]/
gm parity.c:115:parity__int () :firmware

S / GM_LANAI 13 10 | kernel: GM: LANai is not running.
Allowing port=0 open for debugging

S / GM_MAP 2 2 | gmmapper[736]: assertion failed.
[path]/mi.c:541 (r == GM_SUCCESS)

Table 2.1.2: Alert breakdown and examples.

Note that many of these alerts were multiply reported by one or more nodes
(sometimes millions of times), requiring filtering of the kind discussed in Section 2.1.3.
Furthermore, it means that the number of alerts we report does not necessarily relate
to the reliability of the systems in any meaningful way. The heuristics provided by the
administrators were often in the form of regular expressions amenable for consumption
by the logsurfer utility [49]. We performed the tagging through a combination of
regular expression matching and manual intervention. The administrators with whom
we consulted were responsible for their respective systems throughout the period of
log collection and the publication of this work. Examples of alert-identifying rules
using awk syntax include (from Spirit, Red Storm, and BG/L, respectively) include
the following;:

/kernel: EXT3-fs error/
/PANIC_SP WE ARE TOASTED!/
($5 ~ /KERNEL/ && /kernel panic/)

Previous work on BG/L log analysis used simple alert identification schemes such
as the severity field of messages [27, 28, 55] or an external source of information [58,
68]. Because our objective was not to suggest an alert detection scheme, but rather to

accurately characterize the content of the logs, we instead used the time-consuming

CHAPTER 2. SYSTEM LOGS 13

Messages | Alerts

Severity Count [% [Count | %
FATAL 855,501 | 18.02 | 348,398 | 99.98
FAILURE 1714 0.03 62 0.02
SEVERE 19,213 0.41 0 0
ERROR 112,355 2.37 0 0
WARNING 23,357 0.49 0 0
INFO 3,735,823 | 78.68 0 0

Table 2.6: The distribution of severity fields for BG/L among all messages and among
our expert-tagged alerts. Tagging all FATAL/FAILURE severity messages as alerts
would have yielded a 59% false positive rate.

manual process described above. We discovered, furthermore, that administrators
for these machines do not use the severity field as the singular way to detect alerts,
and that many systems (Thunderbird, Spirit, and Liberty) did not even record this
information.

Table 2.6 shows the distribution of severity fields among messages and among
unfiltered alerts. If we had used the severity field instead of the expert rules to tag
alerts on BG/L, tagging any message with a severity of FATAL or FAILURE as an alert,
we would have a false negative rate of 0% but a false positive rate of 59.34%. Of the
Sandia systems, only Red Storm is configured to store the severity of syslog messages
(the Red Storm TCP log path is not syslog and has no severity analog). Table 2.7
gives the severity distribution, which suggests that syslog severity is of dubious value
as a failure indicator. The use of message severity levels as a criterion for identifying

failures should be done only with considerable caution.

Alert Identification Challenges

Automatically identifying alerts in system logs is an open problem. To facilitate
others in tackling this challenge, we offer the following account of issues we observed

while manually tagging the logs that must be addressed by an automated scheme:

Insufficient Context. Many log messages are ambiguous without external context.

The most salient piece of missing information was what we call operational context,

CHAPTER 2. SYSTEM LOGS

Messages Alerts

Severity Count [% | Count | %
EMERG 3 0.00 0 0
ALERT 654 0.00 45 0.00
CRIT 1,552,910 | 6.09 | 1,550,217 | 98.69
ERR 2,027,598 7.95 11,784 0.75
WARNING || 2,154,944 | 8.45 270 | 0.02
NOTICE 3,759,620 | 14.74 0 0
INFO 15,722,695 | 61.63 8,450 0.54
DEBUG 291,764 1.14 0 0

14

Table 2.7: The distribution of severity fields for Red Storm syslogs among all messages
and among our expert-tagged alerts. These syslog alerts were dominated by disk
failure messages with CRIT severity. Except for this failure case, these data suggest
that syslog severity is not a reliable failure indicator.

which helps to account for the human and other external factors that influence the
semantics of log messages. For example, consider the following ambiguous example

message from BG/L (anonymized):

YY-MM-DD-HH:MM:SS NULL RAS BGLMASTER FAILURE ciodb exited normally with exit code O

This message has a very high severity (FAILURE), but the message body suggests
that the program exited cleanly. If the system administrator were doing maintenance
on the machine at the time, this message is a harmless artifact of his actions. On
the other hand, if it were generated during normal machine operation, this message
indicates that all running jobs on the supercomputer were (undesirably) killed. The
disparity between these two interpretations is tremendous. Only with additional
information supplied by the system administrator could we conclude that this message
was likely innocuous. In our experience, operational context is one of the most vital,
but often absent, factors in deciphering system logs.

As seen in Figure 2.1, operational context may indicate whether a system is in
engineering or production time. Sandia, Los Alamos, and Livermore National Labo-
ratories are currently working together to define exactly what information is needed,

and how to use it to quantify RAS performance [63]. It may be sufficient to record

only a few bytes of data: the time and cause of system state changes. For example, the

CHAPTER 2. SYSTEM LOGS 15

Total Time
- no Hardware yes "
Integration Operational? Operations
Time Time

Installation *
Major no Available? yes +
reconfiguration . (Ready to perform
Downtime ytop i
intended function) Uptime

| |
* * + no Production yes *

Unscheduled Scheduled Engineering use? Production
Downtime Downtime Time Time

Repair Preventative Maintenance ~ System Software, Production Computing
Diagnosis System Software or Hardware, or Process
Corrective action Hardware Changes experiments or
Verification Facilities Related qualification

Facilities Related

Figure 2.1: Operational context example. Event significance can be disambiguated
if the expected state of components is known. This diagram is the current basis of
Red Storm RAS metrics, and is being developed by LANL, LLNL, and SNL towards
establishing standardized RAS performance metrics.

CHAPTER 2. SYSTEM LOGS 16

1e+0¢
|

Count (number of log
messages per source)
le+04
|

I I I I I I
0 50 100 150 200 250

1e+00
|

Source Number

Figure 2.2: The number of sources (logical nodes) of messages in Liberty, sorted
by decreasing quantity. The most prolific sources were administrative nodes or those
with significant problems. The cluster on the bottom right is from the set of messages
whose source field was corrupted, thwarting attribution.

commencement of an OS upgrade would be accompanied by a message indicating that
at time t the system entered scheduled downtime for a system software installation.
A similar message would accompany the system’s return to production time.

The lack of context has also affected the study of parallel workloads. Feitelson
proposed removing non-production jobs from workload traces (such as workload flur-
ries attributable to system testing [15]). Analogously, some alerts may be ignored

during a scheduled downtime that would be significant during production time.

Asymmetric Reporting. Some failures leave no evidence in the logs, and the logs
are fraught with messages that indicate nothing useful at all. More insidiously, even
single failure types may produce varying alert signatures in the log. For example, the
Red Storm DDN system generates a great variety of alert patterns that all mean “disk
failure”. Nodes also generate differing logs according to their function. Figure 2.2
shows the number of messages broken down by source. The chatty sources tended
to be the administrative nodes or those with persistent problems, while the reticent
sources were either misconfigured or improperly attributed (the result of corrupted

messages).

CHAPTER 2. SYSTEM LOGS 17

Count (number of log
messages per hour)

le+01 1e+03 1e+05
|

Time (years)

Figure 2.3: The number of messages generated by Liberty, bucketed by hour. The
first major shift (end of first quarter, 2005) corresponds to an upgrade in the operating
system after the machine was put into production use. The causes of the other shifts
are not well understood at this time.

System Evolution. Log analysis is a moving target. Over the course of a sys-
tem’s lifetime, anything from software upgrades to minor configuration changes can
drastically alter the meaning or character of the logs. Figure 2.3, for example, shows
dramatic shifts in behavior over time. We have seen alerts that, while common in a
prefix of the log, no longer appear after such shifts. This makes machine learning diffi-
cult: learned patterns and behaviors may not be applicable for very long. The ability
to detect phase shifts in behavior would be a valuable tool for triggering relearning

or for knowing which existing behavioral model to apply.

Implicit Correlation. Groups of messages are sometimes fundamentally related,
but there is no explicit indication of this. See Figures 2.4 and 2.5. A common such

correlation results from cascading failures.

Inconsistent Structure. Despite the noble efforts of the BSD syslog standard and
others, log messages vary greatly both within and across systems. BG/L and Red
Storm use custom databases and formats, and commodity syslog-based systems do not

even record fields such as severity by default. Ultimately, understanding the entries

CHAPTER 2. SYSTEM LOGS 18

o GM_PAR (n=19)
= —| + GM_LANAI (n=10) + o+ o o o ot
é% o 00 <+ <+
S ﬁ]
Z o H
8 ° °
S o
§ 8- o+
o) o el_ o
o —_+
I I I I
Jan Apr Jul Oct

Time (2006 Quarters)

Figure 2.4: Two related classes of alerts from Liberty. Notice that GM_LANAI
messages do not always follow GM_PAR messages, nor vice versa. However, the cor-
relation is clear. Current tagging and filtering techniques do not adequately address
this situation.

may require parsing the unstructured message bodies, thereby reducing the problem
to natural language processing on the shorthand of multiple programmers (consider
Table 2.1.2). Log anonymization is also troublesome, because sensitive information

like usernames is not relegated to distinct fields [16].

Corruption. Even on supercomputers with highly engineered RAS systems, like
BG/L and Red Storm, log entries can be corrupted. We saw messages truncated,
partially overwritten, and incorrectly timestamped. For example, we found many
corrupted variants of the following message on Thunderbird (only the message bodies

are shown):

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr failed (-253:VAPI_EAGAIN)

Some corrupted versions of that line include:

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr failed (-253:VAPI_EAure = no

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr failed (-253:VAPI_EAGAI

kernel: VIPKL(1): [create_mr] MM_bld_hh_mr failed (-253:VAPI_EAGsys/mosal_iobuf.c
[126]: dump iobuf at 0000010188ee7880 :

CHAPTER 2. SYSTEM LOGS 19

PB S CHK | s 920
PBS_BFD | commw e 0w O 94
GM_PAR | = oo o o o o © o o o <] S © S 19
[Totals
GM_LANAI o S o o]]] o 10
PBS_CON S S 5
GM_MAP |_o 2
I I I I
Jan Apr Jul Oct

Time (2006 Quarters)

Figure 2.5: Categorized filtered alerts on Liberty over time. The horizontal clusters
of PBS_.CHK and PBS_BFD messages are not evidence of poor filtering; they are
actually instances of individual failures. Specifically, they are the manifestation of
the PBS bug described in Section 2.1.3. These two tags are a particularly outstanding
example of correlated alerts relegated to different categories.

2.1.3 Filtering

A single failure may generate alerts across many nodes or many alerts on a single node.
Filtering is used to reduce a related set of alerts to a single initial alert per failure; that
is, to make the ratio of alerts to failures nearly one. This section motivates the need
for effective filtering and then describes our algorithm, which is based on previous
work [27, 28] with some incremental optimizations. Briefly, the filtering removes an
alert if any source had generated that category of alert within the last 1" seconds, for
a given threshold T'. Two alerts are in the same category if they were both tagged

by the same expert rule.

Motivation for Filtering

During the first quarter of 2006, Liberty saw 2231 job-fatal alerts that were caused by
a troublesome software bug in the Portable Batch System (PBS). The alerts, which
read pbs_mom: task_check, cannot tm_reply, indicated that the MPI rank 0 mom
died. Jobs afflicted by this bug could not complete and were eventually killed, but

CHAPTER 2. SYSTEM LOGS 20

not before generating the task_check message up to 74 times. We estimate that this
bug killed as many as 1336 jobs before it was tracked down and fixed (see Figure 2.5).

Between November 10, 2005 and July 10, 2006, Thunderbird experienced 3,229,194
so-called “Local Catastrophic Errors” related to VAPI (the exact nature of many of
these alerts is not well-understood by our experts). A single node was responsible for
643,925 of them, of which filtering removes all but 246.

The Spirit logs were largest, despite the system being the second smallest. This
was due almost entirely to disk-related alert messages which were repeated millions
of times. For example, over a six-day period between February 28 and March 5, there
was a disk problem that triggered a total of 56,793,797 alerts. These were heavily
concentrated among a handful of problematic nodes. Over the complete observation
period, node id sn373 logged 89,632,571 such messages, which was more than half of
all Spirit alerts.

Filtering Algorithm

A temporal filter coalesces alerts within 7" seconds of each other on a given source
into a single alert. For example, if a node reports a particular alert every T seconds
for a week, the temporal filter keeps only the first. Similarly, a spatial filter removes
an alert if some other source had previously reported that alert within 7" seconds.
For example, if k£ nodes report the same alert in a round-robin fashion, each message
within T" seconds of the last, then only the first is kept. Previous work applied these
filters serially [27, 28].

Our filtering algorithm, however, performs both temporal and spatial filtering si-
multaneously; an alert message generated by source s is considered redundant (and
removed) if any source, including s, had reported that alert category within 7" sec-
onds. This change reduces computational costs (16% faster on the Spirit logs) and is
conceptually simpler. We applied this filter to the logs from the five supercomputers
using 7" = 5 seconds in correspondence with previous work [9, 27, 28]. The algorithm
in pseudocode is given below, where A is the sequence of N unfiltered alerts. Alert
a; happens at time t; and has category ¢;. The sequence is sorted by increasing time.

The table X is used to store the last time at which a particular category of alert was

CHAPTER 2. SYSTEM LOGS 21

reported.

Algorithm 2.1.1: LOGFILTER(A)

[0
for i< 1to N
(ift; —1>T
then clear(X)
[+t
do qif¢; € X and t;, — X[< T
then X|[¢;] < t;

else
{ output (a;)

This filter may remove independent alerts of the same category that, by coinci-
dence, happen near the same time on different nodes. For example, node sn373 on
Spirit experienced disk problems and output tens of millions of alerts over the course
of several days. Coincidentally, another node (sn325) had an independent disk failure
during this time. Our filter removed the symptomatic alert, erroneously.

In some cases, serial filtering fails to remove alerts that share a root cause, and
which a human would consider to be redundant. The problem arises when the tem-
poral filter removes messages that the spatial filter would have used as cues that the
failure had already been reported by another source. Alerts removed by our filter
that would be left by serial filters tend to indicate failures in shared resources that
were previously noticed by another node. The most common such errors in Liberty,
Spirit, and Thunderbird were related to the PBS system.

At most one true positive was removed on any single machine, whereas sometimes
dozens of false positives were removed by using our filter instead of the serial algo-
rithm. Limiting false positives to an operationally-acceptable rate tends to be the
critical factor in fault and intrusion detection systems, so we consider this trade-off
to be justified.

CHAPTER 2. SYSTEM LOGS 22

2.2 Analysis

Modeling the timing of failure events is a common endeavor in systems research;
these models are then used to study the effects of failures on other aspects of the
system, such as job scheduling or checkpointing performance. Frequently, for mathe-
matical convenience and reference to basic physical phenomena, failures are modeled
as occurring independently (exponentially distributed interarrival times). For low-
level failures triggered by such physical phenomena, these models are appropriate;
we found that ECC failures (memory errors that were critical, rather than single bit
errors) behaved as expected. Figure 2.6 shows these filtered alert distributions on
Thunderbird, where the distribution appears exponential and is roughly log normal
with a heavy left tail.

For most other kinds of failures, however, this independence is not an appropriate
assumption. Failure prediction based on time interdependence of events has been the
subject of much research [28, 30, 37, 54|, and it has been shown that such prediction
can be a potent resource for improving job scheduling [43], quality of service [42], and
checkpointing [40, 41].

We expected CPU clocking alerts, for instance, to be similar to ECC alerts: driven
by a basic physical process. We were surprised to observe clear spatial correlations,
and discovered that a bug in the Linux SMP kernel sped up the system clock under
heavy network load. Thus, whenever a set of nodes was running a communication-
intensive job, they would collectively be more prone to encountering this bug. We
investigated this message only after noticing that its occurrence was spatially corre-
lated across nodes.

Through our attempts to model failure distributions, we are convinced that su-
percomputer failure types are diverse in their properties. Some clearly appear to be
lognormal (Figure 2.6(a)), most clearly do not (Figures 2.7(a) and 2.6(b)). In even
the best visual fit cases, heavy tails result in very poor statistical goodness-of-fit met-
rics. While the temptation to select and publish best-fit models and parameters is
strong, the most important observation we can make is that such modeling of this

data is misguided. The mechanisms and interdependencies of failures must be better

CHAPTER 2. SYSTEM LOGS 23

60
I
20

Count
I
10

ST o T

0 5000 15000 2 4 6 8 10
Interarrival Time
Interarrival Time (seconds) (log(seconds))

(a) (b)

Figure 2.6: Critical ECC memory alerts on Thunderbird. These data are filtered, but
that had little effect on the distribution. Both (a) and (b) are the same data, viewed
in different ways. We conclude that these low-level failures are basically independent.

understood before statistical models of their distributions will be of significant use.
The merit of a model is dependent on the context in which it is applied; one size does
not fit all.

Moreover, whereas the failures in this study have widely varying signatures, previ-
ous prediction approaches focused on single features for detecting all failure types (e.g.
severity levels or message bursts). Future research should consider ensembles of pre-
dictors based on multiple features, with failure categories being predicted according
to their respective behavior.

Current filtering algorithms, including ours, suffer from two significant weaknesses.
First, they require a mechanism for determining whether two alerts from different
sources at different times are “the same” in some meaningful way. We are not aware
of any method that is able to confidently state whether two messages that are labeled
as different are actually driven by the same underlying process. The second major
weakness is that a filtering threshold must be selected in advance and is then applied
across all kinds of alerts. In reality, each alert category may require a different thresh-
old, which may change over time. The bimodal distribution visible in Figure 2.7(a)

is believed to be a consequence of these shortcomings. One of the modes (the left

CHAPTER 2. SYSTEM LOGS 24

50 100 150

Count
Count
400 800

1]

0
I
0
I

0O 2 4 6 8 10 14 0 5 10 15
Interarrival Time Interarrival Time
(log(seconds)) (log(seconds))

(a) (b)

Figure 2.7: The log distribution of interarrival times after filtering suggests correlated
alerts on BG/L (a) and largely independent categories on Spirit (b). This illustrates
two weaknesses in current filtering algorithms: (1) message tags must represent inde-
pendent sets of alerts to avoid timing correlations and (2) a single filtering threshold
is not appropriate for all kinds of messages.

peak) is attributed to unfiltered redundancy. Figure 2.4 shows an example of inter-tag
correlation. On Spirit, the problems enumerated above were not as prevalent after

filtering, and the result was the unimodal distribution in Figure 2.7(b).

2.3 Lessons Learned

In order to accurately detect, attribute, quantify, and predict failures in supercom-
puters, we must understand the behavior of systems, including the logs they produce.
This chapter presents the results of the broadest system log study to date (nearly one
billion messages from five production supercomputers). We consider logs from the
BG/L, Thunderbird, Red Storm, Spirit, and Liberty supercomputers (Section 2.1),
and we identify 178,081,459 alert messages in 77 categories (Table 2.1.2). In conclu-
sion, we describe how people want to use supercomputer logs, what obstacles they

face, and our lessons for overcoming those challenges.

CHAPTER 2. SYSTEM LOGS 25

Detect Faults We want to identify failures quickly. Most failures are evidenced in
logs by a signature (the presence or absence of certain messages), while others leave
no sign. We believe such silent failures are rare. Accurate detection and disambigua-
tion requires external information like operational context (Figure 2.1). We suggest
logging transitions among operational states (Section 2.1.2). Chapter 3 deals with

the challenge of detecting alerts even in the absence of such information.

Attribute Root Causes We want to respond to failures effectively, which requires
knowing what failed and why. Logging mechanisms themselves may fail, resulting in
corrupted or missing messages. Redundant and asymmetric alert reporting necessi-
tates filtering (Section 2.1.3); we advise that future work investigate filters that are
aware of correlations among messages and characteristics of different failure classes,
rather than a catch-all threshold (Section 2.2). In Chapter 4, we use the correlated

generation of surprising messages as a way to infer interactions.

Quantify RAS We want to model and improve RAS metrics. Despite the tempta-
tion to calculate values like MTTF from the system logs, doing so can be inaccurate
and misleading. The content of the logs is a strong function of the specific system and
logging configuration; using logs to compare machines is absurd. Even on a single
system, the logs change over time, making them an unreliable measure of progress.
We recommend calculating RAS metrics based on quantities of direct interest, such

as the amount of useful work lost due to failures.

Predict Failures We want to predict failures in order to minimize their impact.
The mapping from failures to message signatures is many-to-many. Prediction efforts
must account for significant shifts in system behavior (Section 2.1.2). Just as filtering
would benefit from catering to specific classes of failures, predictors should specialize
in sets of failures with similar predictive behaviors (Section 2.2). Our use of influence

for cascade detection in Chapter 6 predicts events with similar preceding behaviors.

System logs are a rich, ubiquitous resource worth exploiting. They present many
analysis challenges, however, and should not be taken lightly. The lessons in this

chapter will lead us closer to our goal: reliable computing for production users.

Chapter 3

Alert Detection

In the previous chapter, we examined logs from production supercomputers and found
them to be missing certain important information (incomplete) and rife with irrel-
evant information (noisy). We collaborated with system administrators to perform
a laborious tagging of alert messages (the “signal” in the logs). In this chapter, we
develop a method for identifying these messages automatically that leverages a cru-
cial insight: similar components running similar workloads tend to generate similar
logs. This turns alert detection into an anomaly detection problem. Our resulting
method outperforms the system administrators, identifying many alert messages of
which they had been previously unaware.

Specifically, we present Nodeinfo, an unsupervised algorithm for anomaly detec-
tion in system logs. We demonstrate Nodeinfo’s effectiveness on data from four of
the supercomputer logs from the previous chapter. (We exclude Red Storm because
our performance metrics require us to label the logs using data that was not available
for that system.) This is the first work to investigate anomaly detection on (sev-
eral) publicly-available supercomputer system logs, thereby providing a reproducible
performance baseline.

The manifestation of a fault in the log is an alert; every line in a log has an
associated alert category, which may be null. Lines with a non-null alert category
(henceforth alerts) are messages that merit the attention of a system administrator,

either because immediate action must be taken or because there is an indication of

26

CHAPTER 3. ALERT DETECTION 27

an underlying problem. Many alerts may be symptomatic of the same failure. Fail-
ures may be anything from a major filesystem malfunction to a transient connection
loss that kills a job (see Chapter 2 for examples). The task of alert detection is to
automatically separate both new and known alerts from innocuous messages (noise).

In this chapter, we formalize the alert detection task and propose a metric called
binary scoring that we found to appropriately quantify operational value (Section 3.1).
We then present Nodeinfo, an unsupervised alert detection algorithm that considers
the information entropy of message terms (Section 3.2). Nodeinfo may be applied
to any timestamped and tokenizable text log; it requires no system-specific informa-
tion. We demonstrate that Nodeinfo can effectively identify alerts using statistical
properties of the log (Sections 3.3 and 3.4).

The analysis gives us deeper insight into the logs that even months of prior study
did not provide. First, we identify and confirm ten new alert categories, yielding
new alert messages on all four systems (Section 3.3.1). Second, we observe that sim-
ilar computers, correctly executing similar workloads, tend to generate similar logs
(Section 3.3.3), and demonstrate how statistical algorithms can exploit this fact to ob-
tain substantial performance improvements (Section 3.4). Specifically, our algorithm
ultimately achieves up to seven times baseline performance on some workloads.

Nodeinfo is currently in production use on at least three supercomputers. The
data sets and code are public [64, 65], so the results in this chapter are verifiable and
reproducible; this work provides a performance baseline for alert detection. These
first steps have already improved the system administration task for the machines

under study, and we are confident that further efforts will be similarly rewarded.

3.1 The Challenge

Let a log be a sequence L of lines [; through [y, where N is the total number of
messages: L = (1,1, ...,ly). Each line [; consists of a sequence of characters broken
up into tokens s; through s, according to some delimiting sequence of characters (we
use whitespace): [; = (1, S, - .., Sur). Let s, denote the m*” token of line i. M may

be different from line to line, and s,, need not have the same semantic interpretation

CHAPTER 3. ALERT DETECTION 28

throughout the log. We calculate and prepend certain important tokens. Let ¢ be the
utime (universal time in seconds) for the line, and so let ¢; be the time of line 7. In
addition, let ¢; be the computer (hereafter node) that generated the line.

We decompose logs into nodehours: all lines from a single node ¢ in one-hour
intervals corresponding to wall-clock time. Such lines are said to be contained by (or
in) their corresponding nodehour; the count of a nodehour is the number of messages
it contains. We define H7, the 5" nodehour for node ¢, to be HY = {lilci=cNnj<
t;/3600 < j + 1}.

Decomposing logs into documents by source and time reflects how many system
administrators divide and conquer logs, as learned through the trial-and-error of
experience. Individual lines lack the context to sufficiently characterize a message,
whereas huge log dumps with interleaved node output can be difficult to mentally
parse. A nodehour provides a happy medium between these extremes, and we found
it to be a useful abstraction for detecting alerts. Implicitly, nodehours are chunks
of data that we expect to be relatively uniform in content over time—anomalous

nodehours are noteworthy events.

3.1.1 Objective

Ultimately, the goal of reliability research is to minimize unscheduled downtime. An
alert detector can facilitate this goal by accurately identifying when and where alerts
are generated, so that remedial or preventive action may be taken. Every log line
is categorically either an alert or not, so nodehours, which consist of lines, can also
be categorized by whether they contain alerts or not. A natural objective is to
automatically rank nodehours by the probability that they contain alerts.

In the original data sets, every line is tagged with an alert category using a combi-
nation of expert rules and manual labeling. In this chapter, we extend that tagging,
due in part to the results from our alert detection methods (Section 3.3.1). The mes-
sage tags are used exclusively for quantifying the effectiveness of our alert detection

methods: the methods themselves ignore the tags entirely.

CHAPTER 3. ALERT DETECTION 29

3.1.2 Metrics

Call Hf an alert nodehour if it contains at least one alert. An alert detection algorithm
outputs a list of nodehours, sorted in decreasing order of the probability that each
is an alert nodehour. Let Ry be the union of nodehours formed by taking the top k
nodehours from this output list.

Scoring a ranking of nodehours depends on the definition of what constitutes a
true positive (TP), false positive (FP), true negative (TN), and false negative (FN).
We experimented with several such definitions before determining that binary scoring,
described below, is most useful in practice. This conclusion is related to the fact that
some faults are bursty, meaning they produce numerous alert messages in a short
period of time. Although the majority of fault types are not bursty, our alternative
metrics disproportionately reward discovery of bursty alerts. (Many naive algorithms
seemed excellent, often near-optimal.)

The binary scoring metric treats nodehours as atomic, considering only whether
or not each nodehour HY is an alert nodehour. Nodehours are categorized as follows:
TP = {Hf € Ry | 3l; € H s.t. I; is an alert}

FP = {Hf € Ry, | Vl; € HS, I; is not an alert}
TN = {H$ ¢ Ry | VI; € Hf, I; is not an alert}
FN = {Hf ¢ Ry | Al; € Hf s.t. [; is an alert}

A set of nodehours, Ry, yields a single value each for precision (

(TP) 2xT P
TP+FN/» 2+TP+FP+FN

to investigate false positives, thereby finding new alert types that other metrics had

TP
TPrrp)» Tecall

and the standard F1 measure (). Binary scoring spurred us
obscured; some of these alerts were previously unknown even to the system adminis-
trators.

Solutions are driven by the metrics used to assess them. For alert detection, the
scoring method must be chosen carefully to prevent bursty alerts from eclipsing the
more elusive ones. In addition to accurately reflecting the true value of an algorithm,
binary scoring accomplishes what per-alert category threshold filtering [27, 54] does
not: captures and filters cross-category temporal correlations. Based on our experi-
ence in this study, and following the lead of previous work [66], we recommend using

binary scoring on nodehours.

CHAPTER 3. ALERT DETECTION 30

3.1.3 Optimal and Baseline

The theoretical, optimal algorithm (OPT) outputs exactly the list of alert nodehours
and appears implicitly in all precision-recall plots as a horizontal line at a precision
of one. In addition to OPT, we compute scores for a baseline that represents the
predominant practice of system administrators. This Bytes baseline simply ranks
nodehours by the number of bytes of message data they contain, from largest to
smallest. This practice is based on the fact that some alert categories are bursty, and

thus the highest-byte nodehours often do contain alerts.

3.2 Nodeinfo

The motivating premise of Nodeinfo is that similar computers correctly executing
similar workloads should produce similar logs, in terms of content (i.e., line tokens).
Nodeinfo is universally applicable, in the sense that it can be computed on any to-
kenizable log with timestamps. Nodeinfo does not train on labeled data; it is un-
supervised. The results represent a performance baseline for alert detection without
incorporating system-specific information. The development of Nodeinfo, as well as
its performance on a small subset of the data considered in this chapter, is detailed
elsewhere [66]. This chapter contributes examination of its effectiveness on multiple
systems, larger systems, and over longer time ranges (together resulting in nearly two
orders of magnitude more data). In addition, it examines the effects of using different
sized sliding windows, as done in practice.

The first step is to compute how much information each token conveys regarding
the computer that produced it. Let W be the set of unique terms formed by concate-
nating each line token with its position m in the line (w,, = m,s;,,), and let C' be
the total number of nodes. Let X be a |W| x C matrix such that z,, . is the number
of times term w appears in messages generated by node ¢. Towards understanding
how unevenly each term is distributed among nodes, let G be a vector of |W| weights
where ¢, is equal to 1 plus term w’s Shannon information entropy [6]. Specifically,

Jw =1+ m Zle Duw.c 1089 (Duw), Where py, . is the number of times term w occurs

CHAPTER 3. ALERT DETECTION 31

Tw,c)
C .
Ze:l Tw,c

Thus, a term appearing on only a single node receives a weight of 1, and a term

on node ¢ divided by the number of times it occurs on any node (py. =

appearing the same number of times on all nodes receives a weight of 0.

The second step ranks nodehours according to how many high-information terms
each contains. Let H be the set of all nodehours and let Y be the |W| x |H| matrix
where y, . ; is the number of times term w occurs in nodehour H 5 The Nodeinfo

value for each nodehour is then calculated as

(W
Nodeinfo(H) = Z(gw 108y (Yuw,ej +1))%

w=1

Nodehours are then ranked by decreasing Nodeinfo value. Those containing high-
information terms will be ranked high, and those containing low-information terms
(even a great number of them) will be ranked low. These calculations are modeled
after the “log.entropy” weighting scheme [6], where term entropy is calculated over
node documents and then applied to all nodehour documents in the corpus.

We now describe two practical considerations important for reproducibility of our
results. First, we exclude all m = 1 terms (timestamps) in order to decrease the false
positive rate [66]. Second, we institute a minimum support threshold of 2. Most
terms are infrequent, so this significantly reduces memory overhead and has little
impact on the outcome. For instance, terms with a support of 1 must each have a
weight of 1, but can contribute no more than the square root of their total number to
a nodehour’s Nodeinfo(H$) magnitude. One class of terms eliminated in this manner
is hexadecimal addresses, which rarely facilitate alert detection. We do not evaluate

the actual impact of this threshold on the results due to computational limitations.

3.3 Results

We ran Nodeinfo offline on data from four of the supercomputers from Chapter 2:
Liberty, Spirit, Thunderbird, and Blue Gene/L (BG/L). In these initial tests, the

algorithm did not significantly outperform Bytes; moreover, it was far from optimal.

CHAPTER 3. ALERT DETECTION 32

’ Alert Type/Cat. \ Count \ Nodehours \ Example Message Body (Anonymized) ‘
’ Affected Systems: Thunderbird, Spirit, and Liberty ‘

H / CHK_.COND 3,948,364 66 | kernel: [hex] has CHECK CONDITION, sense
key = 0x3

S / EXT_INODE 1,299,603 47 | kernel: EXT3-fs error [...] unable to read
inode block - [..|]

H / HDA_NR 883,399 1846 | kernel: hda: drive not ready for
command

H / HDA_STAT 883,398 1846 | kernel: hda: status error: status=|..]

S / PBS_U09 437,776 199 | pbsmom: Unknown error 15009 (15009) in
job_start_error from node [IP:port], [job]

S / PBS_EPI 53,647 1192 | pbsmom: scan_for_exiting, system epilog
failed

S/ CALL.TR 40,810 839 | kernel: Call Trace: [<[..]>]
net_rx action [kernel] [.]

S / PBS_U23 5177 8 | pbsmom: Unknown error 15023 (15023) in
job_start_error from node [IP:port], [job]

’ Affected System: Blue Gene/L ‘

H / DDR.STR 243 241 | ddr: Unable to steer [.|] consider
replacing the card

H / DDR_EXC 41 41 | ddr: excessive soft failures, consider
replacing the card

Table 3.1: Additional actionable alert messages discovered via our algorithms.

We now describe the insights that allow us, in Section 3.4, to improve performance

several-fold.

3.3.1 Data Refinement

We investigated the initially mediocre performance by scanning the output nodehour
lists for false positives, starting with the most highly-ranked nodehours that ostensibly
contained no alerts. In these nodehours, we discovered several new alert types that
had been incorrectly assigned null alert tags. Using the same rigorous verification
process as was employed to tag the original alerts, we updated the data sets with these
new alert types. This process involves discussions with the system administrators and
a characterization of the alerts that allows us to identify them elsewhere in the log. We
also discovered 80 lines erroneously tagged as alerts in the original data. Two were test

scripts run on Spirit by an administrator, and the other 78 (on Thunderbird) appear

CHAPTER 3. ALERT DETECTION 33

to have been the result of a buggy tagging script. The new alerts are summarized in
Table 3.1, similar to Table 2.1.2 in Chapter 2. “Cat.” is the alert category. Types
are H (Hardware) and S (Software). Bracketed text indicates omitted information;
a bracketed ellipsis indicates sundry text. In all, we discovered ten alert categories,
containing 7,552,458 new alert messages across 6325 nodehours.

One might speculate whether such alerts could have been discovered via inspec-
tion, such as by selecting and reading random nodehours. Years of intense scutiny
by the system administrators, and later by us, failed to elucidate the alerts dis-
covered via our automated method. Thus, we believe such speculation is idle; our
information-theoretic algorithm revealed new alert categories with great efficiency,
and the administrators have since incorporated these alerts into their production

detection infrastructure.

3.3.2 Tagging Limitations

In addition to the ten alert categories enumerated in Table 3.1, our analysis revealed
dozens of other alert categories that were more challenging to incorporate into our
current tagging framework. Whether or not certain messages are alerts may depend
on (i) the rate at which the messages were generated (rate-sensitive), (i) proximate
messages or the operational status of the node (context-sensitive), or (iii) whether
the corresponding remedy is actually known or elected (non-actionable).
Per-message alert tagging is straightforward (linewise regular expressions) and
precise (exact time and source of an alert). Furthermore, the use of linewise tagging
in this chapter is consistent with prior work [28, 33]. Nevertheless, limitations of our
tagging tools and a poor understanding of rate thresholds obliged us to exclude rate-
and context-sensitive messages as alerts. There are reasons to expect that including
them would improve the performance of our techniques. System administrators have
advised us that non-actionable alerts still merit their attention, and so we treat them

on par with actionable alerts for scoring.

CHAPTER 3. ALERT DETECTION 34

| System || Counts [C% | A/IO % | O % |
Blue Gene/L || Total: 1,816,627 | 87.08 12.10 | 0.8200
(8.48% alerts) || Alert: 154,014 | 45.42 54.52 | 0.0600

Thunderbird || Total15,255,833 | 89.50 0.6603 | 9.840
(0.163% alerts) || Alert: 24,877 | 85.81 0.0764 | 14.11

Spirit Total: 6,731,957 | 98.76 0.3894 | 0.8506
(0.207% alerts) || Alert: 13,933 | 93.12 5.828 | 1.052
Liberty Total: 1,820,433 | 96.07 1.492 2.438

(0.282% alerts) || Alert: 5139 | 97.90 0.1946 1.905

Table 3.2: Distribution of total and alert nodehours across node types. ‘C’ is Com-
pute, ‘A/IO’ is Admin and IO, and ‘O’ is Other.

3.3.3 Similar Nodes

Statistical anomaly detection algorithms like Nodeinfo compare a sample against a
reference distribution and measure the variation from “normal”; such algorithms per-
form better when the reference distribution is from the same homogenous population
as the sample. One way to define homogeneous groups is by function. In the con-
text of large clusters and supercomputers, different nodes serve different functions:
computation, administration, communication, etc.

A natural question, therefore, is whether Nodeinfo would perform better when
run on functionally homogeneous groups of nodes, rather than all nodes, together.
To test this, we ran Nodeinfo on logs from all nodes, and on functionally similar
subsets independently, but scored all results using the full number of alerts in all
the logs. When considering only compute nodes on Liberty, the Nodeinfo algorithm
achieves a maximal F1 score that is seven times better than when non-compute nodes
are included. (F1 is a popular summary metric, ranging from 0 (bad) to 1 (good)
that weights false positives and false negatives equally.) In other words, even when
we handicap Nodeinfo by showing it only logs from the compute nodes, its score
against the entire data set improves. Although we omit these offline results, the
online experiments show similar improvements (Section 3.4).

Table 3.2 shows the distribution of nodehours from each functional group: com-
pute nodes, administrative nodes (Thunderbird, Spirit, and Liberty), IO nodes (BG/L),

and other nodes. Columns 4-6 give the percent contribution of that functional group

CHAPTER 3. ALERT DETECTION 35

to the total number of nodehours (first row) and the number of alert nodehours (sec-
ond row). For example, only 12.1% of the nodehours on BG/L were from I/O nodes,
but this functional group contributed 54.52% of the alert nodehours. Considering that
only 3.9% of Liberty’s nodehours were from non-compute nodes, the significant im-
pact of their exclusion on Nodeinfo is noteworthy. In other words, when we group the
nodehours by functional group, we create homogeneous backgrounds against which
Nodeinfo is better able to identify the anomalies. These data support our claim that

similar computers (compute nodes) tend to generate similar logs.

3.4 Online Detection

The offline techniques are valuable for exploring the data, but a production setting
requires online detection with low latency. In this section, we modify Nodeinfo to
operate using a sliding, bounded history window. Furthermore, we run the algorithm
on major functional groups individually, to evaluate the impact of leveraging our
observation regarding similar nodes.

We use a “sticky” sliding window to compute the Nodeinfo score for the current
nodehours: for reasons of efficiency, this window is not of fixed size; it always starts
at midnight W — 1 days prior, for a window size of W days. For example, if W = 30,
then all nodehours on January 30th will use data generated since January 1st at
12:00 AM. Thus, W is an upper bound on the amount of history considered in the
computation. We consider windows of 30, 60, and 90 days. For consistency, the first
90 days of data are omitted from scoring all online experiments.

To evaluate our similar nodes hypothesis, we divide the logs into functional groups
(see Table 3.2) and run Nodeinfo on each group; the resulting lists of ranked node-
hours are then scored against all functional groups. (Alerts in other groups are au-
tomatically false negatives.) Results from BG/L are plotted in Figure 3.1. Detection
performance on the IO nodes in isolation exceeds that of detection over the log as a
whole, even when dropping alerts from every other functional group on the floor. The
compute nodes group on Spirit (Figure 3.2) yields area under the curve more than

twice that of both Bytes and Nodeinfo run on the entire log, even without considering

CHAPTER 3. ALERT DETECTION 36

= - — hbytes (01127, 0.3104)
—— all.30 (D.2541, 0.539)
--- allB0 (0.25718, 0.5439)
- A T all.30 (0.2471, 0.5473)
=] — compute 30 (0.0072, 0.0391)

-—-- compute B0 (0.0065, 0.037&)
------ compute.30 (0.0063, 0.0952)
- i0.30 (0.3132, 0.4432)
= 060 (0.3324, 0.4711)
i0.90 (0.3633, 0.4581)

Frecision

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.5 1.0
Recall
Figure 3.1: Precision-recall curves for the online Nodeinfo detector on Blue Gene/L.

The legend indicates the functional group, window size, area under the curve, and
maximal F1: group.window (area, F1).

CHAPTER 3. ALERT DETECTION 37

=
- 7 — hbytes (0,103, 0.1303)
A | —— all.30 (0.0905, 0.1268)
ol --- all.B0 (0.0885, 0.1281)
- e % e all.30 (0.0554, 0.1261)
=] | — compute 30 (0.2665, 0.2734)
’ --- compute B0 (02663, 0.2741)
------ compute. 90 (0.2631, 0.27435)
“
s]
=
&
et
B o=
=
o
]
=
]

0.0 0.e 0.4 0.6 0. 1.0
Recall
Figure 3.2: Precision-recall curves for the online Nodeinfo detector on Spirit. The

legend indicates the functional group, window size, area under the curve, and maximal
F1: group.window (area, F1).

CHAPTER 3. ALERT DETECTION 38

the remainder of the data. The results from BG/L and Spirit are representative.
For comparison, consider the area under the curve metric when the results in
Figures 3.1 and 3.2 are scored against only their respective functional groups: on
the BG/L IO nodes, Nodeinfo achieves 0.63 of OPT; on the compute nodes, the
metric improves nearly ten-fold. The critical conclusion is that we can leverage the
homogeneity of large systems to dramatically improve the quality of alert detection.
Our results show that (i) Nodeinfo is an improvement over Bytes, (ii) Nodeinfo
performs better on homogenous functional groups than on all the log at once, and
(iii) larger window sizes yield marginal improvements, suggesting both that the logs
are changing slowly enough for the past few months to reflect the future and that the

computationally inexpensive parameters yield competitive results.

3.5 Contributions

The main goal of reliability research for high performance computing is to minimize
unscheduled downtime. To do so, we must reduce the time that system administra-
tors spend investigating new fault types and performing root cause analysis. Better
techniques for alert detection are an important step toward more efficient system
management, automatic fault prediction and response, and greater overall reliability.

In this chapter, we formalized the alert detection problem; presented Nodeinfo, a
general, unsupervised alert detection algorithm; and quantitatively demonstrated its
effectiveness on 81 GB of public supercomputer system logs. Our most salient insight
into the alert detection problem is that similar nodes running similar workloads tend
to generate similar logs—we can better identify anomalous behavior when normal
behavior appears more uniform. The most compelling evidence of our success is
that we discovered several new alert categories that had eluded experts for years and
that our online implementation of Nodeinfo [65] is in production use on Red Storm,
Thunderbird, and Liberty. According to the administrators of these systems, “[our
method] has automatically detected, and more importantly isolated, a wide range of
problems,” and they have found it to be “a useful diagnostic tool.” Thus, our work

has already had a positive operational impact on the systems we studied.

Chapter 4
Influence

The previous chapters focused on what information system logs contain, the chal-
lenges associated with analyzing them, and a method for quantifying how statisti-
cally surprising parts of the log are as a means for detecting misbehavior. However,
when something goes wrong in a complex production system—a performance glitch,
a strange result, or an outright crash—detection alone is insufficient. It is also crucial
to identify the components that are likely sources of the misbehavior.

In this chapter, we assume a method for quantifying surprise—converting the logs
generated by components into signals of surprise over time—and turn our attention
toward how to use such signals to understand the relationships between those com-
ponents. Specifically, we define influences as a class of component interactions that
includes direct communication and resource contention. We show that understanding
the existence and strength of interactions, even without knowledge of the underlying
mechanism, can be valuable for problem diagnosis.

A fundamental difficulty is that the costs of instrumentation in production sys-
tems are often prohibitive. Significant systems are invariably constructed from many
interacting subsystems, and we cannot expect to have measurements from every com-
ponent. In fact, in many systems we will not even know of all the components or of
the interactions among the components we do know. Our influence method generates

a potentially partial diagnosis from whatever data is available.

39

CHAPTER 4. INFLUENCE 40

Our method requires only that some of the components in the system are in-
strumented to generate timestamped measurements of their behavior. The type of
measurements may depend on the type of component (e.g., a laser sensor may be
instrumented differently than a hard disk). Thus, we need a way to compare mea-
surements of different components in a uniform way. We address this issue, and the
related question of how to summarize different kinds of measurements from a single
component, by mapping all components’ behavior to a single dimension: surprise.
That is, our method quantifies how anomalous individual component behavior is, as
an anomaly signal, using deviation from a model of normal component behavior. An
important feature of our anomaly signals is that they are real-valued, meaning that
the degree to which a component’s behavior is anomalous is retained, rather than the
common approach of discretizing behavior into “normal” and “abnormal”.

When two anomaly signals are correlated, meaning that two components tend to
exhibit surprising behavior around the same time, we say that the components share
an influence. This correlation can arise from a number of interactions, including
direct communication and contention for a shared resource. Not all interactions are
instantaneous, so we use effect delays—how long it tends to take an anomaly in
one component to manifest itself in another—to establish directionality. Correlation
is a pairwise relationship and delay is directional, so the most natural structure to
summarize influence is a graph. A Structure-of-Influence Graph (SIG) encodes strong
influence as an edge between components, with directionality to represent a delay.

Passively collected data, if devoid of hints like “component A sent a message to
component B,” cannot be used to infer causality: the strongest possible mathematical
statement is that the behavior of one component is correlated with another. An
advantage of using statistical correlation is that it enables asking “what-if” queries,
after the fact. For example, it is easy to add a new “component” whose anomaly signal
is large around the time bad behavior was observed. Other, real, components that
share influence with the synthetic component are likely candidates for contributors
to the problem.

Our goal is to generate a structure, informed by models of component behavior,

that enables a user to more easily answer prediction and diagnosis questions. The

CHAPTER 4. INFLUENCE 41

influence method has several desirable properties:

e Building a SIG requires no intrusive instrumentation; no expert knowledge of
the components; and no knowledge about communication channels (e.g., the
destination of a message), shared resources, or message content. Our method

is passive and can treat components as black boxes.

e Influence describes correlation, not causality. A key feature of our approach
is to drop the assumption that we can observe all component interactions and

focus on the correlations among behaviors we can observe.

e By working directly with a real-valued, rather than binary, anomaly signal, our

method degrades gracefully when data is noisy or incomplete.

e Our experimental results show that SIGs can detect influence in complex sys-
tems that exhibit resource contention, loops and bidirectional influence, time-

delayed effects, and asynchronous communication.

In this chapter, we present the influence method and work through an example
(Section 4.1); perform several controlled experiments using a simulator (Section 4.2)
to explore parameters like message drop rate, timing noise, and number of intermedi-
ate components; describe the central case study of the chapter, how we took passively
collected measurements from two autonomous vehicles and built SIGs that enabled
us to identify the source of a critical bug (Section 4.3); and briefly present a signif-
icantly different second example by isolating a bug in a production supercomputer
(Section 4.4).

4.1 The Method

This section describes how to construct and interpret a Structure-of-Influence Graph
(SIG). The construction process consists of four steps: decide what information to use
from each component (Section 4.1.1), measure the system’s behavior during actual
operation as anomaly signals (Section 4.1.2), compute the pairwise cross-correlation

between all components’ anomaly signals to determine the strength and delay of

CHAPTER 4. INFLUENCE 42

correlations (Section 4.1.3), and construct a SIG where the nodes are components
and edges represent the strength and delay of correlations between components (Sec-
tion 4.1.4). We later apply these techniques to idealized systems (Section 4.2) and
real systems (Sections 4.3 and 4.4).

4.1.1 Modeling

Log data tends to contain irrelevant information (noisy) and lack important infor-
mation (incomplete); a model is a means of filtering the noise, amplifying the signal,
and encoding external knowledge. For example, a user might know that a particular
sequence of messages is surprising and build that into the model. Even in the ab-
sence of such expert knowledge, a model can express the intuition that deviation from
typical measurements is surprising; we use such models throughout this chapter.

The choice of component models determines the semantics of the anomaly signal
and, consequently, of the SIG. For example, if we model a program using the distri-
bution of system call sequences and model a memory chip using ECC errors, then the
relationship of these components in the resulting SIG represents how strongly mem-
ory corruption influences program behavior, and vice versa. There is not, therefore, a
single correct choice of models; for a particular question, however, some models will
produce SIGs better suited to providing an answer.

We have found two models particularly useful in practice: one based on message
timing, which is useful for systems where timing behavior is important (e.g., embedded
systems) and at least some classes of events are thoroughly logged (see Section 4.3),
and one based on the information content of message terms, useful for systems where
logging is highly selective and ad hoc (see Section 4.4). The timing model keeps track
of past interarrival times (the first difference of the timestamps, meaning the difference
between each timestamp and the previous one) and computes how “surprising” the
most recent spacing of messages is (see Section 4.1.2); the term entropy model looks

at the distributions of message contents using the algorithm from Chapter 3.

CHAPTER 4. INFLUENCE 43

4.1.2 Anomaly Signal

We quantify the behavior of components in terms of surprise: the anomaly signal
A;(t) describes the extent to which the behavior of component j is anomalous at time
t. The instantaneous value of the signal is called the anomaly score. Let A(t) = 0
for any t outside the domain of the anomaly signal. We require that A;(¢) has finite
mean ; and standard deviation o;.

The anomaly signal should usually take values close to the mean of its distribution—
this is an obvious consequence of its intended semantics. The distance from the mean
corresponds to the extent to which the behavior is anomalous, so values far from the
mean are more surprising than those close to the mean.

The user defines what constitutes surprising behavior by selecting an appropriate
model. For example, one could use deviation from average log message rate, degrees
above a threshold temperature, the divergence of a distribution of factors from an

expected distribution, or some other function of measurable, relevant signals.

Computing the Anomaly Signal

In this section, we discuss the mechanics of computing the anomaly signal A;(t) for
the timing model mentioned in Section 4.1.1. We describe the offline version.

Let S be a discrete signal from some component, consisting of a series of time
(non-decreasing timestamp) and value pairs: S = ((tg, vo), (t1,v1), ..., (ts, vs)).

Individually, denote S(i) = (t;,v;), T(i) = t;, and V(i) = v;. This work gives
special attention to the case when V(i) is the first difference of the time stamps
(interarrival times): V(i) =T(i) —T(i — 1) and V(0) = ¢ (null).

To compute anomaly signals, we compare a histogram of a recent window of be-
havior to the entire history of behavior for a component. Let h be the (automatically)

selected bin width for the histogram (in seconds), let w be the size of the recent his-

max v; —min v;

D
For each bin H(j) in the historical histogram, count the number of observations V' (7)

such that jh < V(i) < jh+ 1. Let R(T'(i)) be the analogous histogram computed
from the previous w samples, ending with V(7). Note that R(T'(:)) is not defined

tory window in number of samples, and let k = | be the number of bins.

CHAPTER 4. INFLUENCE 44

for the samples V(1) through V(w). Let H' and R'(t) be the corresponding proba-
bility distributions, where the count in each bin is divided by the total mass of the
histogram; H has a mass of s — 1 and R(¢) has a mass of w.

Compute the Kullback-Leibler divergence [25] between each recent distribution

R'(t) and the historical distribution H’, producing the anomaly signal A(t):

R(t, k)

M) = Dia (RO = 3 Rtk logy g0

kER!(t)

Intuitively, KL-divergence is a weighted average of how much the fraction of measure-
ments in bin R'(¢, k) differs from the expected fraction H (k).

After computing A;(t) for each component, we store the sampled signals as an
n X m matrix, where n is the number of components and m is the number of equi-
spaced times at which we sample each anomaly signal. We then process these matrices
as described starting in Section 4.1.3. Observe that, having represented the system

as a set of anomaly signals, the rest of our method is system-independent.

4.1.3 Correlation and Delay

For each pair of components (i, j), compute the normalized cross-correlation of their

anomaly signals:

(Az *A])(t) = /OO [Al<T) - :ul] [Aj(t + T) - ’uj]dT. (41)

—00 0;0;

The function (A; * A;)(t) gives the Pearson product-moment correlation coefficient of
the anomaly signals of components ¢ and j, with an offset, or delay, of t time steps; it
is the correlation of the two signals if A; were delayed relative to A; by t. Consider two
hypothetical components, A and B, whose cross-correlation is plotted in Figure 4.1.
There is a peak at t = —100 because anomalies on A tend to appear 100 units of time
before they do on B. This plot would be represented in the SIG by an edge A — B.

The resulting O(n?) cross-correlation functions of an n-component system are

the primary output of our analysis. (It is worth noting that Project5 uses a form

CHAPTER 4. INFLUENCE 45

- - Edge threshold (g)
--- Arrow threshold (a)

0.6

Cross—correlation
0.2
L

I — T I I
-200 -100 0 100 200

Delay

Figure 4.1: The normalized cross-correlation between components A and B.

- © OLe—®

Figure 4.2: The Structure-of-Influence Graph for a system that includes A and B.

of signal correlation with communication events to compute dependencies [2].) In
general, however, these correlation vectors contain too much information to present a
useful view of a system; we distill these data into simpler forms. First, we represent
two salient features of the functions (specific extrema values and positions) as two
order n x n matrices: C and D. Second, in Section 4.1.4, we transform these matrices
into a SIG. The SIG is often the shortest path to insights about a system, but the
underlying data is always available for inspection or further analysis.

We now construct the correlation matrix C and delay matrix D from the cross-
correlation functions. Consider a particular pair of components, ¢ and j. Let d;; and
dzg be the offsets closest to zero, on either side, at which the cross-correlation function

1S most extreme:

v

d;; = max(argmax,.,(|(A; x A;)(t)])) and
d;rj = min(argmax,q(|(A; x A;)(2)])),

where argmax, f(t) is the set of t-values at which f(¢) is maximal. (One could also

select the delays furthest from zero, if that is more appropriate for the system under

CHAPTER 4. INFLUENCE 46

study.) Next, let ¢;; and c;; be the correlations observed at those extrema: c¢;; =
Let entry C;; of the correlation matrix be ¢;; and let Cy; be c;; (Notice that
¢; = ¢;;-) Similarly, let entry Dy; of the delay matrix be d;; and let Dy; be djf.

%)

4.1.4 Structure-of-Influence Graph (SIG)

A Structure-of-Influence Graph (SIG) is a graph G = (V, E) with one vertex per
component and edges that represent influences. Edges may be undirected, directed,
or even bidirectional, to indicate the delay(s) associated with this influence. This
section explains how to construct a SIG.

Consider the n x n matrices C and D. There is an edge between ¢ and j if
max(|Cy;],|Cj;|) > €. Let a be the threshold for making an edge directed; the type

of edge is determined as follows:

((ICi5] > &) = (Dij > —a)) A((ICji| > &) = (Dji < a)) =1 J;
(ICi] > e) A(Dy; < —a) =i 7;
(ICjil >e) A (Dj; >) =14 7J;
(ICij] > e) A(Dy; < —a) A(|Cjsl >) A(Dy; >) =i]

The time complexity of our method on a system with n components, given an
algorithm to compute cross-correlation in time O(m), is O(n*m). For large systems,
we may wish to compute only a subset of the SIG: all influences involving a set of
n' << n components. This is equivalent to filling in only specific rows and columns
of C and D and requires time O(nn'm).

Recall our example components A and B. Using the cross-correlation of A and
B, shown in Figure 4.1, we apply the thresholds o« = 20 and ¢ = 0.5 and plot a SIG.
Although |Cj;| < e, we have |C;;| = 100 > ¢, so there will be an edge between A and
B. Furthermore, D;; < —a, so the edge will be directed: A — B. Figure 4.2 gives a
SIG for a hypothetical system that includes A and B as components. In subsequent

sections we discuss how the values of a and € can be chosen or set automatically.

CHAPTER 4. INFLUENCE 47

4.1.5 Interpreting a SIG

An edge in a SIG represents a strong (> ¢) influence between two components. The
absence of an edge does not imply the absence of a shared influence, merely that the
anomalies identified by the models are not strongly correlated—a different choice of
models may yield a different graph. More specific interpretations arise from under-
standing particular models and underlying components.

A directed edge implies that an anomaly on the source component (tail of the
arrow) tends to be followed shortly thereafter by an anomaly on the sink component
(head of the arrow). Bidirectional edges mean that influence was observed in both
directions, which may mean either that the influence truly flows in both directions or
that it is unclear which directionality to assign (this situation can arise with periodic
anomalies). An undirected edge means that, to within a threshold «, the anoma-
lies appear to occur simultaneously. This happens, for instance, when a mutually
influential component is causing the anomalies. Such shared components sometimes
introduce cliques into the SIG.

The model underlying each component could measure anything, from the message
rate of a software application to the throughput variance of a network card. The
edges of a SIG could surprise us by their existence (e.g., anomalies in fan speed are
correlated with larger error terms in a scientific calculation), by their absence (e.g.,
anomalies in a disk subsystem do not influence the operating system), or by their
directionality (e.g., a supercomputing workload whose anomalies precede those on
the network router, rather than follow from them).

Structural properties of SIGs have useful interpretations. A clique, in particular,
may draw attention to missing data: the influence shared by the components in the
clique may be exerted by a component not represented explicitly in the SIG (although
an unexpected clique may spur the user to include such a component).

When used for problem isolation, the most important piece of actionable informa-
tion provided by our method is a concise description, in the form of graph edges, of
which components seem to be involved. Further, the strength and directionality on
those edges tell the order in which to investigate those components. In a system of

black boxes, which is our model, this is the most any method can provide.

CHAPTER 4. INFLUENCE 48

] Workload
> O — HTML
TS 4 - - PHP
S S -+ Error
o | -

o _ - - S <o

o - S = -

S |

S I I I I I I I
100 200 300 400 500 600 700

Microseconds

Figure 4.3: These apache workloads show that input semantics can affect output
timing.

4.2 Controlled Experiments

In this section, we study the notion of influence and our method for computing it
under a variety of adverse conditions: measurement noise, message loss, and tainted
training data. We use simulation experiments on idealized systems consisting of
linear chains of components. We use chains so the results of our simulations are
easy to interpret; our method is not limited to chains, and our experiments with
real systems in subsequent sections involve much more complex structure. Our goal
is to thoroughly examine a specific question: Given a known channel of data and
resource interactions through which influence could propagate, what is the strength
(¢) of the influence inferred by our method? Our results show that, for many realistic
circumstances, influence can propagate through long chains of components, and our
method can detect it.

We first illustrate two common cases of influence flowing through components that
arise in practice: semantic input differences and resource contention manifesting as
downstream timing differences. Figure 4.3 shows that the web server apache, when
given workloads consisting of error pages, html pages, or php pages, yields distinctive
processing time distributions. That is, components can convert semantic information
into timing information. Next, we show in Figure 4.4 how components’ timing is
affected by shared resources. When between one and four—otherwise independent—

client-server pairs communicate using shared resources, they influence each other’s

CHAPTER 4. INFLUENCE 49

B # Pairs
o
n — P
2 - " . %
G B i /\‘\ 1.1\'\.”\
g ™ j ‘I‘ ! 4)“\ 3
8 S AN o R - 4
o |) o A /., N
SN o 2 NN
| J 2 and, ! ._MW‘—‘*U-‘H‘«-J"’ I S
I I I I I I
0.04 0.06 0.08 0.10 0.12 0.14

Seconds

Figure 4.4: Client-server pairs can influence each other when they share a resource.
As the number of otherwise-independent client-server pairs increases, thus increasing
contention, the timing density distribution also changes.

o ¢ g

R

Figure 4.5: The three basic structures in our simulated systems, built from sources
(“S”), tasks (“T”), and resources (“R”).

timing: the distribution for a single client-server pair (far left) is very different from

the distributions of the four simultaneous client-server pairs (far right).

4.2.1 System Components

The simulations use three types of components: sources, which generate data, tasks,
which process data, and resources, which are required by sources and tasks to perform
these actions. Pairs of sources and tasks, shown in Figure 4.5, can influence each
other via direct communication or via competition over a shared resource. We study
linear chains of such structures in which the first component is a source; that source,
called the head, is designed to sometimes misbehave during the experiments and acts
as the root cause that we wish to find. The only input to our method is a pair of
timestamp vectors (one for the head of the chain and one for the tail) corresponding to

message sending times. No information about simulation parameters or intermediate

CHAPTER 4. INFLUENCE 50

components is provided.

Influence can flow over a direct source-to-task or task-to-task channel either by
timing (anomalous input timing may cause anomalous output timing, as in a producer-
consumer interaction), by semantics (tasks may take more or less time to process un-
common messages), or both. Influence can flow over a shared resource only through
timing (e.g., the degree of contention may influence timing); we do not simulate

implicit communication through shared memory.

4.2.2 Component Behavior

We characterize timing behavior of components by distributions of interarrival times,
which is sufficient to compute anomaly signals (see Section 4.1.2). These experiments
use Gaussian (normal) distributions. Let 7, denote a normally distributed random
variable with mean 1 and standard deviation o,. Fixing the mean makes the problem
more difficult, because abnormal behavior does not result in consistently more or
fewer messages (merely greater variance) and because anomalous behavior looks like
measurement, imprecision (noise).

A source generates the message 0 every m, seconds. A source may be blocked if
any downstream component is not ready to receive the message, in which case it waits
until all such components are ready, sends the message, and then waits 7, seconds
before trying to generate the next message. We consider three types of anomalous
behavior at the source node: timing (generates a message every 7, seconds), semantics
(generates the message 1), and both.

A task begins processing a message upon receipt, taking 7y seconds for a 0 message
and 7, seconds for a 1 message. After processing, a task sends the same message to
the next component downstream. If that component is not ready, the task is blocked.
A task is ready when it is not blocked and not processing a message.

A resource receives and processes messages; it can simultaneously process up to
R messages for some capacity R. A resource requires 7, seconds to process a message
and is ready to receive whenever it is processing fewer than R messages. Resources

service simultaneous requests in a random order.

CHAPTER 4. INFLUENCE o1

When the head (the source) or tail of the chain sends a message, as described
above, it records the time at which the message was sent; our method computes the
influence given only this pair of timestamp lists. While real systems may exhibit more
complex behavior, these simple rules are enough to capture different classes of inputs

(0 vs. 1 messages), resource contention, and potential timing dependencies.

4.2.3 Methodology

Each experiment, resulting in a single influence value ¢, involves two independent
simulations of a chain over a time period long enough for the head to send 10,000
messages. The first simulation yields a trace that is used for training (a behavior
baseline), and the second, a monitoring trace, is used to build the SIG. Except where
otherwise indicated, the training trace does not contain anomalous behavior, and the
monitoring trace contains a contiguous period of anomalous behavior lasting 5% of
the trace (500 messages).

Resources have exactly two connected components, each with a normal average
message sending rate of 1 per second, so every resource has a capacity of R = 2. That
is, there should be little contention during normal operation. The number of resources
is denoted by #R=7; resources are evenly distributed along the chain. Except where
otherwise noted, o, = 0, = 09 = 0.01 and o, = 0; = 0.1. For the component model,
the histogram bin size is h = 0.01 seconds (set automatically) and the window size is

w = 500 samples (chosen to match the anomalous period).

4.2.4 Experiments

Baseline: We compute an influence strength baseline for each simulation that rep-
resents the expected correlation of anomaly signals if the head and tail were indepen-
dent. For all experiments in this section, that baseline ranges from 0.06 to 0.1; the
average for each set of experiments is plotted in the figures as a dashed line. Thus,
any ¢ value above 0.1 can be considered statistically significant. This is comparable
to the edge threshold of e = 0.15 that we use when considering real systems (see
Sections 4.3 and 4.4).

CHAPTER 4. INFLUENCE 52

— A —B—B_—B—B—8B—8B—8 .
- g8 _&~~-___[& Timing (#R=0)
= ® | xN ~¥l-o- Semantics S#R:O)
s ° o7 L/ |4 Both (#R=0
> @ | X v/ |+ Timing (#R=1)
s °©° + [V Semantics (#R=1)
3 % SO 7o Both (#R=1
o ©O Sl o+ 0
g R Tt
L o
o e
© \ \ \ \ \ \ \
0.02 0.04 0.06 0.08 0.10 0.12 0.14

Anomaly Strength o, (Timing), o; (Semantics), or both (Both)

Figure 4.6: Behavior of the basic components: a single task (#R=0) and a single
resource (#R=1), each with a driving source head.

Basic Components: Figure 4.6 shows the strength of influence across the basic
simulation components of Figure 4.5 for varying anomaly strengths. Tasks propagate
both timing and semantic influence, while resources only propagate timing. Tasks
change semantic influence into timing influence, however, which resources can then
propagate. Over-provisioned resources do not propagate influence; resources with
adequate capacity, which we simulate, propagate timing influence. Note that we
detect influence even when anomalous behavior looks similar to normal behavior:
even during normal operation there is variation in component behavior, and these
variations may be correlated between components.

Length and Composition: When there is more than one component, we find
that influence generally fades with increasing chain length, but remains detectable (see
Figure 4.7). When there are no resources, however, message semantics are passed all
the way to the tail and the influence is undiminished. For the rest of the section, chains
contain six components; this length is long enough to exhibit interesting properties
and is comparable to the diameter of the autonomous vehicle graphs in Section 4.3.

Signal Noise: Our method is robust against noisy data. As we add more and
more Gaussian noise to the timing measurements, it obscures some of the influence of

anomalous behavior but does not mask it entirely. This is true when noise is added

CHAPTER 4. INFLUENCE 93

=
A§ <+ Timing (#R=2)

-® Semantics (#R=2)
* Both (#R=2

o 8—B6—B—8—B8—B—8 .
- g—® = Timing (#R=0)
= @ | -o- Semantics (#R=0)
= ° A Both (#R=0
5 9 + Timing (#R=1)
s © \ % > Semantics (#R=1)
R S - Both (#R=1
Q
(@]
g S
o
o

\ \ \ \ \ \ \
2 4 6 8 10 12 14

Length of Chain

Figure 4.7: Contention carries timing influence across resources and tasks pass along
semantic influence, even down long chains.

to the resulting measurements (measurement imprecision, as in Figure 4.8) or to the
components (omitted for space, but similar to Figure 4.8). Note that even “normal”
timing variations at the head can influence timing at the tail.

Message Loss: For our timing model, message loss is simply another form of
noise that tends to introduce outliers. For example, if a component output messages
at ty, to, and t3, but the second measurement is lost, our timing distribution will
erroneously include the value t3 —t;, which will be twice as large, on average, as most
of the other measurements. To make our job more difficult, we simulate the case when
our training data has no lost messages but the monitoring data does. Figure 4.9 shows
that our statistical methods are not strongly sensitive to missing data.

Tainted Training: The problem of good training data exists for every anomaly-
based method. Figure 4.10 shows that, as the fraction of training data that includes
anomalous behavior increases, influence remains easily detectable. Tainting does not
tend to introduce new correlations; existing correlations may appear less significant,
as in the middle line. Training data need only be statistically representative, so it

can include unusual periods (like startup) or bugs.

CHAPTER 4. INFLUENCE o4

S B—— @ — & ﬁ\g e e Timing (#R=0
= @ | o -e- Timing (#R=1
= © SN, A Timing (#R=2
IS) © | - + Both #R=0
I R . \ < Both (#R=1
5 o5 © oz o= Uy Ny gl BOth (#R=2
Rl I e Lt
S T O Ao

o |

© \ \ \ \ \ \

0.02 0.04 0.06 0.08 0.10 0.12

Standard Deviation of Measurement Noise

Figure 4.8: Our method degrades gracefully when timing measurements are noisy.

These experiments show that influence propagates through systems in a measur-
able way and that our method can detect this influence under a variety of circum-
stances. Although the simulations consider a restricted class of systems, the systems
we study in Sections 4.3 and 4.4 contain far more complex structure, including asyn-
chronous communication through shared memory, high degrees of network fan-in and

fan-out, loops and cycles, and potentially multiple sources of anomalous behavior.

4.3 Stanley and Junior

DARPA launched the Grand Challenge in 2003 to stimulate autonomous vehicle re-
search. The winner of the Grand Challenge was a diesel-powered Volkswagen Touareg
R5 named Stanley, an autonomous vehicle developed at Stanford University [70].
Stanford’s entry in the successive contest, a modified 2006 Volkswagen Passat wagon
named Junior, placed second in the Urban Challenge [36].

Many of the autonomous vehicles’ components run in tight loops that output log
messages at each iteration. Deviations from normal timing behavior are rare, but,
more importantly, we expect the anomalies to correspond with semantically abnormal
situations. For example, if the route-planning software takes unusually long to plot

a path, the vehicle may be in a rare driving situation (e.g., a 4-way stop where the

CHAPTER 4. INFLUENCE 95

o
- Uoooog
ovoo DDDD@DDD O O
—~~ [e 0] oo BN
O AAAOOAAA\ ?ADD@@\ ° 0o oY 5
;__"5', © A4 AAY N DA m@\D \E&/ ,OE]DIOO Ua /DD g O
c - oA A Oy ‘o \l[:] ‘D[]
9] © A AAA Z [
(7) U AA AN ‘A o [l
) © — AA Bp AA{} A
< o _|B Timing (#R=0 A° A
W S "Je- Timing (#R=1
o |4 Timing (#R=2) - - - s
o
\ \ \ \ \ \
0.0 0.1 0.2 0.3 0.4 0.5

Message Drop Rate (as a fraction of total)

Figure 4.9: Our method is robust against uniform message loss, even at rates of 50%.

driver with right-of-way is not proceeding).

4.3.1 Stanley’s Bug

During the Grand Challenge race, Stanley suffered from a bug that manifested itself
as unexplained swerving behavior. That is, the vehicle would occasionally veer around
a nonexistent obstacle. According to the Stanford Racing Team, “as a result of these
errors, Stanley slowed down a number of times between Miles 22 and 35” [70]. The bug
forced Stanley off the road on one occasion, nearly losing the race by disqualification.
We explain this bug in more detail in Section 4.3.6, but, for the time being, let us
suppose that all we know is that we were surprised by Stanley’s behavior between
Miles 22 and 35 of the race and that we would like to use the method described in

this thesis to find an explanation.

4.3.2 Experiments

During the Grand Challenge and Urban Challenge races, each vehicle was configured
to record inter-process communication (IPC) between software components, including
the sensors. These messages were sent to a central logging server and written to disk.

Only a subset of the components generated logs. The messages indicate their source,

CHAPTER 4. INFLUENCE o6

S 0 O O O O o O O O O O
T 2
S RN
2 S To oo o -t 5 Both (#R=0
I -- Both (#R=1
ﬁ S o PR o A Both (#R=2
_g, N N AN N - 5
w o 1 A A o DA 2 A A
I R
© \ \ \ \ \ \
0.0 0.1 0.2 0.3 0.4 0.5

Fraction of Training Data Tainted (Anomalous)

Figure 4.10: Our ability to detect influence does not depend on collecting clean
training data.

but not their destination; the absence of such information means that most previous
work would be inapplicable to this data set. We sample the anomaly signals at
intervals of 0.04 seconds; this sampling interval was set (automatically) to be the
smallest non-zero interarrival time on any single component on Stanley.

The log format is quite regular, with the following canonical format representing

all components (with exceptions noted below). The ellipsis indicates sundry text:
[component] [payload] [utime] [...] [logger time]

The component field does not, strictly, denote the source of the message; it may, for
example, be a message destined for that component. In this work, however, we treat
each such named component as a distinct entity. The absence of a “destination” field
means that methods requiring message paths are inapplicable.

Starting with the raw race logs, we make a few modifications. Our method applies
most directly to components that produce measurements throughout the span of the
logs, so we remove components that were only active during initialization or for only
part of the race. Some of the excluded “components” were status messages, however,
generated by a single component that also generated regular messages under a differ-
ent name. For example, we removed PASSAT_STATUS but retained PASSAT_QUTPUT2.

CHAPTER 4. INFLUENCE 57

Frequency

Cross—Correlation

4000

2000
|

0
\

[I I I I I
1.0 15 2.0 2.5 3.0 3.5

Anomaly Score

Figure 4.11: Anomaly signal distribution for Stanley’s GPS_POS component.

0.0

-1500 -1000 -500 0 500 1000 1500

Delay

Figure 4.12: Cross-correlation of Stanley’s PLANNER _TRAJ and LASER1 components.

We also trim the logs slightly at both ends to the points where all remaining compo-

nents are active.

Computing a SIG requires only two parameters, € and «, neither of which need to

be fixed a priori; adjusting them to explore the impact on the resulting graph can be

informative (e.g., if an entire clique becomes disconnected due to a small decrease in

e, we know that the shared influence has roughly the same impact on all members of

the clique). For the component model, the histogram bin size(s) h is set automatically

using Sturges’ formula [67], and we use a recent window size of w = 100 samples; our

results are not sensitive to this choice.

CHAPTER 4. INFLUENCE 58

@ TOUAREG-ACT

o

}

- PLANNER_INFO PLANNER_TRAJ

Figure 4.13: Known dependency structure of Stanley, including only logged compo-
nents.

;
00

SWERVE

e

LANNER TRAJ

Figure 4.14: The automatically generated SIG for Stanley, with ¢ = 0.15 and a = 90.
The special SWERVE component is explained in Section 4.3.6.

4.3.3 Anomaly Signals

For each component, we use the timing model and computations described in Sec-
tion 4.1.2 to generate an anomaly signal. A “good” anomaly signal has low variance
when measuring a system under typical conditions, in accordance with its semantics
(usual behavior is not surprising behavior). Often, the vehicle components generate
normally distributed or exponentially distributed anomaly scores. Sometimes, as in
Figure 4.11, the anomaly scores are bimodal, with one cluster around typical behavior

and another cluster around anomalous behavior.

CHAPTER 4. INFLUENCE 99

4.3.4 Cross-correlation

We proceed by computing the cross-correlation between all pairs of components within
each car using a discrete version of Equation 5.1.1. When two components do not
share an influence, the cross-correlation tends to be flat. This can also happen when
two components share an influence but there is no consistent delay associated with
it. When there is a shared influence, we see a peak or valley in the cross-correlation
function. The more pronounced the extrema, the stronger the inferred influence.
Figure 4.12 gives the cross-correlation between Stanley’s PLANNER _TRAJ and LASER1
components. We see a peak whose magnitude (correlation) exceeds 0.6, which is
relatively large for this system. We can already conclude that PLANNER_TRAJ and
LASER1 likely share an influence. The strong correlation at a small positive lag means
the LASER1 anomalies tend to precede those on PLANNER_TRAJ.

In addition to the magnitude of the correlation, we can learn from the location of
an extremum on the delay axis. Here, we see that it occurs at a delay of, roughly, 100—
200 samples (at a 0.04-second sampling interval, the delay is around 4-8 seconds). In
this case, we are looking at the result of computing (PLANNER_TRAJ*LASER1)(¢), so the
interpretation is that anomalies on PLANNER_TRAJ tend to occur between 4-8 seconds
after those on LASER1. More important than the value, however, is the direction:
the laser anomalies precede the planner software anomalies. When isolating the bug

mentioned in Section 4.3.1, this turns out to be an important piece of information.

4.3.5 SIGs

Using the method described in Section 4.1.4, we distill the cross-correlation matrices
into SIGs. We compute a statistical baseline for Stanley, similar to Section 4.2.4,
of just under 0.15. For Stanley, a SIG with ¢ = 0.15 and o = 90 is shown in
Figure 4.14; the hand-generated software dependency diagram for Stanley is shown
in Figure 4.13. As a notational shorthand to reduce graph clutter, we introduce grey
boxes around sets of vertices. An arrow originating from a box denotes a similar
arrow originating from every vertex inside the box; an arrow terminating at a box

indicates such an arrow terminating at every enclosed vertex. Consequently, the

CHAPTER 4. INFLUENCE 60

directed arrow in Stanley’s SIG from the box containing LASER* to the box containing
PLANNER* indicates that each laser component shares a time-delayed influence with
each planning software component. We explain the SWERVE component, plotted as a
red rectangle, in Section 4.3.6. Most of the strongest influences do not map to stated
dependencies, meaning the dependency diagram has obscured important interactions
that the SIG reveals.

The edges in the dependency diagram indicate intended communication patterns,
rather than functional dependencies. In fact, Stanley had five laser sensors, not four,
but one broke shortly before the race. The downstream components were clearly not
dependent on that laser, in the sense that they continued working. If another laser
malfunctioned, would it affect the behavior of the vehicle? The dependency diagram
is unhelpful, but in Section 4.3.6 we show how to query a SIG to elucidate this kind
of influence.

Even in an offline context, SIGs are dynamic. By using only a subset of the
data, such as from a particular window of time, we can see the structure of influence
particular to that period. Furthermore, we can consider a series of such periods to
examine changes over time. A SIG for Junior showing influence during the second race
mission, relative to the first is plotted in Figure 4.15. Dashed grey means the edge
is gone, thicker edges are new, and an open arrowhead means the arrow changed.
Disconnected components are omitted. Although the component models use the
entire log as training data, we generate this graph using only data from the first
and second thirds of the Urban Challenge (called “missions”), with edges marked
to denote changes in structure. Notice that many components are disconnected in
this SIG, and thus omitted from the plots, as a consequence of the value of €. As
this parameter increases, edges vanish; as it tends to zero, the graph becomes fully
connected.

One notable change is the new influence between RADARS and PASSAT_EXTOUTPUT2.
Further examination of the data shows several anomalies at the radar components; a
lower value of € would have shown the radars in a clique, but RADARS exhibited the
most pronounced effect. Many of the edges that disappeared did so because anomalies

during the first mission did not manifest in the second. Studying changes in influence

CHAPTER 4. INFLUENCE 61

@ PLANNER_TRAJ3 PLANNER_MDFGOAL
PASSAT-ACT2
1

~~~~~~~~~

Figure 4.15: Dynamic changes in Junior’s SIG, with ¢ = 0.15 and « = 90.

@
o

SWERVE

<
o

e |
o

Figure 4.16: Anomaly signal for a synthetic SWERVE component, taking a nonzero
value only around the time surprising behavior (swerving) was observed.

structure over time enables us to discover such dynamic behaviors.

For the vehicles, physical connectivity does not change during a race, so any
changes are a consequence of which influences we happened to observe during that
period. If we only had access to the latter half of the Grand Challenge logs, for
instance, it would have been more difficult to diagnose the swerving bug because
there was little swerving behavior to observe. For larger systems and longer time

periods, changes in the SIG may correspond with upgrades or physical modifications.

4.3.6 Swerving Bug

Starting only with the logs from the Grand Challenge race and the knowledge that
Stanley exhibited strange behavior between Miles 22 and 35, we show how a simple

application of our method points directly at the responsible components.



CHAPTER 4. INFLUENCE 62

First, we construct a synthetic component called SWERVE, shown in Figure 4.16,
whose anomaly signal is nonzero only for a single period that includes the time the
majority of surprising behavior (swerving) was observed. We could refine this signal
to indicate more precisely when the bug manifested itself, thus increasing the strength
of the correlation, but the surprising result is that, even with this sloppy specification
of the bug, our statistical method is still able to implicate the source of the problem.

Second, we update Stanley’s SIG as though SWERVE were just another component.
The result is the graph in Figure 4.14. Consider the correlation values for the seven
components with which SWERVE seems to share an influence: all four laser sensors,
the two planning software components, and the temperature sensor.

The temperature sensor is actually anti-correlated with SWERVE. This spurious
correlation is the price we pay for our sloppy synthetic anomaly signal; it occurs
because the SWERVE anomaly signal is (carelessly) non-zero only near the beginning
of the race while the TEMP anomaly signal, it turns out, is increasing over the course
of the race.

Now there are six components that seem to be related to the swerving, but the
SIG highlights two observations that narrow it down further: (i) directed arrows from
the lasers to the planner software mean that the laser anomalies preceded the planner
anomalies and (ii) the four lasers form a clique, indicating that there may be another
component, influencing them all, that we are not modeling. (Recall the discussion
in Section 4.1.5.) Observation (i) is evident from the SIG and Figure 4.12 confirmed
that the planner typically lagged behind the lasers’ misbehavior by several seconds.
Observation (ii) suggests that a component shared by the lasers, rather than the lasers
themselves, may be at fault.

According to the Stanford Racing Team, these observations would have been suf-
ficient to quickly diagnose the swerving bug. At the time, without access to a SIG
and working from the dependency diagrams, it took them two months to chase down
the root cause. This is a natural consequence of how a dependency diagram is used:
start at some component near the bottom of the graph, verify that the code is cor-
rect, move up to the parent(s), and repeat. All of the software was working correctly,

however, and until they realized there were anomalies at the input end (the opposite



CHAPTER 4. INFLUENCE 63

end from the swerving) there was little success in making a diagnosis. The SIG would
have told them to bypass the rest of the system and look at some component shared
by the lasers, which was the true cause.

The bug, which turned out to be a non-deterministic, implicit timing dependency
triggered by a buffer shared by the laser sensors, is still not fully understood. However,
the information our method provides was sufficient for the Racing Team to avoid these
issues in Junior. Indeed, this is evident from Junior’s SIG, Figure 4.15, where the
lasers are not influencing the system as they were in Stanley. More information on

the swerving bug can be found in the journal paper concerning Stanley [70].

4.4 Thunderbird Supercomputer

We briefly describe the use of SIGs to localize a non-performance bug in a non-
embedded system (the Thunderbird supercomputer from Chapter 2) of significantly
larger scale (n = 9024) using a component model based on the frequency of terms in
log messages (the Nodeinfo algorithm of Chapter 3) instead of timing. Except for the
different anomaly signal, the construction and use of the SIGs is identical to the case
study in Section 4.3; we focus only on the new aspects of this study.

Say that Thunderbird’s administrator notices that a particular node generates the
following message and would like to better understand it: kernel: Losing some
ticks... checking if CPU frequency changed. For tightly integrated systems
like Thunderbird, static dependency diagrams are dense with irrelevant edges; mean-
while, the logs do not contain the information about component interactions or com-
munication patterns necessary for computing dynamic dependencies.

Instead, we show how a simple application of our SIG method leads to insight
about the bug. Using Nodeinfo, which incorporates no system-specific knowledge, we
first compute anomaly signals for all components. As with Stanley’s swerving bug
(see Section 4.3.1), we can easily synthesize another anomaly signal for each node,
nonzero only when it generates this “CPU error”.

The resulting SIG contains clusters of components (both synthetic and normal)

that yield a surprising fact: when one node generates the CPU error, other nodes



CHAPTER 4. INFLUENCE 64

tend to generate both the CPU error and other rare messages. Furthermore, the
administrator can quickly see that these clusters correspond to job scheduling groups,
suggesting that a particular workload may be triggering the bug. Indeed, it turns out
that there was a bug in the Linux kernel that would cause it to skip interrupts
under heavy network activity, leading the kernel to erroneously believe that the clock
frequency had changed and to generate the misleading CPU error. The SIG method
shows immediately that the error shares an influence with other nodes in the same
job scheduling group; an insight that helps both isolate the cause and rule out other

avenues of investigation.

4.5 Contributions

In this chapter, we propose using influence to characterize the interactions among
components in a system and present a method for constructing Structure-of-Influence
Graphs (SIGs) that model the strength and temporal ordering of influence. We ab-
stract components as anomaly signals, which enables noise-robust modeling of hetero-
geneous systems. Our simulation experiments and case studies with two autonomous
vehicles and a production supercomputer show the benefits of using influence over
traditional dependencies and demonstrate how an understanding of influences can

equip users to better identify the sources of problems.



Chapter 5
Query Language

A large system may have many thousands of components that influence each other,
of which only a small subset are relevant for diagnosing a particular problem. This
chapter builds a query language on top of our influence method that allows users
to constrain the computation of influence to those components that are likely to be
relevant. A query can be as simple as a description of the times when a particular
problem was observed or a list of suspicious components; our system QI (for Querying
Influence; pronounced “CHe”) uses this information to constrain the problem and
produce a smaller, more useful Structure-of-Influence Graph, more quickly. This
extension to SIGs makes them more usable and scalable.

For example, the administrator might specify that surprising behavior was ob-
served around the times a user’s jobs failed. Using that clue alone, Q1 determines what
other components deviated from normal behavior around those times and generates a
SIG to summarize the correlations (see Section 5.2). For example, QI might generate
the hypothetical SIG in Figure 5.1, which shows a component called fan7 sharing
a strong influence with disk32, which in turn shares a strong influence with job
failures (a node representing the problem). The directed arrows imply a temporal
ordering, which in practice often indicates causality. Furthermore, fan7 also shares an
influence with fan6, possibly alerting the administrator to investigate whether some
common cause (perhaps in another component that is not instrumented and produces

no logs) is making the fans misbehave, which in turn is related to disk misbehavior,

65



CHAPTER 5. QUERY LANGUAGE 66

Figure 5.1: An example SIG showing a chain of influence related to the job failures.

which in turn is likely related to the job failures.

QI does not require modifications or perturbations to the system, access to source
code, or even knowledge of all the components in the system or their dependencies
on one another. Our assumptions are considerably weaker than most previous work
and they reflect, in our experience, the reality faced by administrators when they
must diagnose a problem. The answers QI provides are limited by these contraints:
a passive, black-box technique can, at best, suggest the components and interactions
that seem statistically most likely to be involved with a problem. The main advantage
is that, because of the weak assumptions, such a technique can leverage all of the
available information. This is precisely what our method provides, and it does so in
a way that is computationally efficient and applicable to a wide variety of systems.

In this chapter, we present QI's query language (see Section 5.1) and our imple-
mentation of an infrastructure for efficiently computing these queries (see Section 5.2).
Following the lead of previous work in this area [32, 61], we primarily evaluate our
method with case studies; Section 6.3 shows how we can use QI to help isolate a
variety of interesting problems, including a non-deterministic timing bug and an op-

erating system kernel bug triggered by particular workloads.

5.1 The Query Language

A system is composed of a set of components; we assume we are given some subset of
all system components that produce logs with time-stamped measurements. In QI, a
component is represented by a time-series vector describing its behavior; this is the
component’s anomaly signal.

Consider the hypothetical components fan7 and disk32 from Figure 5.1, whose

anomaly signals are plotted in Figure 5.2. These two signals have similar structure,



CHAPTER 5. QUERY LANGUAGE 67

|
-5 0 5 10
|

0 2000 4000 6000 8000 10000

-5 0 5 10
|

0 2000 4000 6000 8000 10000

Time

Figure 5.2: Anomaly signals for the hypothetical components fan7 (A;) and disk32
(A;). By inspection, the signals look similar; our method mathematically describes
this similarity.

especially around times 2000 and 6000. This similarity is what many system ad-
ministrators search for manually and is what our method extracts and summarizes
automatically and at scale.

Recall that if the anomaly signal of one component is correlated with the anomaly
signal of another component, we say that these components share an influence. A
Structure-of-Influence Graph (SIG) is a graph in which the nodes are components
and the edges summarize the strength and directionality of shared influence between
components. The SIG in Figure 5.1 shows a directed arrow from fan7 to disk32,
which means that surprising behavior on fan7 tends to be followed a short time later
by surprising behavior on disk32—that is, the probability that disk32 will show
surprising behavior increases in a short period after fan7 shows surprising behavior.
Section 5.1.1 describes these computations. Furthermore, a query may specify new
components that are built from existing components (e.g., a group of components)
or additional information (e.g., a time range); Section 5.1.2 explains these synthetic
components using several examples.

The user may wish to view only a fragment of the complete SIG, consisting of

some subset of the components and edges; such components are in focus. A query



CHAPTER 5. QUERY LANGUAGE 68

specifies what components are in focus by naming them, and QI will compute all pair-
wise relationships between components in focus. Additionally, the user can specify a
set of components for which not all pairs should be computed, called the periphery.
Q1 will examine all pairs within the focus and between each component in the focus
and each in the periphery, but will not examine the relationships between any two
components in the periphery. This is useful when, for example, we want to know what
focal components share the strongest influence with a set of peripheral components,
but we don’t yet care how those peripheral components, in turn, influence each other.

We provide a formal description of queries in Section 5.1.3.

5.1.1 Query Mathematics

QI computes cross-correlations between pairs of components and stores characteristics
of these results in a pair of matrices: one for correlation magnitudes and one for
associated delays. The resulting SIG summarizes these correlations and delays in
the form of edges between components. We explain these computations using the
example from Section 6, by describing how QI infers the directed edge from fan7 to
disk32.

To determine whether unusual behavior on fan7 (represented by the anomaly
signal A;) correlates in time with unusual behavior on disk32 (A;) we compute the
normalized dot product; the product will be larger if the anomaly signals tend to line
up. This alignment may occur with some delay, however, so we use cross-correlation

to check for correlation when the signals are delayed relative to each other:

(A% Aj)(t) = /OO (A (T) — il [A;(E+7) — ’uj]dT’

— 00 00

where p; and o; are the mean and standard deviation of A;, respectively. Figure 5.3
shows this function for fan7 and disk32. There is a peak at delay ¢ = d with

correlation strength c¢; we now describe how such salient features are summarized.



CHAPTER 5. QUERY LANGUAGE 69

n
(\! —
o
_ A C
0 f
c o !
ie] o |
g |
o . 1
S g | |
S !
2 | d
? \ \ ‘ \ i \
-1000 -500 0 500 1000

Delay

Figure 5.3: Cross-correlation between the anomaly signals of fan7 and disk32. The
peak at delay d has height (correlation) ¢, indicating that surprising behavior on fan7
tends to be followed by surprising behavior on disk32 with a lag of d.

Let d;; and d;; be the offsets closest to zero, on either side, where the cross-
correlation function is most extreme:

di_j = max(argmaxtgo(\(/\i*Aj)(t)m and

d;’j = min(argmaXtZO(KAi*Aj)(t)|)),

where argmax, f(t) is the set of t-values at which f(¢) is maximal. Intuitively, d;;
and d;rj capture the most common amount of time that elapses between surprising
behavior on fan7 and surprising behavior on disk32. Referring again to Figure 5.3,
the peak is at d <0, so d;; = d. Next, let ¢;; and cz‘; be the correlations observed at

those extrema:

Intuitively, ¢;; and c;; represent how strongly the behaviors of fan7 and disk32 are

correlated. (From Figure 5.3, ¢;; = c.)



CHAPTER 5. QUERY LANGUAGE 70

We record these summary values of cross-correlations in the correlation matrix C
and delay matrix D. Let entry C;; be ¢;; and let Cj; be c;; (Notice that c;-; = cj;)
Similarly, let entry D;; be d;; and let Dy; be d;;

An edge appears between fan7 and disk32 in the SIG because their unusual
behavior was sufficiently strongly correlated; e.g., max(C;;, Cj;) = ¢ > ¢, for some
threshold ¢ specified—implicitly or explicitly—by the query. The edge is directed
because the corresponding delay d lies outside of some noise margin «. For instance,
say ¢ > ¢ > Cj;. Because |d| > «, the edge is directed with the tail at fan7 and the
head at disk32.

Clock skew between components could result in an incorrect delay inference. If the
skew is known, the solution is simply to time-shift the data, accordingly; otherwise,
the amount of skew may be inferred by looking at the delay between two components
thought to behave in unison. Clock skew was not an issue on any of the systems we
studied (see Section 5.3).

In addition to specifying the components and edges to include in the SIG, a query
may also create new components by combining the anomaly signals for some existing
components ¢i, ..., ¢, into a new anomaly signal f(cq,...,¢,) for some function f.
For example, the behavior of a collection of homogeneous components (e.g., all the
compute nodes or all the I/O nodes) can be represented by the average of the anomaly

signals of the group’s components.

5.1.2 Query Examples

In this section, we provide some example queries to build an intuition for what com-

putations QI performs.

Metacomponents

A set of components can be grouped and named by creating a metacomponent. The
anomaly signal for a metacomponent is the average of the signals of its constituent
components. For example, we could create a metacomponent for all the nodes in a

particular rack of a supercomputer (topological group) or all the sensors of a particular



CHAPTER 5. QUERY LANGUAGE 71

type in an embedded system (functional group). Our current implementation specifies
metacomponents using regular expressions in a configuration file.

Say that our system contains metacomponents for each rack of nodes (named
rackl, rack2, etc.) and we are trying to understand strange behavior observed on
component r58node7. It may be expensive to compute the pair-wise relationships
between r58node7 and all other nodes. Instead, we can start with the metacompo-
nents:
graph temp top=5 periph=meta r58node7
This query will construct a SIG and write it to a file called “temp.dot” in the DOT
language. (In subsequent examples, we omit graph and the filename.) In this query,
only r58node7 is in focus; the keyword meta after the periph parameter indicates that
the set of metacomponents are in the periphery. Q1 will compute all pairs (r58node7,
n), where n is a metacomponent. QI supports a variety of parameters for specifying
how the resulting SIG should be visualized. In this query, the top parameter dictates
that only the strongest 5 edges will be included in the graph.

Say that nodes in rack3 are named with the prefix r3 and that rack3 exhibits
the strongest shared influence with r58node7. We can refine the search to examine
all the components in rack3:
r58node7 “r3
The problem node and all components matching the regular expression are in focus.
This query inherits the value of the top parameter from the previous query, so we
omit it. The resulting graph directs the search for a problem cause toward a small
set of nodes; in Section 5.4.1, we use QI in a similar way to understand job failures

on a supercornputer.

Binary Components

A query can create a new component whose anomaly signal is high exclusively dur-
ing a particular time interval a:b. An interval may consist of several sub-intervals:
a:b,c:d,.... We use range binary components in Section 5.4.1 to identify a data
corruption problem and in Section 5.4.6 to isolate an implicit timing dependency bug

in an autonomous vehicle.



CHAPTER 5. QUERY LANGUAGE 72

Consider the following example query:
arrow=10s edge=0.25 47:50 all
The range portion of the query, 47:50, will create a component whose anomaly signal
is non-zero only between time 47 and time 50, inclusive, and add it to the system.
A binary component only needs a name if we intend to use it in a subsequent query,
and it is unnecessary to specify a magnitude because our method implicitly normal-
izes signals when it computes influence. The keyword all is shorthand for every
component currently in the system. The edge parameter sets the £ threshold (see
Section 5.1.1) so that only correlations stronger than 0.25 appear as edges in the SIG;
the arrow parameter sets the o threshold for making a graph edge directed, so if the
absolute delay associated with some correlation is greater than 10 seconds, the edge
will be directed.

A binary component can also be constructed using some predicate that QI can
evaluate. For several supercomputer examples in Section 6.3, we construct binary
components whose anomaly signals are high exclusively in intervals where the corre-

sponding logs match a regular expression.

Masked Components

A binary component, like a range, can be applied to another component as a mask.
Anomaly signal values within the specified sub-intervals are left alone; values outside
the sub-intervals are set to be the average value of the signal within the sub-intervals.
For example, if the (very short) anomaly signal is A; = (0,1,0,1,0,1), then the
query term j’=j{1:2,5:6} results in the following signal for the new component j’:
Aj =1(0,1,0.5,0.5,0,1).

Masks are useful for removing the influence from anomalous behavior that is al-
ready understood (e.g., one might choose to ignore daily reboots) and for attribution
(determining what parts of the anomaly signal are contributing to an observed cor-
relation; see Section 5.4.3). For example, say that we understand the anomalies on
fan7 and wish to mask them. We can construct the binary component on the top in
Figure 5.4, apply it to fan7 (Figure 5.2, top), and get the masked component on the
bottom in Figure 5.4.



CHAPTER 5. QUERY LANGUAGE 73

>
(U —
E=R
(a2} o
S T T T T T T
0 2000 4000 6000 8000 10000
T Y
G) —
B ©
('5 _
= ¥ -
T T T T T T
0 2000 4000 6000 8000 10000
Time

Figure 5.4: Applying the binary component (top) as a mask on fan7 yields the
masked component (bottom), whose masked values are replaced by the average of
the unmasked values.

5.1.3 Query Syntax

A QI query specifies what components to synthesize, the pairs of components for
which to compute shared influence, and how to visualize the resulting relationships
(via the optional parameters arrow, edge, and top). The syntax for specifying the

focus, periphery, and synthetic components is a context-free grammar:

<query> = ["periph="<regex>] <term> (" " <term>)x*
<term> 1:= [<target> "<-"]<match>[<mask>]

<mask> o= "{" ['] <match> ("," <match>)* "}"
<target> ::= <string> ("," <string>)*

<match> 1:= <regex> | <keyword> | <range>

<keyword> ::= "all" | "last" | <ctype>

<range> 1= <time> ":" <time>

In this definition, <regex> represents a valid regular expression using standard syntax,
<time> represents a numerical time value within the range spanned by the log, and
<ctype> represents the name of some type of component within the system (e.g.,
meta, alert, or normal; see Section 5.1.2). The set of component types may be

extended. An interval (e.g., a:b) can be used as a <range> (see Section 5.1.2) or



CHAPTER 5. QUERY LANGUAGE 74

a <mask> (the optional ! inverts the mask; see Section 5.1.2). The all keyword
represents every component in the system and last stands for every component that

appeared in the previously plotted SIG.

5.2 Qi Implementation

We have implemented the query language in Section 5.1 as a tool called QI, written
in Python.

QI spends the majority of the time computing cross-correlations and finding local
extrema (see Section 5.1.1). There are algorithms for computing cross-correlation
more quickly than the brute-force method: O(nlogn) versus O(n?). These efficient
algorithms compute the full cross-correlation function; in practice, however, delays
above some maximum value are unlikely to be considered interesting. For example,
anomalies in one component followed weeks later by anomalies in another component
are unlikely to be considered related, regardless of the strength of the correlation.
In such cases, where the ratio of the length of the anomaly signals to the maximum
delay is sufficiently large, the brute force algorithm is actually faster. QI uses this
ratio to decide which algorithm to use.

The cross-correlations are all mutually independent and can therefore be done
efficiently in parallel (see Section 5.4.7). QI can be used offline by precomputing
cross-correlations for so-called post-mortem analysis. The full correlation and delay
matrices may be huge (billions of entries) but only have a subset of valid (already

calculated) entries, so our implementation uses sparse matrices to store C and D.

5.3 Systems

We evaluate QI using data from seven production systems: four supercomputers, one
cluster, and two autonomous vehicles. Table 5.1 gives a summary of these systems
and logs, described in Sections 5.3.1-5.3.4 and elsewhere [36, 69, 70]. For this wide
variety of systems, we use QI queries to build influence models and to isolate a number

of different problems. These systems were neither instrumented nor perturbed in any



CHAPTER 5. QUERY LANGUAGE

’ System H Components ‘ Lines | Real Time Span ‘
Blue Gene/L 131,072 4,747,963 215:00:00:00
Thunderbird 9024 | 211,212,192 244:00:00:00
Spirit 1028 | 272,298,969 558:00:00:00
Liberty 445 | 265,569,231 315:00:00:00
Mail Cluster 33 | 423,895,499 10:00:05:00
Junior 25 | 14,892,275 05:37:26
Stanley 16 | 23,465,677 09:06:11

75

Table 5.1: The seven unmodified and unperturbed production systems used in our
case studies. The ‘Components’ column indicates the number of logical compo-
nents with instrumentation; some did not produce logs. Real time is given in
days:hours:minutes:seconds.

way for our experiments.

5.3.1 Supercomputers

We use the four publicly-available supercomputer logs from Chapter 3. These four
systems vary in size by several orders of magnitude, ranging from 512 processors in
Liberty to 131,072 processors in BG/L. We make no modifications to the raw logs,
whatsoever. An extensive study of these logs can be found in Chapter 2. The log
messages below were generated consecutively by node sn313 of the Spirit supercom-

puter:

Jan 1 01:18:56 sn313/sn313 kernel: GM: There are 1
active subports for port 4 at close.

Jan 1 01:19:00 sn313/sn313 pbs_mom: task_check,
cannot tm_reply to 7169.sadmin2 task 1

As before, we use the Nodeinfo algorithm (see Chapter 3) to generate anomaly signals
from the raw textual data. This is a reasonable algorithm to use if nothing is known
of the semantics of the log messages; less frequent symbols carry more information
than frequent ones.

We generate indicator signals corresponding to known alerts in the logs using

the process described in Section 5.1.2. These signals indicate when the system or



CHAPTER 5. QUERY LANGUAGE 76

specific components generate a message matching a regular expression that is known
to correspond to interesting behavior. For example, one message generated by Blue

Gene/L reads, in part:

excessive soft failures, consider replacing the card

The administrators are aware that this so-called DDR_EXC alert indicates a problem.
We generate one anomaly signal, called DDR_EXC, that is high whenever any component
of BG/L generates this alert; for each such component (e.g., nodel), there are also
corresponding anomaly signals that are high whenever that component generates
the alert (called node1/DDR_EXC) and whenever that component generates any alert
(called nodel/x).

We also generate aggregate signals for the supercomputers based on functional or
topological groupings provided by the administrators. For example, Spirit has aggre-
gate signals for the administrative nodes (admin), the compute nodes (compute), and
the login nodes (login). For Thunderbird and BG/L, we also generate an aggregate

signal for each rack.

5.3.2 Mail-Routing Cluster

We obtained logs from 17 machines of a campus email routing server cluster mail-
routing cluster at Stanford University. Of the 17 mail cluster servers, 16 recorded
two types of logs: a sendmail server log and a Pure Message log (a spam and virus
filtering application). One system recorded only the mail log.

As with the supercomputers, we generate indicator signals for the textual parts of
the cluster logs. Unlike the supercomputers, however, there are no known alerts, so we
instead look for the strings ‘error’, ‘fail’; and ‘warn’ and name these signals ERR, FAIL,
and WARN, respectively. These strings may turn out to be subjectively unimportant,
but adding them to our analysis is inexpensive. We also generate aggregate signals
based on functional groupings provided by the administrators. For example, the mail
cluster has one aggregate signal for the SMTP logs and another for the spam filtering
logs.



CHAPTER 5. QUERY LANGUAGE 7

5.3.3 Autonomous Vehicles

We use logs from the two autonomous vehicles introduced in Chapter 4. Recall
that these distributed, embedded systems consist of many sensor components (e.g.,
lasers, radar, and GPS), a series of software components that process and make
decisions based on these data, and interfaces with the cars themselves (e.g., steering
and braking). In order to permit subsequent replay of driving scenarios, some of
the components were instrumented to record inter-process communication. These
log messages indicate their source, but not their destination (there are sometimes
multiple consumers). We use the raw logs from the Grand Challenge and Urban
Challenge, respectively. The following lines are from Stanley’s Intertial Measurement
Unit (IMU):

IMU -0.001320 -0.016830 -0.959640 -0.012786 0.011043

0.003487 1128775373.612672 rrl1 0.046643

IMU -0.002970 -0.015510 -0.958980 -0.016273 0.005812
0.001744 1128775373.620316 rrl1 0.051298

In the absence of expert knowledge, we generate anomaly signals based on deviation
from what is typical: unusual terms in text-based logs or deviation from the mean for
numerical logs. Stanley’s and Junior’s logs contained little text and many numbers,
so we instead leverage a different kind of regularity in the logs, namely the interarrival
times of the messages. We compute anomaly signals using the method from Chapter 4,
which is based on anomalous distributions of message interarrival times. We generate

no indicator or aggregate signals for the vehicles.

5.3.4 Log Contents

Table 5.2 provides some concrete example messages from different types of compo-
nents in the systems we study. Logs include messages like the Spirit admin example,
which indicates correct operation; the BG/L compute example, which indicates that a
routine problem was successfully masked; the Thunderbird compute example, which
indicates a real problem that requires administrator attention; and the BG/L ad-

min example, which ambiguously suggests that something might be wrong. Some



CHAPTER 5. QUERY LANGUAGE 78

’ System H Component Type ‘ Example Message ‘
Blue Gene/LL compute RAS KERNEL INFO total of 12 ddr error(s)
detected and corrected
admin NULL DISCOVERY WARNING Node card is not
fully functional
Thunderbird compute kern§1: sc§iO (0:0): rejecting I/0 to
offline device
admin kernel: Losing some ticks... checking
if CPU frequency changed.
Spirit compute kernel: 00 000 00 1 0 0 0 O 0O 0 00
admin sshd[11178]: Password authentication
for user [username] accepted.
. compute kernel: GM: LANAI[0O]: PANIC:
Liberty . . . .
mcp/gm_parity.c:115:parity__int() :firmware
admin src@ladmin2 apm: BIOS not found.
. mail postfix/smtpd[3423]: lost connection
Mail Cluster after DATA (0 bytes) from unknown[[IP]]
pmx [3999,milter] 4AB9C565.3999.1743011 1:
discard: [IP]: 100%
Junior sensor RADAR1 25258 6 6 1 1 10.562500 [...] 0 0 51
1194100038.298347 kalman 0.166294
Stanley sensor IMU -0.003300 -0.051810 [...] 0.109846
-0.030222 1128780826.436368 rrl
52.536104

Table 5.2: Example messages from different types of components in the systems we
studied. There are no representative messages, but these are not outliers. Bracketed
text indicates omitted information; the component names and message timestamps
are removed.

messages, like the Liberty compute example, provide specific information about the
location of a problem; others, like the Liberty admin example, state a symptom in
(mostly) English; finally, some messages, like the Spirit compute example, appear
incomprehensible without the (unavailable) source code.

The logs do not contain information about message paths (senders or recipients),
function call or request paths, or other topological hints. These are production sys-

tems, so none were configured to perform aggressive (so-called ‘DEBUG-level’) logging



CHAPTER 5. QUERY LANGUAGE 79

or to record detailed performance metrics (e.g., minute-to-minute resource utiliza-
tion). Some messages are corrupted or truncated.

A system may have dozens of different types of components, and even individual
components may generate hundreds of different types of messages. The content of
these logs sometimes changes when software or hardware is updated or when work-
loads vary, and such changes may not be explicitly recorded in the log.

These logs exemplify the noisy and incomplete data available to system adminis-

trators working with real production systems.

5.4 Results

We present results in this section as a series of use cases. These examples both exhibit
interesting features of QI and demonstrate that our method can isolate the sources
of non-trivial bugs in a variety of real systems. Most of these queries take only a few
seconds to execute; the runtime of each query is listed to the right of the query and
collected at the end of the section in Table 5.3. (For each system, we start with no
computations performed and execute exactly those queries in the order shown, on an
84-core cluster.) Section 5.4.7 explains why QI scales well under realistic usage.

Q1 outputs graphs in the DOT language that use layout features to communi-
cate information about the SIG: edge thickness proportional to the strength of the
correlation, node shapes and colors according to the type of component (e.g., binary
component or metacomponent), grayed component names to indicate whether they
are in the focus or periphery, and so on.

In this chapter, however, we convert these graphs to a manual layout for con-
ciseness and readability, while retaining some of the visual cues. In our plots, edges
touching grey rectangles denote a similar edge touching each contained vertex. We
denote cliques (fully connected subgraphs) of four or more nodes as a small box:
all nodes connected to it are in the clique. Disconnected components are omitted.
Shaded nodes are in focus; unshaded nodes are in the periphery. Rectangular vertices

represent synthetic components; vertices are elliptical, otherwise.



CHAPTER 5. QUERY LANGUAGE 30

We discussed the following results with the administrators of the respective sys-
tems. Universally, the administrators felt the SIGs were interesting and useful; in
some cases, the results were surprising and led the administrator to ask follow-up
questions or take direct action (such as deciding to add or remove instrumentation).
Administrators often have a mental model of how system components are interacting,
which a given SIG will either reinforce or contradict. For example, one cluster ad-
ministrator using the output of QI to debug a recurring but elusive database problem

said the following:

Yes, that [SIG] *is* intriguing. In general, I really liked this graph. ..
[because] it provides an interesting picture of the related components
of a system... The link between slow queries and threads, established
connections, and open files used confirms for me a suspicion that the
root of MySQL performance problems for us are slow queries, and that
we get spikes in utilization when we have slow queries. That’s useful
information. .. [The SIGs seem to] rule out, or at least make less likely, the
theory that a sudden surge in www activity was what set off the MySQL
problem. That was one of our working theories, so knowing that’s less

likely is valuable.

There were no instances of QI inferring a shared influence where there certainly was
none (no false positives), nor any known instances of QI failing to detect shared

influence where there certainly was some (no known false negatives).

5.4.1 Alert Discovery on Blue Gene/L

When a system is too large to consider components individually, one can use metacom-
ponents: synthetic components that represent the aggregate behavior of sets of com-
ponents (see Section 5.1.2). A metacomponent is specified by the set of components
it represents, which may be in the form of regular expressions (i.e., all components
matching that regex). On Blue Gene/L (BG/L), we defined one metacomponent for

each rack of the system; the components are named according to their topological



CHAPTER 5. QUERY LANGUAGE 81

0.8
I

CRASH

00 04

Figure 5.5: The anomaly signal of the synthetic CRASH component, which encodes
when a job on BG/L crashed.

R03-M1-N6-C:J11-U11

CRASH o R03-M1-N7-C:J13-U01

R03-M0-NA-C:J12-U11

R03-M1-NA-C:J12-U11

Figure 5.6: Components most strongly correlated with the crash. On the left, the
metacomponent; on the right, the components within that metacomponent.

location, so rack 47, for example, can be made into metacomponent M_R47 using the
regex R47.

Consider the (real) scenario when a full-system job running on BG/L crashes and
the administrator knows approximately when. Initially, every component of the sys-
tem is a possible cause of the failure. Using QI in conjunction with metacomponents,
we show how to iteratively isolate the components that are likely to be involved. The
administrator can execute the following query, which constructs a binary component
using the time of the crash as the focus and using the metacomponents, collectively,
as the periphery. This is asking, at a coarse granularity, what large subsystem’s aggre-
gate anomaly signal is most strongly correlated with the observed crashing behavior:
top=1 periph=meta CRASH<-174:175 (1.65 sec)

This query creates a synthetic component from the interval beginning 174 hours



CHAPTER 5. QUERY LANGUAGE 82

into the log and ending one hour later and names it CRASH. Figure 5.5 shows the
anomaly signal for this synthetic component. The result of the query is on the left
in Figure 5.6. QI implicates rack 3 (M_R03), so we then ask for a short list of the
components in rack 3 that share an influence with the crash:
top=5 periph=R03 CRASH (4.81 sec)
Recall that Q1 does not compute the relationships between pairs of components in
the periphery. The result, plotted on the right in Figure 5.6, shows the five com-
ponents with the strongest correlation, plotted from top to bottom in order of de-
creasing strength. In other words, node 6, in midplane 1 of rack 3, seems to be
most strongly related with the problem; its neighbor, node 7, also seems suspicious.
(Running the first query with periph=normal, i.e., all non-synthetic components,
instead of periph=meta, leads to the same conclusion but takes more than 1000
times as long.) Once QI has implicated a particular component around a particular
time, the user can simply inspect the corresponding section of the log; in the case
of BG/L’s textual logs this was a simple grep for the component name and time.
During the time surrounding the crash, 90 other components generated hundreds of
messages, but the suspect node only generated two. The following one of those mes-
sages is considered an “actionable alert,” meaning it is a problem the administrator
wants to know about and can do something to fix: ddr: Unable to steer [...]
consider replacing the card. None of the other messages generated by any of
the other components were alerts: node 6 was likely the responsible component.
Once the administrator is aware of specific messages, such as this DDR error, they
can look for them, explicitly. Discovering these messages in the first place, however,
is often a key part of the administrator’s job. This BG/L example shows how QI can

facilitate that discovery process.

5.4.2 Correlated Alerts on Liberty

Given an alert message, such as the one in Section 5.4.1, we can make synthetic
components with anomaly signals that represent the presence or absence of that type

of message. Specifically, given a regex that identifies whether or not a message is an



CHAPTER 5. QUERY LANGUAGE 83

R_-GM_PAR4

| R.EXT_FS_I0 — R_EXT_INODE1 |— R_EXT_CCISS |

R_-GM_PAR3

Figure 5.7: Some alert types on Liberty are correlated; QI helps search for the reasons
why.

instance of each type of alert, QI can automatically generate a synthetic component
indicating whether the alert was generated anywhere in the system (identified by
the name of the alert type) or by a particular component (identified by the alert
type concatenated by a forward slash onto the component name). So, a synthetic
component named, by convention, node5/ERR has an anomaly signal that is high
exclusively when component node5 generated an alert of type ERR; telling QI to
generate such a component is simply a matter of writing a regular expression that
describes ERR alerts.

Using the alerts identified for the Liberty data set in Section 2.1.2, we show how
QI can elucidate relationships among these synthetic alert components (identified by
the keyword alert). The command
edge=0.1 alert (1.12 sec)
generates Figure 5.7, revealing the relationships among alert types. Most alert types
are not correlated with each other (thus, omitted from the graph); however, there are
also clusters of related alerts.

We might then ask, say, whether the clique of alerts containing the EXT string (on
the left in Figure 5.7) are truly redundant. To look at when individual components
generated these EXT strings, we can use the string as a regular expression:
periph=EXT last (1.00 sec)
This generates Figure 5.8, which shows that the CCISS alert is sometimes seen without
the other two EXT alerts, meaning it is likely generated under a wider variety of
conditions, and that node176 tends to generate CCISS alerts at times when it is also
generating GM alerts. Both are checksum- or parity-related errors, so a common source

of data corruption would be a good place to continue the search.



CHAPTER 5. QUERY LANGUAGE 84

R_-GM_PAR4

| R EXT_FS_10 |— R_EXT.INODE1 |— R_EXT_CCISS |

D/o R_-GM_PAR3

Va

In30/R_EXT_FS_IO In156/R_EXT_FS_IO In176/R_-EXT_CCISS
In30/R_EXT_CCISS In156/R_EXT_CCISS In133/R-EXT_CCISS
In30/R_EXT_INODEL1 || In156/R_EXT_INODE1 In134/R_EXT_CCISS

Figure 5.8: Synthetic components can show the relationships among both when cer-
tain alert types are generated and when they are generated on individual components.

5.4.3 Obscured Influences on Spirit

Large systems often experience multiple simultaneous problems. For instance, a su-
percomputer node may generate strange messages both because of a disk malfunction
and because of an unrelated software glitch. Using masked components, QI can elu-
cidate which shared influences result from which problem. For example, if we mask
the portions of the anomaly signal that correspond with disk errors, we may see more
clearly what shared influences result from the software bug.

Say that we want to investigate the behavior of node sn138 on the Spirit super-
computer, which generated both disk errors and batch scheduler errors. We might
first execute the following:
edge=0.25 top=5 periph=normal sn138 (2.19 sec)
The graph in the top left of Figure 5.9 shows the result: there is exactly one other
node that seems correlated with sn138. Based on our study of this log (see Chap-
ter 2), we are aware of many of the kinds of alerts that occur on this system. One,
called PBS_CHK, is a batch scheduler alert; the other, EXT_CCISS, is a file system alert.

Do either of these alerts account for the shared influence between sn138 and
sn4877 One way to pose this question to QI is by masking the contribution of one
alert and repeating the question:
periph=normal sn138{!sn138/PBS_CHK} (2.05 sec)



CHAPTER 5. QUERY LANGUAGE 85

“'sn138 without : @
: EXT_CCISS ™o

.....

Figure 5.9: Masking the contribution of one anomaly source can make other shared
influences more apparent.

i sn138 without :
PBS_CHK

The other parameters inherit their values from the previous query. Because the mask

('7

portion of the query begins with the ‘! character, it means we retain the sections
of sn138’s anomaly signal only where that node did not generate the PBS_CHK alert.
The result is shown in the bottom left of Figure 5.9. As expected, the masked version
of sn138 correlates perfectly with the original; the masked portions of the anomaly
signal do not contribute to the cross-correlation while the rest matches perfectly.
Meanwhile, the shared influence with sn487 remains strong: the PBS_CHK alert is not
driving the correlation.
We ask the analogous question about the disk errors:

periph=normal sn138{!sn138/EXT_CCISS} (2.03 sec)
As seen in the graph on the right in Figure 5.9, a new set of nodes exhibits a shared
influence with sn138; node sn487 doesn’t make the top-5. This means both that
the disk errors account for some of the shared influence between sn138 and sn487

and that these errors were obscuring additional shared influences—revealed by the

query—between sn138 and other components.

5.4.4 Thunderbird’s “CPU” Bug

When a problem is systemic or involves multiple components, the text of log messages

may be misleading because they reflect only locally observable state. Nevertheless,



CHAPTER 5. QUERY LANGUAGE 86

an236/CPU |— an1010/CPU

anb50/CPU

|

an89/CPU | |an292/CPU | |an48/CPU | |an807/CPU | | an80/CPU

Figure 5.10: Binary components representing the ‘CPU’ alert tend to share a strong
influence with sets of such components that are topologically close, such as those in
the same job scheduling group.

these superficially misleading messages may still be useful for understanding a prob-
lem, as we demonstrate with the following example from the Thunderbird supercom-
puter.

Thunderbird occasionally generated the following alert message:
kernel: Losing some ticks... checking if CPU frequency changed.
Although ostensibly a processor-related issue, the underlying cause of the message was
actually a bug in the Linux SMP kernel that would cause the OS to miss interrupts
during heavy network activity. The key insight for isolating this bug was that these
“CPU messages” were spatially correlated; when one node generated the message, it
was more likely that other, topologically nearby nodes would also generate it. These
groups of nodes corresponded to job scheduling groups, which implicated particular
workloads as a possible trigger of the alert.

We now show how, using the alert message as an initial clue, QI helps elucidate
these spatial correlations. First, construct binary components for each component
that generated the ‘CPU’ alert and one for the ‘CPU’ alert for the whole system,
as described in Section 5.4.2. Second, take one of these binary components—say,
an236/CPU, the synthetic component for node an236 representing when it generated
the ‘CPU’ alert—and compute how it relates to the other binary components:
edge=0.25 top=5 periph=CPU an236/CPU (2.93 sec)
As shown on the top in Figure 5.10, an236/CPU shares a strong influence with



CHAPTER 5. QUERY LANGUAGE 87

smtp2.pmx_log smtp3.pmx_log

mx5.pmx_log
mx1.pmx_log mx2.pmx_log

Figure 5.11: Shared influence in a cluster of mail-routing servers.

an1010/CPU but not with the others. To convince ourselves that this is not a co-
incidence, we take another component and repeat:

periph=CPU an550/CPU (2.66 sec)
This yields the SIG on the bottom in Figure 5.10, where an550/CPU shows shared
influences with other binary components. Notably, however, these correlated alerts
often seem to occur on the same rack. Indeed, if we examine large groups of these
‘CPU’ binary components, we learn that they tend to form cliques that are related
to their topology; as explained above, this is sufficient to rule out a local CPU mal-

function and to suggest a common cause.

5.4.5 Mail-Routing Cluster

Even in the absence of some known bad behavior, QI can be used to model the flow
of influence in the system. We examine the influence among all components in the
mail-routing cluster described in Section 5.3.2 by executing the following:

arrow=1 top=47 all (2.36 sec)



CHAPTER 5. QUERY LANGUAGE 38

This command considers all components in the system, plots the strongest 47 edges
(this choice is not significant; we picked what fit in the figure), and assigns direc-
tionality to any influence with a delay of one minute or more. The result, shown
in Figure 5.11, gives an overview of the influences in this cluster. Note that we de-
termined these shared influences and temporal orderings even without knowledge of
system topology, message paths, or request sequences.

When we showed this graph to the cluster administrator, his initial response in-

cluded the following:

Similarly, having all the smtp mail servers linked makes sense. But I'm
surprised that devnull is linked in with them. I assume that must be due to
mail from one Stanford user going to the vacation or autoresponder system
on devnull, but I'm surprised that the same relationship isn’t there for the
mx servers. I think that may say something interesting about where most

of the hits on the vacation and autoresponder services come from.

Such questions and suspicions led to follow-up queries, the results of which he de-

scribed as illuminating and valuable.

5.4.6 Stanley’s Swerve Bug

Temporal ordering is sometimes crucial to understanding a problem, as we demon-
strate with an example from an autonomous vehicle. On several occasions during
the Grand Challenge race, Stanley appeared to swerve around a non-existent obsta-
cle. This bug, described in Chapter 4 and elsewhere [70], was caused by a buffer
component shared by the laser sensors, which passed stale data to the downstream
software. Although this shared component was not instrumented to generate log
messages, Chapter 4 explained how to use SIGs in an ad hoc way to isolate a shared
component of the lasers as a likely cause.

We now show how to use QI to isolate the bug more systematically, given only
the clue that most manifestations of the SWERVE bug occurred between mile-markers
22 (around 60 minutes in) and 35 (around 100 minutes in). In QI syntax, we could

generate the plot from Chapter 4 (including the same edge and arrow thresholds),



CHAPTER 5. QUERY LANGUAGE 89

@ @ @ TOUAREG_ACT SWERVE
O 0\0
PLANNER_INFO PLANNER_TRAJ

Figure 5.12: A complete SIG for Stanley, including a synthetic component, SWERVE,
that represents an unexpected behavior.

<
3
S o
2 o 7
s
o
o o |
o o
&
[%2]
e o
@) o ]
S |
o \ \ \ \ \ \ \
-1500 -1000 -500 0 500 1000 1500
Delay

Figure 5.13: Cross-correlation between LASER1 and LASER2.

shown in Figure 5.12, using the following command:
arrow=90 edge=0.15 all SWERVE<-60:100.

Figure 5.13 shows the cross-correlation of LASER1 with LASER2: a strong correlation
at zero delay, resulting in an undirected edge in the SIG. Using the data from Stanley’s
successor vehicle, Junior, we were able to verify that the lasers no longer shared an
influence—the buffer component was no longer shared among all the lasers.

Although Figure 5.12 contains the information that helped isolate the bug on
Stanley, it also contains irrelevant information: components not on any influence

pathway with SWERVE. QI can generate graphs that omit such noise. What the user



CHAPTER 5. QUERY LANGUAGE 90

@ —>| SWERVE
PLANNER._INFO . PLANNER.TRAJ

Figure 5.15: This automatically generated graph implies that a shared component of
the lasers is likely to be causally related to the swerving.

really intends to ask is, “What components seem to be most strongly related to this
swerving behavior?” This is expressed in QI as the following query, which generates
the SIG shown in Figure 5.14:

periph=all SWERVE (20.37 sec)
QI queries for Stanley and Junior tend to take longer than the other systems because
their anomaly signals have a finer time granularity.

A natural follow-up question, given the components that seem to share a strong
influence with the swerving behavior, is what influences are shared among those com-
ponents. This is a simple query that instructs QI to compute a graph in which all
the components from the previous SIG are in focus:
last (35.60 sec)
The result, shown in Figure 5.15, contains exclusively the components and interac-
tions relevant to the swerving bug, with the exception of TEMP (see below). The clique
of laser sensors implies an (uninstrumented) shared component, and the directionality
of the arrows from the lasers to the planners and then the planners to the swerving
implies causality. The Stanford Racing Team tells us that Q1 would likely have saved

them two months of debugging time for this problem, alone.



CHAPTER 5. QUERY LANGUAGE

30

91

s n= T X i
2 - 244 (Liberty P S
Q o _|& 372 (Liberty ///'4 e
w 1+ 555 (Spirit) Ty
E x 1074 (Spirit) ///::’i A _____ Y YN YN N f
® S ik —— ° ° °
g /;,’ﬁ%
o Lo ===
z A
o | # % | ‘ ‘ ‘
0 10 20 30 40

Number of CPUs

Figure 5.16: Speedups for components on Liberty and Spirit, normalized according
to the runtime on a single local CPU. Those baselines were 117.31 sec, 276.18 sec,
1208.64 sec, and 4611.76 sec, respectively. The legend indicates the number of signals
(n), which we varied to show the effect of system size.

The temperature sensor is actually anti-correlated with SWERVE. A more precise
definition of SWERVE that included all swerving incidents would have eliminated this
spurious correlation, which occurs because the SWERVE anomaly signal is non-zero
only near the beginning of the race while the TEMP anomaly signal increases over the
course of the race (TEMP corresponds to a temperature sensor, and the desert day

grew hotter as the race went on).

5.4.7 Performance and Scaling

We have used QI with systems containing as many as 69,087 log-generating compo-
nents (see Section 5.4.1). It is impractical to compute all pair-wise correlations among
these components; one important contribution of QI is the ability to ask queries that
will only compute a relevant subset of those pairs. Furthermore, each pair (i.e., each
cross-correlation) can be computed independently of every other; the task is embar-
rassingly parallel. QI exploits this parallelism to achieve nearly linear speed-ups (see
Figure 5.16). Even for queries with more than a thousand components in focus, if
we have access to forty cores then QI can complete the query in a couple of minutes.

For realistic queries, like those of Sections 5.4.1-5.4.6, the summary of runtimes in



CHAPTER 5. QUERY LANGUAGE 92

’ System ‘ Command H Time (sec) ‘ #CCs ‘
periph=meta CRASH<-174:175 1.65 64
Blue Gene/L = 203 CRASH 181 1084
. alert 1.12 95
Liberty periph=EXT last 1.00 54
periph=normal sn138 2.19 520
Spirit periph=normal sn138{!sn138/PBS_CHK} 2.05 521
periph=normal sn138{!sn138/EXT_CCISS} 2.03 521
. periph=CPU an236/CPU 2.93 1031
Thunderbird = o s an550/CPU 2.66 | 1030
Mail Cluster | all 2.36 528
periph=all SWERVE<-60:100 20.37 16
Stanley last 35.60 | 120

Table 5.3: The time taken to execute the commands shown on a cluster of 84 cores.
The ‘#CCs’ column indicates the number of cross-correlations computed.

Table 5.3 shows that QI can be used interactively.

5.5 Contributions

We have presented a query language and implementation (QI) for understanding com-
ponent behaviors and interactions in large, complex systems where instrumentation
may be noisy and incomplete. Unlike previous work, QI requires no modifications to
existing instrumentation and does not assume fine-grained or precise measurements
(such as message paths). We found the capability to encode external knowledge using
metacomponents and binary components to be especially useful. Although masked
components serve a similar role, they lack the generality to express the variety of
ways in which we might want to “ignore” certain behaviors. The ability to parallelize
the queries was invaluable.

Using raw data from seven unmodified production systems, we demonstrated the
use of QI for such tasks as alert discovery (see Section 5.4.1), problem isolation (see
Sections 5.4.3, 5.4.4, and 5.4.6), and general system and interaction modeling (see Sec-
tions 5.4.2 and 5.4.5). As we demonstrated, our method scales linearly with system

size and is fast enough to be used interactively for typical use cases (see Section 5.4.7).



CHAPTER 5. QUERY LANGUAGE 93

As systems trend toward more components and more sparse instrumentation, meth-
ods like ours—with only weak requirements on measurement data and good scaling

properties—will become increasingly necessary for understanding system behavior.



Chapter 6
Online Algorithm

This chapter presents a real-time method for computing influence that builds on
the results of Chapters 4 and 5. Answers to some of the most important reliability
questions are only useful if they can be computed in real-time. For example, admin-
istrators would like to set standing queries that trigger an alarm when the system
first strays into a pattern of behavior that is known to likely lead to severe problems
or a crash. Furthermore, online algorithms inherently require fewer resources and
therefore tend to be more readily deployed in a production context.

Our method uses a novel combination of online, anytime algorithms that maintain
concise models of how components and sets of components are interacting with each
other, including the delays or lags associated with those interactions. The types of
questions our method is able to answer online without the need for specifications or
invasive logging and the scalability of the approach are both new.

As before, a system is represented by a set of real-valued functions of time called
anomaly signals, which encode when measurements differ from typical or expected
behavior. At every time-step or tick, we pass the most recent value of every anomaly
signal through a two-stage analysis. The first stage compresses the data by finding
correlated groups of signals using an online, approximate principal component anal-
ysis (PCA) [48]; we call these component groups subsystems. This analysis produces
a new set of anomaly signals, called eigensignals, with one eigensignal corresponding

to the behavior of each subsystem; in other words, the behavior of the entire system

94



CHAPTER 6. ONLINE ALGORITHM 95

© : — disk
K PR forks

© - ! ; ’ " -- swap
) :| :I :I I: T
= < - I| I| I| |I '
© ) |I |: :l :
> |: |: 1] " L]

N Y ] n, " 1

o .

[N | . .. .

I \ \ \ \ \ \

6000 7000 8000 9000 10000 11000
Tick

Figure 6.1: Three example anomaly signals. Greater distance from zero (average)
corresponds to more surprising measurements. The signals disk and forks are sta-
tistically correlated.

is summarized using a new, and much smaller, set of signals. The second stage takes
these eigensignals, and possibly a small set of additional anomaly signals (see Sec-
tion 6.1.3), and looks for lag correlations among them using an online approximation
algorithm [56]. Although the eigensignals are mutually uncorrelated by construction,
they may be correlated with some lag.

Figure 6.1 shows an example with three signals taken from a production database
(SQL) cluster: disk (an aggregated signal corresponding to disk activity), forks
(corresponding to the average number of forked processes), and swap (corresponding
to the average number of memory page-ins). The first stage of the analysis, the
PCA, automatically finds the correlation between disk and forks and generates a
single eigensignal that summarizes both of the original signals. The second stage of
the analysis takes the eigensignal and swap’s anomaly signal, plotted in Figure 6.2,
and discovers a correlation: surprising behavior in the subsystem consisting of disk
and forks tends to precede surprising behavior in swap. Our analysis, on these and
several related signals, helped the system’s administrator diagnose a performance bug:
a burst of disk swapping coincided with the beginning of a gradual accumulation of
slow queries which, over several hours, crossed a threshold and crippled the server.

In addition to helping with a diagnosis, our method can give enough warning of the



CHAPTER 6. ONLINE ALGORITHM 96

© - ! :': ' — First Eigensignal
< ::
) !
> N s
< L
> |
o
N
|
< |
I \ \ \ \ \ \
6000 7000 8000 9000 10000 11000
Tick

Figure 6.2: The first eigensignal and swap. The downward spike in the eigensignal
consistently happens just before the spike in swap.

impending collapse for the administrator to take remedial action (see Section 6.3.4).

We describe our method in Section 6.1 and evaluate it using nearly 100,000 signals
from eight unmodified production systems (described in Section 6.2), including four
supercomputers, two autonomous vehicles, and two data center clusters. Our results,
in Section 6.3, show that we can efficiently and accurately discover correlations and
delays in real systems and in real time, and furthermore that this information is

operationally valuable.

6.1 Method

Our method takes a difficult problem—understanding the complex relationships among
heterogeneous components generating heterogeneous logs—and transforms it into a
well-formed and computable problem: understanding the variance in a set of signals.
The input to our method is a set of signals for which variance corresponds to behavior
lacking a satisfactory explanation. The first stage of our method tries to explain the
variance of one signal using the variance of other signals; the standard technique for
doing this is called principal component analysis (PCA). However, PCA will miss
signals that co-vary with some delay or lag. The second stage of our method identi-

fies such lagged correlations. Furthermore, we show how to encode and answer many



CHAPTER 6. ONLINE ALGORITHM 97

Stage 1: k m Stage 2:
Signal Lag Tags
Compression Correlation
N Watch Eigensignals, Weights, >
List & Watched Signals

Figure 6.3: Our method takes n anomaly signals and passes them to a signal com-
pression stage (performed using principal component analysis). It then takes the
resulting k eigensignals and those on the watch list and passes these m signals to a
lag correlation detector. The listed output values are all available at any time.

natural questions about a system in terms of time varying signals.

Consider a system of components in which a subset of these components are
generating timestamped measurements that describe their behavior. These measure-
ments are represented as real-valued functions of time called anomaly signals (see
Section 6.1.1). Our method consists of two stages that are pipelined together: (i)
an online PCA that identifies the contributions of each signal to the behavior of the
system and identifies groups of components with mutually correlated behavior called
subsystems (see Section 6.1.2) and (ii) an online lag correlation detector, which deter-
mines whether any of these subsystems are, in turn, correlated with each other when
shifted in time (see Section 6.1.3). Figure 6.3 provides an overview of our approach.

Our method uses an online principal component analysis for signal compression
that is adapted from SPIRIT [48] and a lag correlation detection algorithm called
Enhanced BRAID [56]. We selected these techniques because they make only weak
assumptions about the input data and have good performance and scalability char-
acteristics. This chapter employs those two methods in several novel ways: using the
PCA as a dimensionality reduction to make the lag correlation scalable, analyzing
anomaly signals rather than raw data as the input to permit the comparison of het-
erogeneous components and the encoding of expert knowledge, adding a mechanism

for bypassing the PCA stage that we use for standing queries, and, finally, applying



CHAPTER 6. ONLINE ALGORITHM 98

these techniques in the context of understanding production systems.

6.1.1 Anomaly Signals

The input to our method is timestamped measurements from components. The mea-
surements from a particular component are used to construct an anomaly signal. The
value of an anomaly signal at a given time represents how unusual or surprising the
corresponding measurements were: the further from the signal’s average value, the
more surprising.

As with any abstraction, anomaly signals are used to hide details of the under-
lying data that are irrelevant for answering a particular question. Thus, there is no
single “correct” anomaly signal, as any feature of the log may be useful for answer-
ing some question. The abstraction may only lessen, rather than remove, unwanted
characteristics and may unintentionally mute important signals, but the purpose of
the anomaly signal abstraction is to highlight the behaviors we wish to understand,
especially when and where they are occurring in the system.

Numerical measurements can be used as anomaly signals, directly, while some
measurements require a processing step to make them numerical (see Derived Signals,
below). In the absence of any special knowledge about the system or the mechanisms
that generated the data, we have found that anomaly signals based on statistical
properties (e.g., the frequency of particular words in a textual log) work quite well.

Administrators do not typically have a complete specification of expected behav-
ior: systems are too complicated and change too frequently for such a specification to
be constructed or maintained. Instead, they often have short lists of rules about what
kinds of events in the logs are important. Anomaly signals allow them to encode this
information (see Indicator Signals, below).

A single physical or logical component may produce multiple signals, each of
which has an associated name. For example, a server named host1 may be recording
bandwidth measurements as well as syslog messages, so the corresponding signals
might be named host1-bw and hostl-syslog, respectively. A single measurement

stream may be used to construct multiple anomaly signals: a text log might have one



CHAPTER 6. ONLINE ALGORITHM 99

signal for how unusual the messages are, overall, and another signal for the presence
or absence of a particular message.

Conversely, we don’t assume that all components have at least one signal, and ev-
ery real system we have examined has multiple components that are uninstrumented.
In fact, some components were even unknown to the administrators. For this rea-
son, we can’t use techniques that assume instrumentation for and knowledge of all

components in the system.

Derived Signals

Non-numerical data like log messages or categorical states must be converted into
anomaly signals. This process is well-studied for certain types of data, e.g., unstruc-
tured or semi-structured text logs [76, 77]. We use the Nodeinfo algorithm (Chapter 3)
for textual logs and an information-theoretic timing-based model (Chapter 4) for the
embedded systems (autonomous vehicles), as both algorithms highlight irregularities
in the data without requiring a deep understanding of it.

Users may optionally preprocess numerical signals to encode what aspects of the
measurements are interesting and which are not. For example, daily network traffic
fluctuations may increase variance, but this is not surprising and may be filtered out
of the anomaly signal. We apply no such filtering.

Although numerical signals can be used directly and there are existing tools for
getting anomaly signals out of common data types like system logs, the more expert
knowledge the user applies to generate anomaly signals from the data, the more
relevant our results. In particular, the administrators of our systems maintained lists
of log message patterns that they believe correspond to important events and they
had a general understanding of system topology and functionality; we now discuss
how that knowledge can be used to generate additional anomaly signals from the

existing log data.

Indicator Signals A user can encode knowledge of interesting log messages using
a signal that indicates whether a predicate (e.g., a specific component generated

a message containing the string ERR in the last five minutes) is true or false (see



CHAPTER 6. ONLINE ALGORITHM 100

Section 5.1.2). Although this is the simplest way to encode expert knowledge about
a log, indicator signals have proven to be both flexible and powerful. Section 6.3.3

gives an example of how indicator signals can elucidate system-wide patterns.

Aggregate Signals A user can encode knowledge of system topology (e.g., a set of
signals are all generated by components in a single machine rack) by computing the
time-wise average of those signals. This new signal represents the aggregate behavior
of the original signals; the time-average of correlated signals will tend to look like
the constituent signals while the average of uncorrelated or anti-correlated signals
will tend toward a flat line. This has been shown to be a useful way for the user
to describe functionally- or topologically-related sets of signals (see Section 5.1.2),
and we see in Section 6.3.3 that these aggregate signals often summarize important

behaviors.

6.1.2 Stage 1: Signal Compression

A system may have thousands of anomaly signals, so being able to efficiently summa-
rize them using only a small number of signals, with minimal loss of information, is
valuable to users of our approach and sometimes necessary to achieve adequate online
performance.

To compress the anomaly signals with minimal loss of information, the first stage
of our analysis performs an approximate, online principal component analysis (PCA).
This stage takes the n anomaly signals, where n may be large, and represents them as
a small number k£ of new signals that are linear combinations of the original signals.
These new signals, which we call eigensignals, are computed so that they capture or
describe as much of the variance in the original data as possible; the parameter k is
set to be as large as computing resources allow to minimize information loss. This
stage is online, any-time, single-pass, and does not require any sliding windows or
buffering.

Although we refer the reader to the original paper for details [48], we include a brief
summary here for completeness. The PCA maintains, for each eigensignal, a vector

of weights of length n, where n is the number of anomaly signals. At each tick (time



CHAPTER 6. ONLINE ALGORITHM 101

step), for each eigensignal, a vector containing the most recent value of each anomaly
signal is projected onto the weight vector to produce a value for the eigensignal.
The eigensignals and weights are then used to reconstruct an approximation of the
original n signals. A check ensures the resulting reconstruction has an energy that is
sufficiently close to that of the original signals; if not, the weights are adjusted so that
they “track” the anomaly signals. The time and space complexity of this method on n
signals and k eigensignals is O(nk). An eigensignal and its weights define a behavioral
subsystem: a linear combination of related signals.

Recall the example from Section 6. The first stage groups disk and forks in the
same subsystem, and in fact these two signals are highly correlated. At this point,
however, there is no apparent relationship with the swap component. Note that
although PCA will tend to group correlated signals because this efficiently explains
variance, two signals being in the same subsystem does not imply that they are highly
correlated. This is easily checked, though we omit the details because it has been
our experience that the signals with significant weight in a subsystem are all well-
correlated. This observation also justifies picking the most heavily weighted signal in
a subsystem as the representative of that subsystem (see Section 6.3.3).

It is worth noting that Xu et al. recently also used principal component analysis in
their work [77]; they use it to identify anomalous event patterns rather than finding

related groups of real-valued signals.

Decay

The PCA stage takes an optional parameter that causes old measurements to be
gradually forgotten, so the subsystems will weight recent data more than older data.
This decay parameter is set to 1.0 by default, which means all historical data is
considered equally in the analysis. Previous work used a decay parameter of 0.96
[48]. In our experiments, we say ‘no decay’ to indicate a decay value of 1.0 and
‘decay’ to indicate 0.96. Note, however, that we do not explicitly retain historical
data, in either case.

Decay is useful for more closely tracking recent changes and for studying those

changes over time (see Section 6.3.3); if needed, an instance of the compression stage



CHAPTER 6. ONLINE ALGORITHM 102

with decay can be run in parallel to one without. We use no decay except where

otherwise indicated.

6.1.3 Stage 2: Lag Correlation

The first stage of our method extracts correlations among signals that are temporally
aligned, but delayed effects or clock skews may cause correlations to be missed. The
second stage performs an approximate, online search for signals correlated with a lag;
that is, signals that are correlated when one is shifted in time relative to the other.

Again, we describe the lag correlation stage here for completeness, but refer the
reader to the original paper for details [56]. The cross-correlation between two signals
gives the correlation coefficients for different lags; the cross-correlation can be updated
incrementally, while retaining only a set of sufficient statistics about the two input
signals. To reduce the running time, lag is computed only at a subset of lag values,
chosen so that smaller lags are computed more densely than larger lags. To reduce
space consumption, lags are computed on smoothed approximations of the original
signals. These optimizations yield asymptotic speedups and typically introduce little
to no error (see Section 6.3.4). The running time, per tick, is O(m?), where m is
the number of signals. The space complexity is O(m?logt), where t is the number of
ticks.

One of the insights of our approach is that, without first reducing the dimensional-
ity of the problem, large systems would generate too many signals for lag correlation
to be practical; one of the primary purposes of the PCA computation is to perform
this dimensionality reduction. Once the problem is reduced to eigensignals and per-
haps a small set of other signals (see Watch List, below), lag correlation can often be
computed more quickly than the PCA (see Section 6.3.1). In other words, the first
stage of our method ensures m << n and makes lag correlation practical for large
systems.

Recall the example from Section 6. The lag correlation stage finds a temporal
relationship between the subsystem consisting of disk and forks and the component

swap, specifically that anomalies in the former tend to precede those in the latter.



CHAPTER 6. ONLINE ALGORITHM 103

Watch List

The watch list is a small set of signals that, in addition to the eigensignals, will
be checked for lag correlations. These signals bypass the compression stage, which
enables us to ask questions (standing queries) about specific signals and to associate
results with specific components. When no components are on the watch list, the
results are presented exclusively in terms of the subsystems. There are several ways
for a signal to end up on the watch list: manual addition (e.g., a user complains
that a certain machine has been misbehaving), automatic addition by rule (e.g., if
the temperature of some component exceeds a threshold), or automatic by selecting
representatives for the subsystems (see Section 6.3.3). A subsystem’s representative
signal is the anomaly signal with the largest absolute weight in the subsystem that
is not the representative of an earlier (stronger) subsystem. In our experiments, we

automatically seed the watch list with the representative of each subsystem.

6.1.4 Output

The output of our method is the behavioral subsystems, their behavior over time as
eigensignals, and lag correlations between those eigensignals and signals on the watch
list. The first stage produces k eigensignals and their weights. The second stage
produces a list of pairs of signals from among the eigensignals and those on the watch
list that have a lag correlation, as well as the values of those lags and correlations.

This output is available at any time during execution.

6.2 Systems

We evaluate our method on data from eight production systems: the seven systems
described in Section 5.3 plus a 9-node SQL database cluster located at Stanford
University. The SQL cluster was unique among the systems we studied in that it
recorded (a total of 271) numerical metrics using the Munin resource monitoring
tool (e.g., bytes received, threads active, and memory mapped). For example, the
following lines are from the memory swap metric:

2009-12-05 23:30:00 6.5536000000e+04



CHAPTER 6. ONLINE ALGORITHM

’ System H Comps ‘ Log Lines ‘ Time Span
Blue Gene/L || 131,072 4,747,963 | 215:00:00:00
Thunderbird 9024 | 211,212,192 | 244:00:00:00
Spirit 1028 | 272,298,969 | 558:00:00:00
Liberty 445 | 265,569,231 | 315:00:00:00
Mail Cluster 33 | 423,895,499 10:00:05:00
Junior 25 | 14,892,275 05:37:26
Stanley 16 | 23,465,677 09:06:11
SQL Cluster 9 | 116,785,525 09:00:47:00

104

Table 6.1: The eight unmodified production system logs used in our case studies. The
‘Comps’ column indicates the number of logical components with instrumentation;
some did not produce logs. Real time is given in days:hours:minutes:seconds.

2009-12-06 00:00:00 6.3502367774e+04

Each such numerical log was used without modification as an anomaly signal. To
generate anomaly signals for the non-numeric content of these logs, we use the same
term-frequency algorithm as in Section 5.3.1. We aggregate disk-related logs in the
SQL cluster into a signal called disk, memory-related logs into memory, etc.

For convenience, the eight systems are summarized in Table 6.1 and the anomaly
signals are summarized in Table 6.2. It has been our experience that the results of our
method are not strongly sensitive to choices of anomaly signals; for any reasonable
choice of signals, our method tends to group similar components and detect similar

lags.

6.3 Results

Our results show that we can easily scale to systems with tens of thousands of signals
and that we can describe most of a system’s behavior with eigensignals that are orders
of magnitude smaller than the original data; the behavioral subsystems and lags our
method discovers correspond to real system phenomena and have operational value

to administrators.



CHAPTER 6. ONLINE ALGORITHM 105

’ System H Ticks ‘ Tick= ‘ Signals H Agg. ‘ Ind.
Blue Gene/L 2985 | 1 hr 69,087 67 245
Thunderbird 3639 | 1 hr 18,395 7| 13,573
Spirit 11,193 | 1 hr 4094 7 3569
Liberty 5362 | 1 hr 372 4 124
Mail Cluster 14,405 | 1 min 139 4 102
Junior 488,249 | 0.04 s 25 0 0
Stanley 821,897 | 0.04 s 16 0 0
SQL Cluster 13,007 | 1 min 368 26 34

Table 6.2: Summary of the anomaly signals for this study. We omit ticks in which
no logs were generated. The ‘Signals’ column indicates the total number of anomaly
signals, which includes the aggregate (‘Agg.’) and indicator (‘Ind.”) signals.

In this chapter, we use a static k£ = 20 eigensignals rather than attempt to dynam-
ically adapt this number to match the variance in the data (as suggested elsewhere
[48]). Tt was our experience that such adaptation resulted in overly frequent changes
to k. Instead, we set k to the largest value at which the analysis is able to keep up
with the rate of incoming data. For the system that generated data at the highest
rate (Junior), this number was approximately 20, and we use this value throughout.

As stated in Sections 6.1.2 and 6.1.3, we test decay values of 1.0 (‘no decay’) and
0.96 (‘decay’) in agreement with previous work, and we automatically seed the watch
list with representatives from the subsystems, except where noted.

We performed all experiments on a MacPro with two 2.66 GHz Dual-Core Intel
Xeons and 6 GB 667 MHz DDR2 FB-DIMM memory, running Mac OS X version
10.6.4, using a Python implementation of the method.

Section 6.3.1 describes the performance of our analysis in terms of time and Sec-
tion 6.3.2 discusses the quality of the results; we focus in these subsections on the
mechanisms of the analysis, rather than their applications. Then, in Sections 6.3.3—-
6.3.4, we discuss use cases for our method with examples from the data. There are
a variety of techniques for visualizing the information produced by our analysis (e.g.,
the SIGs from Chapter 4); this section focuses instead on the information our method

produces and the uses of that information.



CHAPTER 6. ONLINE ALGORITHM 106

o _]

10 o No Decay
'g + Decay
(8] X9}
o < + —+
. L 3 :
e -+ + —+ 4 9 o o o
2 < 7
<
'_

0 _|

«® \ \ \ \ \ \ \ \

le+02 5e+02 5e+03 5e+04 5e+05

Ticks (log scale)

Figure 6.4: Using prefixes of Stanley’s data (n = 16), we see that compression rate is
not a function of the number of ticks.

6.3.1 Performance

Our method is easily able to keep up with the rate of data production for all the
systems that we studied.

The performance per tick does not degrade over time. Figures 6.4 and 6.5 show
processing rate in ticks per second for the signal compression and lag correlation
stages, respectively. Across more than three orders of magnitude of ticks, from 100
to around 821,000, there is no change in performance. This is in contrast to the naive
PCA algorithm, whose running time grows linearly with number of ticks.

The compression stage scales well with the number of signals (see Figure 6.6). For
systems with a few dozen components, the entire PCA state can be updated dozens
of times per second. Even with 70,000 signals, one tick takes only around 5 seconds.
For such larger systems, however, the per-component rate at which instrumentation
data is generated tends to be slower, as well. We require the rate of processing to
exceed the rate of data generation. As noted above, we chose a number of subsystems
that guaranteed this rate ratio was greater than 1 for all the systems we studied. The
interesting fact is that for many of the larger systems the ratio was much higher (see
Figure 6.7). In other words, the compression stage is sufficiently fast to handle tens
of thousands of signals that update with realistic frequency. In fact, it was Junior,

one of the smaller systems, that had the smallest ratio of processing rate to data



CHAPTER 6. ONLINE ALGORITHM 107

] o No Decay
2 o5 + Decay
o o —
(&) [{e]
o] e}
0 1 +o 4 4l | +
2 + : ¢
9 o
X o
(8]
-|: N
o —
\ \ \ \ \ \ \ \
5e+03 1le+04 2e+04 5e+04 l1le+05 2e+05 5e+05 1e+06

Ticks (log scale)

Figure 6.5: The lag correlation computation is not a function of the number of ticks
(n = 20). Each pair of data points corresponds to one of our studied systems.

Q - + o No Decay
g + Decay
g & + 4
5 +
2 R
2 S
o —
= +
e I I I I I I I I éﬁ\ I +
20 50 100 200 500 1000 5000 20000 50000

Signals (log scale)

Figure 6.6: The rate of ticks per second for the compression stage decreases slowly
with the number of signals; autoregressive weighting (decay) has no effect on running

time.



CHAPTER 6. ONLINE ALGORITHM 108

@ g i 4 o No Decay
8 oS + Decay
a 9 4
2 - o N
e o
g 9 7
14
2
©
R 'Y
\ \ \ \ \ \ \ \ \ \
20 50 100 200 500 1000 5000 20000 50000

Signals (log scale)

Figure 6.7: Although the compression rate decreases with the number of signals, larger
systems tend to update measurements less frequently. The ratio between compression
rate and measurement generation rate, plotted, shows that the bigger systems are
easier to handle than the 25 ticks-per-second data rate of the embedded systems.

v o 4 ‘

S S + 1 o No Decay

g o 4 + | + Decay

S o 7]

= 8 —

: o

S g | -

»n w 1

P _ ‘ 4

[&) 1 — '

= \ T ‘ T T \ &
10 20 50 100 200

Signals (log scale)

Figure 6.8: The rate of lag correlation processing decreases quickly with the number
of signals. (Note the log-log scale.) Our method uses eigensignals and a watch list to
keep the number of signals small.



CHAPTER 6. ONLINE ALGORITHM 109

generation rate, at around 1.14. Junior’s 25 anomaly signals were updating 25 times
per second.

In the event that a system were to produce data too quickly, either because of
the total number of signals or because of the update frequency, we could reduce the
number of subsystems (k), reduce the size of the watch list, or reduce the anomaly
signal sampling rate. This was not necessary for any of our systems. Note that bursts
in the raw log data, which can exceed the average message rate by many orders of
magnitude, are absorbed by the anomaly signal and do not factor into this discussion
of data rate. Furthermore, we believe that future work could parallelize both stages
of our analysis, yielding even better performance.

As Figure 6.8 shows, the lag correlation stage scales poorly with the number of
signals. Trying to run it on all 69,087 signals from BG/L, for example, is intractable.
Our method skirts this problem by feeding the lag correlation stage only m signals:
the eigensignals and signals on the watch list. The vertical line at 40 signals represents
the number we use for most of the remaining experiments: 20 eigensignals and 20
representative signals in the watch list. Our method scales to supercomputer-scale

systems because m << n.

6.3.2 Eigensignal Quality

Previous work uses a measure called energy to quantify how well the eigensignals
describe the original signals [22, 48]. Let z,; be the value of signal ¢ at time 7. The
energy E; at time t is defined as F; := %23:1 P

By projecting the eigensignals onto the weights, we can reconstruct an approxima-
tion of the original n anomaly signals. If the eigensignals are ideal, then the energy of
the reconstructed signals will be equal to the energy of the original signals; in prac-
tice, using k << n eigensignals and online approximations means that this fraction
of reconstruction energy to original energy will be less than one.

Consider the autonomous vehicle, Stanley, which has 16 original signals. Figure 6.9
shows the energy ratio for the first ten eigensignals; the lowest line is for the first

eigensignal only, the line above that represents the first two eigensignals, then the



CHAPTER 6. ONLINE ALGORITHM 110

0.8
\

Energy Fraction
0.4

0.0

\ \ \
Oe+00 2e+05 4e+05 6e+05 8e+05

Tick
Figure 6.9: The cumulative fraction of total energy in Stanley’s first k eigensignals.

The bottom line shows the energy captured by the first eigensignal; the line above
that is for the first two eigensignals, etc.

c @ |
i) o
o
E ]
L
> <
© o 7
(O]
c
5 _|
o |
© \ \ \ \ I
0e+00 2e+05 4e+05 6e+05 8e+05
Tick

Figure 6.10: The incremental additional energy captured by Stanley’s k™" eigensignal,
given the first £ — 1.



CHAPTER 6. ONLINE ALGORITHM 111

c «© |
© o
©
E |
L
> <
O o 7
(]
[
G _|
o |
© \ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000
Tick

Figure 6.11: The cumulative fraction of total energy in BG/L’s first k eigensignals.
The first ten eigensignals suffice to describe more than 90% of the energy in the
system’s 69,087 signals.

first three, and so on. Figure 6.10 shows the incremental energy fraction; that is,
the line for £ = 3 shows the amount of increase in the energy fraction over using
k = 2. Near the beginning of the log, the PCA is still learning about the system’s
behaviors, so the energy fraction is erratic. Over time, however, the ratio stabilizes.
These experiments were without decay, so the energy fractions show how well the
compression stage is able to model all the data it has seen so far. The first ten
eigensignals are able to model almost 100% of the energy of Stanley’s 16 original
signals (i.e., almost 38% of the information in the anomaly signals was redundant).

For larger systems, we find more signals tend to be correlated and the number
of eigensignals needed per original signal decreases. Consider the cumulative energy
fraction plot for BG/L in Figure 6.11, which shows that the first eigensignal, alone,
contains roughly 33% of all of the energy in the system.

Figure 6.12 shows what fraction of energy is captured by the first £ eigensignals
as a function of % In other words, if we think of the first stage of our method as lossy
compression, the figure shows how efficiently we are compressing the data and with
what loss of information. For systems like BG/L, with many correlated subsystems,
we can describe most of the behavior with a tiny fraction of the original data. When

we let old data decay (see Figure 6.13), twenty eigensignals is enough to bring the



CHAPTER 6. ONLINE ALGORITHM 112

o BG/L
A Thunderbird
+ Spirit
X Liberty
< Mail
7 Junior
X Stanley
* SQL

0.8

Energy Fraction
0.4

le-05 le-03 le-01 le+01
Representation Size Fraction (log scale)
Figure 6.12: The fraction of energy captured by the first 20 eigensignals, plotted

versus the size of those signals as a fraction of the total input data. (Note that
Stanley only has 16 components and therefore only 16 eigensignals.)

m O — O oS
© ooo°°<1me + %#H% 5K ’n,;&‘ -
S : ’ X R~ v
9 o o ° .X 9‘9‘% v © BG/L .
= / N xS~ A Thunderbird
@ _ o ¥ v ur
L A / - + Spirit
> < A N X Liberty
2 o / /* < Mall
e A % v Junior
- ) ° A/ X Stanley
o _ * SQL
© \ \ \ I
1le-05 1le-03 le-01 le+01

Representation Size Fraction (log scale)

Figure 6.13: When old data is allowed to be forgotten (decay), the behavior of the
system can be described efficiently using a small number of eigensignals.



CHAPTER 6. ONLINE ALGORITHM 113

SR

Weight
0.4

0.2

CAN2 GPS_COMP GPS_VEL IMU LASER2 LASER4 PLANNER_TRAJ TEMP
EKF_POSE GPS_POS HEART LASER1 LASER3 PLANNER_INFO TARGET TOUAREG_ACT
Signal

Figure 6.14: Weights for Stanley’s first three subsystems. The left bar indicates
the absolute weight of that signal’s contribution to the subsystem; the second bar
indicates its weight in the second subsystem, etc.

energy fraction to nearly one; for the larger systems, this means we are compressing

by orders of magnitude with minimal information loss.

6.3.3 Behavioral Subsystems

In this section, we discuss some practical applications of the output of the first stage
of our analysis: the behavioral subsystems. An eigensignal describes the behavior of
a subsystem over time; the weights of the subsystem capture how much each original
signal contributes to the subsystem. Components may interact with each other to

varying degrees, and our notion of a subsystem reflects this fact.

Identifying Subsystems

During the Grand Challenge race, Stanley experienced a critical bug that caused
the vehicle to swerve around nonexistent obstacles [70]. The Stanford Racing Team
eventually learned that the laser sensors were sometimes misbehaving, but our anal-
ysis reveals a surprising interaction: the first subsystem is dominated by the laser
sensors and the planner software (see Figure 6.14). This interaction was surprising
because there was initially no apparent reason why four physically separate laser sen-

sors should experience anomalies around the same time; it was also interesting that



CHAPTER 6. ONLINE ALGORITHM 114

© _|
o
E < |
2 o
=
N
] l
S ] = B [L- e Dl Dl Dl .
o [ [ [ [ [ [
CAN2 GPS_COMP  GPS_VEL IMU LASER2 LASER4 PLANNER_TRAJ TEMP
EKF_POSE  GPS_POS HEART LASER1 LASER3 PLANNER_INFO TARGET TOUAREG_ACT
Signal

Figure 6.15: Weights of Stanley’s first three subsystems, with decay. The subsystem
involving the lasers (see Figure 6.14) has long since decayed because the relevant
anomalies happened early in the race.

the planner software was correlated with these anomalies more-so than with the other
sensors. As it turned out, there was an uninstrumented, shared component of the
lasers that was causing this correlated behavior (see Chapter 4) and whose existence
our method was able to infer. This insight was critical to understanding the bug.

Administrators often ask, “What changed?” For example, does the interaction
between Stanley’s lasers and planner software persist throughout the log, or is it
transient? The output of our analysis in Figure 6.15, which only reflects behavior
near the end of the log, shows that the subsystem is transient. Most of the anomalies
in the lasers and planner software occurred near the beginning of the race and are
long-since forgotten by the end. As a result, the first subsystem is instead described
by signals like the heartbeat and temperature sensor (which was especially anomalous
near the end of the race because of the increasing desert heat). We currently identify
temporal changes manually, but we could automate the process by comparing the
composition of subsystems identified by the signal compression stage. Section 6.3.4
discusses the temporal properties of Stanley’s bug in more detail.

Subsystems can describe global behavior as well as local behavior. Figure 6.16
shows the weights for Spirit’s first subsystem, whose representative is the aggregate

signal of all the compute nodes; this subsystem describes a system-wide phenomenon



CHAPTER 6. ONLINE ALGORITHM 115

<t
o
o
= _|
2
s 8
o
o
Q —
o \ \ \ \ \
0 1000 2000 3000 4000
Signal

Figure 6.16: Weights of Spirit’s first subsystem, sorted by weight magnitude. The
compression stage has identified a phenomenon that affects many of the components.

(nodes exhibit more interesting behavior when they are running jobs). This is an ex-
ample of behavior an administrator might choose to filter out of the anomaly signals.
Meanwhile, the weights for Spirit’s third subsystem, shown in Figure 6.17, are con-
centrated in a catch-all logging signal, signals related to component sn111, and alert
types R_.HDA NR and R_HDA STAT, which are hard drive-related problems (see Chap-
ter 3). This subsystem conveniently describes a specific kind of problem affecting
a specific component, and knowing that those two types of alerts tend to happen

together can help narrow down the root cause.

Refining Instrumentation

Subsystem weights elucidate the extent to which sets of signals are redundant and
which signals contain valuable information. There is operational value in refining the
set of signals to include only those that give new information. The administrator of
our SQL cluster stated this need as follows: “One of the problems with developing a
set of metrics to measure how well a particular service is doing is that it’s very easy
to come up with an overwhelming number of them. However, if one wants to manage
a service to metrics, one wants to have a reasonably small number of metrics to look
at.”

In addition to identifying redundant signals, subsystems can draw attention to



CHAPTER 6. ONLINE ALGORITHM 116

Weight
04 0.6

0.0 0.2

\ \ \ \ \
0 1000 2000 3000 4000

Signal

Figure 6.17: Sorted weights of Spirit’s third subsystem. Most of the weight is in a
small subset of the components.

places where more instrumentation would be helpful. After our analysis of the SQL
cluster revealed that slow queries were predictive of bad downstream behavior, the
administrator said, “I wish I had connection logs from other possible query sources
to the MySQL servers to see if any of those would have uncovered a correlation [but]
we don’t save those in a useful fashion. This is pointing to some real deficiencies in

our MySQL logging.”

Representatives

When diagnosing problems in large systems, it is helpful to be able to decompose the
system into pieces. Administrators currently do this using topological information
(e.g., is the problem more likely to be in Rack 1 or Rack 27). Our analysis shows that
topology is often a reasonable proxy for behavioral groupings. The representative
signal for the first subsystem of many of the systems are aggregate signals: the
aggregate signal summarizing interrupts in the SQL cluster, the mail-format logs
from Mail cluster, the set of compute nodes in Liberty and Spirit, the components in
Rack D of Thunderbird, and Rack 35 of BG/L. On the other hand, our experiments
also revealed a variety of subsystems for which the representative signals were not
topologically related. In other words, topological proximity does not imply correlated

behavior nor does correlation imply topological proximity. For example, based on



CHAPTER 6. ONLINE ALGORITHM 117

— interrupts
- - memory
< - Pon - disk
g : rIJ a0
§ 7 ' ' :L-H' | PR |
N T B L G 3 I S| I TRETEEREr | RS
o . ‘ 'I‘I ,'f "'"'".'l' ___“l _____
~ ORI E
| i
2000 4000 6000 8000 10000

Tick

Figure 6.18: The anomaly signals of the representatives of the first three subsystems
for the SQL cluster.

Figure 6.14, an administrator for Stanley would know to think about the laser sensors
and planner software, together, as a subsystem.

A representative signal is also useful for quickly understanding what behaviors a
subsystem describes. Figure 6.18 shows the anomaly signals of the representatives of
the SQL cluster’s first three subsystems. Based on the representatives, we can infer
that these subsystems correspond to interrupts, application memory usage, and disk

usage, respectively, and that these subsystems are not strongly correlated.

Collective failures

Behavioral subsystems can describe collective failures. On Thunderbird, there was a
known system message suggesting a CPU problem: “kernel: Losing some ticks...
checking if CPU frequency changed.” Among the signals generated for Thun-
derbird were signals that indicate when individual components output the message
above. It turns out that this problem had nothing to do with the CPU; in fact, an
operating system bug was causing the kernel to miss interrupts during heavy network
activity. As a result, these messages were typically generated around the same time
on multiple different components. Our method automatically notices this behavior

and places these indicator signals into a subsystem: all of the first several hundred



CHAPTER 6. ONLINE ALGORITHM 118

— Original
™ --- Reconstructed
(] AN —
35
© ‘
> o - ;
o “Iw‘ ! ,J"‘, N A"I“ I N Y R 1
' N ' [ ! & .
}
\ \ \ \ \ \
0 100 200 300 400 500

Ticks into Window

Figure 6.19: Reconstruction of a portion of Liberty’s admin signal using the subsys-
tems, including the periodic anomalies.

most strongly-weighted signals in Thunderbird’s third subsystem were indicator sig-
nals for this “CPU” message. Knowing about this spatial correlation would have

allowed administrators to diagnose the bug more quickly (see Section 4.4).

Missing Values and Reconstruction

Our analysis can deal gracefully with missing data because it explicitly guesses at the
values it will observe during the current tick before observing them and adjusting the
subsystem weights (see Section 6.1.2). If a value is missing, the guessed value may
be used, instead.

We can also output a reconstruction of the original anomaly signals using only
the information in the subsystems (i.e., the weights and the eigensignals), meaning
an administrator can answer historical questions about what the system was doing
around a particular time, without the need to explicitly archive all the historical
anomaly signals (which doesn’t scale). Figure 6.19 shows the reconstruction of a
portion of Liberty’s admin anomaly signal. Most of this behavior is captured by the
first subsystem, for which admin is representative.

Allowing older values to decay permits faster tracking of new behavior at the
expense of seeing long-term trends. Figure 6.20 shows the reconstruction of one of

Liberty’s indicator signals, with decay. The improvement in reconstruction accuracy



CHAPTER 6. ONLINE ALGORITHM 119

L _]
= - — Original
--- Reconstructed
o _|
—
(]
35
©
>
o
o — J —
\ \ \ \ I
0 100 200 300 400

Ticks into Window

Figure 6.20: Reconstruction of a portion of Liberty’s R_EXT_CCISS indicator signal
with decay.

when using decay is apparent from Figure 6.21, which shows the relative reconstruc-
tion error for the SQL cluster. The behavior of this cluster changed near the end of

the log due to an upgrade; the analysis with decay adapts to this change more easily.

6.3.4 Delays, Skews, and Cascades

In real systems, interactions may occur with some delay (e.g., high latency on one
node eventually causes traffic to be rerouted to a second node, which causes higher
latency on that second node a few minutes later) and may involve subsystems. We

call these interactions cascades.

Cascades

The logs were rich with instances of individual signals and behavioral subsystems
with lag correlations. This includes the supercomputer logs, whose anomaly signals
have 1-hour granularity. We give a couple of examples here.

We first describe a cascade in Stanley: the critical swerving bug mentioned in
Section 6.3.3. This bug has previously been analyzed only offline. Recall that the first
stage of our analysis identifies one transient subsystem whose top four components

are the four laser sensors and another subsystem whose top three components are the



CHAPTER 6. ONLINE ALGORITHM 120

— No Decay
—| --- Decay

0.8

Reconstruction Error
0.4

g | A ‘.Wum&m._A...Mu.&L‘uumw‘&.fn\m.w%,“., s, b S e i bl ‘“"“”“‘"“‘v—“J.\A.h...u.l.; _
I I I I I I I
0 2000 4000 6000 8000 10000 12000
Tick

Figure 6.21: Relative reconstruction error for the SQL cluster, with and without
decay. Reconstruction is more accurate when old values decay, especially during a
new phase near the end of this log.

two planner components and the heartbeat component. The second stage discovers
a lag correlation between these two subsystems with magnitude 0.47 and lag of 111
ticks (4.44 seconds). This agrees with the lag correlation between individual signals
within the corresponding subsystems; for instance, LASER4 and PLANNER _TRAJ have a
maximum correlation magnitude of 0.65 at a lag of 101 ticks.

In Section 6, we described a cascade using three real signals called disk, forks,
and swap. These three signals (renamed for conciseness) are from the SQL cluster
and are the top two components of the third subsystem and the representative of the
fourth subsystem, respectively. Our method reports a lag correlation between the
third and fourth subsystems of 30 minutes (see Figure 6.22). The administrator had
been trying to understand this cascading behavior for weeks; our analysis confirmed
one of his theories and suggested several interactions of which he had been unaware.

The administrator of the SQL cluster ultimately concluded that there was not
enough information in the logs to definitively diagnose the underlying mechanism
at fault for the crashes. This is a limitation of the data, not the analysis. In fact,
in this example, our method both identified the shortcoming in the logs (a future
logging change is planned as a result) and, despite the missing data, pointed toward

a diagnosis.



CHAPTER 6. ONLINE ALGORITHM 121

© — Third Eigensignal
§ - - Fourth Eigensignal
< I -+ disk

swap

Value
2

6000 8000 10000 12000

Tick

Figure 6.22: In the SQL cluster, the strongest lag correlation was found between
the third and fourth subsystems, with a magnitude of 0.46 and delay of 30 minutes.
These eigensignals and their representatives’ signals (disk and swap, respectively),
are shown above.

Online Alarms

In addition to learning these cascades online, we can set alarms to trigger when the
first sign of a cascade is detected, even when the cascade is already underway and
even when we do not understand the underlying mechanism. In the case of Stanley’s
swerving bug cascade, the Racing Team tells us Stanley could have prevented the
swerving behavior by simply stopping whenever the lasers started to misbehave.
Some cascades operate on timescales that would allow more elaborate reactions or
even human intervention. We tried the following experiment based on two of the lag-
correlated signals reported by our method (plotted in Figure 6.23 and discussed briefly
in Section 6): when swap rises above a threshold, we raise an alarm and see how long
it takes before we see interrupts rise above the same threshold. We use the first half
of the log to determine and set the threshold to one standard deviation from the mean;
we use the second half for our experiments, which yield no false positives and raise
three alarms with an average warning time of 190 minutes. Setting the threshold at
two standard deviations gives identical results. Depending on the situation, advanced
warning about these spikes could allow remedial action like migrating computation,

adjusting resource provisions, and so on.



CHAPTER 6. ONLINE ALGORITHM 122

" ! — interrupts
N " -- swap

Value

6000 7000 8000 9000 10000

Tick

Figure 6.23: Our method reports that the signal swap tends to spike 210 minutes
before interrupts, with a correlation of 0.271; we can detect this online.

Clock Skews

A cascade discovered between signals or subsystems that are known to act in unison
may be attributable to clock skew. Without this external knowledge of what should
happen simultaneously, there is no way to distinguish a clock skew from a cascade
based on the data; our analysis can determine that there is some lag correlation, not
the cause of the lag. If the user sees a lag that is likely to be a clock skew, our analysis
provides the amount and direction of that skew, as well as the affected signals.
Although there were no known instances of clock skew in our data sets, we exper-
imented with artificially skewing the timestamps of signals known to be correlated.
We tested a variety of signals from different systems with correlation strengths vary-
ing from 0.264 to 0.999, skewing them from between 1 and 25 ticks. The amount of
skew computed by our online method never differed from the actual skew by more

than a couple of ticks; in almost all cases, the error was zero.

6.3.5 Results Summary

Our results show that signal compression drastically increases the scalability of lag
correlation (see Section 6.3.1) and that this compression process identifies behavioral

subsystems with minimal information loss (see Section 6.3.2). Experiments on large



CHAPTER 6. ONLINE ALGORITHM 123

production systems (see Sections 6.3.3-6.3.4) reveal that our method can produce
operationally valuable results under common conditions where other methods cannot
be applied: noisy, incomplete, and heterogeneous logs generated by systems that we
cannot modify or perturb and for which we have neither source code nor correctness

specifications.

6.4 Contributions

We present an efficient, two-stage, online method for discovering interactions among
components and groups of components, including time-delayed effects, in large pro-
duction systems. The first stage compresses a set of anomaly signals using a principal
component analysis and passes the resulting eigensignals and a small set of other sig-
nals to the second stage, a lag correlation detector, which identifies time-delayed
correlations. We show, with real use cases from eight unmodified production sys-
tems, that understanding behavioral subsystems, correlated signals, and delays can
be valuable for a variety of system administration tasks: identifying redundant or
informative signals, discovering collective and cascading failures, reconstructing in-

complete or missing data, computing clock skews, and setting early-warning alarms.



Chapter 7

Related Work

Work on log analysis and large-systems reliability has been hindered by a lack of data
about their behavior. Schroeder [58] studied failures in a set of cluster systems at Los
Alamos National Lab (LANL) using the entries in a remedy database. This database
was designed to account for all node downtime in these systems, and was populated
via a combination of automatic procedures and the extensive effort of a full-time
LANL employee, whose job was to account for these failures and to assign them a
cause within a short period of time after they happened. Schroeder also examined
customer-generated disk replacement databases [59], but there was no investigation
into how these replacements were manifested in the system logs. Although similar
derived databases exist for the supercomputers studied in this thesis, our goal was to
understand the behavior of the systems rather than human interpretations.

There is a series of papers on logs collected from Blue Gene/L (BG/L) systems.
Liang, et al [27] studied the statistical properties of logs from an 8-rack prototype sys-
tem, and explored the effects of spatio-temporal filtering algorithms. Subsequently,
they studied prediction models [28] for logs collected from BG/L after its deploy-
ment at Lawrence Livermore National Labs (LLNL). The logs from that study are
a subset of those used in this thesis. Furthermore, they identified alerts according
to the severity field of messages. Although it is true that there exists a correlation

between the value of the severity field of the message and the actual severity, we found

124



CHAPTER 7. RELATED WORK 125

many messages with low severity that indicate a critical problem and vice versa. Sec-
tion 2.1.2 elaborates on this claim and details the more intensive process we employed
to identify alerts.

System logs for smaller systems have been studied for decades, focusing on sta-
tistical modeling and failure prediction. Tsao developed a tuple concept for data
organization and to deal with multiple reports of single events [72]. Early work
at Stanford [37] observed that failures tend to be preceded by an increased rate of
non-fatal errors. Using real system data from two DEC VAX-cluster multicomputer
systems, Iyer found that alerts tend to be correlated, and that this has a significant
impact on the behavior and modeling of these systems [68]. Lee and Iyer [26] pre-
sented a study of software faults in systems running the fault-tolerant GUARDIAN90
operating system.

System logs are generally readily available and often contain critical clues to
causes of failure, so many techniques for detecting alerts in logs have been proposed.
Most prior work focuses on logs with dependable structure (easily tokenizeable into
message-type-ID’s). These attempts include pattern-learning [21], data mining tech-
niques to discover trends and correlations [34, 62, 74, 78], and message timing [27].

Less work has been done in the area of unstructured message content. Attempts
to apply techniques from genomic sequence mining to logs [62, 75] have run up against
scaling problems. Vaarandi has applied clustering [73] and Apriori data mining [74],
and was the first to encode word positions in his analyses (e.g., the first word of
the message, the second, etc.), thereby effectively capturing a simple form of message
context. Chapter 3 extends the understanding of how valuable such position encoding
can be.

Reuning [50] and Liao [29] have each applied simple term weighting schemes to
intrusion detection in logs, but Reuning concludes that his false positive rate ren-
ders the approach unusable in practice. In Chapter 3, we apply the more complex
“log.entropy” weighting scheme that has been shown to be highly effective for infor-
mation retrieval tasks [6].

There is an extensive body of work on system modeling, especially on inferring

the causal or dependency structure of distributed systems. Our influence method



CHAPTER 7. RELATED WORK 126

distinguishes itself from previous work in various ways, but primarily in that we look
for influences rather than dependencies [3, 14, 60, 79]. Influence is an orthogonal
property from dependencies that quantifies correlated deviations from normal behav-
ior; influence is statistically robust to noisy or missing data and captures implicit
interactions like resource contention.

Previous work on dependency graphs typically assumes that the system can be
perturbed (by adding instrumentation or active probing), that the user can specify
the desired properties of a healthy system, that the user has access to the source code,
or some combination of these (e.g., [32, 61]). In our experience, it is often the case
that none of these assumptions hold in practice. In contrast, our method requires no
modifications to the system nor access to source code, does not require a specification
of correct behavior nor predicates to check, and robustly handles the common case
where not all components and their interactions are known.

One common thread in dependency modeling work is that the system must be
actively perturbed by instrumentation [57] or by probing [7, 8, 12, 13, 53]. Pinpoint
[10, 11] and Magpie [4] track communication dependencies with the aim of isolat-
ing the root cause of misbehavior; they require instrumentation of the application to
tag client requests. In order to determine the causal relationships among messages,
Project5 [2] and WAP5 [52] use message traces and compute dependency paths (none
of the systems we studied recorded such information). D3S [31] uses binary instru-
mentation to perform online predicate checks. Others leverage tight integration of the
system with custom instrumentation to improve diagnosability (e.g., the P2 system
[61]) or restrict the tool to particular kinds of systems (e.g., MapReduce [47] or wide
area networks [17, 23, 24, 82]). Work by Bahl [3] aims to infer multi-level dependency
graphs that model load-balancing and redundancy. Deterministic replay is another
common approach [18; 32] but requires supporting instrumentation. For all of the
production systems we studied, we could not apply any of these existing methods, and
it was neither possible nor practical for us to add instrumentation. Indeed, the goal
was sometimes to diagnose a bug that had already occurred; adding instrumentation
would only help with future bugs. More generally, it may not be possible to modify

existing instrumentation for reasons of system performance or cost.



CHAPTER 7. RELATED WORK 127

Some approaches require the user to write predicates indicating what properties
should be checked [31, 32, 61]. Pip [51] identifies when communication patterns differ
from expectations and requires an explicit specification of those expectations. We
have no such correctness predicates, models, or specifications for any of the systems
we study. Furthermore, we encountered many instances where it would not have been
possible to write a sufficient specification of correct behavior before diagnosing the
problem—in other words, knowing what property to check (e.g., creating a model
suitable for model checking) was equivalent to understanding the root cause.

Recent work shows how access to source code can facilitate tasks like log analy-
sis [76], distributed diagnosis [19, 80, 81], and recovery [20]. Although our influence
method could be extended to take advantage of access to source code, many sys-
tems involve proprietary, third-party, or classified software for which source code is
unavailable.

With few exceptions [5], in previous work events are intrinsically binary (i.e.,
happen or not). Our approach, which abstracts components as real-valued signals,
retains strictly more information about component behavior.

Many interesting problems in complex systems arise when components are con-
nected or composed in ways not anticipated by their designers [35]. As systems grow in
scale, the sparsity of instrumentation and complexity of interactions only increases.
Our method infers a broad class of interactions using the existing instrumentation

data and problem clues.



Chapter 8
Conclusions

This thesis examines the problem of understanding the interactions among compo-
nents in complex production systems where the instrumentation data available for
analysis may be noisy or incomplete. In particular, we consider the case where only
some subset of the system components have instrumentation, and where that instru-
mentation does not completely describe the component state and may be heteroge-

neous across components.

8.1 Thesis Contributions

We conducted the largest-ever study of system logs, considering billions of log mes-
sages from five production supercomputers, and discussed the problem of identifying
important messages called alerts in these data. Specifically, we described several of
the key challenges: insufficient context, asymmetric problem reporting, system evolu-
tion, implicit correlation between messages, inconsistent message structure, and data
corruption. Our analysis led us to recommend that systems be designed to log oper-
ational context (e.g., when periods of maintenance begin and end), that log filtering
algorithms be aware of correlations between messages and root causes, that reliability
be quantified based on meaningful values like useful work lost due to failures, and
that failure prediction is a valuable and feasible future direction.

We presented the first reproducible results in alert detection and proposed an

128



CHAPTER 8. CONCLUSIONS 129

information-theoretic algorithm, called Nodeinfo, that outperforms known techniques.
Nodeinfo is based on the insight that similar computers executing similar workloads
will tend to generate similar logs. One important contribution of this work was to
formalize the problem of alert detection and propose specific metrics. The online ver-
sion of this algorithm went into production use on several supercomputers at national
labs.

We proposed a method for identifying the sources of problems in complex produc-
tion systems where, due to the prohibitive costs of instrumentation, the data available
for analysis may be noisy or incomplete. We defined influence as a class of compo-
nent interactions that includes direct communication and resource contention. Our
method infers the influences among components in a system by looking for pairs of
components with time-correlated anomalous behavior. We summarize the strength
and directionality of shared influences using a Structure-of-Influence Graph (SIG).
Applications of this method to production systems showed that influence helps model
systems and identify the likely causes of misbehavior.

Using influence, or correlated surprise, as the primitive, we created a query lan-
guage for asking questions about component interactions and a tool called QI for
efficiently answering them even for large systems. This language introduced the no-
tion of metacomponents for representing aggregate behaviors, binary components for
describing predicated behaviors, and masked components for hiding behaviors. We
evaluated QI on real administrative tasks using system logs from four supercomput-
ers, two autonomous vehicles, and a server cluster. The results showed that our tool
can build models, isolate root causes, test hypotheses, and relate known problems to
each other, even without modifying or perturbing the system under study.

We devised an efficient, two-stage, online method of computing influence that can
analyze log data in real time for systems with hundreds of thousands of components.
By virtue of being an online algorithm, we are able to use the output of our tool
to identify cascading failures as they are underway and to set alarms that trigger
in advance of misbehavior. We evaluated our method on real production systems
and showed that it can produce operationally valuable results under conditions where

other methods could not be applied: noisy, incomplete, heterogenous logs and systems



CHAPTER 8. CONCLUSIONS 130

which cannot be modified or perturbed and for which we do not have full access to
source code.

As systems trend toward more components and more sparse instrumentation,
methods like ours—with only weak requirements on measurement data and good
scaling properties—will become increasingly necessary for understanding system be-

havior.



Bibliography

1]

2]

N. R. Adiga and The BlueGene/L Team. An overview of the bluegene/1 super-
computer. In Supercomputing, 2002.

Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Methitacharoen. Performance debugging for distributed systems of black
boxes. In SOSP, 2003.

Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula,
David A. Maltz, and Ming Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In SIGCOMM, 2007.

Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
Magpie for request extraction and workload modelling. In OSDI, 2004.

Peter C. Bates. Debugging heterogeneous distributed systems using event-based
models of behavior. ACM Transactions on Computer Systems, 13(1):1-31, 1995.

Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices, vector
spaces, and information retrieval. SIAM Rev., 41(2):335-362, 1999.

Mark Brodie, Irina Rish, and Sheng Ma. Optimizing probe selection for fault
localization. In Workshop on Distributed Systems: Operations and Management

(DSOM), 2001.

A. Brown, G. Kar, and A. Keller. An active approach to characterizing dynamic
dependencies for problem determination in a distributed environment. In IEEE
IM, 2001.

131



BIBLIOGRAPHY 132

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

M. F. Buckley and D. P. Siewiorek. A comparative analysis of event tupling
schemes. In FTCS-26, Intl. Symp. on Fault Tolerant Computing, pages 294-303,
June 1996.

Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson,
Armando Fox, and Eric Brewer. Path-based failure and evolution management.
In NSDI, 2004.

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.

Pinpoint: problem determination in large, dynamic internet services. In DSN,
2002.

S. Chutani and H.J. Nussbaumer. On the distributed fault diagnosis of computer

networks. In IEEE Symposium on Computers and Communications, 1995.

Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and

Armando Fox. Capturing, indexing, clustering, and retrieving system history. In
SOSP, 2005.

Christian Ensel. New approach for automated generation of service dependency

models. In Latin American Network Operation and Management Symposium

(LANOMS), 2001.

Dror G. Feitelson and Dan Tsafrir. Workload sanitation for performance evalu-
ation. In IEEE Intl. Symp. Performance Analysis Syst. & Software (ISPASS),
pages 221-230, Mar 2006.

Ulrich Flegel. Pseudonymizing unix log files. In Proceedings of the Infrastructure
Security Conference (InfraSec), 2002.

Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
X-Trace: A pervasive network tracing framework. In NSDI, 2007.

Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging
for distributed applications. In USENIX Technical, 2006.



BIBLIOGRAPHY 133

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince Or-
govan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt. Debugging
in the (very) large: Ten years of implementation and experience. In SOSP, 2009.

Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Heller-
stein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen, and
Dhruba Borthakur. FATE and DESTINI: A framework for cloud recovery test-
ing. In NSDI, 2011.

J. L. Hellerstein, S. Ma, and C.S. Perng. Discovering actionable patterns in event
data. IBM Systems Journal, 41(3), 2002.

I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur. Shrink: A tool for
failure diagnosis in IP networks. In MineNet Workshop at SIGCOMM, 2005.

Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex C. Snoeren.
IP fault localization via risk modeling. In NSDI, 2005.

S. Kullback. The Kullback-Leibler distance. The American Statistician, 41:340—
341, 1987.

I. Lee and R. K. Iyer. Faults, symptoms, and software fault tolerance in the
tandem guardian90 operating system. In Fault-Tolerant Computing. FTCS-23.
Digest of Papers., The Twenty-Third International Symposium on, pages 2029,
1993.

Y. Liang, Y. Zhang, A. Sivasubramaniam, R. K. Sahoo, J. Moreira, and
M. Gupta. Filtering failure logs for a bluegene/l prototype. In DSN, 2005.

Yinglung Liang, Yanyong Zhang, Morris Jette, Anand Sivasubramaniam, and
Ramendra K. Sahoo. Blue gene/l failure analysis and prediction models. In

DSN, 2006.



BIBLIOGRAPHY 134

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[40]

Yihua Liao and V. Rao Vemuri. Using text categorization techniques for intrusion
detection. In 11th USENIX Security Symposium, August 5-9, 2002., pages 51—
59, 2002.

T. T. Y. Lin and D. P. Siewiorek. Error log analysis: statistical modeling and
heuristic trend analysis. Reliability, IEEE Transactions on, 39(4):419-432, 1990.

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,
Ming Wu, M. Frans Kaashoek, and Zheng Zhang. D3S: debugging deployed
distributed systems. In NSDI, 2008.

Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS Checker: Com-
bating bugs in distributed systems. In NSDI, 2007.

Logsurfer. A tool for real-time monitoring of text-based logfiles.
http://www.cert.dfn.de/eng/logsurf/, 2006.

S. Ma and J. Hellerstein. Mining partially periodic event patterns with unknown
periods. In ICDE, 2001.

Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems. In
FuroSys, 2006.

Michael Montemerlo et al. Junior: The Stanford entry in the Urban Challenge.
Journal of Field Robotics, 2008.

F. A. Nassar and D. M. Andrews. A methodology for analysis of failure prediction
data. In Real-Time Systems Symposium, pages 160-166, December 1985.

A. J. Oliner, A. Aiken, and J. Stearley. Alert detection in system logs. In ICDM,
December 2008.

A. J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken. Using correlated surprise
to infer shared influence. In DSN, 2010.

A. J. Oliner, L. Rudolph, and R. Sahoo. Cooperative checkpointing theory. In
IPDPS, 2006.



BIBLIOGRAPHY 135

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. J. Oliner, L. Rudolph, and R. K. Sahoo. Cooperative checkpointing: A robust
approach to large-scale systems reliability. In ICS, June 2006.

A. J. Oliner, L. Rudolph, R. K. Sahoo, J. E. Moreira, and M. Gupta. Probabilistic
qos guarantees for supercomputing systems. In DSN, 2005.

A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Sivasubramaniam.
Fault-aware job scheduling for bluegene/l systems. In IPDPS, 2004.

Adam J. Oliner and Alex Aiken. A query language for understanding component

interactions in production systems. In ICS, 2010.

Adam J. Oliner and Alex Aiken. Online detection of multi-component interac-

tions in production systems. In DSN, 2011.

Adam J. Oliner and Jon Stearley. What supercomputers say: A study of five
system logs. In DSN, 2007.

Xinghao Pan, Jiaqi Tan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan.
Ganesha: Black-box fault diagnosis for MapReduce systems. Technical report,
CMU-PDL-08-112, 2008.

Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern

discovery in multiple time-series. In VLDB, 2005.

Jim Prewett. Analyzing cluster log files using logsurfer. In Proceedings of the

4th Annual Conference on Linux Clusters, 2003.

John R. Reuning. Applying term weight techniques to event log analysis for
intrusion detection. Master’s thesis, University of North Carolina at Chapel
Hill, July 2004.

Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. Pip: Detecting the unexpected in distributed systems.
In NSDI, 2006.



BIBLIOGRAPHY 136

[52]

[53]

[54]

[55]

[56]

[57]

[61]

Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Marcos K. Aguilera, and
Amin Vahdat. WAP5: black-box performance debugging for wide-area systems.
In WWW, 2006.

I. Rish, M. Brodie, N. Odintsova, Sheng Ma, and G. Grabarnik. Real-time
problem determination in distributed systems using active probing. In NOMS,
2004.

R. K. Sahoo, A. J. Oliner, 1. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta,
and A. Sivasubramaniam. Critical event prediction for proactive management in

large-scale computer clusters. In KDD, 2003.

R. K. Sahoo, A. Sivasubramanian, M. S. Squillante, and Y. Zhang. Failure data

analysis of a large-scale heterogeneous server environment. In DSN, 2004.

Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. BRAID: Stream
mining through group lag correlations. In SIGMOD, 2005.

Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, Spencer
Whitman, Michael Stroucken, William Wang, Lianghong Xu, and Gregory R.
Ganger. Diagnosing performance changes by comparing request flows. In NSDI,
2011.

Bianca Schroeder and Garth Gibson. A large-scale study of failures in high-

performance-computing systems. In DSN, June 2006.

Bianca Schroeder and Garth Gibson. Disk failures in the real world: What does
an mttf of 1,000,000 hours mean to you? In FAST, 2007.

Reinhard Schwarz and Friedmann Mettern. Detecting causal relationships in
distributed computations: in search of the holy grail. Distributed Computing,
7(3):149-174, March 1994.

Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Druschel. Using queries

for distributed monitoring and forensics. In EuroSys, 2006.



BIBLIOGRAPHY 137

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

J. Stearley. Towards informatic analysis of syslogs. In IEEE International Con-

ference on Cluster Computing, pages 309-318, 2004.

Jon Stearley. Defining and measuring supercomputer Reliability, Availability,
and Serviceability (RAS). In Proceedings of the Linux Clusters Institute Confer-

ence, 2005. See http://www.cs.sandia.gov/~jrstear/ras.

Jon  Stearley. Scrubbed  logs  from  five top  supercomputers.

http://www.cs.sandia.gov/~jrstear/.logs-alphal, 2008.

Jon Stearley. Sisyphus—a log data mining toolkit.
http://www.cs.sandia.gov /sisyphus, 2008.

Jon Stearley and Adam J. Oliner. Bad words: Finding faults in spirit’s syslogs.
In Workshop on Resiliency in High-Performance Computing (Resilience), 2008.

H. A. Sturges. The choice of a class interval. J. American Statistical Association,
1926.

D. Tang and R. K. Iyer. Analysis and modeling of correlated failures in multi-

computer systems. Computers, IEEE Transactions on, 41(5):567-577, 1992.

The Computer Failure Data Repository (CEFDR). The HPC4 data.
http://cfdr.usenix.org/data.html, 2009.

S. Thrun and M. Montemerlo, et al. Stanley: The robot that won the DARPA
Grand Challenge. Journal of Field Robotics, 23(9):661-692, June 2006.

Top500. Top500 Supercomputing Sites. http://www.top500.org/, June 2006.

M. M. Tsao. Trend Analysis and Fault Prediction. PhD dissertation, Carnegie-
Mellon University, May 1983.

Risto Vaarandi. A data clustering algorithm for mining patterns from event
logs. In Proceedings of IEEE International Workshop on IP Operations and
Management (IPOM), pages 119-126, October 2003.



BIBLIOGRAPHY 138

[74]

[75]

[76]

[77]

(78]

[79]

Risto Vaarandi. A breadth-first algorithm for mining frequent patterns from
event logs. In Proceedings of the 2004 IFIP International Conference on Intelli-
gence in. Communication Systems, volume 3283, pages 293-308, 2004.

A. Wespi, M. Dacier, and H. Debar. An intrusion-detection system based on the
teiresias pattern-discovery algorithm. In EICAR Annual Conference Proceedings,
pages 1-15, 1999.

Wei Xu, Ling Huang, Armando Fox, Dave Patterson, and Michael I. Jordan.
Detecting large-scale system problems by mining console logs. In SOSP, 20009.

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. On-
line system problem detection by mining patterns of console logs. In ICDM,
2009.

Kenji Yamanishi and Yuko Maruyama. Dynamic syslog mining for network fail-
ure monitoring. In KDD, 2005.

Eric S. K. Yu and John Mylopoulos. Understanding “why” in software process
modelling, analysis, and design. In ICSE, Sorrento, Italy, May 1994.

Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. SherLog: Error diagnosis by connecting clues from run-time logs. In
ASPLOS, 2010.

Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Im-
proving software diagnosability via log enhancement. In ASPLOS, 2011.

Yao Zhao, Zhaosheng Zhu, Yan Chen, Dan Pei, and Jia Wang. Towards effi-
cient large-scale VPN monitoring and diagnosis under operational constraints.

In INFOCOM, 2009.



