NEW DIRECTIONS IN UNCERTAINTY QUANTIFICATION
USING TASK-BASED PROGRAMMING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTTAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Manolis Papadakis
December 2019

Abstract

Many problems of interest in modern computational science and engineering involve
multiple interacting physical processes. To properly simulate such problems compu-
tational scientists must combine multiple physics solvers in a tightly-coupled envi-
ronment. Mainstream low-level HPC programming frameworks are a poor match for
the complexities of such applications, especially given the need to adapt to rapidly-
changing hardware platforms, that are becoming increasingly heterogeneous. More-
over, the predictive power of such complex applications is hindered by their large
number of uncertain inputs, making Uncertainty Quantification (UQ) a critical fea-
ture of any multi-physics solver. However, the current practice of UQ involves a high
degree of manual effort, and current tools do not take full advantage of the available
parallelism.

We believe that Task-Based Programming, a distributed programming approach
that has gained popularity in recent years, can significantly improve multiple aspects
of building multi-physics applications. Task-based systems, with their higher level of
abstraction, are simpler to program than traditional HPC frameworks like MPI, and
the final code is easier to tune, port and maintain. Additionally, such systems have
the potential to significantly improve the time required to perform UQ studies, not
just by improving how efficiently ensembles can be executed, but also by automating
many aspects of UQ that are currently performed by hand, and possibly even enable
new UQ algorithms.

In this dissertation we report on our experience developing Soleil-X, a multi-
physics solver supporting coupled simulations of fluid, particles and radiation, in the

Legion task-based programming system. We discuss how to design and optimize

v

such an application, and evaluate our solver’s scalability on Sierra, a leadership-class
supercomputer. We implement UQ support for Soleil-X and use it to prototype a
framework for automatically constructing an optimal low-fidelity model for use in
UQ studies. We apply this framework on a medium-size simulation and compare its
performance against human experts. Finally, we discuss the problem of optimizing

the execution of UQ ensembles.

Acknowledgments

I would like to thank the following people, for their help in completing this work:

e my PhD advisor, Alex Aiken
e the PI of the PSAAP II program, Gianluca laccarino

e the members of my Reading and Orals Committees: Pat Hanrahan, Chris Ré
and Kunle Olukotun

e from the PSAAP II CS team: Wonchan Lee and Sierra Kaplan-Nelson

e from the PSAAP II ME team: Lluis Jofre-Cruanyes, Hilario Torres, Ari Frankel

and Thomas Jaravel

e from the Legion team: Elliott Slaughter, Mike Bauer, Sean Treichler, Zhihao

Jia and Seema Mirchandaney

e former members of the PSAAP II team: Gilbert Bernstein, Chinmayee Shah

and Tom Economon
e Pamphile Roy, for his help in setting up the case study from Chapter

e the participants in our user study from Chapter [Hilario Torres, Mario Di
Renzo, Jeremy Horwitz, Zach del Rosario, Jani Adcock, Heather Pacella, Im-
manuvel Paul, Andrew Banko, Ji Hoon Kim, Ohi Dibua, Joao Reis and Gianluca

Taccarino

vi

Contents

[Abstractl iv

[Acknowledgments| vi

(1 Task-Based Programming] 1
(1.1 The Legion Task-Based Programming System|

(1.2 Benefits of Task-Based Programmingl

[2 Soleil-X: A Task-Based Multi-Physics Solver]| 7
2.1 Motivationl 7
2.2 Preliminaries)o 8
[2.3 High-Level Description| 9
2.4 Flud Solverlo 11
2.5 Particles Solver] 14
2.6 Radiation Solverl o 18
2.7 Multi-Domain Simulationsl 000 21
[2.8 Solver Optimization|. 22
[2.9 Solver Scalabilityl o 0o 26
[2.10 Summary and Related Workl 27

[3 Uncertainty Quantification| 30
[3.1 Background| o 30
(3.2 UQ and Task-Based Programming. 32
3.3 Related Workl oo 34

vil

[4 Optimal Low-Fidelity Model Search|

6 Conclusion|

(Bibliography|

viii

36
36
38
41
43
47
50
o1
95

57
o7
60
61
62
62
63
67
73

77

79

List of Tables

[2.1 Computational intensity of fluid solver tasks| 12
(4.1 LF model search space| 0. 41
4.2 Pareto front of LF model search space|] 48
4.3 Effect of adjustments to classifier parameters on overall performancel. 55
[>.1 Evaluation of HF tiling options| 61
(5.2 Evaluation of LF-LF colocation options|. 63
[>.3 Evaluation of 1-node HF-LF colocation options| 65
[>.4 Evaluation of 2-node HF-LF colocation options| 66

X

List of Figures

(1.1 Legion system diagram|
[2.1 Soleil-X architecture diagram|
[2.2 Levels of parallelism within Soleil-X{.
[2.3 Pseudocode representation of the fluid solver’s main loop|
[2.4 Detailed code listings ot fluid solver tasks, with FLOP counts|.
[2.5 Pseudocode representation of the fluid-to-particles coupling code| . . .
[2.6 Pseudocode representation of the particles-to-fluid coupling code] . . .
[2.7 Pseudocode representation of the particle exchange codef
[2.8 Pseudocode representation ot the DOM solver’s main loop|
[2.9 Pseudocode representation of the radiation grid initialization code| . .
[2.10 Results of weak scaling runs on Sierral
[3.1 Levels ot parallelism within Soleil-X with UQ support{.
4.1 Evolution of HF sample statistics as sample size grows|
4.2 Results of LF search study|
4.3 Relative efficiency of Pareto-efficient LFs for difterent budgets|
4.4 HF-correlation of Pareto-efficient LF's, computed on partial samples| .
4.5 Results of LF search acceleration experiment|{.
[5.1 Scheduling tiers separately, HF ' on 1 node|.
[>.2 Scheduling tiers separately, HF on 2 nodes|
(5.3 Scheduling tiers separately, HF on 2 nodes, eliminating idle time| . . .
[>.4 Colocating tiers, HF on 2 nodes, long HF case|

35

40
47
49
52
o4

68
69
70

[5.5 Colocating tiers, HF on 2 nodes, short HF case]
[>.6 Full scheduling algorithm|.

xi

Chapter 1
Task-Based Programming

In this chapter we give an introduction to task-based programming, with a particular

focus on Legion, the task-based programming system we used for this work.

1.1 The Legion Task-Based Programming System

Task-based programming is an asynchronous programming model where the work
to be completed is decomposed in units called tasks. Tasks are implicitly ordered
according to their dependencies, and their scheduling and execution are handled by
a separate runtime component. Legion [I4] is a specific example of a task-based
programming model for High-Performance Computing applications that targets dis-
tributed, heterogeneous computing platforms.

Regions are the core data abstraction in Legion. A region is conceptually analo-
gous to a database table. Row identifiers correspond to index points, which can be
opaque pointers or (potentially multi-dimensional) points with an implied geometric
relationship. The set of valid indices for a region forms the region’s index space.
Fields are the Legion equivalent of database columns, and the set of fields in a region
is that region’s field space. Regions can be partitioned into sub-regions, and this par-
titioning can be disjoint (the sub-regions do not overlap) or aliased. Sub-regions do
not contain their own data, but instead reference the data contained in the parent re-

gion. A region can be partitioned multiple times, and sub-regions can be partitioned

CHAPTER 1. TASK-BASED PROGRAMMING 2

recursively into finer regions.

Tasks in Legion must explicitly name the (sub-)regions they access, and what
privileges they will need over each, e.g. read-only, read-write, write-discard (the task
will overwrite every element in the region without reading its previous value) or
reduce (the task will only perform reductions into elements of the region using a
commutative and associative operator such as addition or multiplication). Multiple
tasks can execute concurrently, however the code within a task executes sequentially.
Tasks may recursively launch sub-tasks, but can only pass to them regions they
already have access to, and only with the same or fewer privileges. Tasks can create
new regions and partitions.

In addition to launching tasks and computing on region contents, application code
can emit fills, which lazily replace the contents of a region with a specified value, and
explicit copy operations, that copy the contents of one region to another.

Legion employs a dynamic runtime that executes concurrently with the applica-
tion. This runtime analyzes tasks in the order they are launched and dynamically
constructs a task graph recording tasks’ data dependencies by analyzing the regions
and privileges the tasks request. The runtime also automatically schedules any re-
quired data movement, based on task dependencies and the placement of tasks in the
machine; for example, if task ¢; produces an output region r that is an input to task
to, then the runtime will automatically schedule a copy if ¢; and 5 are executed on
different nodes of a parallel machine. The task graph is executed asynchronously;
a task can start executing as soon as its dependencies are satisfied. The dependen-
cies in the task graph are computed based on the program order in which tasks are
launched, which implies that Legion maintains sequential execution semantics, even
though tasks may ultimately execute in parallel.

The runtime analysis does not wait for launched tasks to finish; as long as the
application does not itself block on the result of a task execution it can continue to
launch sub-tasks for the runtime to analyze and schedule. Allowing new tasks to
be launched and analyzed even while other tasks are executing ensures that as many
operations as possible are in flight, thus hiding the latency of the runtime analysis with

useful work. Therefore, Legion applications should generally maximize the number of

CHAPTER 1. TASK-BASED PROGRAMMING 3

task launches performed prior to making any blocking calls. This is made easier by
Legion’s use of futures to encapsulate certain scalar results of task execution, which
can be passed directly to other tasks, without waiting on their result.

Realm [9] is the low-level layer that actually executes the task graph on a dis-
tributed machine. Realm uses the GASNet [15] networking layer to support a variety
of network substrates. Realm also provides a custom OpenMP [19] implementation
and an interface to the CUDA [49] runtime, which is used to control Nvidia GPUs.

Regent [61] is a domain-specific programming language that targets the Legion
runtime, and treats regions and tasks as first-class primitives. The Regent compiler is
implemented using the Terra toolkit [21], itself based on the LLVM compiler frame-
work [37]. The compiler supports various features that make Legion programs more

concise and easier to write:

e [t can statically check many of the requirements that the runtime would perform

dynamically.

e It has extensive support for metaprogramming, using the Lua [32] high-level

scripting language.

e [t transparently handles futures returned by tasks, and will automatically lift

many operations to work on futures, to avoid blocking as much as possible.

e [t analyzes task code for potential optimizations, e.g. it detects when a task will
never call any sub-tasks (a leaf task), or when it will not directly access the

contents of any regions (an inner task).

e [t automatically transforms loops of non-interfering task launches into indez-
space launches, a special mechanism for analyzing and launching multiple tasks

as a unit, whose complexity remains constant regardless of the number of tasks.

e It can generate code for a variety of architectures (e.g. OpenMP, x86 with vector

intrinsics, CUDA) from the same source.

The final component of a Legion application is the mapper, which is responsible for

making every machine-specific choice when executing the task graph. For instance,

CHAPTER 1. TASK-BASED PROGRAMMING 4

the mapper decides which variant of a task to use (e.g. GPU or CPU version), what
node and processor it will execute on, and at what priority level. The mapper also
decides where in the memory hierarchy to place the data associated with each region
that a task needs to access, and how that data will be laid out (e.g. array-of-struct,
AoS, or struct-of-array, SoA). This instantiation of a region into concrete memory
is a physical instance of the region. The mapper is separate from the rest of the
application, which allows programmers to adapt their execution policy to different
workloads and machines without having to modify the main code. Moreover, any
valid set of mapping decisions is guaranteed to produce the same answer, i.e. mapping
decisions only impact performance and are orthogonal to correctness. Finally, instead
of writing a custom mapper, programmers may opt to use the default mapper, which
uses heuristics to make generic mapping decisions for any application.

The system diagram in Figure outlines the high-level structure of a typical
Regent-based Legion application.

Application

Mapper
Regent
compiler

Legion runtime

Realm

Figure 1.1: Legion system diagram

1.2 Benefits of Task-Based Programming

By choosing to build our distributed application on top of a task-based runtime like
Legion instead of using a communication layer like MPI [T1] directly we potentially
miss out on some flexibility, and have to give up some of our computational resources

to the runtime analysis. In return we get a programming system that has visibility

CHAPTER 1. TASK-BASED PROGRAMMING 3

into how the data is stored and distributed, and what parts of it are used by each

step in the computation, which is advantageous in multiple ways:

Better effort-performance tradeoff Programming directly to the communication
layer allows programmers to theoretically achieve optimal performance for a
given application and target machine. In practice, however, programming at
this layer is so complex that reaching this optimum would require a prohibitive
amount of effort, and even getting to a basic implementation takes significant
time. Legion offers a better tradeoff of programming effort and performance: It
is much easier to get started with a Legion implementation, since the runtime
handles the correctness requirements of distributed execution, and getting to an

acceptable level of performance requires a much more modest time investment.

Adaptability For a given application the optimal mapping policy is likely to be
different for every machine, and even for every input. If the code is written in
a low-level programming system like MPI, making changes to the data or work
distribution is likely to require substantial changes to the program. In contrast,
Legion’s decoupling of functional correctness from mapping decisions allows
users to easily adapt to different configurations, and encourages experimentation
with sophisticated mapping policies (e.g. independent partitioning of different

regions).

Cleaner code In an MPI application the computation, communication and map-
ping decisions are all interleaved within the same code. Conversely, in a Legion
application the computation is separate from the mapping code, and the com-
munication is the responsibility of the runtime. This makes Legion applications

both cleaner and easier to maintain.

More parallelism The Legion runtime transparently overlaps communication and
computation, schedules future work asynchronously and allows one processor
to get arbitrarily ahead of the others. These features enable Legion to extract
the maximum amount of parallelism from an application, with no programmer

intervention.

CHAPTER 1. TASK-BASED PROGRAMMING 6

Compositionality In Legion, modules that have been written independently can be
composed by simply invoking them in the appropriate order (the runtime will

automatically infer their data dependencies and schedule them safely).

Portability Legion applications typically require only minor changes to be ported
onto different architectures; the application code normally stays mostly the

same, and only the mapper may need to be modified.

Ease of programming When writing an application in MPI the programmer must
manually reason about data dependencies and set up communication patterns
around them. The programming system itself knows nothing about these de-
pendencies, and cannot verify that the programmer’s communication pattern
matches them. In contrast, Legion infers all data dependencies automatically
from the code, thus guaranteeing that no dependency will ever be missed, or an
extraneous one introduced. Also, Legion’s sequential semantics make it much
easier to reason about program correctness. Finally, the Legion runtime au-
tomatically handles the error-prone aspects of distributed programming, e.g.

scheduling, data movement, data coherence and synchronization.

Dynamism The Legion mapping interface gives programmers the ability to update
their mapping decisions dynamically, e.g. to do work stealing, load balancing or

dynamically re-partition application data based on profiling information.

We note that, to take full advantage of these features, programmers need to adapt
somewhat to the separation of functionality and mapping policy. Ideally the main
code of the application will not make any decisions that may affect performance,
including even choices like AoS vs SoA data layout and partitioning strategy for the
different regions. Instead the application should implement all potentially relevant

strategies and let the mapper choose what to use, according to the available resources.

Chapter 2

Soleil-X: A Task-Based
Multi-Physics Solver

In this chapter we report on our experience building a multi-physics solver, Soleil-

X [69], on top of the Legion task-based programming system.

2.1 Motivation

We believe that multi-physics applications such as Soleil-X are a good match for

task-based approaches, for two reasons:

e Easier development: Multi-physics solvers can take advantage of the inherent
compositionality of task-based programming approaches; the different physics
can be developed and tested independently, and combined by simply calling
them in the appropriate order. As mentioned previously, the runtime manages
a lot of the correctness requirements of distributed execution, such as data
movement and synchronization, and presents a sequential-looking programming
model, that allows domain experts to focus on the physics without worrying

about the complexities of distributed programming.

e Easier scaling and porting: When implementing distributed applications of this

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 8

scope manually, programmers typically end up making sub-optimal implemen-
tation decisions in an effort to keep the complexity of the code under control. In
contrast, task-based programming models separate the correctness of the code
from most performance-relevant decisions, so applications can be optimized to
specific hardware after they have been fully developed and verified, and porting
them to a different machine requires only small changes that cannot compro-
mise correctness. In addition, the multiple levels of parallelism inherent in
multi-physics applications (see Section are straightforward to model using
hierarchical task launches, allowing a task-based runtime to extract all of the

available parallelism much more easily than human programmers.

Building Soleil-X served as a significant exercise to gauge how well these arguments
hold in practice. Due to its size and complexity, Soleil-X also served as a good
benchmark application to push the limits of the Legion ecosystem. It also informed
the direction of the project: As will be discussed later, codes such as Soleil-X that
combine multiple solvers in a single simulation are necessary to model a wide class
of interesting physical phenomena. Therefore, they represent an important class of
applications that any programming system targeting computational physics should

aim to support.

2.2 Preliminaries

Throughout this chapter we will use pseudocode snippets to demonstrate the general
shape of different computations performed by Soleil-X. In this section we describe the
format we follow in these snippets.

Most of the coding constructs we use should be familiar to programmers, with the

exception of the following:

e Different fields of the same region are represented as separate named arrays,

e.g. foo[i] represents an access to field foo of some region r on index point i.

e for i in R loops over the indices of region R in an unspecified order.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 9

e for i = a..b iterates in order from a up to (and including) b.

® a, b ~ c drepresents a dependency of values a and b on values ¢ and d. This
statement abstracts away from the actual computation performed on ¢ and d

to derive a and b.

Note that, in an effort to make our examples easy to understand, we do not
show the full set of dependencies for each operation, only the most relevant ones.
For example, we might use a dependency like a[i] ~ b[i-1], b[i+1] to abstractly
represent the assignment a[i] = c[i] * (b[i-1] + b[i+11), i.e. we would not show
the centered access to c[i], as the crux of the computation is the two-sided stencil
access on b. Additionally, we may skip intermediate fields and group multiple fields

into one.

2.3 High-Level Description

The Soleil-X solver was developed in the Regent programming language, in the context
of the PSAAP II program [I] at Stanford, a collaborative effort between the Mechan-
ical Engineering and Computer Science departments with the goal of developing an
Exascale-ready computational framework for the high-fidelity predictive simulation
of irradiated particle-laden turbulent flows. Such flows are encountered in a wide
range of natural phenomena and industrial applications, e.g. the interaction of gases,
soot, and thermal radiation in combustion systems, the coalescence and evaporation
of droplets in atmospheric clouds and ocean sprays, and the operation of volumetric
particle-based solar energy receivers.

Figure shows the high-level structure of Soleil-X, and Figure the different
levels of parallelism within the solver. In the next sections we present the differ-
ent modules of Soleil-X in detail. The physics behind the solver’s algorithms will
not be discussed in detail, but a comprehensive discussion can be found in previous
work [34, 55]. For the purposes of our discussion, which focuses on the computational
challenges of implementing multi-physics applications, it will be sufficient to consider

an abstracted version of each computation performed by the solver.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 10

Fluid Particles Radiation
solver solver solver
Mapper
Top-level
(initialization, timestep loop, domain coupling, 1/0)
Figure 2.1: Soleil-X architecture diagram
Domain different domains in a multi-domain simulation
Solver different solvers within a simulation (fluid, particles, radiation)
Tile disjoint pieces in the volumetric decomposition of the domain
Task independent phases of computation within a timestep
elements processed in parallel by a
Element CPU vector unit / OpenMP thread pool / CUDA kernel

Figure 2.2: Levels of parallelism within Soleil-X

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 11

2.4 Fluid Solver

Soleil-X’s fluid mechanics module is responsible for solving the variable-density com-
pressible Navier-Stokes equations governing fluid motion [25]. The simulation follows
an Eulerian formulation and a finite volume discretization scheme, using a uniform
3D Cartesian grid. Differentiation is performed using a 2nd order central finite differ-
encing scheme. Time integration is performed using an explicit Runge-Kutta scheme;
2nd, 3rd and 4th order schemes are supported. The size of the timestep (i.e. the
amount of physical time we advance the simulation on every iteration) can be set
manually or computed dynamically through a CFL condition check, to the maximum
safe value for the current state of the simulation. The simulation supports multi-
ple initialization schemes (uniform, random, Taylor-Green Vortex [66]) and boundary
conditions (wall, periodic, inflow, outflow). Turbulence can be artificially introduced
to a domain, using an HIT (Homogeneous Isotropic Turbulence) forcing method [13].

For the purposes of this discussion it is sufficient to consider a simplified version
of the flow computation, as presented in Figure[2.3] At each time step the fluid solver
loops over all fluid cells, applies a stencil to read values from surrounding cells, and
uses those values to update values at the center of the stencil.

To give an idea of the computational intensity (CI) of Soleil-X we analyze three
tasks from the fluid solver, specifically the most computationally intensive tasks from
each of the three phases of the fluid solve, as shown in Figure [2.3] We give a detailed
listing of these tasks’ code in Figure [2.4] along with a line-by-line breakdown of the
amount of computation they perform, in terms of floating-point operations (FLOPS)EI.
We measure the CI of these tasks in Table 2.1l Since none of these tasks exhibits a
CI ratio higher than 0.4 FLOPs/byte, the fluid solver is considered a memory-bound
computation.

When executing on more than one processor we decompose our simulation do-
main volumetrically, in equally-sized tiles. This split defines our primary, disjoint

partitioning of the fluid region. When executing on more than one node we perform

!'Note that, for the purposes of this discussion, we do not differentiate between different floating-
point operations, such as addition and multiplication.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 12

— Compute velocity gradients
for c in Fluid do
dv_dx[c] ~ v[c+{-1, 0, 0}1, v[lc+{+1, 0, 0}]
dv_dyl[c] ~ v[c+{ 0,-1, 0}1, v[lc+{ 0,+1, 0}]
dv_dz[c] ~ v[c+{ @, 0,-1}], vlc+{ 0, 0,+13}]
— Use wvelocity gradients to compute face fluxes
for c in Fluid do

flux_x[c] ~
vlic], dv_dy[c], dv_dz[c],
vic+{+1,0,0}], dv_dy[c+{+1,0,0}], dv_dz[c+{+1,0,0}]
flux_y[c] ~
vlc], dv_dx[c], dv_dz[c],
vic+{0,+1,0}], dv_dx[c+{0,+1,0}], dv_dz[c+{0,+1,03}]
flux_z[c] ~
vlic], dv_dx[c], dv_dy[c],

vic+{0,0,+1}], dv_dx[c+{0,0,+1}], dv_dy[c+{0,0,+1}]
— Use face fluxes to compute change in velocity
for c in Fluid do
dv_dtlc] ~
flux_x[c], flux_yl[cl], flux_z[c],
flux_x[c+{-1,0,0}], flux_y[c+{0,-1,0}], flux_z[ct+{0,0,-1}]
vlc] ~ dv_dt[c]

Figure 2.3: Pseudocode representation of the fluid solver’s main loop. This is an
abstract representation of how the solver uses the values of the velocity field v at
time t to derive the velocity values at time t+1. See Section for a description of
our pseudocode format.

CalcDvDx CalcFluxesX UpdateDrDtX

vector fields read v v,rv, dv_dy, dv_dz
scalar fields read r,rE,P,T dr_dt, r_flux_x

vector fields written dv_dx rv_flux_x
scalar fields written r_flux_x , rE_flux_x dr_dt
bytes accessed per element 48 168 24
FLOPs per element 6 67 2
CI ratio (FLOPs/byte) 0.125 0.3988 0.0833

Table 2.1: Computational intensity of fluid solver tasks. The amount of memory
accessed per element is derived from the set of fields that the task reads and/or
writes (we do not differentiate between reads and writes when computing the CI
ratio). Each scalar field is a double-precision floating-point value (8 bytes). Each
vector field is a tuple of three doubles (24 bytes total). To compute the FLOP count
we summed the operations performed in the main loop of each task (see Figure ,
which iterates over every element of the fluid region.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER

task CalcDvDx(...)
for ¢ in Fluid do
dv_dx[c] =

(vlc+{+1,0,0}] - v[c+{-1,0,0}]) / (2 * dx)

task CalcFluxesX(...)
in Fluid do

for c
var
var
var
var
var
var
var
var
var
var

(4 * v_xfacel[@] - 2 * v_yfacel[1] - 2 * v_zfacel[2]) / 3,

v_face

r_face

rv_face
re_face
P_face

v_xface
T_xface
v_yface
v_zface
sigma =

(vlc] + vlc+{1,0,03]1) / 2

(rlc] + rlc+{1,0,03]1) / 2

(rvlc]l + rv[lc+{1,0,03}]1) / 2
(rELc] + rE[c+{1,0,0}1) / 2

(PLc] + P[c+{1,0,03}]) / 2
(vlc+{1,0,0}] - vlcl) / dx
(TLc+{1,0,03]1 - TLcl) / dx
(dv_dy[c] + dv_dy[c+{1,0,0}]) / 2
(dv_dz[c] + dv_dz[c+{1,0,03}]) / 2

mu * {

v_xface[1] + v_yfacel[0],

v_xface[2] + v_zface[0]}
r_flux_x[c]
rv_flux_x[c]
rE_flux_x[c]

dot(v_face,
c * T_xface

task UpdateDrDtX(...)
for ¢ in Fluid do

dr_dtl[c] += (r_flux_x[c+{-1,0,03}] - r_flux_x[c]l) / dx

v_face[@] * r_face
v_face[@] x rv_face - sigma + {P_face,0,0}
v_face[0] x (rE_face + P_face)

sigma)

6

FLOPs

FLOPs
FLOPs
FLOPs
FLOPs
FLOPs
FLOP:s
FLOPs
FLOPs
FLOPs
FLOPs
FLOPs

1 FLOP
1 FLOP

\S}

FLOP

FLOPs
FLOPs
FLOPs
FLOPs

FLOPs

13

Figure 2.4: Detailed code listings of fluid solver tasks, with FLOP counts. We are
only showing the main loop of the most computationally intensive task from each of
the three phases of the fluid solve, as shown in Figure 2.3} Intermediate values have
been folded in to reduce code size. Note that certain operations, such as the addition

of velocity values, are vector operations on 3-element tuples. See Section for a

description of our pseudocode format.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 14

a two-level split: we first split our domain volumetrically across all nodes, then fur-
ther split each node’s sub-domain into equal tiles, one for each processor on that
node. Each task (which represents a different step of the fluid solve) is now launched
multiple times, once per tile. Our mapper decides on a static allocation of tiles to
processors, and ensures that task launches centered on the same tile always run on
the same processor, so that the data associated with that tile never has to move.
Some of the tasks in Soleil-X need to perform a stencil around every cell. For
those tasks it is not sufficient to pass just the tile corresponding to the executing
processor. Instead, additional pieces of the main fluid region are needed, to cover the
extra ghost cells read by the stencil near the boundaries of the tile. This problem
is automatically handled by Regent’s parallelizer [38], a compiler pass that analyzes
the code of a task and augments it with the additional region arguments and access
checks required to perform the stencil safely in a distributed setting. The parallelizer
also sets up additional partitions over the original regions, as required by the new
parallelized tasks. For example, when processing a task that contains the stencil
access 1,0,01,0,0dv_dx [cl~v[c+-1, vlc++], Regent’s parallelizer would emit two extra
region arguments, for the slices of cells directly to the left and right of the current
tile. The main fluid region would also be partitioned in two additional ways, naming

the left and right ghost sub-regions for each tile.

2.5 Particles Solver

Soleil-X simulates particles using a Lagrangian formulation, following the point-
particle model [I8] [65], whereby particles are represented as infinitesimally small
points, each moving independently through the fluid.

Particles are strongly coupled with the fluid in both directions (e.g. the fluid flow
affects each particle’s trajectory, and each particle transfers heat to the fluid around
it). Particles only need to trade information with the fluid around them, and primarily
with the fluid cell that contains them. We chose to maintain this connection explicitly
through a cell field on the particles region (essentially a pointer to the element of

the fluid region that represents the cell containing the particle). Any time a particle

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 15

changes position this cell pointer may need to be updated.

Following this modeling strategy, the fluid-to-particles coupling code can be writ-
ten according to the pseudocode in Figure 2.5 As can be seen from that code, to
compute the gradient on a particle’s velocity we need not only the velocity at the cen-
ter of the particle’s containing cell, but also the velocity on that cell’s 27 neighbors
(so we can perform trilinear interpolation), i.e. we need to perform a 27-point stencil.
The reverse direction, from particles to fluid, represented abstractly in Figure [2.6]
accesses just the containing cell of each particle. Notice that this code, by virtue
of performing a reduction, can be executed in parallel across particles, even though
different particles may need to update the same cell (that they are both contained
in).
for p in Particles do

var ¢ = cell[p]
dvp_dt[p] ~

vic+{-1,-1,-1}]1, vlc+{-1,-1, 03}, vIc+{-1,-1,+13}],
vic+{-1, 0,-1}]1, vlc+{-1, @, 0}], vlc+{-1, 0,+1}],

vic+{+1,+1,-13}], vlc+{+1,+1, 03}], v[lc+{+1,+1,+1}]

Figure 2.5: Pseudocode representation of the fluid-to-particles coupling code. See
Section [2.2] for a description of our pseudocode format.

for p in Particles do
var ¢ = celllp]
dv_dt[c] += f(dvp_dt[p])

Figure 2.6: Pseudocode representation of the particles-to-fluid coupling code. See
Section for a description of our pseudocode format.

This modeling strategy poses a problem when running on more than one processor:
the fluid has been partitioned into disjoint tiles, so we need to be careful in our
partitioning of the particles to make sure every time we follow a cell pointer the
information for the corresponding cell is available on the node where the code is
running. The simplest way to achieve this, and indeed the one we chose, is to “co-

partition” the particles with the fluid: the particles are partitioned such that every

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 16

particle which resides in the physical space covered by a fluid tile will be assigned to
the same processor as that tile. This decision can be communicated to the parallelizer
through an invariant declaration, and the parallelizer will take advantage of it when
parallelizing the fluid/particle coupling tasks, even producing the ghost fluid regions
required for the 27-point stencil automatically.

One issue with this partitioning scheme is that particles change positions as the
simulation progresses, and may eventually move to a different fluid tile. It is our
responsibility to maintain the co-partitioning invariant as particles move. The obvi-
ous solution to this problem, to re-partition the particles region every time particles
move, will eventually lead to sparse sub-regions as particles drift from their original
positions, and we reach a point where a particle’s index in the region and its physi-
cal position are uncorrelated. The Legion runtime, as of the time of this writing, is
not optimized for handling sparse regions. To work around this performance limita-
tion we chose to manually transfer particle information to the appropriate sub-region
whenever a particle crosses to a different fluid tile.

This decision, in turn, required a change to our particles data model. Soleil-
X needed to allow the distribution of particles across the simulated space to drift
somewhat from uniform, so the number of particles per tile was allowed to not be
constant. However, regions in Legion are statically-sized, so we had to leave some
slack space on each particles sub-region, to accommodate for some imbalance. This
meant that every index in the particles region may or may not contain an actual
particle, and an additional “valid” flag had to be introduced to keep track of this
information. The simulation code now had to always check this flag before operating
on a particle. Also, an index in the particles region could no longer serve as a stable
reference to a particle, as the underlying particle could now be moved to a different
tile, invalidating that slot in the process.

Figure shows how we move particles from one sub-region to a neighboring one,
through the use of an intermediate “transfer queue” region. This queue is sized to
accommodate the maximum number of moving particles we expect to see (we assume
that particles are slow-moving, such that only a small percentage of them moves out

of their containing tile on every timestep).

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER

— Assign slots on the transfer queue for mowving particles
for s in SrcParticles do
must_move[s] = 1 if src_valid[s] and out_of_bounds(s) else 0
var n_xfers = sum(must_move)
queue_slot = prefix_sum(must_move)
— Copy moving particles to the transfer queue
for s in SrcParticles do
if must_move[s] then
var q = queue_slot[s] - 1
queuel[q] = src_payload[s]
src_valid[s] = false
— Number all empty slots on the destination region
for d in DstParticles do
can_fill[d] = @ if dst_valid[d] else 1
dst_slot = prefix_sum(can_fill)
— Copy moving particles from the transfer queue
for d in DstParticles do
if not dst_valid[d] then
var g = dst_slot[d] - 1
if q < n_xfers then
dst_payload[d] = queuelq]
dst_valid[d] = true

17

Figure 2.7: Pseudocode representation of the particle exchange code. We show how
particles can be moved from a SrcParticles sub-region (shown to have only two
fields, the src_valid flag, that marks whether a slot is filled, and the src_payload
field, that stands in for all the information that Soleil-X tracks for every particle)
to a DstParticles sub-region through the use of a separate queue region, in a way
that allows for efficient GPU code generation. In the real implementation we use a
separate queue for each pair of tiles that a particle can move between. See Section [2.2

for a description of our pseudocode format.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 18

As discussed in Section one of our goals with Soleil-X was to be able to run
the entire simulation on a GPU, and that includes the particle exchange code. This
code is not trivial to write for GPUs, as it needs to assign a unique slot on the
transfer queue to different particles in the source sub-region, which is not a trivially
parallelizable operation. The snippet in Figure shows how we achieved this while
using only constructs that can be implemented with reasonable efficiency on a GPU,

such as scalar reduction and prefix sum [59)].

2.6 Radiation Solver

Soleil-X’s radiation solver uses the Discrete Ordinates Method (DOM) to solve the
Radiative Transfer Equation (RTE), which governs the interaction of radiation with a
system of fluid and particles [46]. This method is computationally expensive, but can
accurately model a variety of phenomena, such as reflection, scattering, absorption,
shadowing, blackbody emission and externally imposed illumination. In simple cases
we can fall back to a simpler, “optically thin” model, where each particle is simply
assumed to absorb the same amount of radiation. This model may be good enough for
cases where particle concentration is low enough that it is safe to disregard shadowing
effects.

More specifically, the DOM solver accepts a grid of concentration values and
computes, by running a “sweep” step repeatedly until convergence, the amount of
radiation absorbed in every cell of that grid. The value updated on every sweep step
is the radiation intensity on every cell center and face of the grid, which is different for
each direction in 3D space. The solver needs to discretize this set of directions into a
finite set M of solid angles, each associated with a weight representing the area of the
spherical sector it defines. The sweep for a specific angle proceeds cell-by-cell; a cell
is ready to be processed if the intensities on all three entering (“upstream”) faces are
known. These values are used to update the cell-centered and exiting (“downstream”)
face intensities. Therefore, each angle must start from a corner of the grid, and

“sweep” through all cells. Figure [2.8 shows an abstracted version of this process.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 19

— Update wall intensity according to reflection
for m in Angles where points_to_xneg(m) do

I_x[0,y,m] ~ I_x[0,y,n] for n in Angles where points_to_xpos(n)
for m in Angles where points_to_xpos(m) do

I_x[X-1,y,m] ~ I_x[X-1,y,n] for n in Angles where points_to_xneg(n)
for m in Angles where points_to_yneg(m) do

I_y[x,0,m] ~ I_y[x,0,n] for n in Angles where points_to_ypos(n)
for m in Angles where points_to_ypos(m) do

I_y[x,Y-1,m] ~ I_y[x,Y-1,n] for n in Angles where points_to_yneg(n)
— Include contribution of other boundary conditions on walls

— Perform sweeps across domain, to update face and cell intensity values
for m in Angles where points_to_xpos(m) and points_to_ypos(m) do
for x = 0..X-1 do for y = 0..Y-1 do
Ilx,y,m], I_x[x+1,y,m], I_y[x,y+1,m] ~ S[x,y]l, I_x[x,y,m]l, I_y[x,y,m]
for m in Angles where points_to_xpos(m) and points_to_yneg(m) do
for x = 0..X-1 do for y = Y-1..0 do
Ilx,y,m], I_x[x+1,y,m], I_y[x,y-1,m] ~ S[x,yl, I_x[x,y,m], I_y[x,y,m]
for m in Angles where points_to_xneg(m) and points_to_ypos(m) do
for x = X-1..0 do for y = 0..Y-1 do
Ilx,y,m], I_x[x-1,y,m], I_y[x,y+1,m] ~ S[x,yl, I_x[x,y,m], I_y[x,y,m]
for m in Angles where points_to_xneg(m) and points_to_yneg(m) do
for x = X-1..0 do for y = Y-1..0 do
Ilx,y,m], I_x[x-1,y,m], I_y[x,y-1,m] ~ S[x,yl, I_x[x,y,m], I_y[x,y,m]
— Reduce intensity field across all angles, to derive source term
S[x,yl ~ I[x,y,m] for m in Angles

Figure 2.8: Pseudocode representation of the DOM solver’s main loop (simplified 2D
version). I[x,y,m] represents the radiation intensity at the center of cell (x,y), over
the spherical sector centered around solid angle m. Similarly, I_x and I_y track the
intensity values on the x- and y-faces of cells. The final output of the solver is derived
from field s; this loop would be repeated until all values in this field have converged.
See Section for a description of our pseudocode format.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 20

Because all the angles in the same quadrant will sweep the grid in the same direc-
tion, DOM implementations usually group angles into eight quadrants and perform
the sweeps as eight separate computations which, by virtue of having no data depen-
dencies, can run in parallel.

For our applications of interest it happens that the fluid is essentially transparent
to radiation, and it is the particles that actually absorb energy and transfer it to
the fluid as heat. Consequently, the concentration field that the DOM solver takes
as input is derived exclusively from the concentration of the particles. Figure [2.9
shows how we compute the concentration field by counting the number of particles in
each radiation grid cell, by means of a reduction operation (in the actual code we do
not just count particles, but instead aggregate values based on the particles’ physical
properties). Note that we chose not to have an additional radiation cell pointer on
particles. Instead we assumed, based on experience with similar solvers, that the
radiation grid would only ever be at most as fine as the fluid grid, and probably
coarser. If we additionally constrain this coarsening factor to be an integer, then
every fluid cell would be fully contained inside exactly one radiation cell. We can then
take advantage of this relationship, to decompose the link from particle to containing
radiation cell into first following the particle’s cell pointer to the containing fluid
cell, then moving from that to the containing radiation cell. Given this coupling
scheme, it is natural to partition the radiation grid following the partitioning of the
fluid and particles regions. After the DOM solver has converged, we use the same
coupling scheme to distribute the radiation intensity on each radiation cell back onto

the particles it contains.

for p in particles do
var ¢ cell[p]
var r rad_cell[c]
concentration[r] += 1

Figure 2.9: Pseudocode representation of the radiation grid initialization code. We
first follow the cell pointer of a particle to find its containing fluid cell, retrieve the
radiation cell which contains that, and reduce into the radiation cell’s concentration
field. See Section for a description of our pseudocode format

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 21

In the case of multi-processor executions the sweep pattern will also occur at the
tile level. The processors that are responsible for the corners can start immediately.
Conversely, the closer a tile is to the center of the domain, the longer the corre-
sponding processor will remain idle. Additionally, those processors near the center
of the domain are likely to encounter collisions, i.e. have multiple quadrants ready
to be swept at the same time. For this situation we follow standard practice [8] and
prioritize those directions that have the longest distance to sweep down the domain.

As discussed in Section 2.8 we wanted Soleil-X to be able to run fully on the GPU.
The wavefront-like data dependencies of DOM do not lend themselves to an efficient
GPU implementation, but we did manage to achieve performance on the same level
as our best CPU code. Our implementation strategy consisted of decomposing each
DOM sweep into a series of CUDA kernel launches, one per diagonal, starting from
the appropriate source corner. Because the cells on a diagonal do not depend on each
other they can all be processed in parallel. As CUDA kernels are executed in the
order they are launched, we are guaranteed that every diagonal will find the values
from the previous diagonal ready to be read. Additionally, we reorganized the storage
order of the cell intensity values within a tile to enable memory accesses within CUDA
kernels to be coalesced: the intensity values for the different angles within the same
cell are stored contiguously, and the different cells are stored by diagonal. Finally, we
were able to drastically reduce the memory requirements of the solver by recognizing
that the intensity values on the faces do not need to be stored between iterations,

and only the face values on the “frontier” of the sweep need to be tracked.

2.7 Multi-Domain Simulations

For some simulations we may want to couple two domains, with part of one serving

as a boundary condition for the other. This connection involves two separate pieces:

e The values on the fluid cells of the first domain (velocity, temperature etc.) are
directly copied into the matching cells of the second domain. Note that it is not

desirable to simply override the fluid values on the second domain, as that would

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 22

most likely create an unphysical situation. Instead we define separate fields to
hold these “incoming” values, and rely on the boundary condition handling code

to incorporate them safely into the simulation.

e Particles in the first section are inserted into the appropriate sub-region of
the second section, through the use of a third particles region, operating as a
transfer queue. We partition this queue across the processors handling the first
domain, with each processor getting a separate private part into which it copies
its particles. Each tile on the second domain is then passed the entire queue,

to read out of it those particles that it needs to import.

2.8 Solver Optimization

In this section we report on the methodology we followed for improving the per-
formance of Soleil-X. We believe this approach is generally applicable to task-based
implementations of scientific codes.

The factor that affected Soleil-X’s time to solution the most has been the choices
we made at the algorithm level. By simply choosing to use a coarser grid, narrower
finite differencing scheme, or simpler radiation model we can gain more efficiency
than most code-level improvements, at a fraction of the effort. However, only domain
experts can decide whether this choice will adversely affect the quality of the results.

In the case of Soleil-X, the algorithmic change that produced the most improve-
ment was to “stagger” the particle and radiation solve with respect to the fluid solve:
In our simulations the fluid values change so fast that the particles cannot react imme-
diately to the changes, so it is safe to consider the particles’ reaction to the aggregate
movements of the fluid around them over a period of time. Therefore, depending on
the exact physics of the problem, we can get away with solving particles once every
hundreds or even thousands of timesteps. Additionally, while particle positions re-
main constant, so do aggregate particle concentration values, meaning that the latest
radiation solution can also be reused.

After a simulation scheme has been chosen, and the domain experts have decided

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 23

on the level of fidelity that is appropriate for the application, it is a good idea to first
implement a clean, single-node version of the full simulation in a scripting language
such as Matlab or Python. This sequential version of the code helps to gain an
understanding of the data modeling requirements for each physics module, and what
exactly is the interface between them. From this point we can start to design the
transition of this code to a distributed environment, starting from the partitioning
strategy. Once we have chosen how we want to split the data, most implementation
choices become obvious. It is important to be mindful of how well the data modeling
and partitioning choices for each module will work together, considering how the
modules will be coupled in the full code.

After we have a distributed implementation in Legion, the most effective way to
discover how to improve performance is to inspect the output of Legion’s profiler for
inefficiencies. The most common problems that we encountered and the most usual

solutions were:

Task granularity too small Each task has little work to do, and thus completes
very fast, so we cannot efficiently hide the overhead of the Legion runtime, or
perhaps even the GPU kernel launch overhead. One solution is to fuse tasks

where possible, to create larger units of computation.

High memory usage Each additional field we define on our regions requires addi-
tional memory to be allocated at runtime. We can reduce memory pressure by

dropping redundant fields, e.g. those that can be re-computed on demand.

Extraneous instances We might observe that the runtime creates more physical
instances of our regions than expected, most often duplicate instances for the
same region. The most common culprit in this case is that the mapper is

creating new instances instead of finding and reusing the existing ones.

Another common pitfall is the use of reduction privileges: When a task requests
a reduction privilege on a region it is requesting the ability to reduce into any
element of the region, regardless of the tile where that element normally resides.

The only way for the runtime to support this functionality is to provide each

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 24

processor with a reduction buffer as big as the full region. In the common case
where a processor will only reduce to elements within its assigned tile using

read /write privileges will avoid the need for reduction instances.

Extraneous transfers We might observe that a dependency which we expected to
be one-way actually causes data movement in both directions. This situation
occurs most commonly because we chose to reuse the same region for multiple
one-way transfers and did not inform the runtime that the previous contents
of the region would be overwritten between transfers. The possible fixes are to
do a fill operation to clear the contents of the region between transfers, or use

write-discard privileges on the task that initializes the region.

Large transfers When we observe data transfers that are larger than expected, it

is important to verify that our ghost regions are sized correctly.

Many small transfers If the data transfer timeline is full of small data transfers it
may be beneficial to combine those into fewer, larger transfers, as that mode is
more efficient for the hardware and Legion’s DMA transfer sub-system. We can
increase the granularity of transfers through the mapper, by artificially growing
the amount of data we request from other nodes to include the extra data that
we know will be needed later, or in the application code, by combining multiple

tasks that perform different stencils on the same field into a single task.

Another, less common reason why there could be data transfers at small gran-
ularity is that we are doing explicit cross-region copies, but not mapping them
such that we directly overwrite the data at the destination, in which case the
runtime inserts a second transfer to do the actual overwrite when that data is

next read.

In any case, it is important to allocate enough processors to the DMA engine,

such that the processing of different transfers can occur in parallel.

Blocking in the main task We may notice a pattern where the work processors
periodically stop executing tasks, followed by the main task resuming and run-

time activity spiking.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 25

The typical cause is that the main task is getting blocked and cannot run ahead
to launch more work asynchronously. This might be because we have a branch
in the main task that is dependent on a value derived from a task’s output (even
if the decision for that branch will not actually affect what tasks are launched),
or we have inlined some output inside the main task, instead of doing it in a

separate task.

It might also be the case that the main task is competing with other tasks for
use of the same processor, in which case it may be worth simply allocating a

separate processor to the main task.

High runtime activity If the processors devoted to the runtime analysis are highly
utilized, the first thing to try is to allocate more processors to the runtime.
Spawning the minimum number of runtime instances (one per node) will also
serve to reduce the amount of analysis work, as there are fewer peers for each
runtime instance to reason about. In the common case where the main loop
of the simulation launches almost the same sequence of tasks every timestep,
the tracing optimization [39] can be employed to amortize the cost of runtime

analysis.

If the high runtime activity is specific to a single node (usually node 0), it is likely
that this node is where all the control decisions are happening, and the node
has become a control bottleneck. In that case the best approach is to rewrite
the main task to take advantage of control replication [62], an optimization that

distributes the main thread of control over multiple nodes.

Blocking due to data dependencies If processors are becoming idle until a trans-
fer has completed, that is probably a sign that tasks on the critical path are
not given priority. We could modify task priorities in the mapper such that
the critical tasks execute as soon as they are ready, and other tasks can fill the
processors while the required data transfers are occurring. If possible, it might
also be beneficial to break up large stencils into independent, smaller stencils, to
improve pipelining: The next stencil task can start executing while the transfers

due to the previous stencil task are happening. Note that this change conflicts

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 26

with some of the advice given above; it is up to the programmer to judge what
the best tradeoff is.

Another choice that we need to make is what computational resources to use for
the simulation. Using both the CPUs and GPUs on a node is optimal, but comes at
the cost of introducing communication between the corresponding memories, when
the code running on one kind of processor needs to read data handled by the other.
Therefore, it is important to split the workload considering not only the throughput
of the different processors, but also the amount of communication necessitated by the
split. For Soleil-X in particular, where the majority of the computation is throughput-
bound, we run each simulation either entirely on the CPUs or entirely on the GPUs.

To have maximum flexibility in this decision it is useful to have both CPU and
GPU versions of all tasks. This is true even for tasks where we expect the GPU
implementation to be no better, or perhaps even worse, than the CPU one, since
running everything on the GPU eliminates the need for data transfers between RAM
and the framebuffer. Writing the application in Regent makes it much easier to
support both processor kinds, because the Regent compiler can use a single task
definition to generate both OpenMP and CUDA versions.

2.9 Solver Scalability

We were easily able to port Soleil-X to many leadership-class supercomputers (Ti-
tan [6], Piz Daint [3], Lassen [2], Sierra [4] and Summit [5]). Two features of the
Legion platform were crucial for portability: the cross-platform nature of the runtime
itself, and the Regent compiler’s support for a wide range of processor and accelera-
tor architectures through its use of the LLVM compiler library. Besides some basic
adaptation of the mapping to each machine’s node configuration, the actual tuning
of the code was also transferable from one machine to the next.

In the remainder of this section we report on a weak scaling study we performed
of Soleil-X, up to almost the full extent of the Sierra supercomputer. For this study
we ran the full physics on GPUs. Each of the four Nvidia Tesla V100 GPUs of each

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 27

node was assigned 2563 fluid cells and around 8M particles, enough to almost fill
its framebuffer. We ran Soleil-X for 50 iterations on each configuration, solving full
physics on each timestep (we disregard 5 warm-up and 5 ramp-down timesteps in our
results). We chose to use the optically thin radiation model instead of DOM for this
study, as the DOM method has inherent scalability issues that we did not want to
conflate with the scalability of the main solver code.

Figure [2.10] summarizes the results of these runs. The 1-node case completed in
125 seconds. The solver demonstrated good weak scaling up to 256 nodes. What
appears to be a drop in performance from 4 to 8 nodes can be attributed to an
increase in required communication: When the fluid region is not split along some
dimension (e.g. along the x dimension on a 1x4x4 tiling, which was used for the 4-node
case, with a 1x2x2 block assigned to each node), there is no need to trade ghost cells
on that dimension between iterations. Starting at 8 nodes (where we use a 2x4x4
tiling) every node has the maximum number of neighbors (two along each dimension,
since we ran on a triply periodic domain), and thus performance stabilizes. The drop
in performance after 512 nodes was traced back to scalability issues with Legion’s
implementation of Dynamic Control Replication; these issues and performance bugs
should be rectified in the future.

2.10 Summary and Related Work

Overall, our experience developing Soleil-X on top of Legion and Regent was very
positive. After an initial learning period, that involved getting used to the Legion
asynchronous computation model and mapping interface, we were able to quickly
ramp up to a working version of a solver, at a fraction of the time compared to past
experience programming at the communication layer. We were then able to develop
the DOM solver completely independently as a separate module and integrate it into
the main simulation with only a small amount of additional code. We were able to
port and scale the solver to many different machines and underlying architectures,
with only minor changes to the application and mapper. Legion’s profiler and the

visualization tools we developed early were crucial in developing robust simulations.

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 28

120%

100%

80%

60%

40%

Efficiency (relative to 1 node)

20%

0%
1 2 4 8 16 32 64 128 256 512 1024 2048

Nodes
Figure 2.10: Results of weak scaling runs on Sierra

The Regent language provided a good tradeoff between being expressive and mak-
ing all performance-relevant decisions accessible to the programmer. It thus served
as a good common language between computer scientists and physicists; the physics
experts could focus on the physical models, while the computer scientists worked on
optimizing the code. The conciseness and sequential appearance of the source code,
coupled with the parallelizer’s transparent handling of ghost regions, allowed for easy
debugging. Finally, the Regent compiler’s CUDA code generator made it easy to add
GPU support.

Regarding work that remains to be done, the feature that would expand the ca-
pabilities of Soleil-X the most is support for implicit integration methods, which will
require an efficient Legion implementation of a linear equation solver. At this time
we are focusing on extending Soleil-X with support for chemistry, particle collisions
and more complex boundary conditions, and optimizing existing components, partic-
ularly the wavefront computation pattern of the DOM solver. On the Legion side,
efforts to make simulation development easier should focus on providing more visibil-
ity into the decisions of the runtime (and explaining what prompted these decisions,

and how they affect performance) and making the Regent compiler more robust and

CHAPTER 2. SOLEIL-X: A TASK-BASED MULTI-PHYSICS SOLVER 29

efficient. Implementing domain coupling could be made significantly simpler with li-
brary support and certain improvements to the runtime, such as faster repartitioning
and support for sparse physical instances.

A variety of multi-physics solver frameworks are currently available [64] [70, 133
10L 50L 27, 35], each with its own feature set and parallelization capabilities. Soleil-X
is, to our knowledge, the first such system built with a task-based runtime in mind.

The closest system to ours is Uintah, which has been extended from its original de-
sign to support asynchronous DAG-based execution [44]. Uintah targets simulations
that involve fluid, particles and chemistry, It operates on a structured mesh and uses
implicit integration methods. The full mesh is divided into hexahedral patches which
are distributed to processors, and can be refined independently. Uintah’s tasking
system is customized for simulation programs, exposing two versions of each field (for
the state before and after each timestep) and restricting cross-patch communication
to the trading of ghost cells.

Techniques for coupling different physical domains in simulations have been stud-
ied since the dawn of scientific computing, e.g. see the Particle-In-Cell [23] and Mul-
tiphase Particle-In-Cell [I1] methods.

Chapter 3
Uncertainty Quantification

In this chapter we discuss the potential of task-based runtimes to improve the practice
of Uncertainty Quantification. In particular, we will exploit the compositionality of
the Legion task-based system to build a UQ framework directly on top of the Soleil-X

solver.

3.1 Background

For the purposes of this chapter assume that we have some physical system of interest
and want to computationally predict the value of a single metric (Quantity of Inter-
est, Qol) related to the behavior of that system. Any numerical simulation we might
use for this purpose is, at a fundamental level, just a deterministic computer program
implementing a mathematical function f, that accepts a set of inputs £ (specified at
machine precision) describing the initial state of the system and outputs a predic-
tion @ = f(&) for the Qol. With the appropriate choice of sophisticated modeling
techniques, this prediction can be made arbitrarily accurate. However, this increased
accuracy does not necessarily translate to predictive power over the original physical
system, for the simple reason that, in practice, most of the inputs to the system can-
not be measured with perfect precision, and their values may even change every time
the system is observed. Methods from the field of Uncertainty Quantification (UQ)

tackle this problem by modeling the uncertain inputs as random variables drawn from

30

CHAPTER 3. UNCERTAINTY QUANTIFICATION 31

a probability distribution, and quantifying their impact on the Qol.

Monte Carlo [30] (MC)-based random sampling methods are a popular category of
UQ methods because they are broadly applicable to a variety of simulations, although
they are mostly restricted to obtaining descriptive statistics of the real system’s Qol.
Let E[Q], Var (Q) and o denote the mean, variance and standard deviation of
the Qol. We can use MC sampling to derive an estimate of E[Q] as follows: Draw
a sample of N independent values, denoted ¢@ where i € {1,...,N}, from the
input probability distribution. Then the MC estimator for E [Q)] is defined as Q=
N1 ZZL f (§ (i)). Although unbiased, the accuracy of this estimator, measured by its
standard deviation o5 = \/W , decays slowly as a function of N. Therefore,
reaching an acceptable level of accuracy may require a prohibitively large number of
evaluations of the (potentially quite expensive) base simulation.

It is possible to improve on this tradeoff, by exploiting the fact that in compu-
tational science multiple numerical models of the same system can be constructed,
at varying levels of accuracy and evaluation cost. For our purposes we consider
two “tiers” of models: computationally expensive High-Fidelity (HF) models that
accurately represent the underlying physical phenomena, and relatively cheaper Low-
Fidelity (LF) models that are possibly less accurate by themselves, but their response
to input variability is typically well-correlated with the HF. Various MC acceleration
techniques [52, 24] then attempt to combine the accuracy of HF models with the
speedup of LF models to obtain a more accurate statistical estimator than would be
possible with pure MC sampling of the HF.

We will focus our attention on a simple (but popular) MC acceleration technique,
the method of Control Variates (CV) [51], 48], also known as Multi-Fidelity (MF).
This approach replaces the function f that describes the HF with f + a(g — E[g]),
where ¢ is the function that describes the LF, and is expected to be highly correlated
with f. To construct the CV estimator we again draw a sample €@ of N input values
and use it to construct MC estimators for both the HF and LF (denoted Q"FMC and

QMFMC regpectively). The CV estimator is then defined as:

OCV = QHFMC (QLF,MC _E [QLF]) (3.1)

CHAPTER 3. UNCERTAINTY QUANTIFICATION 32

Here, the population mean E [Q"F] of the LF model g over the full input distribution
is not generally known. Instead we need to approximate it by means of another MC

estimator, which evaluates the LF on an additional » /N inputs to compute:

N(Q1+r)

1 .
E[Q"] ~ ——— @) 3.2
[Q™] N(1+T);g(€) (3:2)
The population variances Var (QF) and Var (Q™) and covariance Cov (Q"F, Q'F)
are simply approximated using the corresponding sample metrics from the N original
MC runs. The parameter a« = —Cov (QHF, QLF) /Var (QLF) is chosen to minimize
the variance of QCV, by requiring dVar (QCV> /da = 0. This optimal « selection

leads to:

Var (QCV> = Var (QHFMC> (1 - $p2> (3.3)

where p = Cov (Q"F, Q'F) //Var (QUF) Var (Q'F) is the Pearson correlation coeffi-
cient between the HF and LF models.

3.2 UQ and Task-Based Programming

At their core, UQ frameworks need to support the execution of large ensembles
(groups) of samples (copies of the simulation at different levels of fidelity, and for
different choices of uncertain inputs). This type of application, due to its high level
of parallelism and diversity of computational requirements, is ideal for task-based
systems. We believe that task-based systems have the potential to significantly im-
prove the time required to perform UQ studies, not just by improving how efficiently
ensembles can be executed, but also by automating many aspects of UQ that are
currently performed by hand, and possibly even enable new UQ algorithms. The
potential benefits of task-based systems for UQ include:

Flexibility A task-based runtime, and the Legion runtime in particular, can scale to
ensembles of any size, can accommodate arbitrary combinations of samples at

different levels of computational complexity, and allows easy porting to different

CHAPTER 3. UNCERTAINTY QUANTIFICATION 33

machines.

Shared context Having all the samples execute under a single runtime exposes
more opportunities for parallelism than running them as separate jobs. We
can achieve better utilization on each node by interleaving multiple samples,
and across the ensemble by using the smaller samples to fill idle time. Depend-
ing on the simulation, it might even be possible to share redundant computation

between compatible samples.

Improved scheduling With a sufficiently sophisticated mapper we can maximize
the utilization of the machine, by allocating samples to machines according
to their computational requirements and scaling behavior (see Chapter |5| for
further discussion). Additionally, we could utilize all the processors on a node
(both CPUs and GPUs) without incurring communication costs, simply by

placing separate samples on each.

Dynamic information Legion’s profiling capabilities allow us to collect accurate
runtime information, to be used as cost estimates by the UQ algorithms. It
is also easy to augment task-based simulations with arbitrary monitoring code
(e.g. point probes and whole-domain statistics output), as the runtime will

automatically take care of the required data transfers and scheduling.

Dynamic mapping A fully dynamic mapper could detect and handle load imbal-
ance on the fly, by migrating samples and modifying node allocations as needed.
It could also handle a dynamically changing set of samples, which would open

the way for new, dynamic UQ algorithms.

Integrated analysis and execution In current practice the statistical analysis of
UQ results is typically done manually and separately from ensemble execution.
Using Legion we can integrate this analysis with the running of the ensemble,
which would allow us to make automatic, early decisions about what samples
to include and exclude from an ensemble, including stopping samples on the fly,

and creating new ones according to the needs of the algorithm.

CHAPTER 3. UNCERTAINTY QUANTIFICATION 34

Fault tolerance Using Legion’s resilience infrastructure we can recover gracefully
from the failure of a few samples, and even adapt their parameters on the fly
(e.g. the timestep size or size of the grid) if we detect that they failed because

of issues with the physics resolution.

For this project we used Soleil-X to experiment with the design of an ensemble
computation framework over a task-based system. To achieve basic UQ support
in Soleil-X we simply added another level above the main task of the simulation,
that can launch multiple copies of it and run them under a single runtime instance;
this resulted in an additional level of parallelism being added to the application (see
Figure . Our UQ framework supports any number of samples of different fidelities
executing independently (but potentially on the same set of nodes) using both CPUs
and GPUs. The parameters of the different samples are currently read from external
configuration files. Multiple samples execute concurrently under a single runtime
instance, thus allowing Legion to better utilize the available hardware. We support
the dynamic collection of timing information, volume averages and point probes. Our
mapping strategy is currently static and user-controlled. Exploring the rest of the

above listed features is ongoing work.

3.3 Related Work

UQ studies tend to make use of one-off implementations of their chosen method, but
a number of generic UQ libraries do exist; we list some of the major ones below. To
our knowledge, none of the currently available UQ libraries can exploit parallelism
beyond the level of running different samples concurrently, because they have only
black-box access to the simulation being studied.

Dakota [7] is a C++ library that implements a variety of statistical functions, op-
timization algorithms and sampling methods, that can be combined to build complex
UQ algorithms. Dakota only controls the outer loop of the UQ algorithm, and in-
vokes the simulation under study as a black box. It includes some support for parallel

execution of different samples through an MPI interface.

CHAPTER 3. UNCERTAINTY QUANTIFICATION 35

Sample separate samples within an ensemble
{}
Domain different domains in a multi-domain simulation
~z
Solver different solvers within a simulation (fluid, particles, radiation)
~z
Tile disjoint pieces in the volumetric decomposition of the domain
~z
Task independent phases of computation within a timestep
v
elements processed in parallel by a
Element CPU vector unit / OpenMP thread pool / CUDA kernel

Figure 3.1: Levels of parallelism within Soleil-X with UQ support

QUESO [56] implements a small set of UQ methods that the user can apply to
their simulation by defining certain callbacks. QUESO can use multiple processors
on a single node, or multiple nodes over MPI, to distribute the simulation or the
statistical analysis.

UQLab [42] is a Matlab-based UQ framework aimed at non-highly-IT trained
scientists. Its design focuses on modularity and ease of use over performance. It
includes some simple facilities for invoking the simulation over distributed machines.

Of the existing UQ libraries the one most related to our work is 114U [28], which
builds on top of an MPI-based tasking library called TORC [29] to implement various
sampling and optimization algorithms. TORC exposes an RPC-like tasking interface
with explicit handling of dependencies, and can utilize both multi-core CPUs and
GPUs. The framework transparently handles scheduling, load balancing, work steal-
ing, task and data movement. As with the other libraries listed above, 114U treats
the simulation being studied as a black-box, and thus cannot exploit any parallelism

within the simulation code itself.

Chapter 4

Optimal Low-Fidelity Model

Search

4.1 Introduction

One of our goals in this project has been to explore the potential of task-based
programming to improve the productivity of UQ practitioners. One way to do this
is to exploit the capabilities of task-based runtimes to automate more of the tasks
that UQ practitioners currently do by hand. One major such task is actually picking
which LF model(s) to include as part of a UQ study.

The standard practice currently is to leave it up to the UQ expert to select a
combination of model coarsening options that, based on the expert’s experience and
intuition, are expected to provide a good balance of speedup and fidelity. In the
case of multi-physics problems this choice is hard to get right, for two reasons: First,
most of the physical phenomena that such solvers simulate exhibit strongly non-linear
behavior, which, coupled with the the unpredictable interactions between the different
physics modules, makes it almost impossible to predict how the overall LF will behave
compared to the HF. Second, while the performance improvement associated with a
coarsening choice seems straightforward to predict (e.g. reducing the size of the grid by
half should approximately halve the running time of the fluid solve), these effects are

inherently tied to a specific machine and set of implementation choices. For example,

36

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 37

we may perform the same UQ study on a different machine with more powerful GPUs,
which favor the fluid solver but not the radiation solver, meaning that coarsening the
fluid mesh will now have less of an effect on the overall performance of the code.
Therefore, the user’s experience on one machine will not necessarily translate to a
different machine, or even different version of the code, and might be more misleading
than helpful.

Based on the observation that user intuition is a poor predictor of the suitability
of an LF model, we instead propose that computational power be brought to bear as a
better alternative. We will show that, using some computation time strategically, and
a little input from the user, we have the potential to make better modeling choices
than human experts.

Specifically, we propose a generic, search-based approach for selecting the optimal
LF model for any combination of UQ algorithm and HF simulation. Our method
treats the base simulation code as a black box; all we require is an interface to launch
the simulation using a selected LF model and collect the Qol from that execution.
We also expect from the user to define a sampling of uncertain inputs to evaluate and
the dimensions on which we can coarsen the simulation, with appropriate ranges for
each (the available coarsening parameters are specific to a simulation, and therefore
some creativity is involved in exposing them as tunable knobs; the more ways we have
to coarsen the simulation, the more likely we will be able to find a good LF model).
Then we can simply launch an automated search over the space of coarsening options,
to find good LF models.

Judging the optimality of an LF model is not as straightforward as it may seem,
because there is typically more than one metric for comparing different LF's, depend-
ing on the UQ method. Take, for example, the CV method. Based on Equation [3.3]
the higher the correlation p of the LF with the HF the higher the achieved variance
reduction. Conversely, the higher the cost of the LF compared to the HF the lower
the ratio r of additional LF runs we can afford to do, and the lower the achieved vari-
ance reduction. In total, the correlation and computational cost of each LF model
both affect its usefulness, and there is usually a tradeoff between these two values,

meaning that two different LF models are very likely incomparable. What is then

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 38

interesting to find is which LF's represent the best tradeoff between cost and correla-
tion (the so-called “Pareto-efficient” ones): For any desired level of correlation there
are possibly multiple choices of LF, and we would like to find the most efficient one.
If we know the exact parameters of the UQ study to be performed (e.g. the assigned
computational budget), we could potentially work through the UQ method’s formu-
las to combine all of an LF model’s metrics into a single number: expected variance
reduction.

In the following sections we present a study that we performed as a proof of con-
cept for this approach. We take a specific choice of UQ method (CV) and HF simu-
lation (implemented on Soleil-X and augmented with a set of configurable coarsening
parameters) and perform a simple exhaustive search to identify the Pareto-efficient
choices for LF models. As analyzed above, given the choice of CV as the UQ method,
LF models are compared in terms of computational cost and correlation with the HF'.
Based on the results of this search we show that (a) the choice of LF model may not
be trivial, and (b) an automated method can outperform human experts in LF model
selection. Given that we achieve these results with such a simple premise and choice
of search strategy, we are confident that this method has significant potential to im-
prove the state of the art in the practice of performing UQ studies. In Section we
discuss ways to improve the efficiency of the basic search methodology. Future work
on this topic could explore more sophisticated search schemes, e.g. combining the
time devoted to LF model searching and the actual running of the UQ ensemble into
a single computational budget. We expect that such extensions will be able to take
even better advantage of the power and flexibility of task-based runtimes than our
initial study, which simply relied on Legion for the scheduling and efficient execution

of multiple simulation instances.

4.2 Setup of LF Search Study

For this study we repurposed a simulation setup from previous work [57], making
only minor changes to fit the capabilities of our solver. We chose this particular case

because, while it has relatively low computational requirements, it involves a variety

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 39

of potentially uncertain inputs that all meaningfully affect the result of the simulation.
It also makes full use of the capabilities of our solver, and thus gives us a lot of options
for reducing the fidelity of the simulation. Finally, it is a well-characterized problem,
of potential interest to other scientists.

The problem under study involves two domains: The “HIT” domain is a triply-
periodic cube with side W = 0.04m seeded with around 2M monodisperse (identical)
particles and HIT-forced to generate particle-laden turbulent flow. A single-cell-wide
x-slice from this domain is periodically sampled and used as input to the “channel”
domain, which is a L x W x W “duct” with L = 0.16m, periodic on the y and z
dimensions, and using inflow-outflow boundary conditions on x. The fluid-particle
mixture flows through this domain at a rate of Uy ~ 2m/s and gets radiated in the y
direction from both sides. The length of time L /U, that fluid takes to flow down the
full length of the duct is called a Flow-Through Time (FTT). X-slices are copied once
every dx /Uy, where dz is the length of a single cell, to give the previously inserted
particles enough time to clear the inlet.

We use the same Qol as the original paper: the heat transfer coefficient, defined
as the time-averaged temperature difference between fluid and particles at the outlet
plane (relative to the starting temperature). To record the value of this Qol we first
run the simulation for 1 FTT, enough to allow the turbulent mixture copied from
the HIT domain to reach the outlet. We then start recording for every iteration
the average fluid and particle temperature over the final (outlet) slice of the channel
domain, and use those averages to compute the value of the Qol for that iteration.
The final Qol is calculated by averaging the per-iteration Qol values over the rest of
the simulation. This final time-averaging step is necessary because, by virtue of the
turbulent nature of the flow, the Qol is not actually expected to reach a steady state,
but instead oscillate around a value, which the time average should converge to.

We consider six of the simulation’s parameters as uncertain inputs: Reynolds
number (how much turbulence the fluid tends to develop), Stokes number (how re-
sponsive a particle is to the fluid movement around it), mass loading ratio (how rich
the fluid-particle mixture is), radiation intensity, heat capacity of the particles, and

heat transfer ratio from particles to fluid. Each of these values is assumed to be

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 40

uniformly distributed within a +5% range around a nominal value (in an actual UQ
study the range and probability distribution of each uncertain input would be de-
termined separately, based on physics calculations or experimental data). Using a
Kernel Density Estimation-based sampling algorithm [58] we selected 32 combina-
tions of these parameters, a sample size large enough for the aggregate statistics of
the Qol to have sufficiently converged (see Figure .

0.565 - 4.0E-4
-8 Running sample average

—o— Running sample variance

3.5E-4

0.560
3.0E-4

2.5E-4
0.555

2.0E-4

Average
Variance

0.550
1.5E-4

1.0E-4
0.545

5.0E-5

0.540 0.0E0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of samples

Figure 4.1: Evolution of HF sample statistics as sample size grows

We explore 11 different dimensions for reducing the fidelity of the base simulation:
coarsening of the fluid or radiation grid on each of the x, y and z dimensions, reduction
in the number of solid angles used in DOM, use of the optically-thin radiation model
over DOM, use of a lower-order Runge-Kutta model, reduction in integration time,
and size of particle parcels. The last parameter refers to the technique of surrogate
particles [65], whereby the number of particles being simulated is reduced by grouping
them into particle parcels, each of whom represents a group of particles from the
original simulation. Particle parcels follow the same equations as normal particles,
with some factors weighted appropriately for the size of the parcel.

We restrict our search space to only two choices per coarsening parameter, as

listed in Table 4.1} Even with this small amount of choices, our search space contains

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 41

a total of 1088 different LF models.

Parameter HF setting LF choices
Flow grid: #cells in x 512 128, 64
Flow grid: #cellsiny 128 32, 16
Flow grid: #cells in z 128 32, 16
Particle parcel size 1 10, 100
Radiation model DOM DOM, opt. thin
DOM grid: #cells in x 256 64, 32
DOM grid: #cellsiny 64 16, 8
DOM grid: #cellsin z 64 16, 8
DOM: # solid angles 350 86, 50
Runge-Kutta order 4th 4th, 3rd
Number of FTTs 3 3,2

Table 4.1: LF model search space. Grid sizes refer to the channel domain.

The actual search process starts by running the HF configuration on our set of 32
samples and recording the output Qol and computational cost of every sample. Each
of the candidate LF models is then evaluated on the same set of samples and its cor-
relation with the HF estimated using the sample correlation and covariance formulas.
We use the actual wall-clock running time of each model as its computational cost

(averaged over its 32 evaluations over all samples).

4.3 Validation of Base Simulation

Before we could use the proposed simulation as a case study for our LF model search
method, we first needed to verify that it behaves correctly under a variety of inputs
and coarsening configurations. Fully validating a multi-physics simulation such as
Soleil-X, however, is impossible in practice: The equations involved are too complex
to solve analytically, so there is no ground truth to compare with. Additionally,
the simulated phenomena are chaotic, meaning a small difference in the inputs (on
the order of machine floating point precision) can cause a large divergence in the
outputs. Therefore, the process of building confidence in the solver will necessarily

be imprecise. In this section we outline the methodology we followed for validating

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 42

our case, given these constraints.

The first step in gauging the behavior of a simulation is to visualize a time progres-
sion and have a domain expert inspect it visually. Although subjective, this process is
a good sanity check for verifying that all the pieces of the simulation are working to-
gether correctly. Some of the features the expert would look out for is that turbulence
develops in an expected pattern, particles form loose clusters, and the movement of
particles loosely follows that of the fluid.

As a more automated check of the simulation, we can take averages of simulated
values over appropriate subsets of the domain (e.g. the channel inlet and outlet, or
an x-slice crossing the domain) across time, and verify that their trends are within

the bounds suggested by the underlying physics. Some of these checks include:

e The average velocity across the entire channel domain remains constant at Uj.

e The average temperature of the fluid over an x-slice increases roughly mono-

tonically from inlet to outlet.

e After some time the average temperature at the outlet has stabilized (we should

see it oscillating around a value, rather than continuing to increase).

e The average kinetic energy and dissipation in the HIT domain eventually con-
verge to their target values, as set in the configuration of the HIT forcing com-

ponent.
At the level of the full UQ run we additionally check the following:

e The output Qol (heat transfer coefficient) is, on average, close to the value

computed in the original paper.

e The simulation responds to changes in the input uncertainties (the output Qol

exhibits a variability of 5-10% across the range of inputs).

e Our search space contains at least some LF models that have high enough
correlation with the HF that they would be useful for UQ studies (at least 0.8).

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 43

e There exists a good mix of LF models within our search space, in terms of
both computational cost and correlation, and the relationship between these

two metrics is not trivial.

e Running the simulation twice on the same configuration should give almost
identical results in terms of the Qol. This suggest that the uncertainty in the
value of the Qol is purely due to input variability and not randomness in the
initial conditions. Note that we only require stability in a statistical sense; we

do not expect two runs of the simulation to agree timestep-by-timestep.

4.4 Issues Encountered

As part of performing our study we had to run our solver in a wide variety of configu-
rations and input conditions. This process stress tested the solver in unexpected ways
and uncovered a surprising number of issues with our base solver, our case setup, and
even the Legion runtime and Regent compiler. Working through these issues to make
our setup robust enough to handle the full scale of our search was by far the most
time-consuming part of this study. In this section we report on the major issues we
encountered while setting up our study, and the lessons learned from each.

The issues we encountered tended to fall into one of the following categories, in

order from most to least frequent:

e caused the solver to reach an extreme physical situation and diverge; this was
particularly common with the code that handles the boundary conditions at the

outlet, as the physics behind that code is very sensitive to extreme values

e software bugs in Soleil-X (such as missing a particle cell pointer update, or not

restoring the full simulation state after a restart)
e bugs in the Regent compiler (mainly the parallelizer)
e bugs in the Legion runtime

e transient issues due to misconfigured nodes

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 44

The first major issue we discovered with our simulation setup was immediately
obvious upon inspecting a visualization of the particle positions in the channel do-
main: The particles were forming “streaks”, whereupon every particle was followed
by another particle at almost exactly the same y and z coordinates, and only a small
distance behind it in x. The cause of this issue was traced back to the way we were
coupling the two domains: The original version of our code was using the HIT forcing
technique to develop turbulence in the HIT domain with an average velocity of zero,
and the copied slice was artificially augmented with an additional velocity of Uy be-
fore getting copied to the channel domain. Because the velocity fluctuations due to
turbulence were much smaller than Uy, by the time dz /Uy seconds had passed and we
had to copy a slice from the HIT domain into the channel domain, the positions of the
particles in that slice had hardly changed, so we would end up with “freeze-frame”
particles going down the channel. The solution we came up with was to pre-impose
an average velocity of Uy in the HIT domain (over which we would add turbulence),
so that the two domains would be synchronized. Simply initializing the HIT domain
with a uniform velocity of U, did not fix the problem, as the HIT forcing algorithm
would naturally tend to bring the average velocity down to zero, as it tried to reach
its target level of kinetic energy. Instead we worked around the limitations of the
HIT forcing method by subtracting Uy from every cell’s velocity before applying the
forcing term, then adding it back afterwards.

Following our fix to the previous issue, we realized that the average velocity in
the channel section was no longer constant at Uy. Instead we were seeing the velocity
increase or decrease over the course of the simulation, depending on the (random)
initial conditions. The reason was that the velocity in the HIT domain was free to
evolve according to the equations of motion, and would thus sometimes develop a
tendency to increase or decrease on average. The solution was to force the velocity in
the HIT domain to remain at a constant average of Uy. At the end of each timestep
we would compute the average velocity across the domain, and calculate its difference
from the target average of Uy. We would then apply to every cell and particle in the
domain a small correction to counteract this divergence, before proceeding to the next

timestep.

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 45

Another issue we discovered by inspecting a visualization of the channel domain
was that particles seemed to be clustered on approximately the top half of the channel,
with the bottom half empty. This behavior did not occur with the HF, only the LFs.
After a little investigation we traced the issue back to the code that initialized the
particles in the HIT domain: We were allocating particles sequentially to cells, filling
an entire x-slice before moving to y, then filling an entire xy-plane before moving
to z. In the case of the HF there were about as many particles as cells in the HIT
domain, which meant the initial distribution was approximately uniform. However,
the LFs were making use of particle parcels, which meant there were 10 to 100 times
fewer simulated particles, therefore the particle initialization code ended up filling
only the top half of the HIT domain, and this distribution would get copied over
to the channel domain. To solve this we simply switched to randomized particle
initialization, which produces an approximately uniform concentration of particles
across the HIT domain, regardless of the number of particles. This issue demonstrates
an important requirement of coarsening methods: applying the coarsening should
produce a problem that is analogous to the original problem (but scaled down),
otherwise the solution to this new problem is unlikely to be correlated with the
solution of the original.

The following issue took us the longest to fix, as we were hitting upon the limita-
tions of the outlet boundary condition handling code, which we could not fix without
diving deep into the physics behind it. During some of our runs the fluid flowing in
from the channel section would randomly develop a large, high-velocity eddy at its
front, probably due to concentrated absorption of radiation, as a result of particle
clustering. This behavior is not unexpected, and it is not surprising that it occurs
non-deterministically; certain combinations of uncertain inputs favor the formation
of such eddies more than others. When this eddy would reach the outlet, its large
velocity and temperature values would cause sharp gradients against the previous
values at the boundaries, causing the boundary condition handling code to diverge.
Since there was little we could do to improve the stability of this code, we had to work
around its limitations: Instead of initializing the channel domain to be empty, we ini-

tialized it with particles at the same concentration as the HIT domain, all following

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 46

the fluid as it flows down the duct at Uy. With this change the initial conditions of
the fluid-particle mix in the channel became closer to the incoming mix, and thus
the gradients became smoother. Our solution to this problem demonstrates a more
general principle, that we have some flexibility in how we set up our case, without
meaningfully changing the problem we are solving (in our case the original contents
of the channel domain would get cleared after 1 FTT anyway, and we only care about
the behavior of the system after that point).

Finally, we note that it is important to not set the value of a coarsening parameter
so low that the physics of the problem are under-resolved, otherwise instability or
unphysical results might occur. These minimums can usually be derived by applying
certain formulas to the initial conditions of the problem, that capture the scales of the
phenomena which are expected to develop. We list here some of the more prominent

physics-related minimums we uncovered while setting up this case.

e The timestep we use cannot be too large, otherwise the fluid solver will diverge.
Soleil-X can adjust its timestep dynamically as the values of the simulation
change, through a CFL condition check. However, this check is not always
precise, and its computation causes blocking in the main task, so we generally
try to avoid it if the temperature in the domain (the main parameter that
controls maximum step size) is not expected to vary significantly. Instead we use
the maximum temperature in the domain to pre-compute a safe setting for the
timestep. It is important, however, to account for the maximum temperature
that we expect to occur anywhere in the domain (even due to local fluctuations),

over the entire duration of the simulation.

e The grid on the channel domain cannot be too coarse in the x direction (no
fewer than ~32 cells), otherwise the equations managing the inlet and outlet

planes become coupled, and backwards flow starts to develop.

e The grid on the channel domain cannot be too coarse in the y or z directions (no
fewer than ~16 cells in either direction), so that every large eddy that might

develop will have at least 3 cells across it. If a large eddy can fit inside two cells

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 47

then we will have neighboring cells at opposites sides of the eddy fluctuating in

opposite directions, producing very large gradients.

e Setting the particle parcel size too high can cause instability, since every simu-
lated particle now behaves as multiple particles in a tight clump that collectively
absorb a lot of radiation and heat up their containing cell, thus causing high

temperature gradients with that cell’s neighbors.

4.5 Results of LF Search

The results of our LF search study are summarized in Figure Each LF we
considered is plotted in terms of correlation with the HF and execution time. For
reference, the running time of the HF was 526,208s. The search discovers 4 LFs on
the Pareto front, each at a correlation of over 0.92, and at least 72 times faster than
the HF. The parameters and exact scores of these LFs are given in Table [£.2l We
performed all of our runs on the Lassen supercomputer, running Soleil-X in full-GPU

mode and allocating one Nvidia Tesla V100 GPU to each sample.

1.00
M Pareto front
W User selected
All models

0.95 - -

0.90

Correlation with HF
]

0.80

0.75
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

Running time (s)

Figure 4.2: Results of LF search study. Each point represents a different LF within
our designated search space.

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 48

Parameter LF1 LEF2 LF3 LF4
Correlation with HF 0.92043 0.93200 0.94837 0.96131
Running time (s) 5,930 6,579 6,658 7,306
Flow grid: #cells in x 64 64 64 64
Flow grid: #cellsiny 16 16 16 32
Flow grid: #cellsin z 32 32 32 16
Particle parcel size 10 10 10 10
Radiation model opt. thin DOM DOM DOM
DOM grid: #cells in x — 32 32 32
DOM grid: #cellsiny - 8 8 8
DOM grid: #cellsinz - 8 16 8
DOM: # solid angles — 50 50 50
Runge-Kutta order 3 3 3 3
Number of FTTs 2 2 2 2

Table 4.2: Pareto front of LF model search space

To get an idea of the efficiency of the LFs on the Pareto front consider that
performing one extra run of the HF on a different uncertain input (over the original
32) would only reduce the MC estimator’s variance by 3.03%. In the same amount
of time we could instead perform 88, 80, 79 or 72 runs respectively of one of the LFs.
Combining the results of these LF runs with the original 32 runs of the HF (following
the CV method) we would achieve a 54.17%, 52.11%, 53.52% or 51.36% reduction in
estimator variance respectively. We specifically executed LF4 a total of 72 times (the
32 required to compute correlation with the HF, plus an additional 40), to go from
an original HF-only MC estimate of 0.55700 with a standard deviation of 0.0025891
to a combined CV estimate of 0.55757 with a standard deviation of 0.0018061.

Note that the optimal choice of LF for a CV execution depends on the compu-
tational budget available for running the LFs, as can be seen in Figure 4.3 where
we plot the expected variance reduction of the four Pareto-efficient LFs for different
budgets.

Compared to our experts’ experience doing actual UQ studies, most of the LFs
in our search space were surprisingly well-correlated with the HF. Therefore, while
our results point to the possibility that systematic search is simply able to find more

highly correlated LFs than human expertise, it is also possible that our study is not

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 49

80%

70%

50%
40%

30%

Variance reduction

20%

10%

0%
020 025 0.30 0.35 040 045 050 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 130 135 140 145 150

Computational budget (x1M s)

Figure 4.3: Relative efficiency of Pareto-efficient LFs for different budgets, in terms
of achieved estimator variance reduction when used together with 32 evaluations
of the HF in a CV execution. Note that on the lowest budget setting the three
more expensive LFs cannot even be executed the requisite 32 times to compute their
correlation with the HF.

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 50

fully representative of every situation a user might encounter in practice, in particular
simulations and Qols that do not respond as well to coarsening.

The LF models we explored also exhibited subpar performance gains compared
to usual experience, achieving only a ~90x speedup, where a more common figure
is 100x — 1000x. The reason for this can be traced back to the same reason that
LFs did not vary significantly in performance: Owing to the high performance of the
hardware (GPUs) we were running on, even at the HF level our workload was close
to the minimum size where the amount of useful work could hide the overhead of
the communication, runtime analysis and GPU kernel launching. We note that this
fact does not in any way invalidate the usefulness of our approach; in fact it serves
to remind us that, as already mentioned in Section [4.1], the performance gains of
a coarsening choice are inherently tied to a specific machine, implementation, and
mapping policy. Therefore, a user’s intuition regarding the expected benefit of any
such choice does not necessarily translate from one setting to the next, while an
automated method like ours can be easily re-run in a different setting to produce an

accurate estimate.

4.6 User Study

In this section we present a user study that demonstrates our method’s potential to
improve current UQ practice.

We provided a number of scientists from Stanford’s Mechanical Engineering De-
partment with a description of our problem and the coarsening parameters explored
by our LF model search, and asked them to pick a LF model to use in a hypothetical
UQ study. The users we selected were a mix of graduate students, postdoctoral schol-
ars and faculty, not necessarily experts in UQ, but rather physicists that might need
to use UQ in the course of their work (and thus need to make an informed decision
on what LF model to use).

The choices of these users are summarized in Figure 1.2 We note that (a) every
person made a different choice, (b) the users’ choices varied significantly, in both

correlation and performance, and (c) none of the users selected a LF particularly

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH o1

close to the Pareto front. The average user-selected LF has a correlation of 0.89202
with the HF, and is only 33x faster. Using such an LF in a CV evaluation in place
of a 33rd HF evaluation would result in a variance reduction of 2.36%, worse than
simply running the additional HF.

While our study obviously covers only a single simulation and machine, the results

clearly show the promise of automated LF selection.

4.7 Accelerating the Search

In this section we discuss how we might improve the efficiency of our search within
the LF model space.

One approach would be to avoid executing each candidate LF on the full set of
HF samples, and instead use a partial execution to estimate its cost and correlation
with the HF. To evaluate the potential of this approach we used our existing set of LF
runs to compute the correlation of LF's on the Pareto front with the HF over partial
samples (starting from only the first two and growing to the full 32). Figure [4.4]shows
that this partial-sample estimate of HF-LF correlation has not converged until very
close to the full sample, thus a partial evaluation is unlikely to be predictive of the
behavior of an LF model in general.

If we have to fully execute an LF to properly gauge its efficiency, the only way
to accelerate the search is to preemptively avoid evaluating as many inefficient LF's
as possible. One way of achieving this is to devise some method of predicting how
an arbitrary LF model might behave without actually running it (potentially using
information from previous runs of similar models), then use this information to guide
the search. For any simulation of sufficient complexity this prediction will necessarily
be imprecise, so we may end up missing out on some efficient models. However,
even with an imperfect oracle it may be possible to achieve a good tradeoff between
acceleration and quality of results in the context of the full search: Even if we miss
some of the models on the Pareto front, there will probably be many models near them
that are almost as efficient, which would still leave us with a near-optimal selection.

In the rest of this section we discuss, based on the data from our exhaustive

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 52

0.94

1\
0.93 K

0.92

Correlation with HF

0.91

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of samples
Figure 4.4: HF-correlation of Pareto-efficient LF's, computed on partial samples

LF search presented above, the potential of standard statistical modeling tools as
predictors of LF model efficiency. We note that the conclusions we draw only apply
to our specific setting and LF search space, and may not readily generalize to other
situations; our goal is simply to evaluate the potential of the modeling methods we
discuss, for which a proof-of-concept demonstration is sufficient.

The first (and simplest) approach we tried was to use a simple linear regression
model to predict the efficiency of an LF model based on its selection of coarsening
parameters. Specifically, we trained on different subsets of our exhaustive search data
and tried to predict the rest. While a linear model was able to predict the cost of
LFs with near-perfect accuracy using only 20% of the data for training, the same
model was a poor fit to the LF correlation dataset, which only exhibited a correlation
coefficient p of up to 0.3. In particular, the relationship between a model’s level of
fidelity and the correlation it achieves with the HF is not straightforward; for example,
the best-correlated model within our search space was not actually the one with the
least coarse choice for each parameter.

Even though it seems unlikely that we could build a perfect model for predicting

LF correlation, it is still possible that we could build an imperfect model that would

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 53

still work to accelerate the search with minimal losses on average, as discussed above.
To explore this idea further, we consider the simpler question of predicting whether
an LF model will exhibit a correlation score higher than a given threshold. For this
problem we will show that a simple linear classifier, trained using logistic regression
and properly tuned, could indeed save us almost 75% of the work with only a 0.000747
average loss in correlation.

We use our set of ground truth data to emulate how such a classifier would be
used in practice, and test how well different configurations of this classifier perform.
We compare these different configurations in terms of average work saved and average
correlation loss. In a real scenario we would only evaluate a subset of all LFs, train
a classifier on the results of those runs, and of the remaining LF's only consider those
that the classifier predicts will have correlation above the threshold. We evaluate this
process by picking a random subset to train on from our exhaustive set of runs, and
use the resulting model to predict the correlation of the remaining LFs. Any LFs we
skip based on the decision of the classifier is considered saved work. If any of the
LFs we skip has better correlation with the HF than the ones we ran on (either in
the training set or the set of LFs accepted by the classifier), then the difference in
correlation is considered a loss. Note that the loss in correlation depends partially
on our initial split into training set and test set; we might get lucky and include the
best-performing LF in our training set, and then even a bad classifier would have no
correlation loss. For this reason it is important to run any evaluation of this method
multiple times, with different random seeds, and report the average correlation loss.

Our classifier can be parameterized on two axes: its correlation threshold and the
percentage of the dataset that we use to train it. The smaller the subset we train on
the more work we save up-front, but smaller training sets will probably result in worse
accuracy. Increasing the classifier’s threshold will reduce the classifier’s acceptance
rate, thus reducing the number of LFs that the classifier suggests we run, and saving
us more work. At the same time the false negative rate of the classifier will also
increase, meaning more high-correlation LF's will probably be rejected, resulting in a
higher potential for correlation loss.

In Figure [4.5 we plot the behavior of different classifier configurations in terms of

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH o4

average work saved and average correlation loss. Each point represents the average
performance of a different selection of classifier parameters across 100 runs. We tested
every classifier configuration for classification threshold from 0.750 up to 0.995 (at
intervals of 0.005) and for training set size from 5% up to 95% (at intervals of 5%).
The results on this plot suggest that there is indeed a tradeoff between work saved
and average correlation loss; it would be the user’s choice how much of a loss they are
prepared to accept. The configuration mentioned above, that saves us 74.67% of the
work while only costing us 0.000747 in lost correlation, corresponds to a threshold of

0.925 and a training set size of 10%.

0.014 —
M Classifier

®MCMC

0.012 ¥ Hill Climbing i

0.010

1]
I

5 0.008
5 g
il u
]
< !
g o000 =
S ~ L]
O j"

0.004 e]

P,
e
= s " =
0.002 u
.l : []
n m B - =
[[]] f
u []
0.000 e m ok hfege @ u®

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Work saved
Figure 4.5: Results of LF search acceleration experiment

In the same figure we compare the efficiency of our classifier-based method with
local search-based approaches. We performed 100 runs of a hill-climbing search,
starting from a random LF each time. The average cost savings of this method was
higher than any classifier configuration, but so was the loss in correlation. We also
performed 100 randomly-initialized runs of a Markov chain Monte Carlo (MCMC)
sampler following the Metropolis-Hastings algorithm [45], 31]. In the figure we plot the
highest correlation that the different runs had discovered on average after exploring

the same percentage of the search space (i.e. after they had performed the same

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 95

number of LF evaluations). The MCMC sampler appears to present a similar tradeoff
between work saved and correlation lost as our classifier-based approach, but the latter
can generally outperform it in how efficiently it trades off one for the other.

To gauge our method’s sensitivity to changes in the classifier’s parameters we
compare the performance of the above efficient configuration with others that differ
slightly in terms of training set size or classification threshold (see Table . From
these numbers we observe that the system’s overall behavior is reasonably robust to

small changes.

adjustment work saved correlation loss

original 74.67% 0.000747

—0.005 classification threshold 67.74% 0.000407
+0.005 classification threshold 79.52% 0.001646
—5% training set size 76.46% 0.001410

+5% training set size 71.93% 0.000332

Table 4.3: Effect of adjustments to classifier parameters on overall performance, start-
ing from the configuration with classification threshold 0.925 and a training set size
of 10%.

4.8 Related Work

Most research in the area of Uncertainty Quantification focuses on developing good
approximate models for different problems, or algorithms that use an existing set of
models effectively [52) 24]. There has been much less work on our area of focus, i.e.
selecting efficient combinations of coarsening options, balancing fidelity and compu-
tational cost. The most relevant prior work in the UQ literature includes methods
that maintain a small set of predefined LFs, evaluate them all during each step of
an outer-loop process and use the best one on each timestep [I7, 47, B36], methods
that pick an optimal LF by solving a non-linear optimization problem [43] [16] 40],
multi-tier methods that optimize the evaluation ratio between the available LF lev-
els [54], and methods that balance resource usage between improving a single LF

model (exploration) and running it (exploitation) [53]. By their design, most of these

CHAPTER 4. OPTIMAL LOW-FIDELITY MODEL SEARCH 56

methods can only function over a small, predefined set of LFs, and/or only consider
the fidelity of the LFs and not their cost. To our knowledge, the user study presented
in this chapter is the first significant study of its kind.

Outside the field of Uncertainty Quantification, our approach is related to the
technique of autotuning, which involves the systematic, feedback-driven exploration
of a space of implementation choices, to identify the optimally-performing config-
uration (that is generally unique to the specific hardware environment). We refer
the interested reader to the related work section of the Opentuner paper by Ansel
et al [I2]. Our setting is also similar to the hyperparameter tuning / model selec-

tion problem in Machine Learning, for which a number of approaches and tools are
available, e.g. Spearmint [63], Hyperband [41] and Auto-WEKA [67].

Chapter 5
Optimizing Ensemble Execution

In this chapter we touch upon the subject of scheduling the execution of a UQ ensem-
ble on a task-based system. Our goal in this discussion is to highlight the aspects of
the problem that are unique to our setting, specifically the interaction between tiling
and colocation, and the latency-throughput tradeoff. For this reason we restrict our
focus to the simple case of a two-tier ensemble, for which the more traditional schedul-
ing aspects of the problem have an easy solution. However, as we will show, even for

this simplified case there are meaningful decisions to be made.

5.1 Definitions

We formally define our problem of interest as follows: Given a set of samples and
a node allocation on a cluster, find the scheduling of those samples that minimizes
total execution time.

The general problem as defined above is too broad to handle optimally. To have
any hope of deriving an optimal algorithm we need to constrain our focus, by making

certain simplifying assumptions:
e the nodes in our machine are equivalent

e the nodes in our machine are equidistant from each other (communication costs

between any two nodes is the same)

o7

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 58

e samples have (possibly) different computational requirements (in the case of
Soleil-X, this accounts for differences in aspects like flow grid size, number of

particles, number of simulated steps, physics models used)
e samples are independent (there is no cross-sample communication)
e samples can be arbitrarily tiled (i.e. split across nodes)

e cach sample can be modeled as a loop that executes for a predefined number of
iterations (this is typical for many simulation codes that involve a time-stepping

loop)

e we only consider “offline” algorithms (i.e. our algorithm will run to completion
before the ensemble starts, and make a decision about the entire execution of

the ensemble)
e once started, samples cannot be preempted, stopped or moved
e a sample’s execution starts and finishes on all allocated nodes at the same time

e once placed on a set of nodes, every iteration of the same sample will take the
same amount of time (which is typical for many simulation codes, where each
iteration of the time-stepping loop performs roughly the same computation);
therefore, a sample’s cost can be extrapolated by running it for a small number

of iterations

Even with these simplifications the problem has an NP-hard core (it requires
solving a multiprocessor scheduling problem [26]). Since our goal is not to provide a
generic solution, but instead showcase the challenges unique to our setting, we choose
to further restrict our focus to a case where an analytical solution exists.

Specifically, we will consider the case of a simple two-tier ensemble, with a single
high-fidelity (HF) tier and a single low-fidelity (LF) tier, and where the following

conditions hold:

e there are many more LFs than HF's

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 59

e we cannot fit more than one HF on a single node
e cach LF can fit on a single node
e we have enough nodes in our allocation to run all the HF's in parallel

e the ensemble’s running time is dominated by the HF's, so it does not make sense

not to run them in parallel if we can

As a running example, we consider a two-tier ensemble for the case described in
Section 4.2l For this discussion, all we need to know about this case is that it is
comprised of two domains, “HIT” and “channel”, where the first is used to generate
inputs for the second. We use the HF presented in Section [£.2l As our LF we use LF4
from Table . We run on the same machine as that study (Lassen), utilizing only
the GPUs for computation. For the rest of this chapter, when we refer to a “node” on
Lassen we actually mean one GPU, of which each actual Lassen node contains four
(for these experiments we instantiate a separate instance of the Legion runtime for
each GPU).

Before we can compute the optimal solution to this scheduling problem, we need
to measure the efficiency of the different possible ways of tiling a sample (splitting
its execution across multiple nodes), and colocating samples (having multiple sam-
ples execute at the same time, rather than sequentially). We compare the different
alternatives in terms of latency (the wall clock time required to complete a number of
iterations, measured in seconds) and throughput (the normalized number of iterations
completed per unit of computational resources, measured in iterations per second per
node). There is generally a tradeoff between latency and throughput, so there will
not necessarily be a single optimal way to tile or colocate. Instead, different choices
will be better in different ensemble configurations, or even in different phases of the
execution of the same ensemble.

For our example case we estimate this efficiency using partial runs: we run the
different configurations for a small number of iterations and compute the above per-
formance metrics. Because there is some inherent variance in a sample’s performance,

we run every trial multiple times and use the average value observed for each metric.

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 60

We run each trial at least 3 times, and make sure every one of the optimal configu-
rations we output has a relative standard deviation] of at most 5% on the relevant

metric. For these runs we disabled all output from the simulation.

5.2 HF Tiling

First we need to estimate, for every relevant node count, how efficient it is to strong-
scale the HF' to that number of nodes.

The smallest node count we need to consider is the minimum number of nodes that
will fit an HF. As we scale to more nodes we expect the HF’s latency to decrease but
overall throughput to drop, and we expect to see diminishing returns in our latency
gains. After some number of nodes the latency will stop decreasing, but throughput
will continue to drop; it does not make sense to scale past that point. We may want
to stop scaling even before that, if we reach a point where the nodes in our allocation
are insufficient to run all HF's concurrently; in this case we would be forced to run
two HF's on the same node one after the other and, given that the latency gains of
strong scaling are sub-linear, this would cause overall latency to increase.

Similarly, it does not make sense to strong-scale two HFs differently. Say Hj is
strong-scaled more than H;. Then either the ensemble’s running time is dominated by
Hj’s latency (in which case it does not make any difference to the overall performance
that we strong-scaled Hy more), or neither HF’s latency affects the critical path (in
which case it makes sense to strong-scale both HF's at the same level as H;, to increase
throughput).

Depending on our target simulation, there may be more than one way to split
an HF across a given number of nodes. We would then want to pick, for each node
count, the configuration with the highest throughput.

Table summarizes the results of the HF tiling measurements for our example
case: We run 5000 iterations of the HF under different tiling configurations and report

on the observed latency and throughput. We start our measurements at the smallest

IThe relative standard deviation of a statistical sample is defined as the sample standard deviation
divided by the sample mean.

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 61

number of nodes that can fit an HF (a single node on Lassen).

#Nodes Channel placed on nodes Latency (s) Throughput (iters/s/node)

1 1 868.443 5.7574
2 1,2 806.697 3.0991
3 12,3 1088.167 1.5316
4 12,34 1382.833 0.9039
2 2 516.679 4.8386
3 2,3 888.135 1.8766
4 2,34 1117.317 1.1188

Table 5.1: Evaluation of HF tiling options (running one HF for 5000 iterations, with
the HIT domain always placed on node 1)

In this simulation, each of the two domains can be split independently, so that
the same number of nodes can be utilized in different ways. Because the HIT domain
is a fourth the size of the channel domain, it makes sense to start with splitting the
latter before we start splitting the former. All the configurations in Table table
have the HIT domain running on a single node (always node 1); we reach the point of
diminishing returns before we would need to consider how to split the HIT domain.

This experiment shows that the HF exhibits typical strong scaling behavior:
The one possible 1-node configuration achieves a throughput of 5.7574 iters/s/node.
The optimal 2-node configuration (which involves separating the two domains across
nodes) improves on the latency (falling short of actually halving it), but achieves a
lower throughput of 4.8385 iters/s/node. Further splitting does not reduce latency,
but achieves even lower throughput; therefore from this point on we will only consider

scaling the HF on up to 2 nodes.

5.3 HF-HF Colocation

We have assumed it is impossible to fit more than one HF on a node (and one node
may not even be enough). On Lassen we can fit exactly one HF per node, because
each HF uses around 78% of the node’s GPU memory.

It does not make sense to colocate strong-scaled HFs. For example, say we have 2

HFs, Hy and H; (that can fit on 1 node each), each strong-scaled across two nodes, N,

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 62

and N,. We could instead assign Hj exclusively to N, and H; exclusively to N,; then
both samples would execute at a higher throughput, and thus both would terminate

faster.

5.4 LF Tiling

It does not make sense to strong-scale LFs on more than 1 node: We have assumed
that it is the latency of the HF's that dominates the running time of the ensemble;
LFs complete much faster than HF's so their latency is not a concern, instead we care
only about maximizing their throughput, and splitting a sample results in decreased

throughput.

5.5 LF-LF Colocation

Next we need to identify the optimal number of LFs to run concurrently on a single
node. To do this for our example case we ran multiple short ensembles of only LFs,
each LF running for 5000 iterations, and all LF's occupying the same node. We report
our measurements in Table As explained in Section [5.4] we only compare the
efficiency of LF-only combinations in terms of throughput.

As expected, running only one LF' at a time is not the optimal configuration. This
happens because LF's typically have small domain sizes, resulting in small workloads
for GPU kernels, and thus not enough computation to effectively hide the latency
of other parts of the application (e.g. the communication, runtime analysis, or GPU
kernel launching).

As more LF's are executed concurrently, both GPU utilization and overall through-
put increases, until we hit the limit of how many LFs can fit on a node (which did
not happen during the above experiment, because each LF used only around 3% of
a Lassen node’s GPU memory), or we saturate some resource available to the appli-
cation (e.g. the GPU’s processing capacity, the CPU cores available to the runtime,
or the communication channel), which seems to happen at 2 LFs per node for our

example case.

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 63

#LFs Latency (s) Throughput (iters/s/node)

1 160.820 31.0907
2 270.077 37.0265
3 427.795 35.0635
4 o77.274 34.6456
5 743.052 33.6450
6 914.295 32.8122
7 1041.611 33.6018
8 1191.949 33.9585
9 1356.078 33.1839
10 1495.749 33.4281
11 1639.876 33.9391
12 1789.157 33.5353
13 1909.598 34.0386
14 2048.713 34.1678
15 2195.111 34.1668
16 2326.518 34.3862

Table 5.2: Evaluation of LF-LF colocation options (running multiple LFs on a single
node, each for 5000 iterations)

We have assumed there are many more LFs than HF's, so we can assume we can
always create groups of LFs of the most efficient size, to run concurrently. Therefore,
in subsequent sections we assume we can always achieve the maximum throughput

(of 37.0265 iters/s/node for our example case) when running LFs on their own.

5.6 HF-LF Colocation

Finally, we need to identify if there is any efficiency to be gained by running one or
more LFs concurrently with an HF, and what the best combination is (the answer
may be different for different tilings of the HF).

The rationale behind this question is that, even when executing an HF, not all of
the available computational resources are used at their full capacity. Therefore, by
running some additional low-intensity work on the same resources at the same time,
we may be able to achieve better overall utilization.

For the purposes of this discussion we will not attempt to tune the joint execution

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 64

of the HF and LFs, and will just let the runtime decide how to allocate resources
among the samples running on the same nodes. Therefore, we expect that the more
LFs we colocate with the HF', the more resources will be allocated to the LF's over the
HF, thus the LF aggregate throughput will rise at the expense of the HF throughput.
We then need a way to decide, of all the available colocation options, which is the
best tradeoff for our purposes.

Say we are given an HF-LF colocation configuration and we know that, while
running under this configuration, the HF achieves a throughput of 7}, and the LFs
a throughput of 7T7. Say also that the corresponding throughput numbers are T},
and 77 if running separately (for the LFs we would use the throughput achieved in
the optimal LF-only colocation configuration). Based on these figures, we will now
develop a method to evaluate how much more efficient (if at all) it is to colocate an
HF with LFs under the given configuration, over running them separately.

Without loss of generality say we are executing on 1 node. Say we wanted to run
I iterations across all LFs. This would take time t* = I/T} if we were to run the
LF's separately from the HF. Instead say we colocated the LFs with the HF until all
LF iterations are completed, which would take time ¢ = I/Tf. For that period of
time the HF will run at the (reduced) throughput of Tj; instead of Tj;, therefore it
will complete (15 — T5)t = (T3 — T5;)I/T5 fewer iterations, which will require an
extra time of t¢ = (T}, — T5)1/(T5Ty) to run (at full HF throughput). If t¢ > ¢¢
then we saved time by running the LF colocated with the HF. We can thus use the
ratior = t%/tc = (IT5T5) /(T (T —T)I) = (T5T5) /(T3 (Th —T5)) to quantify how
much more efficient it is to run in an HF-LF colocation configuration over running
separately (colocation is more efficient iff this ratio is larger than 1).

All we need to do now to evaluate the different HF-LF colocation options for
our example case is to estimate the values of Tj and 77. We already know that
Ty = 37.0265 iters/s/node, T = 5.7574 iters/s/node on 1 node and T}, = 4.8386
iters/s/node on 2 nodes (we only consider the best HF tiling configuration for each
node count). To do this we run the different configurations for a small duration (5000
iterations for every sample), pick a time point into the execution when all samples were

still running (the same point for all configurations) and count how many iterations

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 65

the HF and the LF's in aggregate had completed at that point. We use this number
to compute the throughput values and calculate the ratio r.

Table summarizes our measurements for all possible HF-LF colocation config-
urations on 1 node. We took our measurements at 500s into the execution. We could
not colocate more than 7 LFs with the HF, because that would require more GPU
memory than is available on a Lassen node. We note that initially the colocation
increases overall efficiency, but eventually overall performance starts to drop. The
highest efficiency is achieved when colocating 3 LFs with the HF; in this configura-
tion the HF executes at a throughput of 4.3480 iters/s/node, and the LFs at 18.8633
iters/s/node.

Iters completed Throughput

#LES hp LFs HF Lps Latio
1 2450 3722 49183 74431 1.38
9 2316 6391 4.6320 137814 1.90
3 2174 9432 4.3480 18.8633 2.08
4 2004 10626 4.0073 21.2513 1.89
5 1668 11083 3.3355 22.1663 1.42
6 1484 11839 2.9686 23.6770 1.32
7 1204 12025 2.5873 24.0500 1.18

Table 5.3: Evaluation of 1-node HF-LF colocation options (multiple LFs colocated
with 1 HF, each running 5000 iterations, measuring after 500s of execution)

Table covers our experiments with 2-node HF-LF colocation configurations.
We took our measurements at 200s into the execution. It was possible to execute
more than 4 LFs per node, but based on the r ratio’s trend it seemed unlikely that
larger colocation counts would beat the performance of the optimal configuration, i.e.
a single LF on node 1 (under this, the HF executes at 4.8142 iters/s/node and the
LFs at 7.9058 iters/s/node). We note that the value of r for this case is significantly
larger than the others because the throughput of the HF is hardly affected by the
presence of the LF (it only decreases from 4.8385 iters/s/node to 4.8142 iters/s/node),

suggesting that node 1 is significantly underutilized running just the HIT domain.

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION

#LF's placed on Iters completed

Throughput

Node I Node?2 HF LFs HF Lps Lato
0 11645 1253 41125 3.1317 056
0 2 1546 2193 3.8650 54817 0.74
0 3 1498 3081 3.7458 77017 0.92
0 A 1414 3787 35358 94667 0.95
1 0 1926 3162 4.8142 7.9058 42.46
] 1 1618 4957 4.0458 123933 2.04
1 2 1532 6248 3.8300 15.6208 2.02
1 3 1510 6810 3.7750 17.0242 2.09
1 4 1268 8373 3.1692 209325 1.64
2 0 1487 3940 3.7175 9.8492 115
2 1 1542 5665 3.8542 14.1625 1.88
2 2 1488 6570 3.7208 16.4250 1.92
2 3 1320 7902 3.3233 19.7558 1.70
9 41092 9407 27300 235167 1.46
3 0 1122 4486 2.8058 11.2150 0.72
3 | 1143 7475 28583 18.6883 1.23
3 2 1133 8641 2.8317 21.6025 1.41
3 3 1115 9200 2.7883 23.0217 147
3 4993 9562 24833 23.9050 1.33
4 0 880 4695 2.2008 11.7367 0.58
4 1939 8740 23483 21.8492 1.15
4 2 917 10062 2.2925 25.1550 1.2
1 3 894 9982 2.2358 24.9550 1.25
1 4871 0761 21767 24.4017 1.20

66

Table 5.4: Evaluation of 2-node HF-LF colocation options (multiple LFs colocated

with 1 HF, each running 5000 iterations, measuring after 200s of execution)

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 67

5.7 Scheduling Algorithm

At this point we have enough information to derive an optimal schedule for the
execution of our ensemble. We will present our scheduling algorithm through an
example: an ensemble following our example case configuration comprised of 1 HF
and 96 LFs, to be executed on 4 Lassen nodes. It becomes relevant at this point to
know how many iterations each sample needs to run for: the HF needs to complete
2,365,703 iterations, and each LF 295,713 iterations.

For now we will ignore the fact that LFs need to be scheduled as units of work,
and instead assume we can schedule them at the level of an iteration; this will simplify
our algorithm but is unrealistic, so our final solution will need to be adjusted.

We first consider, for each HF tiling configuration (starting from the minimum
amount of tiling), the schedule that involves running HFs and LF's on separate nodes.

Our first option is to use 1 node for the HF (see Figure . In this configuration
we are “latency-limited”: The overall runtime is dominated by the latency of the HF.
All the LFs complete before the HF and the nodes allocated to them remain idle until
the HF finishes. Therefore it makes sense to try tiling the HF further, trading off
some throughput for reduced latency (we are wasting resources anyway by leaving
nodes idle). We continue tiling for as long as we remain latency-limited, there are
enough nodes available to tile further, and tiling continues to reduce latency. If we
exhaust all possible HF tiling options and are still latency-limited, then the most-tiled
configuration is the optimal solution.

We continue with tiling the HF to 2 nodes (see Figure[5.2). We have now reached
the point where we are “throughput-limited”: The HF finishes before all the LFs,
so the HF’s latency no longer matters and throughput is the only bottleneck. This
suggests we do not need to consider any further tiling of the HF, as that would only
serve to reduce the HF’s throughput.

We can further improve the efficiency of the last schedule. As a first step, we
notice that the HF’s nodes will be idle towards the end of the run, so we reschedule
LFs to fill that time (see Figure [5.3)).

If an efficient HF-LF colocation configuration is available (one with ratio r > 1,

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION

total number of HF iterations:
Iy = 2,365,703

total number of LF iterations:

I, =96 - 295,713 = 28, 388, 448

nodes used for the HF:

Ny =1

nodes used for the LFs:
N =3

HF throughput when running separately:
TF = 5.7574

LF throughput when running separately:
17 = 37.0265

total running time for the HF:

t1 = Igy/(T;Ny) = 410,898
total running time for the LF's:

to = I /(T; Np) = 255,569

1

iterations
iterations
nodes

nodes
iters/s/node
iters/s/node
seconds

seconds

A

\ 4

HF

LFs

Figure 5.1: Scheduling tiers separately, HF on 1 node

68

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION

total number of HF iterations:

Iy = 2,365,703 iterations
total number of LF iterations:
I, =96 - 295,713 = 28, 388, 448 iterations
nodes used for the HF":
Ng =2 nodes
nodes used for the LFs:
N, =2 nodes
HF throughput when running separately:
T} = 4.8386 iters/s/node
LF throughput when running separately:
T; = 37.0265 iters/s/node
total running time for the HF:
ty = In /(T Ny) = 244, 462 seconds
total running time for the LF's:
to=1/(T; Nr) = 383,353 seconds
< L >
HF
LFs
< 5 >

Figure 5.2: Scheduling tiers separately, HF on 2 nodes

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION

total number of HF iterations:

Iy = 2,365,703 iterations
total number of LF iterations:
I, =96 295,713 = 28, 388, 448 iterations
nodes used for the HF:
Ng =2 nodes
nodes used for the LFs (initially):
Np =2 nodes
HF throughput when running separately:
T}, = 4.8386 iters/s/node
LF throughput when running separately:
T; = 37.0265 iters/s/node
total running time for the HF":
t1=Ig/(TH;Ng) = 244, 462 seconds
In that time the LF's have completed:
I =T7ty N, = 18,103, 144 iterations
The remaining LF iterations will use all nodes, taking:
to = (I —1)/T;/(Ng + NL) = 69,446 seconds
total execution time:
ton = t1 +to = 313,908 seconds
HF
LFs
LFs
< - >< 5 >
******************* fime

Figure 5.3: Scheduling tiers separately, HF on 2 nodes, eliminating idle time

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 71

see Section , we can use it to colocate some LFs with the HF, thus trading back
some latency (which is no longer an issue) for throughput. If our ensemble is such
that the execution of the HF can cover the entire “tail” of LFs, then we would solve

the equations in Figure to decide how many LF iterations to colocate.

Say we colocate I} LF iterations with the HF; these will run in:

t1 =17 /(Tf Ny) seconds
Over that period of time the HF will complete:
Iy = TGNyt = TSI)T iterations
The remaining HF iterations will execute by themselves, and take:
ty= Iy — I;) /(T Ny) seconds
The rest of the LF iterations run on their own nodes, and take:
ts= (I, —I;)/(TiNy) seconds
In the optimal configuration, the HF and remaining LFs finish together:
t3 =11 + 1o

We solve the last equation to get I}.

A
Y
A
\4

HF & LFs HF

LFs

Figure 5.4: Colocating tiers, HF on 2 nodes, long HF case

If, on the other hand, we can colocate LFs for the entire duration of the HF’s
execution and still have LF work left over (as happens for our example), we schedule
as in Figure [5.5] We know that we need to follow this approach if, while trying to

apply the formula for I} from the previous case, we end up with I}, > Ij.

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION

total number of HF iterations:

Iy = 2,365,703
total number of LF iterations:

I, =96 - 295,713 = 28, 388, 448
nodes used for the HF":

Ny =2

nodes used exclusively for the LFs:
Np =2

throughput when running separately:
17 = 4.8386
17 = 37.0265

throughput when running colocated:
Ty = 4.8142
T7 = 7.9058

Running fully in colocated mode, the HF will take:
t1 = Iy /(T5;Ng) = 245,701
In that time the LF's colocated with the HF will complete:
I}¢=Tfty Ny = 3,884,926

iterations
iterations
nodes
nodes

iters/s/node

iters/s/node

iters/s/node

iters/s/node
seconds

iterations

The LFs running by themselves on the rest of the nodes will complete:

I} =Tit, Ny, = 18,194, 896
The remaining LF iterations will use all nodes, taking:
ty= (I, — I}° = I}*)/T;/(Ny + Np) = 42,595
total execution time:
tan = t1 + t2 = 288,296

HF & LFs
LEs
LFs
< - ><>

terations

seconds

seconds

Figure 5.5: Colocating tiers, HF on 2 nodes, short HF case

72

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 73

The optimal schedule will be either the least latency-limited configuration we con-
sidered or the throughput-limited one (including all optimizations). For our example
case the throughput-limited configuration from Figure is optimal, requiring a to-
tal of 288,296 seconds to complete (over the latency-limited configuration’s 410,898
seconds, as computed in Figure . The full scheduling algorithm is provided in
Figure

As mentioned previously, this analysis assumes we can schedule at the level of
an LF iteration. Therefore the optimal schedule may be infeasible, for a number of

reasons:

e The optimal number of LF iterations to colocate with the HF may not be an

exact multiple of a sample’s size.

e The end of the HF’s execution may not line up exactly with the end of the

standalone LFs’ execution.

e The number of LFs remaining after the HF’s execution finishes may not be

appropriate for scheduling in the optimal LF colocation configuration.

We therefore need to adjust the optimal (but infeasible) schedule into the closest
feasible one (that may be slightly less efficient).

5.8 Related and Future Work

The problem studied in this chapter falls under the category of scheduling problems, a
well-studied class of problems in Computer Science with multiple variations, most of
them NP-hard. Our specific case is an instance of parallel task scheduling [20] 60], and
is closest to the moldable task assumption [72]. Under this assumption, different tasks
(in our case samples) can be split independently from each other (with progressively
lower performance gains at higher degrees of splitting), and this splitting remains
constant for the duration of their execution. This problem is NP-hard in the general

case, but efficient approximate algorithms exist [22].

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION

Input: [g: total number of HF iterations
I;: total number of LF iterations
N: total number of nodes
NP minimum number of nodes that will fit an HF
N7e*: strong-scaling limit for HF
T3 [n): HF throughput when running separately, on n nodes
T}7: LF throughput when running separately
T5;[n]: HF throughput when running colocated, on n nodes
Tf[n]: LF throughput when running colocated, on n nodes
Output: the running time of the optimal schedule

tigr = 00
for Ny = NV to oo do
if Ny > N or Ny > N then
‘ return t;,;
N, =N — Ngy
if N, =0 then
break
tr=1n/(T[NulNu)
to=1./(T{N¢r)
if t1 > 1o then

|t =t
else
‘ break

solve for I};, I}, tipu ¢
tiput = 11/ (Tf[Ng)Ng) + (Im — I}) /(T3 [Nu|Nu)
IL - Ii = T[S,ttputNL
I}I = TE[NH]]HTHNH]
if I, < Iy then

| return min(lqe, tpur)
t1 = In/(T5[Nu|Ng)
I}* = T¢[Nylt; Ny
I’ = T3t N,
ty= (I — I;° = I1*)/(TEN)
Liput = 11 + 12
return min(?;q, tpue)

Figure 5.6: Full scheduling algorithm

74

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 75

The discussion in this chapter is concerned with two-tier ensembles, a variant of
the problem that admits an analytical solution. Future work on handling ensembles
of three or more tiers would need to solve the full scheduling problem. Unfortunately,
the algorithms proposed in prior work are not immediately applicable to our setting,
as they do not consider the effect of colocation, and would need to be adapted.
Additionally, increasing the number of tiers would cause a combinatorial increase in
the number of possible tiling and colocation configurations to consider, so we might
have to make further simplifying assumptions, to keep the number of combinations
under control.

A particularly promising direction for future work involves scheduling across both
the CPUs and the GPUs on every node, thus utilizing the entire set of available
hardware. To extend our scheduling algorithm to this setting, we would need to

answer a number of additional questions:

e How should we split CPU cores between the runtime and running samples?
Runtime overhead is a major component in the efficiency of different configura-
tions, so we need to ensure that sufficient resources are allocated to the runtime
analysis. Additionally, it may be profitable to split the application’s cores across
multiple OpenMP thread pools, to better handle NUMA effects.

e Should we consider splitting a single simulation between two types of processors?
As outlined in Section [2.8] this is not the case for Soleil-X.

e Should we consider scheduling HFs on CPUs (and if so, how far is it profitable
to tile them across nodes)? On Lassen the HF executes 9x slower using 32 out of
a node’s 40 cores (with 8 allocated to the runtime) over OpenMP, compared to
running on a GPU. Therefore, any HF placed on the CPUs would significantly

dominate the running time of the ensemble.

e What is the optimal throughput we can achieve for LFs running on CPUs?
We would need to consider different colocation configurations, similar to the
analysis in Section [5.5]

CHAPTER 5. OPTIMIZING ENSEMBLE EXECUTION 76

e Should we consider tiling LFs across two nodes’” CPUs? For reasons similar to

those outlined in Section we do not need to consider this option.

e How does the presence of LFs on CPUs affect the throughput of different exe-
cution configurations on GPUs? We would need to redo our throughput mea-
surements with the CPUs occupied, and even under different CPU occupancy
configurations. Ultimately the decision of how to schedule on the CPUs becomes
an additional parameter to consider when deriving an optimal-throughput con-

figuration.

To handle the more general problem of scheduling ensembles with three or more tiers
on both CPUs and GPUs we would need to explore parallel scheduling algorithms for
the heterogeneous setting [68].

Further extensions to the kinds of ensembles we handle can correspondingly exploit
existing work. For example, to support dynamically-updated ensembles we would
rely on algorithms for the online setting, and to support dynamic re-partitioning of
running samples we would research scheduling algorithms for the malleable (instead

of moldable) task assumption.

Chapter 6
Conclusion

In this dissertation we explored the potential of task-based programming systems to
improve the practice of building complex multi-physics simulations, and performing
Uncertainty Quantification studies over them.

We reported on our experience building a multi-physics solver, Soleil-X, in the
Legion task-based programming system, and extending it to support UQ ensembles.
We discussed our major design choices, particularly the co-design of distribution
and domain coupling strategies, and our methodology for optimizing the application.
To evaluate our solver’s scalability we performed a weak-scaling study on Sierra, a
leadership-class supercomputer, where we achieved good scaling up to 256 nodes.

We explored in depth one of the ways that task-based runtimes can be used to
automate the practice of performing UQ studies. Specifically, we developed a search-
based approach for selecting the optimal low-fidelity model for a UQ study. We
built a prototype implementation of this approach and applied it to a medium-size
simulation, where we were able to outperform the choices of human experts. We
reported on some of the issues we faced while making the base simulation robust
enough to be able to handle the wide variety of configurations explored during our
search. We also discussed some promising preliminary ideas for accelerating our search
process using statistical modeling.

Finally, we discussed the problem of optimizing the execution of UQ ensembles.

We focused on the simple but common case of a two-tier ensemble, that highlights the

7

CHAPTER 6. CONCLUSION 78

unique aspects of our setting while admitting an analytical solution. We developed a
method for solving this problem that starts by finding the optimal configurations of
tiling and colocation between the two fidelities, then combines this information into

a deterministic scheduling algorithm.

Bibliography

1]

Exascale Computing Engineering Center. Predictive Science Academic Alliance
Program (PSAAP) II, Stanford University. http://exascale.stanford.edu.

Lassen, Lawrence Livermore National Laboratory. https://computing.llnl.

gov/computers/lassen.

Piz Daint, Swiss National Supercomputing Centre. https://www.cscs.ch/

computers/piz-daint/.

Sierra, Lawrence Livermore National Laboratory. https://computing.llnl.

gov/computers/sierral

Summit, Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.

gov/summit/.

Titan, Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.

gov/olcf-resources/compute-systems/titan/.

Brian M. Adams, W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Eldred, D.M.
Gay, K. Haskell, Patricia D. Hough, and Laura P. Swiler. DAKOTA, a Multilevel
Parallel Object-Oriented Framework for Design Optimization, Parameter Esti-

mation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 Users
Manual. Sandia National Laboratories, Tech. Rep. SAND2010-2183, 2009.

79

http://exascale.stanford.edu
https://computing.llnl.gov/computers/lassen
https://computing.llnl.gov/computers/lassen
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/piz-daint/
https://computing.llnl.gov/computers/sierra
https://computing.llnl.gov/computers/sierra
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

BIBLIOGRAPHY 30

8]

[13]

[14]

Michael P. Adams, Marvin L. Adams, W. Daryl Hawkins, Timmie Smith,
Lawrence Rauchwerger, Nancy M. Amato, Teresa S. Bailey, and Robert D. Fal-
gout. Provably Optimal Parallel Transport Sweeps on Regular Grids. Technical
report, Lawrence Livermore National Lab (LLNL), Livermore, CA, USA, 2013.

Alex Aiken, Michael Bauer, and Sean Treichler. Realm: An Event-Based Low-
Level Runtime for Distributed Memory Architectures. In 2014 23rd International

Conference on Parallel Architecture and Compilation Techniques (PACT), pages
263-275. IEEE, 2014.

Juan Alonso, Seonghyeon Hahn, Frank Ham, Marcus Herrmann, Gianluca lac-
carino, Georgi Kalitzin, Patrick LeGresley, Ken Mattsson, Gorazd Medic, Parviz
Moin, et al. CHIMPS: A High-Performance Scalable Module for Multi-Physics
Simulations. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit, page 5274, 2006.

Michael J. Andrews and Peter J. O’Rourke. The Multiphase Particle-In-Cell
(MP-PIC) Method for Dense Particulate Flows. International Journal of Multi-
phase Flow, 22(2):379-402, 1996.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An
Extensible Framework for Program Autotuning. In Proceedings of the 23rd in-
ternational conference on Parallel architectures and compilation, pages 303-316.
ACM, 2014.

Maxime Bassenne, Javier Urzay, George I. Park, and Parviz Moin. Constant-
Energetics Physical-Space Forcing Methods for Improved Convergence to

Homogeneous-Isotropic Turbulence with Application to Particle-Laden Flows.
Physics of Fluids, 28(3):035114, 2016.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Ex-
pressing Locality and Independence with Logical Regions. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage

BIBLIOGRAPHY 81

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

and Analysis, SC ’12, pages 66:1-66:11, Los Alamitos, CA, USA, 2012. IEEE

Computer Society Press.

Dan Bonachea and Paul H. Hargrove. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. Technical Report LBNL-2001174,
Lawrence Berkeley National Laboratory, October 2018. Languages and Compil-
ers for Parallel Computing (LCPC’18).

Souma Chowdhury, Ali Mehmani, and Achille Messac. Concurrent Surrogate
Model Selection (COSMOS) Based on Predictive Estimation of Model Fidelity.
In ASME 2014 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, pages VO2BT03A026—
V02BT03A026. Citeseer, 2014.

Ivo Couckuyt, Filip De Turck, Tom Dhaene, and Dirk Gorissen. Automatic
Surrogate Model Type Selection During the Optimization of Expensive Black-
Box Problems. In Proceedings of the Winter Simulation Conference, pages 4274—
4284. Winter Simulation Conference, 2011.

Clayton T. Crowe, John D. Schwarzkopf, Martin Sommerfeld, and Yutaka Tsuji.
Multiphase Flows with Droplets and Particles. CRC Press, second edition, 2011.

Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard API for
Shared-Memory Programming. Computational Science & Engineering, IEEE,
5(1):46-55, 1998.

Eliezer Dekel and Sartaj Sahni. Parallel Scheduling Algorithms. Operations
Research, 31(1):24-49, 1983.

Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek.
Terra: A Multi-Stage Language for High-Performance Computing. ACM SIG-
PLAN Notices, 48(6):105-116, 2013.

Pierre-Francois Dutot, Grégory Mounié, and Denis Trystram. Scheduling Parallel

Tasks: Approximation Algorithms, 2004.

BIBLIOGRAPHY 82

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

Martha W. Evans, Francis H. Harlow, and Eleazer Bromberg. The Particle-
In-Cell Method for Hydrodynamic Calculations. Technical report, Los Alamos
National Lab (NM), 1957.

M Giselle Fernandez-Godino, Chanyoung Park, Nam-Ho Kim, and Raphael T
Haftka. Review of Multi-Fidelity Models. arXiv preprint arXiv:1609.07196, 2016.

Joel H. Ferziger and Milovan Peri¢. Computational Methods for Fluid Dynamics.
Springer, Berlin, third edition, 2002.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, page 238. W. H. Freeman, San Francisco,
1979.

J. Davison de St Germain, John McCorquodale, Steven G. Parker, and Christo-
pher R. Johnson. Uintah: A Massively Parallel Problem Solving Environment.

In Proceedings the Ninth International Symposium on High-Performance Dis-
tributed Computing, pages 33-41. IEEE, 2000.

Panagiotis E. Hadjidoukas, Panagiotis Angelikopoulos, Costas Papadimitriou,
and Petros Koumoutsakos. I14U: A High Performance Computing Framework
for Bayesian Uncertainty Quantification of Complex Models. Journal of Com-
putational Physics, 284:1-21, 2015.

Panagiotis E. Hadjidoukas, Evaggelos Lappas, and Vassilios V. Dimakopoulos.
A Runtime Library for Platform-Independent Task Parallelism. In 2012 20th
FEuromicro International Conference on Parallel, Distributed and Network-based
Processing, pages 229-236. IEEE, 2012.

J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Springer
Netherlands, first edition, 1964.

W. Keith Hastings. Monte Carlo Sampling Methods Using Markov Chains and
Their Applications. 1970.

BIBLIOGRAPHY 83

[32]

[33]

[34]

[38]

[39]

Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes Filho.
Lua — An Extensible Extension Language. Software: Practice and Ezperience,
26(6):635-652, 1996.

Xiangmin Jiao, Gengbin Zheng, Phillip A. Alexander, Michael T. Campbell,
Orion S. Lawlor, John Norris, Andreas Haselbacher, and Michael T. Heath. A

System Integration Framework for Coupled Multiphysics Simulations. Engineer-
ing with Computers, 22(3-4):293-309, 2006.

Lluis Jofre, Gianluca Geraci, Hillary Fairbanks, Alireza Doostan, and Gianluca
laccarino. Multi-Fidelity Uncertainty Quantification of Irradiated Particle-Laden
Turbulence. arXiv preprint arXiw:1801.06062, 2018.

David E. Keyes, Lois C. Mclnnes, Carol Woodward, William Gropp, Eric Myra,
Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, et al. Mul-

tiphysics Simulations: Challenges and Opportunities. The International Journal
of High Performance Computing Applications, 27(1):4-83, 2013.

Slawomir Koziel and Adrian Bekasiewicz. Low-Cost Multiband Compact Branch-
Line Coupler Design Using Response Features and Automated EM Model Fi-
delity Adjustment. International Journal of RF and Microwave Computer-Aided
Engineering, 28(4):¢21233, 2018.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation. pages 7588, San Jose, CA, USA, Mar
2004.

Wonchan Lee, Manolis Papadakis, Elliott Slaughter, and Alex Aiken. A
Constraint-Based Approach to Automatic Data Partitioning for Distributed
Memory Execution. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC 19, 2019.

Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd Warsza-

wski, Michael Garland, and Alex Aiken. Dynamic Tracing: Memoization of Task

BIBLIOGRAPHY 84

[40]

[41]

[42]

[43]

[45]

Graphs for Dynamic Task-Based Runtimes. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 441—
453. IEEE, 2018.

Leifur Leifsson, Slawomir Koziel, and Piotr Kurgan. Automated Low-Fidelity
Model Setup for Surrogate-Based Aerodynamic Optimization. In Solving Com-
putationally Expensive Engineering Problems, pages 87-111. Springer, 2014.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. arXiv preprint arXiw:1603.06560, 2016.

Stefano Marelli and Bruno Sudret. UQLab: A Framework for Uncertainty Quan-
tification in Matlab. In Vulnerability, Uncertainty, and Risk: Quantification,
Mitigation, and Management, pages 2554-2563. 2014.

Ali Mehmani, Souma Chowdhury, Jie Zhang, and Achille Messac. A Novel Ap-
proach to Simultaneous Selection of Surrogate Models, Constitutive Kernels, and
Hyper-Parameter Values. In 10th AIAA Multidisciplinary Design Optimization
Conference, page 1487, 2014.

Qingyu Meng, Justin Luitjens, and Martin Berzins. Dynamic Task Scheduling
for the Uintah Framework. In 2010 3rd Workshop on Many-Task Computing on
Grids and Supercomputers, pages 1-10. IEEE, 2010.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics, 21(6):1087-1092, 1953.

Michael F. Modest. Radiative Heat Transfer. Academic Press, third edition,
2013.

Joshua Mullins and Sankaran Mahadevan. Variable-Fidelity Model Selection for
Stochastic Simulation. Reliability Engineering € System Safety, 131:40-52, 2014.

BIBLIOGRAPHY 85

[48]

[49]

[50]

[51]

[52]

[53]

[55]

Leo W. T. Ng and Karen E. Willcox. Multifidelity Approaches for Optimization
Under Uncertainty. International Journal for Numerical Methods in Engineering,
100(10):746-772, 2014.

John Nickolls, Ian Buck, and Michael Garland. Scalable Parallel Programming.
In 2008 IEEE Hot Chips 20 Symposium (HCS), pages 40-53. IEEE, 2008.

Francisco Palacios, Juan Alonso, Karthikeyan Duraisamy, Michael Colonno,
Jason Hicken, Aniket Aranake, Alejandro Campos, Sean Copeland, Thomas
Economon, Amrita Lonkar, et al. Stanford University Unstructured (SU?): An
Open-Source Integrated Computational Environment for Multi-Physics Simula-
tion and Design. In 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, page 287, 2013.

Raghu Pasupathy, Bruce W. Schmeiser, Michael R. Taaffe, and Jin Wang.
Control-Variate Estimation Using Estimated Control Means. IIE Transactions,
44(5):381-385, 2012.

B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of Multifidelity Meth-
ods in Uncertainty Propagation, Inference, and Optimization. SIAM Review,
60(3):550-591, 2018.

Benjamin Peherstorfer. Multifidelity Monte Carlo Estimation with Adap-
tive Low-Fidelity Models. SIAM/ASA Journal on Uncertainty Quantification,
7(2):579-603, 2019.

Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Optimal Model
Management for Multifidelity Monte Carlo Estimation. SIAM Journal on Sci-
entific Computing, 38(5):A3163-A3194, 2016.

Hadi Pouransari and Ali Mani. Effects of Preferential Concentration on Heat
Transfer in Particle-Based Solar Receivers. Journal of Solar Energy Engineering,
139(2):021008, 2017.

BIBLIOGRAPHY 86

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Ernesto E. Prudencio and Karl W. Schulz. The Parallel C++ Statistical Library
QUESO: Quantification of Uncertainty for Estimation, Simulation and Opti-
mization. In FEuro-Par 2011: Parallel Processing Workshops, pages 398-407.
Springer, 2012.

M. Rahmani, G. Geraci, G. laccarino, and A. Mani. Effects of Particle Polydis-
persity on Radiative Heat Transfer in Particle-Laden Turbulent Flows. Interna-
tional Journal of Multiphase Flow, 104:42-59, 2018.

Pamphile T. Roy, L. Jofre, J. C. Jouhaud, and B. Cuenot. Versatile Adaptive
Sampling Algorithm Using Kernel Density Estimation. FEuropean Journal of

Operational Research, 2019 (under review).

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
Primitives for GPU Computing. In Graphics Hardware 2007, pages 97-106.
ACM, August 2007.

Oliver Sinnen. Task Scheduling for Parallel Systems, volume 60. John Wiley &
Sons, 2007.

Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.
Regent: A High-productivity Programming Language for HPC with Logical Re-
gions. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC '15, pages 81:1-81:12, New
York, NY, USA, 2015. ACM.

Elliott Slaughter, Wonchan Lee, Sean Treichler, Wen Zhang, Michael Bauer,
Galen Shipman, Patrick McCormick, and Alex Aiken. Control Replication: Com-
piling Implicit Parallelism to Efficient SPMD with Logical Regions. In Proceed-
ings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, page 14. ACM, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Opti-
mization of Machine Learning Algorithms. In Advances in neural information

processing systems, pages 2951-2959, 2012.

BIBLIOGRAPHY 87

[64]

[65]

[66]

[67]

[68]

[70]

James R. Stewart and H. Carter Edwards. A Framework Approach for Devel-
oping Parallel Adaptive Multiphysics Applications. Finite Elements in Analysis
and Design, 40(12):1599-1617, 2004.

Shankar Subramaniam. Lagrangian-Eulerian Methods for Multiphase Flows.
Progress in Energy and Combustion Science, 39:215245, 04 2013.

Geoffrey Ingram Taylor and Albert Edward Green. Mechanism of the Production
of Small Eddies from Large Ones. Proceedings of the Royal Society of London.
Series A-Mathematical and Physical Sciences, 158(895):499-521, 1937.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-
WEKA: Combined Selection and Hyperparameter Optimization of Classification
Algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 847-855. ACM, 2013.

Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE transac-
tions on parallel and distributed systems, 13(3):260-274, 2002.

Hilario C. Torres, Manolis Papadakis, Lluis Jofre, Wonchan Lee, Alex Aiken, and
Gianluca laccarino. Soleil-X: Turbulence, Particles, and Radiation in the Regent

Programming Language. In Proceedings of the Parallel Applications Workshop,
Alternatives To MPI+X, PAW-ATM ’19, 2019.

Mariano Véazquez, Guillaume Houzeaux, Seid Koric, Antoni Artigues, Jazmin
Aguado-Sierra, Ruth Aris, Daniel Mira, Hadrien Calmet, Fernando Cucchietti,
Herbert Owen, et al. Alya: Multiphysics Engineering Simulation Toward Exas-

cale. Journal of computational science, 14:15-27, 2016.

David W. Walker and Jack J. Dongarra. MPI: A Standard Message Passing
Interface. Supercomputer, 12:56-68, 1996.

Xiaohu Wu, Patrick Loiseau, and Esa Hyytia. Efficient Algorithms for Scheduling
Moldable Tasks. arXiv preprint arXiv:1609.08588, 2016.

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Task-Based Programming
	The Legion Task-Based Programming System
	Benefits of Task-Based Programming

	Soleil-X: A Task-Based Multi-Physics Solver
	Motivation
	Preliminaries
	High-Level Description
	Fluid Solver
	Particles Solver
	Radiation Solver
	Multi-Domain Simulations
	Solver Optimization
	Solver Scalability
	Summary and Related Work

	Uncertainty Quantification
	Background
	UQ and Task-Based Programming
	Related Work

	Optimal Low-Fidelity Model Search
	Introduction
	Setup of LF Search Study
	Validation of Base Simulation
	Issues Encountered
	Results of LF Search
	User Study
	Accelerating the Search
	Related Work

	Optimizing Ensemble Execution
	Definitions
	HF Tiling
	HF-HF Colocation
	LF Tiling
	LF-LF Colocation
	HF-LF Colocation
	Scheduling Algorithm
	Related and Future Work

	Conclusion
	Bibliography

