REGENT: A HIGH-PRODUCTIVITY PROGRAMMING
LANGUAGE FOR IMPLICIT PARALLELISM WITH LOGICAL
REGIONS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Elliott Slaughter
August 2017



Abstract

Modern supercomputers are dominated by distributed-memory machines. State of
the art high-performance scientific applications targeting these machines are typically
written in low-level, explicitly parallel programming models that enable maximal
performance but expose the user to programming hazards such as data races and
deadlocks. Conversely, implicitly parallel models isolate the user from these hazards
by providing easy-to-use sequential semantics and place responsibility for parallelism
and data movement on the system. However, traditional implementations of implicit
parallelism suffer from substantial limitations: static, compiler-based implementations
restrict the programming model to exclude dynamic features needed for unstruc-
tured applications, while dynamic, runtime-based approaches suffer from a sequential
bottleneck that limits the scalability of the system.

We present Regent, a programming language designed to enable a hybrid static
and dynamic analysis of implicit parallelism. Regent programs are composed of tasks
(functions with annotated data usage). Program data is stored in regions (hierarchical
collections); regions are dynamic, first-class values, but are named statically in the
type system to ensure correct usage and analyzability of programs. Tasks may execute
in parallel when they are mutually independent as determined by the annotated usage
(read, write, etc.) of regions passed as task arguments. A Regent implementation is
responsible for automatically discovering parallelism in a Regent program by analyzing
the executed tasks in program order.

A naive implementation of Regent would suffer from a sequential bottleneck as tasks
must be analyzed sequentially at runtime to discover parallelism, limiting scalability.

We present an optimizing compiler for Regent which transforms implicitly parallel
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programs into efficient explicitly parallel code. By analyzing the region arguments to
tasks, the compiler is able to determine the data movement implied by the sequence
of task calls, even in the presence of unstructured and data-dependent application
behavior. The compiler can then replace the implied data movement with explicit
communication and synchronization for efficient execution on distributed-memory
machines. We measure the performance and scalability of several Regent programs
on large supercomputers and demonstrate that optimized Regent programs perform

comparably to manually optimized explicitly parallel programs.
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Chapter 1
Introduction

Computation, and computational performance, has become an important driver of
scientific progress over the last several decades. Computer-based simulations are used,
for example, to test the validity of models of physical phenomena and to rapidly
explore the possible design space for physical systems. Such simulations are often
performance-constrained. That is, higher-fidelity simulations require more operations
to be performed by the computer, while the time allotted to compute a solution is
limited, and thus the performance of the computer system determines the maximum
fidelity of a simulation that can be attempted.

Fortunately, performance-constrained scientific simulations are also often highly
parallelizable (i.e., can be implemented efficiently on a parallel computer). For
such applications, simulation fidelity is limited primarily by the scale of the parallel
computer on which it can be efficiently executed. At the upper end of this scale,
supercomputers provide the highest possible performance available in a single, massively-
parallel computer. Applications written specifically for supercomputers are called
high-performance applications.

Supercomputers differ from conventional personal machines in two key ways. First,
they employ massive numbers of processors in order to accelerate the computation of
parallel applications. Second, they feature distributed as opposed to shared memories.
Briefly, the shared memory abstraction provides the illusion that a single logical

memory is accessible from all processors, whereas under distributed memory each



CHAPTER 1. INTRODUCTION 2

processor only has direct access to a local memory and must access the remote
memories of other processors indirectly via an interconnect. Thus the distributed-
memory abstraction trades increased complexity for the potential to achieve superior
performance on these machines. Programming models can choose whether or not
to pass this complexity on to the programmer, but in high-performance application
development, performance is generally the top priority and thus the de facto standard
programming models in use on modern supercomputers are explicitly parallel. That is,
these models expose the parallel (and distributed) semantics of the hardware to the
user, permitting maximal performance at the cost of higher complexity. Ironically,
as a supercomputers grow in scale and complexity, the cost of achieving the absolute
highest possible performance within these explicit models can become prohibitive, and
thus production codes often stop short of this goal |14].

An attractive alternative to the explicit approach is implicit parallelism, in which
the user sees sequential execution, and the programming system is responsible for
achieving parallelism and distribution. By definition, the implicitly parallel approach
requires the system to perform a program analysis, or analysis of the possible effects
of a program, to determine where parallelism exists in the code. When it works,
implicit parallelism offers the best of both words: ease of use, and high performance.
However, outside of domain-specific settings, the implicitly parallel approach has faced
roadblocks which prevent it from scaling efficiently to large node counts with certain
classes of computations, such as simulations on unstructured meshes, in which the
required program analysis is challenging.

This dissertation aims to show that leveraging coarse-grained tasks (functions)
with strict privileges (denoting what data a task reads and writes) and user-visible
partitioning (permitting the user to specify the relevant sets of data and their relation-
ships) enables implicitly parallel programs with sequential semantics to be compiled
to efficient SPMD code that scales to large numbers of nodes. For certain classes of
codes, such as simulations on unstructured meshes, this permits implicitly parallel
implementations to achieve practical levels of scalability.

The following sections establish in more detail the various points in the design space

of parallel programming systems, and lay out a motivating example that demonstrates
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some of the challenges in these designs.

1.1 Background

While a number of programming models for supercomputers have been developed, by
far the most successful is the SPMD, or single-program multiple-data, programming
model exemplified by MPI [64]. MPI is an explicitly parallel and distributed abstraction
layer that (by design) closely reflects the capabilities of the underlying hardware. An
executing MPI program consists of a set of ranks, or independent copies of the code,
that run on distinct processors with distinct memories and that have the ability to
send messages to communicate data between ranks. No other method of accessing
the contents of remote memories is provided. This approach has the advantage that
because the hardware capabilities are directly exposed, experienced programmers are
able to map applications directly to this hardware in a way that reliably achieves high
performance.

However, the approach taken by MPI also has a number of disadvantages. First,
while the abstractions of MPI closely resemble the hardware, they do not generally
reflect the way that applications themselves are conceived, and thus there is some
work required to map an application into the MPI model in the first place. Second, a
result of MPI’s design is that the programmer is exposed to a number of programming
hazards, or potential mistakes a programmer can make in the implementation of
an application in MPI. These include traditional pitfalls of parallel programming
(e.g. data races, deadlocks, non-determinism) as well as ones specific to MPI (e.g.
mismatched sends and receives). Third, MPI achieves performance only when the
underlying machine resembles at least to a first approximation the class of machines
for which MPI was originally designed: i.e. ones with homogeneous processors with
reasonable network latencies and a reasonably uniform interconnect. Increasingly,
modern and future machines diverge from this design in one or more dimensions (scale,
hierarchy, heterogeneity, etc.). Although MPI can be augmented to create a number
of “MPI+X” programming models to account for e.g. the presence of heterogeneous

processors, these approaches introduce additional complexity and hurdles which make
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it challenging to achieve performance.

As described above, an attractive alternative is to employ an implicitly parallel
programming model where programs appear to execute with sequential semantics but
can be parallelized automatically by the system. Classic parallelizing compilers |19}37,
43], HPF [45]56] and the data parallel subset of Chapel [27] are canonical examples;
other examples include MapReduce [32] and Spark [74] and task-based models such
as Sequoia [35], Legion [13], StarPU [10], and PaRSEC [22].

Because implicitly parallel programming models employ sequential execution
semantics, programs in these models are easy to read and write for both expert
and non-expert users, and also avoid by definition the various programming hazards
associated with explicit parallel and distributed programming. Furthermore, such
systems can be designed to exploit information about the structure of the program
control and data, permitting the system to automatically schedule such programs for
execution on machines with heterogeneous processors and automatically manage data
movement across the deep memory hierarchies present in such systems.

For the programming system to automatically find the parallelism in an implicitly
parallel program—where by definition that parallelism is not explicitly specified by the
user—some amount of program analysis is required. This analysis can be performed
at different times: either statically, without specific knowledge of the runtime inputs
to the program, or dynamically, when such inputs are available. Both approaches
have fundamental limitations.

Due to the halting problem (and more generally, Rice’s theorem), static analysis
of non-trivial program properties such as parallelism is challenging. For the analysis
to be tractable, systems must sacrifice either soundness or completeness.

A system that sacrifices soundness admits programming hazards into the model—
i.e. it’s possible for the user to make a mistake and the system won’t (and can’t) know.
At the far end of this spectrum is OpenMP [31], which implicitly trusts user assertions
about parallelism; the system has no ability whatsoever to check the correctness of
these assertions. As another example, Cilk [2] relies on shared memory to avoid the
need for a precise analysis of the side effects of tasks. The lack of soundness limits

the ability of a compiler to perform aggressive optimizations, making it challenging to
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scale these models efficiently to distributed memory.

On the other hand, a system that sacrifices completeness must restrict the possible
input programs—meaning that there will in general be valid programs that would
execute correctly if permitted, but are disallowed by the system. As a somewhat
extreme example, Cilk (described above) can be used without support for shared
memory (and without relying on a distributed shared-memory subsystem), but in
such cases tasks are required to be pure functions, making the programming model
substantially more restrictive. However, the same principle is visible to varying degrees
in many implicitly parallel programming systems.

This is clearly the case with domain-specific languages (DSLs), where the intended
domain is explicitly identified. For example, in the Ebb [16] DSL the bodies of functions
(kernels) are restricted to a class of forall-style parallel loops with stencil-like memory
access patterns. The advantage of these restrictions is that they permit a more robust
and predictable implementation. The memory access patterns permitted by Ebb can
be checked by a straightforward static analysis which is included in the Ebb type
system. As a result, any Ebb program which compiles successfully is guaranteed to be
free of parallel programming hazards such as deadlocks and data races. Furthermore,
because of the restrictions in the programming model, Ebb programs can be compiled
automatically for efficient execution on GPUs and vectorized execution on CPUs.
However, Ebb’s restrictions on programs limit the applicability of the technique to
certain classes of applications.

A risk with more general-purpose languages is that there can be a gap between
what the compiler nominally supports, and what it supports well. For example, the
HPF language [45,56] provides rather ambitious support for automatic parallelization
of general loops via the DO loop construct. In practice, HPF compilers can reliably
parallelize affine loops. More general loops may be difficult or impossible for the
compiler to parallelize, even if it is obvious to the programmer that those loops have
no loop-carried dependencies. This is a reflection of the difficulty of static analysis of
fine-grained memory accesses in general-purpose programs.

An alternative is to consider programs on coarse-grained tasks and partitions of

data. Under this approach, the user explicitly identifies the relevant units of compute
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and data, potentially simplifying the required analysis.

Sequoia [35] is an example of such a language that also makes extensive use of
static analysis. Sequoia programs consist of a decomposition of a sequential program
into a tree of tasks. Leaf tasks (i.e. that do not call other tasks) are permitted to
contain arbitrary code, as they need not be analyzed by the compiler. However, inner
tasks (i.e. that call other tasks) must be analyzed by the compiler, and thus have
many restrictions. The only permitted data structures are (multi-dimensional) arrays,
and the partitioning of such arrays is restricted so that sub-arrays must also be dense.
The sizes of all data structures, including inputs, must be supplied to the compiler
at compile-time, and the exact number of tasks to be executed must also be fixed
statically. Furthermore, a specification of the target machine, and a mapping of the
application to that target machine, must also be provided to the compiler. With all
this information, a compiler has a complete view of the execution of the program
and can perform a number of powerful optimizations [46]. However, the restrictions
(though not applicable to leaf tasks) are substantial and prevent the system from being
applied to less regular problems such as unstructured meshes. Again, static analysis
(when soundness is an objective) forces the programming model to place significant
restrictions on the possible input programs.

Thus, with approaches based on static analysis, there is a fundamental trade-off
between expressiveness and tractability of the analysis. Programming systems must
explicitly or implicitly limit the set of programs that are supported, assuming safety
is a goal, or else give up safety entirely and rely on programmer assertions about key
program properties.

Dynamic analysis avoids many of the limitations of static analysis, but presents a
different set of challenges.

A classic approach used to parallelize sequential programs with fine-grained loops is
the inspector/executor (I/E) method [53,54]. Under the I/E method, loop dependencies
are determined by instrumenting the program to record the exact read and write sets of
each loop iteration at runtime. Because the approach relies only on a dynamic, rather
than static, analysis it can be applied to very general classes of loops. However, the

information being recorded about the program is so fine-grained that at large problem
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sizes and large scales, the program may run out of memory before it even begins to run.
Implementations that attempt to save space in the dynamic analysis by approximating
the information collected lose precision and thus impose additional communication
overheads resulting in worse overall scalability |[47]. As with static analysis, there is a
trade-off between fine and coarse-grained approaches, where fine-grained approaches
lose sight of many higher-level program properties that could help reduce analysis
cost.

Legion [13] is a programming model with coarse-grained tasks, similar in its basic
outlines to Sequoia, but which employs an entirely dynamic analysis. Thus Legion
allows substantially more dynamic behavior than Sequoia, permitting, for example,
dynamic, input-dependent, and possibly unstructured or sparse data structures, dy-
namic numbers of and dependencies between tasks, and a dynamic mapping of the
application to a target machine. Legion permits very expressive partitioning of user
data structures, allowing the user to specify with precision the important subsets of
data, avoiding the need for expensive (in time and memory) fine-grained dynamic anal-
ysis. However, these benefits come at the cost of a less expensive but still non-trivial
coarse-grained dynamic analysis. In Legion, this analysis happens off the critical path
of the computation, so the cost is hidden as long as the application running time
(total running time of tasks divided by number of processors) is greater than the
time required for the dynamic analysis. However, as the analysis time for common
programming idioms is itself proportional to the number of tasks, while the ratio of
running time to processors generally stays constant (when weak scaling), the overhead
generally exceeds running time at some scale. In our experience this happens between
10 to 100 nodes on typical HPC applications.

This dissertation presents Regent, a programming language for task-based implicit
parallelism. Regent takes a hybrid approach that allows it to carefully and robustly
navigate the trade-offs described above. Regent programs are composed of tasks, and
tasks take regions as arguments. Regent borrows many aspects from Sequoia and
Legion: for example, the effects of tasks are soundly summarized by the privileges
(read, write, etc.) declared on parameters to tasks, thus avoiding the need for fine-

grained static analysis at the level of individual memory accesses as in OpenMP, Ebb,
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HPF, and I/E methods. And language support for partitioning enables the user to
identify the important subsets of data and their relationships.

The default semantics of Regent are sequential, as this is the easiest and most
productive way to use the language, and is intended to be the way the vast majority
of users use the language. Regent also provides a variety of “escape hatches” that
enable explicit parallelism within the language that are primarily intended to be used
in situations where the compiler and runtime are unable to achieve performance on a
straightforwardly written implicitly parallel program. This also has a side benefit of
making it easy to describe Regent’s optimizations, as all code transformations produce
valid Regent code (though possibly requiring the use of Regent’s explicitly parallel
subset). However, as the goal of this work is to make the implicitly parallel subset
as effective as possible, all references to “Regent” should be assumed to refer to the
implicitly parallel subset unless otherwise stated.

Regent allows highly dynamic behavior. The number, values of arguments to, and
dependencies between tasks are all dynamically determined, and the data model is
very expressive. Regent’s regions (containers of elements) may be partitioned into
dynamically determined numbers of subregions and these subregions may include
arbitrary, dynamically computed subsets of elements.

However, unlike a pure dynamic runtime system, Regent checks various properties
of the input program via static analysis, allowing Regent to achieve a number of static
safety guarantees. For example, privileges on region arguments to tasks are checked
statically, as is the safety of pointer dereferences within regions.

Furthermore, Regent’s amenability to static analysis enables a number of optimiza-
tions that enable efficient scalability to large numbers of nodes. One optimization
of particular importance is control replication. For programs with repetitive loops of
task launches, Regent is able to apply aggressive static optimizations to achieve an
algorithmic reduction in the cost of dynamic analysis compared to I/E methods and
Legion, while preserving Regent’s ability to handle substantially dynamic behavior.
Although Regent may not be able to fully characterize the dependencies between tasks
at compile-time, and thus may not be able to completely eliminate the overhead of

dynamic analysis, Regent is able to apply a transformation of the code to produce
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SPMD-style shards of execution that distribute this analysis across multiple nodes to
significantly improve the scalability of Regent codes.

We demonstrate that control replication achieves up to 99% parallel efficiency on
1024 nodes (12288 cores) on the Piz Daint supercomputer, on a set of applications
with tasks on the order of milliseconds to tens of milliseconds. For several classes of
applications that we consider, such as simulations on unstructured meshes, this is to
the best of our knowledge the first automatic technique capable of achieving practical
levels of scalability for these applications where the application source code is written
in a general-purpose language with sequential semantics. Control replication is not
limited to Regent, but is enabled by the careful selection of features that Regent
provides, and is one of the key contributions of this work.

To expand on the motivation of Regent and particularly control replication, we now

consider a more concrete example in the context of the control replication optimization.

1.2 Motivating Example

Consider the code in Figure [I.1a] an example of the implicitly parallel style described
above. Assuming there are no loop carried dependencies, the parallelization of this
program is straightforward: The iterations of each of the two inner loops can be
executed in parallel on multiple processors in a fork-join style. As illustrated in
Figure [1.1¢, a main thread launches a number of worker threads for the first loop,
each of which executes one (or more) loop iterations. There is a synchronization
point at the end of the loop where control returns to the main thread; the second
loop is executed similarly. Because the second loop can have a completely different
data access pattern than the first (indicated by the arbitrary function h in B[h(j)]),
complex algorithms can be expressed.

As already suggested, in practice programmers don’t write highly scalable, high-
performance codes in the implicitly parallel style of Figure [[.1al Instead, they write
the SPMD-style code in Figure [1.1b, Here the launching of a set of worker threads
happens once, at program start, and the workers run until the end of the computation.
We can see in Figures and that conceptually the correspondence between
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ifort =0, T do
for i = 0, N do —— Parallel

2
3
4
5
6
7
8

1fori =0, N do —— Parallel

for t =0, T do

Bli] = F(A[i ’ o

Bl = F(Af) O U
. —— Synchronization required

for j = 0, N do —— Parallel ! . .

Al = GBHO) o Al =GBhO)

d ¢ end

en((ien rend

(a) Original program (b) Transposed program.

F(A[0])

G(B[h(O)])

(c) Implicitly parallel execution of original program.

G(B[hO)])
GB[h(D])

G(B[h(N-D])

(d) SPMD execution of transposed program.

Figure 1.1: Comparison of implicit and explicit parallelism.

the programs is simple. Where Figure launches N workers in the first loop and

then N workers in the second loop, Figure [1.1b] groups sequences of worker tasks into

larger parallel threads in the obvious way.

While Figure and Figure [I.1b] are functionally equivalent, they have asymp-

totically different scalability. To see this, consider what happens in Figure [1.1a] as the
number of workers N (the “height” of the execution graph in Figure [1.1c]) increases.

Under weak scaling, the time to execute each worker task (e.g., F(A[i]) in the first

loop) remains constant, but the main control thread does O(T'N) work to launch

2T N workers. Thus, for some N, the runtime overhead of launching workers exceeds

the individual worker’s execution time and the program ceases to scale. While the
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exact scalability in practice always depends on how long-running the parallel worker
tasks are, our experience is that many implicitly parallel programs don’t scale beyond
10 to 100 nodes when task granularities are on the order of milliseconds to tens of
milliseconds. In contrast, the SPMD program in Figure launches only N workers,
avoiding the cost of repeated launches on every time step (the T loop). Programs
written in SPMD style can scale to thousands or tens of thousands of nodes.

However, from a usability perspective implicit parallelism is provides clear benefits
over SPMD. While it is not possible to give precise measurements, it is clear that the
difference in productivity is large: In our experience an implicitly parallel program
that takes a day to write will require roughly a week to code in SPMD style. The
extra programming cost is incurred because the individual workers in Figure|1.1b| each
compute only a piece of the first loop of Figure [1.1a] and thus explicit synchronization
is required to ensure that all fragments of the first loop in all workers finish before
dependent parts of the second loop begin. Furthermore, because the access patterns
of the two loops in Figure need not be the same, data movement is in general
also needed to ensure that the values written by the various distributed pieces of
the first loop are communicated to the threads that will read those values in the
distributed pieces of the second loop. In most SPMD models (and, specifically, in MPI)
this data movement must be explicitly written and optimized by the programmer.
The synchronization and the data movement are by far the most difficult and time
consuming parts of SPMD programs to get right, and these are exactly the parts that
are not required in implicitly parallel programs.

Control replication allows us to both “have our cake and eat it”, extending the
performance range of the implicitly parallel style so that programs written in this
style can achieve scalability and performance comparable to hand-written SPMD code.
Control replication leverages a combination of static and dynamic analysis to generate
long-running shards that amortize the overhead of executing large numbers of tasks.
Intuitively, the control flow of the original implicitly parallel program is replicated
across the shards, with each shard maintaining enough state to mimic the decisions of
the original control thread. An important feature of control replication is that it is a

local transformation, applying to a single collection of loops. Thus, it need not be
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applied only at the top level, and can in fact be applied independently to different
parts of a program and at multiple different scales of nested parallelism.

As suggested above, the heart of the control replication transformation depends on
the ability to analyze the implicitly parallel program with sufficient precision to generate
the needed synchronization and data movement between shards. Similar analyses are
known to be very difficult in traditional programming languages. Past approaches
that have attempted optimizations with comparable goals to control replication have
relied on either very sophisticated, complex and therefore unpredictable static analysis
(e.g., HPF) or have relied much more heavily on dynamic analysis with associated
run-time overheads (e.g., inspector-executor systems [54]).

A key aspect of our work is the interaction between the programming language
and control replication. Regent leverages recent advances in parallel programming
model design that greatly simplify and make reliable and predictable the static
analysis component of control replication. Many parallel programming models allow
programmers to specify a partition of the data, to name different subsets of the data on
which parallel computations will be carried out. Recent proposals allow programmers
to define and use multiple partitions of the same data [13,20]. For example, returning
to our abstract example in Figure one loop may be accessing a matrix partitioned
by columns while the other loop accesses the same matrix partitioned by rows. Control
replication relies on the programmer to declare the data partitions of interest (e.g.,
rows and columns). The static analysis is carried out only at the granularity of
the partitions and determines which partitions may share elements and therefore
might require communication between shards. The dynamic analysis optimizes the
communication at runtime by computing exactly which elements they share.

An important property of this approach is that the control replication transforma-
tion is guaranteed to succeed for any programmer-specified partitions of the data, even
though the partitions can be arbitrary. Partitions name program access patterns, and
control replication reasons at the level of those coarser collections and their possible
overlaps. This situation contrasts with the static analysis of programs where the access
patterns must be inferred from individual memory references; current techniques, such

as polyhedral analyses, work very well for affine index expressions [21], but do not
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address programs with more complex accesses.

We present an optimizing compiler for Regent, which includes the control replica-
tion optimization. We evaluate Regent, and control replication, using five codes: a
circuit simulation on an unstructured graph, an explicit solver for the compressible
Navier-Stokes equations on a 3D unstructured mesh, a Lagrangian hydrodynamics
proxy application on a 2D unstructured mesh, a stencil benchmark on a regular grid,
and a turbulence and particle solver on a 3D structured grid. Our implementation
achieves up to 99% parallel efficiency on 1024 nodes (12288 cores) on the Piz Daint su-
percomputer |7] while providing overall performance comparable hand-tuned MPI(+X)
reference codes (where available).

This work makes the following key contributions:

e Chapter [2 presents the design of Regent, a practical programming language for

implicitly parallel, task-based programming with logical regions.

e Chapter [3| describes control replication. To the best of our knowledge, we are
the first to demonstrate the impact of programming model support for multiple
partitions on a compiler analysis and transformation. We show that this feature

can be leveraged to provide both good productivity and scalability.

e Chapter {4 discusses the translation from Regent programs to the Legion runtime
API. Regent is the first, to the best of our knowledge, to target a dynamic

task-based runtime in this way.

e Chapter [5| considers novel optimizations required to ensure that the translation

from Regent to Legion is efficient.

e Chapter [6] presents an implementation of the Regent programming language and

discusses various details of this implementation.

e Chapter [7] provides a qualitative evaluation of Regent by presenting from first

principles the design of an application in Regent.

e Chapter [§ contains a quantitative evaluation of Regent. For the class of appli-

cations considered, we are the first (to the best of our knowledge) to provide
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practical levels of scalability for general-purpose implicitly parallel programs.
We demonstrate scaling to 48x more cores than the previous best known tech-
niques (12288 vs. 256 cores) while maintaining performance competitive with

hand-written MPI(+X) codes.

Following this, Chapter [9] describes Regent in the broader context of related work,
and Chapter [10] concludes.



Chapter 2
Programming Model

Regent is a programming language with support for both implicit and explicit paral-
lelism, making it possible to describe both the base language and the output of various
optimizations, such as control replication transformation, entirely within one system.
In particular, Regent’s support for multiple partitions of data collections enables a
particularly straightforward analysis of data movement required for efficient SPMD
code generation. In this section, we discuss the Regent programming model, focusing
on features relevant to the control replication transformation. Initially, we describe

the implicitly parallel subset, then consider extensions for explicit parallelism.

2.1 Regent Example

Continuing from the example in Section we consider a implementation of the
same algorithm in Regent and discuss the features used in the Regent implementation
of the code.

Figure 2.1 shows a Regent version of the program in Figure [I.1a] The two inner
loops with calls to point functions F and G have been extracted into tasks TF and
TG on lines 1-6 and 8-13, respectively. These tasks identify the granularity at which
Regent will consider a parallel execution of the code. In this case, we have selected
tasks in the obvious way by partitioning the iteration spaces of the loops into blocks

of an appropriate size. The main simulation loop has been rewritten to call these

15
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1task TF(B : region(SU, ...), A :

3 foriin SU do

i Bli] = F(A[i])
5 end
send

7

stask TG(A : region(SU, ...), B :

region(SU, ...
2 where reads writes(B), reads(A) do

region(_, ..

swhere reads writes(A), reads(B) do

10 fOI‘j in SU do

W A = GBRG)
12 end

13end

14

15 —— Main Simulation:

s var U = ispace(0..N)
17 var [ = ispace(0..NT)
isvar A = region(U, ...)
wvar B = region(U, ...)
20 var PA = block(A, I)
21 var PB = block(B, I)
22 var QB = image(B, P
asfort =0, T do

2« foriinIdo

B, h)

25 TF(PBJi], PA[i])
26 end

27 forjinlIdo

»  TG(PA[], QBJ)
20 end

soend

Figure 2.1: Regent version of program with aliasing.

)

16

tasks. The arguments to tasks have also also been partitioned to identify the subsets

of the data being passed to each parallel task.

A central concern of the Regent programming language is the management and

partitioning of data. Data in Regent is stored in regions. A region is a (structured or
unstructured) collection of objects and may be partitioned into subregions that name

subsets of the elements of the parent region.

Lines 18 and 19 declare two regions A and B that correspond to the arrays by the
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same name in the original program. These regions contains elements of some data type
indexed from 0 to N — 1. (The element data type does not matter for the purposes of
most Regent optimizations and analysis.) The declaration of the index space U on line
16 gives a name to the set of indices for the regions; symbolic names for sets of indices
are helpful because in general regions may be structured or unstructured, and are
not necessarily indexed contiguously. Note that memory allocation for regions is lazy.
No actual memory allocation occurs at lines 18-19. Instead the program proceeds
to partition the regions into subregions so that the eventual memory allocations are
distributed across the machine.

Lines 20-22 contain calls to partitioning operators. The first two of these, on lines
20 and 21, declare block partitions of the regions A and B into roughly equal-sized
subregions numbered 0 to NT — 1. (As before, a variable I is declared on line 17 to
name this set of indices.) The variables PA and PB name the sets of subregions created
in the respective partitioning operations. For convenience, we name the object which
represents a set of subregions a partition.

Line 22 declares a second partition QB of the region B based on the image of the
function h over PB. That is, for every element b of region B, h(b) € QB[i] if b € PB[i].
This partition describes exactly the set of elements that will be read inside the task TG
on line 11. Importantly, there are no restrictions on the form or semantics of h. As a
result, @B may not be a partition in the mathematical sense; i.e. the subregions of QB
are not required to be disjoint, and the union of subregions need not cover the entire
region B. In practice this formulation of partitioning is extremely useful for naming
the sets of elements involved in e.g. halo exchanges.

Regent supports a number of additional operators as part of an expressive sub-
language for partitioning, described in more detail in Section [2.3.2] In the general
case, Regent partitions are extremely flexible and may divide regions into subregions
containing arbitrary subsets of elements. For the purposes of control replication and
most other Regent optimizations, the only property of partitions that is necessary
to analyze statically is the disjointness of partitions. A partition object is said to be
disjoint if the subregions can be statically proven to be non-overlapping, otherwise

the partition is statically aliased. For example, the block partition operators on lines
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20-21 produce disjoint partitions as the subregions are always guaranteed to be non-
overlapping. For the image operator on line 22, the function h is unconstrained and
thus Regent assumes that the subregions may contain overlaps, causing the resulting
partition to be considered aliased.

Note that the subregions of a statically aliased partition may not necessarily overlap
at runtime; i.e., due to the nature of the conservative approximations in the language,
a statically aliased partition might not be dynamically aliased. As the compile-time
optimizations in Regent must rely on this static approximation, it is possible for
some compiler optimizations to fail statically that might succeed if more dynamic
information were available. However, Regent is quite lenient with respect to statically
aliased partitions, and in practice with control replication and other optimizations,
this has not been a limiting factor. In addition, as described in Section [6.1], in cases
where static optimizations are not possible, Regent falls back to a runtime-based
implementation which is able to recover most parallelism dynamically.

The main simulation loop on lines 23-30 then executes a sequence of task calls
with the appropriate subregions as arguments. Tasks declare privileges on their
region arguments (read, write, or reduce on an associative and commutative operator).
Execution of tasks is apparently sequential. Two tasks may execute in parallel as long
as they operate on disjoint regions, or with compatible privileges (e.g. both read, or
both reduce with the same operator). Regent programs are typically written such
that the inner loop can execute in parallel; in this case the loops on lines 24-26 and
27-29 both execute in parallel.

Note that in Regent, unlike in the fork-join parallel execution of Figure [[.1¢] there
is not an implicit global synchronization point at the end of each inner loop. Instead,
Regent computes the dependencies directly between pairs of tasks (as described above)
and thus tasks from different inner loops may execute in parallel if doing so preserves
sequential semantics.

An important property of Regent tasks is that privileges are strict. That is, a task
may only call another task if its own privileges are a superset of those required by the
other task. Similarly, any reads or writes to elements of a region must conform to the

privileges specified by the task. As a result, a compile-time analysis such as control
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replication need not consider the code inside of a task. All of the analysis for control
replication will be at the level of tasks, privileges declared for tasks, region arguments

to tasks, and the disjointness or aliasing of region arguments to tasks.

2.2 Execution Model

Now we consider the Regent programming model in more detail. Regent (in its default
mode) is an implicitly parallel programming language; Regent programs have sequential
semantics and the system (compiler and runtime) is responsible for automatically
discovering parallelism in the program. In a naive sense this is sufficient for the system
to achieve parallel execution of the program. However, in order to achieve efficient
execution, additional information is required from the user. In particular, the user
must decompose the program into tasks and regions of appropriate granularity for
execution on the target machine. Tasks divide program control (recursively) into
subtasks, while regions divide program data (recursively) into subregions. These
decompositions of the program often influence one another and are thus frequently
decided together. For clarity of the following discussion, we consider tasks (and

division of control) first, then regions (and division of data).

2.2.1 Tasks

A task is the fundamental unit of control in Regent. Tasks resemble functions in
traditional programming languages with formal parameters and a body. Figure
shows an example program with four tasks.

Execution in the example begins at the top of the task main and follows standard
sequential semantics. Tasks may call subtasks (lines 13-15), and subtasks may recur-
sively call their own subtasks. Thus the program can be seen as being decomposed
into a tree of tasks as shown for the example in Figure 2.2b] Potential parallelism
exists between the children of a given parent task in the tree. T'wo sibling tasks are
allowed to run in parallel when the system can prove them to non-interfering. The

non-interference of two tasks is determined (conceptually) by comparing all pairs of
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1task f(a : region) where reads writes(a) do ... end
2task g(b : region) where reads writes(b) do ... end
stask h(c : region, d : region)

4+ where reads writes(c, d) do

5 f(c)

s g(c)

7 f(d)

send

9

10 task main()

11 var x = region(...)

12 var y = region(...)

(a) A program with four tasks.

(b) A task tree. Parent-child relationships are shown with solid arrows, and sibling dependencies are
shown with dashed red arrows.

Figure 2.2: A Regent program and corresponding task tree.
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actual arguments to those tasks for interference. Specifically, a pair of task arguments

is non-interfering when:

1. the two regions are disjoint,
2. the privileges requested are both read or both reduce with the same operator,

3. or the privileges name disjoint fields within the objects of the two respective

regions.

Conversely, whenever the arguments of two tasks cannot be proven to be non-
interfering, a dependence exists between the tasks. In practice, this formulation is
more useful, as dependencies form a DAG which can directly guide the execution
of a program. Dependencies are computed automatically using the rules for non-
interference between tasks. Two restrictions in the programming model allow this
analysis to be tractable: First, tasks in Regent are only permitted to access data passed
via formal parameters, so any data accesses can be safely determined by examining the
arguments supplied to tasks. Second, the ways in which data are used are identified
explicitly via a task’s privileges.

Note that this analysis can be performed at either compile time or at runtime. At
compile time, the compiler may not have full information about aliasing in the program,
but even a conservative analysis can often enable useful optimizations. Regardless
of the result of any compile-time analysis, the runtime will determine the precise
dependencies at runtime to exploit any latent parallelism which may be available.

Dependencies between the tasks in the example are shown as dashed red lines in
Figure 2.2b] The two calls to f and g from main are independent, because they use
distinct data. (In this example, we assume that x and y are regions that do not share
any common elements.) The subsequent call to h is dependent on both previous tasks.
The call to g from h is dependent on the call to the same task from main because
dependencies for parent tasks apply transitively to children.

In general, the arguments passed to tasks may be complex expressions naming
non-trivial collections of elements, and the language for describing such collections of

elements is quite expressive. As such the problem of finding dependencies between
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tasks requires in the general case a dynamic analysis which can be expensive when
the number of subtasks being executed is large. Chapter |3| considers an optimization
which is able to leverage partial static information reduce the cost of this analysis.
First, however, we consider the language features for data partitioning which enable

Regent to be so expressive.

2.3 Data Model

Regent programs consist of a decomposition of control into tasks, and a parallel
decomposition of data into regions, or collections of data elements. Regions are
typically used as arguments to tasks, and thus designate the sets of elements those
tasks are intended to access. On distributed-memory machines, regions also frequently
denote sets of elements to be allocated in on-node memories, or to be communicated
between memories on distant nodes, both of which can have a significant impact on
performance. As such, it is of the utmost importance for Regent to provide sufficiently

expressive features for describing the sets of elements contained in regions.

2.3.1 Regions

Regions are containers of data elements, similar to arrays of objects in traditional
programming languages or relations in relational databases. Regions map indices in
an index space to objects consisting of multiple fields in a field space. Index spaces
may be structured collections of multi-dimensional points (e.g. 1D, 2D, or 3D), or
unstructured (i.e. sets of unordered elements). With these abstractions regions are
able to describe a variety of data structures such as regular grids, unstructured meshes,
and graphs.

Regions are called logical data structures because unlike traditional data structures
such as arrays they are not allocated immediately in memory and may be moved as
necessary between nodes or even exist simultaneously on multiple nodes. At runtime
the data which is logically contained in a region is stored in zero or more physical

instances of the region. When a region is created, there will be zero instances of the
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region until the contents are initialized by calling a task with write privilege on the
region. Thereafter, there will always be at least one physical instance with valid data
somewhere in the machine. The mapping from logical regions to physical instances is
managed automatically by the Regent implementation and is not exposed to the user
at the level of the Regent source code. Instead, all performance decisions, including
control over the placement of physical instances, are made available to the user via a

mapping interface discussed further in Section 4.1.3

2.3.2 Partitions

Partitions name sets of subregions, where subregions each name subsets of the elements
of a given parent region. Partitioning can be applied recursively, resulting in a tree-
shaped hierarchical decomposition of the data structures in an application. Typically,
partitions are used to name the subregions to be used by data-parallel subtasks, and in
a distributed machine the elements shared in common between overlapping subregions
will need to be communicated over the network. As a result, it is extremely important
for efficiency that Regent provide a set of expressive constructs for describing the sets
of elements that belong to the respective subregions of a partition.

Partitioning in Regent is very expressive; in general, the subregions of a partition
may contain arbitrary subsets of the elements of the region being partitioned. This
expressivity enables Regent to handle a great many classes of problems including
dynamic or unstructured data structures and to precisely identify the sets of elements
that are required for communication in such problems.

Regent features two distinct interfaces for partitioning. The first, based on colorings,
allows the user to construct an explicit map from colors (small integers) to sets of
points naming the contents of the respective subregions [68]. Examples of this style of
partition are shown in Figure [7.1; each of the regions is divided into three subregions
denoted by the colors red, orange and blue. In the case of the upper-left coloring, the
three colors map to non-overlapping sets of elements, thus the resulting partition is
disjoint. On the other hand, the bottom-right coloring assigns multiple colors to some

of the elements, resulting in an aliased partition where the subregions of the partition
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overlap. The disjoint or aliased property of a partition is important enough that it
must be named explicitly by the user and is tracked in the Regent type system. This
approach enables maximum flexibility in partitioning, but is also completely opaque
to the compiler, and thus any invariants on the subregions of the partition (most
importantly, disjointness) must be checked dynamically.

The second interface for partitioning provides an expressive sublanguage of opera-
tors for computing partitions [70]. An example of this style of partitioning is shown
in Figure [2.1, where the block and image operators are used to create a blocked
partition, and then to derive an image partition from the initial blocked partition via
some arbitrary function. In particular, this sublanguage has been carefully chosen to
permit various forms of static analysis on the partitioning code, which enables Regent
to check more partitioning invariants at compile-time. The sublanguage includes
operators for computing disjoint-by-construction partitions from e.g. field data stored
in a region (useful when calling the ParMetis [60] graph partitioning library), for
computing partitions through functions or the fields of regions (as in the image opera-
tor shown in the figure), and for common set operations (union, intersection, etc.).
These operations are sufficient for many classes of computations such as unstructured
meshes and graph applications which perform nearest-neighbor accesses on pointer
data structures.

In practice, these operators are often the simplest and most convenient way to
define partitions. For example, the equal partitioning operator divides a region into
a number of equal sized subregions. Figure uses equal partitioning to divide a
2-dimensional grid into chunks of rows and columns (lines 7 and 8). These partitions
are trivially disjoint due to the nature of equal partitioning, thus the tasks called in
the loop on line 9 are able to run in parallel with respect to each other (respectively
line 10).

Note also that the partitions on lines 7 and 8 both come from the same parent
region. Regent allows a given region to be partitioned an arbitrary number of times.
Because the subregions of different partitions may overlap (as they in fact do in
Figure , tasks on such subregions are considered to be interfering (if either

task writes its region). Thus, the tasks on line 10 depend on the tasks on line 9.
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1task f(r : region(...)) where reads writes(r) do ...

2

3 —— Main Simulation:

avar N =8

svar B = 2

evar I = 0.N x 0..N

7var R = 0..1 x 0..B

svar C = 0..B x 0..1

ovar grid = region(l, ...)

10 var rows = partition(equal, grid, R)
1 var cols = partition(equal, grid, C)
12for i = 0, B do f(rows[{0, i}]) end
1sfor j = 0, B do f(cols[{i, 0}]) end

25

end

(a) Code for an N x N region partitioned into B rows and B columns.

(c) Region tree for code sample.

Figure 2.3: A partitioning scheme for rows and columns of a grid.

Figure [2.3b| shows the dependencies that result from the execution of this program.

Each dependency in the execution will result in data movement if the program is

executed on a distributed machine.
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2.3.3 Privileges

Privileges describe the ways in which a task may use a region argument: may the
task read, write, or reduce (with an associative and commutative reduction operator)
the elements of the region? Privileges are expressed in the declaration of a task and
enable both type checking and tractable and effective static and dynamic analysis of
Regent programs. The use of privileges in the language ensures that the compiler need
not attempt to analyze bodies of tasks in order to determine the effects of that task
(i.e. all possible reads and write a task may perform), as a task’s effects are completely
described by the task’s privileges. This also improves the performance of dynamic
analysis of Regent programs, as even when runtime information is available, it may
be prohibitively expensive to consider all possible pointer reads and writes in a task.

While regions and partitions are first-class values in Regent, privileges are not.
The privileges in a task’s declaration must completely describe the behavior of a task.
Thus, in general, any called subtasks (or other operations such as accesses to region
elements) must use a subset of privileges of the parent task. The only caveat to
this rule is that when a task creates an entirely new region, the task responsible for
creating the region gains full read-write privileges on the region. These rules enforce
a form of stack discipline in the usage of regions in Regent programs. It is worth
noting that this stack discipline also enables the composability of Regent programs; in
general it is always safe to call a task that may itself recursively call subtasks, as the
task will be held to the privileges it declares. This is in contrast to explicitly parallel
programming paradigms, where composability is not guaranteed to be safe when using
nested parallel constructs.

In the presence of partitions, this leads to an additional slight complication. In
Figure at line 9, why is it ok for main to call f(rows[0, i])?7 The access to
rows[0, i] is safe because it is a subregion of grid, which was created on line 6 of
the same task (and therefore has read-write privileges available). This is in turn known
because rows [0, i] is a subregion of the partition rows, which itself partitions grid.

Regent tracks these relationships between regions via a region tree which captures
parent-child relationships between regions. Figure shows the region tree the

compiler builds for the code sample. Region trees are a useful tool in the analysis of
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regions, and are discussed further in Section

2.4 Features for Explicit Parallelism

In normal usage, Regent programs execute with sequential semantics. Regent also
provides features that extend Regent’s sequential programming model with explicitly
parallel features for synchronization and communication. Although these features
can be used for many purposes, they are most commonly used to reduce dynamic
analysis cost by manually (or automatically) sharding Regent programs over multiple
long-running tasks. In this way, a Regent program can achieve constant analysis
overhead while scaling to large numbers of nodes (and therefore large numbers of
tasks).

Chapter 3| describes the technique required to apply this transformation to a Regent
program automatically. In the remainder of this section, we consider the features

which make this transformation (whether automated or manual) possible.

2.4.1 Must-Parallel Epochs

In Regent, two tasks are permitted to run in parallel when they are mutually non-
interfering; however, in standard Regent there is no mechanism for specifying that
two tasks must run in parallel. This property is critical, for example, when two tasks
are involved in manual synchronization. In this case, a failure to execute the tasks
concurrently could result in deadlock. For example, consider a case where the available
memory limits Regent to running only one task at a time. If one task attempts to
synchronize with the other, the system will deadlock. (In sequential Regent code this
situation cannot occur because all synchronization is implicit and managed by the
system.) Thus, before allowing the user to write code with explicit synchronization
and communication, Regent must first provide a way to specify when tasks must run
in parallel.

A must-parallel epoch specifies a set of tasks which must run in parallel. These tasks

must be mutually non-interfering. Some additional techniques described below permit
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tasks to be non-interfering even when multiple tasks in a must-parallel epoch request
write privilege on the same region. Non-interference is required so that the tasks can
be scheduled simultaneously by the runtime. To avoid a resource deadlock as described
above, all resource constraints for the tasks must also be satisfied simultaneously. This
places some constraints on the mapping of tasks in a must-parallel epoch. Mapping is

discussed in more detail in Section 4.1.3

2.4.2 Coherence

A must-parallel epoch requires that all tasks within the epoch be non-interfering.
However, under Regent’s normal semantics, two tasks that request write privilege on
the same region are necessarily interfering. Thus, in order to write explicitly parallel
programs in Regent it is necessary to relax this constraint.

Coherence modes specify the degree of consistency required of region arguments

two tasks. Regent provides four coherence modes:

e [zclusive coherence is the default and follows Regent’s standard sequential
semantics. A sequence of tasks with exclusive coherence are guaranteed to

execute in a manner which is indistinguisahble from sequential execution.

e Atomic coherence permits tasks to be reordered. Two tasks with atomic coher-

ence can execute in either order, but must still execute one at a time.

e Simultaneous coherence permits tasks to be executed concurrently. Region
arguments with simultaneous coherence guarantee shared-memory semantics,
although it is still the responsibility of the tasks to synchronize individual

memory accesses (e.g. with atomic instructions).

e Relazed coherence permits tasks to be executed concurrently, and there are no
guarantees on the semantics of regions. All synchronization must be provided

by the user for safe execution.

The use of coherence modes other than exclusive results in a progressive relaxation

of the dependencies between tasks, and thus permit increasing degrees of reordering
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or concurrency among sibling tasks in order to achieve explicitly parallel execution.
The permitted interleavings of various combinations of coherence modes is described
in [68].

Note that Regent considers dependencies only between sibling tasks of a single
parent task. This is safe under Regent’s standard implicitly parallel semantics because
the children of distinct non-interfering parent tasks are themselves trivially non-
interfering (by the inclusion property of privileges described above). This enables,
among other things, a safe distributed analysis of task dependencies among non-
interfering tasks. However, in the presence of coherence modes other than exclusive,
this property can be violated. Regent makes no attempt to compute dependencies
between the grandchildren tasks of two sibling tasks using e.g. simultaneous coherence—
these dependencies become the user’s responsibility. Thus, when writing explicitly
parallel code, it is important for the user to consider what dependencies are or are
not being tracked automatically by Regent, and in cases where those dependencies
are not tracked automatically, to add manual synchronization and communication.

Among explicitly parallel Regent programs, the most commonly used coherence
mode is simultaneous. This mode permits concurrent execution, but requires shared-
memory semantics for any regions. This is a useful abstraction because it means that
two concurrently executing tasks both have access to a single instance of that region
in memory. Regent provides explicit copy operations that can be used to copy data to

and from instances of regions located on remote nodes.

2.4.3 Explicit Copies

In implicitly parallel Regent programs, copies between distant memories are scheduled
automatically whenever a true dependence exists between tasks that execute on distant
processors. However, when using simultaneous or relaxed coherence, the computation
of dependencies is relaxed, and therefore these copies must be scheduled manually by
the user (or by compiler transformation).

Regent supports explicit copy operations for this purpose. While copies are most

often used in explicitly parallel Regent programs, they are well-defined in the sequential
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case as well. A copy operation behaves like a task which reads elements from one
region (the source) and writes the values to corresponding elements of the destination
region. However, a copy is permitted to operate on regions stored in a remote memory,
whereas a task would only be permitted to operate on local copies of remote regions.
When used in combination with simultaneous or relaxed coherence, copy operations
must be explicitly synchronized with tasks that read or write their results, otherwise

data races can occur.

2.4.4 Phase Barriers

Explicit copies permit the movement of data between distant memories. However,
accesses to this data are not safe from data races unless additional synchronization
is used. The user is free to use whatever synchronization mechanism they prefer.
However, Regent offers a built-in synchronization mechanism, called a phase barrier,
which is attractive for this use case.

Phase barriers are a reusable, non-blocking, N-M producer-consumer synchro-
nization mechanism. Phase barriers are unlike MPI barriers in that the use of phase
barriers never blocks the currently executing task. Instead, operations (tasks or copies)
are given phase barriers as preconditions or postconditions. For example, a task may
be issued such that it does not start until the barrier has triggered. The task is
said to wait on the barrier, although this does not block execution in the traditional
sense. (There may generally be M of these waiting operations.) Similarly, a task may
be issued with the barrier as a postcondition, in which case it is said to arrive on
the barrier. The arrival is deferred until the task actually completes. A barrier is
considered to be triggered when N operations arrive at the barrier. The arrival count
may be modified at runtime as long as the task attempting to alter the arrival count
is itself responsible for at least one arrival. Similarly, the set of waiting tasks may be
entirely dynamic.

Barriers may be reused; the advance operation returns the subsequent generation
of the current barrier. Operations can be scheduled on barriers multiple generations

in advance without blocking the current task, allowing all operations to be scheduled
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asynchronously from the actual execution of the program.

2.4.5 Dynamic Collective

In many applications, it is necessary to perform reductions on the values of scalar
variables, for example to compute a new value for dt for the subsequent time step
in a simulation loop. In explicitly parallel, SPMD-style implementations of such
applications, this requires an additional synchronization primitive. A dynamic collective
is a variation on a phase barrier where the tasks which arrive on the collective are
permitted to supply values, which are then reduced and broadcast to all tasks waiting
on the collective. This allows a dynamic collective to achieve behavior similar to an
MPI_Allreduce, except that as with phase barriers the use of a collective is simply as
a precondition or postcondition to a task and thus does not block the main thread of

execution of the application.



Chapter 3
Control Replication

Control replication is an optimization that transforms implicitly parallel programs
with sequential semantics into scalable and efficient SPMD code, even in the presence
of dynamically determined partitioning of data and communication patterns.

In the absence of this optimization, the overhead from launching increasingly large
sets of tasks comes to dominate execution time at large node counts. This is a direct
consequence of Regent’s sequential semantics: tasks must be analyzed in program
order in order to preserve the original semantics of the code. However, for repetitive
programs where the parallelism in the inner loop of task launches can be determined
statically, control replication can be used to avoid a sequential bottleneck in the
analysis of tasks. The goal of control replication is to automatically generate a set of
shards, or long-running tasks, which are each responsible for a subset of the tasks in the
original program. Shards execute in an explicitly parallel, SPMD-style fashion. Among
the subtasks launched by a single shard, Regent’s normal sequential semantics applies.
However, whenever a subtask of a shard depends on data produced by another shard,
the compiler must generate explicit synchronization and communication to preserve
that dependence. Thus, much of the focus in control replication is on discovering and
generating code for efficient synchronization and data movement.

While control replication relies on the compiler to statically determine when loops
are able to execute in parallel, the technique notably does not require the compiler

to statically determine the precise patterns of communication in the application. In

32
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particular, while performing control replication, the compiler need not be aware of
exactly which shards will need to communicate during the program’s execution, or
exactly what sets of elements they will exchange. Instead, control replication reasons
at the level of partitions, which have been explicitly identified by the user to name
the relevant sets of elements in the application. The use of language-level partitioning
enables control replication to be applied to classes of codes which have historically
been difficult to analyze and optimize in a compiler, such as unstructured mesh codes
where the exact structure of the mesh (and therefore communication pattern of the
application) cannot be known until the program’s input is read. The analysis of the
precise communication pattern of the application is deferred until runtime, when
the structure of the application’s partitions is known. Because this analysis is only
performed once, before the creation of shards, it does not impact the overall scalability

of long-running applications.

3.1 Target Programs

For the purposes of control replication we consider programs containing forall-style
loops of task calls such as those on lines 24-26 and 27-29 of Figure (duplicated,
for ease of reference, from Figure [2.1]). Control replication is a local optimization
and need not be applied to an entire program to be effective. The optimization is
applied automatically to the largest set of statements that meet the requirements
described below. In the example, control replication will be applied to lines 23-30 of
the program.

Control replication applies to loops of task calls with no loop-carried dependencies
except for those resulting from reductions to region arguments or scalar variables.
Arbitrary control flow is permitted outside of these loops, as are statements over scalar
variables.

No restrictions are placed on caller or callee tasks; control replication is fully
composable with nested parallelism in the application. The compiler analysis for
control replication need not be concerned with the contents of called tasks because the

behavior of a task is soundly approximated by the privileges in the task’s declaration.
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1task TF(B : region(SU, ...), A :

region(SU, ..

2 where reads writes(B), reads(A) do

3 foriin SU do

i Bli] = F(A[i])
5 end
send

7

stask TG(A : region(SU, ...), B :

region(_, ..

swhere reads writes(A), reads(B) do

10 fOI‘j in SU do

W A = GBRG)
12 end

13end

14

15 —— Main Simulation:

s var U = ispace(0..N)
17 var [ = ispace(0..NT)
isvar A = region(U, ...)
wvar B = region(U, ...)
20 var PA = block(A, I)
21 var PB = block(B, I)
22 var QB = image(B, P
asfort =0, T do

2« foriinIdo

25 TF(PBJi], PA[i])
26 end

27 forjinlIdo

s TG(PA, QB[))
20 end

soend

B, h)

Figure 3.1: Regent version of program with aliasing.

)

)

34

Similarly, any caller task is completely agnostic to the application of control replication

because any possible transformation of the code must be consistent with the task’s

privileges.

The region arguments of any called tasks must be of the form p[£(i)] where p

is a partition, i is the loop index, and f is a pure function. Any accesses with a

non-trivial function f are transformed into the form q[i] with a new partition q such

that q[i] is p[£(i)]. Note here that we make essential use of Regent’s ability to
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Figure 3.2: Region tree for the example. Filled boxes are disjoint partitions.

define multiple partitions of the same data.

3.2 Region Trees

An analysis of aliasing between regions is critical for determining what tasks can be
permitted to execute in parallel. The semantics of Regent enables a straightforward
implementation of such an analysis based on the relationships between regions and
partitions. To determine whether two regions may alias, the compiler constructs a
region tree that describes these relationships. This tree is a compile-time adaptation
of the runtime data structure described in [13].

Figure [3.2] shows the region tree for the code in Figure [3.1] Note that regions in
this formulation are symbolic, that is, the indices used to identify subregions are either
constants or unevaluated loop variables. A dynamic evaluation of this program would
result in an expansion of this tree for the various iterations of the loops (resulting in
e.g. PA[0], PA[1], ..., PA[NT-1] under the PA partition). However, the number of
iterations is not available at compile-time, making the symbolic version necessary.

The region tree is convenient because it provides a natural test to determine
whether any two regions may alias: For any pair of regions R and S, find the least
common ancestor A with immediate children R’ and S’ (along the path to R and S,
respectively). If A is a disjoint partition and R’ and S’ are indexed by constants, then
R and S are guaranteed to be disjoint regions at runtime; otherwise they may alias.

Region trees can be constructed by walking the program source from top to
bottom. Each newly created region becomes the root of a fresh region tree. Partitions

are inserted under the region they partition, and expressions that access subregions
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of partitions result in the corresponding subregion nodes, tagged with the index

expression used.

3.3 Program Transformation

In this section we describe the program transformations that comprise the control
replication optimization. Over the course of the optimization, the program is re-
structured to avoid the assumption of the sequential semantics that Regent normally
provides, such that the long-running shards that are finally generated operate with
explicit distributed memory, maintaining the coherence of regions explicitly via explicit
communication and synchronization.

Consider a subregion S and its parent region P. Semantically, S is literally a
subset of P: an update to an element of S also updates the corresponding element
of P. There are two natural ways to implement this region semantics. In the shared
memory implementation the memory allocated to S is simply the corresponding subset
of the memory allocated to P. In the distributed memory implementation, S and P
have distinct storage and the implementation must explicitly manage data coherence.
For example, if a task writes to region .S, then the implementation must copy S (or at
least the elements that changed) to the corresponding memory locations of P so that
subsequent tasks that use P see those updates; synchronization may also be needed
to ensure these operations happen in the correct order. Intuitively, control replication
begins with a shared memory program and converts it to an equivalent distributed
memory implementation, with all copies and synchronization made explicit by the

compiler.

3.3.1 Data Replication

The first stage of control replication is to rewrite the program so that every region and
subregion has its own storage, inserting copies between regions where necessary for
correctness. We use the shorthand R; < R, for an assignment between two regions:

R is updated with the values of Ry on the elements R; N Ry they have in common.
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1 —— Initialization:

ofor iin I: PAJi] + A

sfor iin I: PB[i] + B

afor iin I: QBJi] < B

5

6 —— Transformed code:

7fort =0, T do

s foriin I: TF(PB[i], PA[i])
o fori, jinI x L. QB[j] + PBJ[j]
10 for jin I: TG(PA[j], QBJ[j])
11 end

12

13 —— Finalization:

wufor iin I: A «+ PAJj

15 for iin I: B < PBYj]

(a) Code after data replication.

1 —— Initialization:

afor iin I: PAi] «+ A

sfor iin I: PB[i] + B

afor iin I: QBJi] < B

svar IQPB = {i,j|QB[j] N PBJ[i] # 0}
6

7—— Transformed code:

sfort =0, T do

o foriin I: TF(PBJ[i], PA[i])

10 barrier()

11 for i, j in IQPB: QB[j] < PBj]
12 barrier()

13 for jin I. TG(PA[j], QBJ[j])

11 end

15

16 —— Finalization:

i7foriin It A + PAJi]

isfor iin I: B « PBj]

(¢) Code with synchronization.

1—— Initialization:

afor iin I: PAJi] «+ A

sfor iin I: PB[i] + B

afor iin I: QBJi] + B

svar IQPB = {i,j|QB[j] N PBJ[i] # 0}
6

7—— Transformed code:

sfort =0, T do

o foriin I: TF(PBJi], PA[i])

10 for i, j in IQPB: QBJj] + PBi]
u  for jin I: TG(PAJj], QBJj])
12end

13

14 —— Finalization:

isfor iin I: A < PAJi]

i6for iin I: B «+ PBYi]

(b) Code with intersections.

1—— Shard task:

2 task shard(SI, SIQPB, PA, PB, QB)

swhere reads writes simult(PA, PB, QB) do
4+ fort=0,Tdo

for i in SI: TF(PB[i], PA[i))

5

6 barrier()

7 for i, j in SIQPB: QBJ[j] < PB]j]
8 barrier()

9 for j in SI: TG(PA[j], QBJj])

10  end

11 end

12

13 —— Initialization as before

14 —— Transformed code:

1isvar X = ispace(0..NS)

16 var SI = block(I, X)

17 must_parallel_epoch for x in X do

15 var SIQPB = {k,jlk,j € IQPB Ak € SU[x]|}
1w shard(SI[x], SIQPB, PA, PB, QB)

20 end

21 —— Finalization as before

(d) Code with shards.

Figure 3.3: Regent program at various stages of control replication.
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Figure shows the core of the program in Figure [3.1] after three sets of copies have
been inserted. Immediately before the code to which the optimization is applied (lines
7-11), the various partitions are initialized from the contents of the parent regions
(lines 2-4). Symmetrically, any partitions written in the body of the transformed
code must be copied back to their respective parent regions at the end (lines 14-15).
Finally, inside the transformed code, writes to partitions must be copied to any aliased
partitions that are also used within the transformed code. Here PB and QB are aliased
(i.e. subregions of PB may overlap subregions of QB), so PB must be copied to QB on
line 9 following the write to PB on line 8. Note that PA is also written (on line 10) but
can be proven to be disjoint from PB and QB using the region tree analysis described

in Section [3.2] thus no additional copies are required.

3.3.2 Copy Placement

The placement of the copies in Figure happens to be optimal, but in general
the algorithm described in Section may introduce redundant copies and place
those copies suboptimally. To improve copy placement, we employ variants of partial
redundancy elimination and loop invariant code motion. The modifications required
to the textbook descriptions of these optimizations are minimal. Loops such as lines
8-10 of Figure are viewed as individual statements operating on partitions. For
example, line 8 is seen as writing the partition PB and reading PA (summarizing the
reads and writes to individual subregions). Note that the use of standard compiler
techniques is only possible because of the problem formulation. In particular, aliasing
between partitions is removed by the data replication transformation in Section [3.3.1],
and program statements operate on partitions which hide the details of individual

memory accesses.

3.3.3 Copy Intersection Optimization

Copies are issued between pairs of source and destination regions, but only the
intersections of the regions must actually be copied. The number, size and extent of

such intersections are unknown at compile time; this is an aspect of the analysis that
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is deferred until runtime. For a large class of high-performance scientific applications,
the number of such intersections per region is O(1) in the size of the overall problem
and thus for these codes an optimization to skip copies for empty intersections is
able to reduce the complexity of the loop on Figure line 9 from O(N?) to O(N).
Figure |3.3b| shows the code following this optimization.

To avoid an O(N?) startup cost in comparing all pairs of subregions in the compu-
tation of intersections at line 5 in Figure we apply an additional optimization (not
shown in the figure). The computation of intersections proceeds in two phases. First,
we compute shallow intersections to determine which pairs of regions overlap (but not
the extent of the overlap). For unstructured regions, an interval tree acceleration data
structure makes this operation O(N log N). For structured regions, we use a bounding
volume hierarchy for this purpose. Second, we compute complete intersections between
these known-intersecting regions. Following the creation of shard tasks in Section [3.3.5
these operations are performed inside the individual shards, making them O(M?)
where M is the number of non-empty intersections for regions owned by that shard.

In practice, at 1024 nodes, the impact of intersection computations on total
running time is negligible, especially for long-running applications. Section [8.3.6

reports running times for the intersection operations of the evaluated applications.

3.3.4 Synchronization Insertion

When moving to a distributed-memory semantics, it is necessary to synchronize on
copies performed between remote nodes. A naive version of this synchronization is
shown in Figure The copy operations on line 11 are issued by the producer of the
data. Therefore, on the producer’s side only, copies follow Regent’s normal sequential
semantics. FExplicit synchronization is therefore only required for the consumer. A
naive implementation of this synchronization could be performed with traditional
barriers as shown in Figure |3.3c. Two barriers are used in the example on lines 10 and
12. The first barrier on line 10 preserves write-after-read dependencies and ensures
that the copy does not start until all previous consumers of @B (i.e. TG tasks from the

previous iteration of the outer loop) have completed. The second barrier on line 12
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preserves read-after-write dependencies and ensures that subsequent consumers of QB
(i.e. subsequent TG tasks) do not start until the copy has completed.

As an additional optimization (not shown), the traditional barriers are replaced
with point-to-point synchronization via phase barriers (described in Section . In
particular, the tasks which require synchronization are exactly those with non-empty
intersections computed in Section [3.3.3] A simple dataflow analysis determines all
consumers of QB preceding the copy on line 11 and all those following; these tasks
synchronize with copies on line 11 as determined by the non-empty intersections
computed in IQPB. This form of synchronization in Regent has the additional benefit
that the phase barriers can be added as direct preconditions or postconditions to tasks

and therefore do not block the main thread of control as would a traditional barrier.

3.3.5 Creation of Shards

In the final stage of the transformation, control flow itself is replicated by creating a
set of shard tasks that distribute the control flow of the original program. Figure |3.3d
shows the code after the completion of the following steps.

First, the iterations of the inner loops for TF and TG must be divided among the
shards. Note this division does not determine the mapping of a task to a processor
for execution, which is discussed in Section [6.2] This simply determines ownership of
tasks for the purposes of runtime analysis and control flow. The assignment is decided
by a simple block partition of the iteration space on line 14. Second, the compiler
transforms the loops so that the innermost loops are now over iterations owned by
each shard, while the new outermost loop on line 15 iterates over shards.

Third, the compiler extracts the body of the shard into a new task on lines 2-11.
This task is called from the main loop on line 19. Note that the shard task requests
the use of simultaneous coherence (described in Section in order to permit the
shards to execute in parallel, despite the conflicts between the read-write privileges of
the various tasks. The main task uses a must-parallel epoch (described in Section

to assert that the tasks must be scheduled for parallel execution on the machine.
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3.4 Implementation

In discussing control replication, we have been largely concerned with a limited subset
of a Regent features. Most additional features of Regent are straightforward to

implement within control replication, though a couple warrant special attention.

3.4.1 Region Reductions

Control replication permits loop-carried dependencies resulting from the application of
associative and commutative reductions to region arguments of tasks. These reductions
require special care in an implementation of control replication.

The partial results from the reductions must be stored separately to allow them to
be folded into the destination region, even in the presence of aliasing. To accomplish
this, the compiler generates a temporary region to be used as the target for the
reduction and initializes the contents of the temporary to the identity value (e.g., 0 if
the reduction operator is addition). The compiler then issues special reduction copies

to apply the partial results to any destination regions which require the updates.

3.4.2 Scalar Reductions

In control replication, scalar variables are normally replicated as well. This ensures, for
example, that control flow constructs behave identically on all shards in a SPMD-style
program. Assignments to scalars are restricted to preserve this property; for example,
scalars cannot be assigned within an innermost loop (as the iterations of this loop will
be distributed across shards during control replication).

However, it can be useful to perform reductions on scalars, for example, to compute
the dt for the next time step in a code with dynamic time stepping. To accommodate
this, control replication permits reductions to scalars within inner loops. Scalars
are accumulated into local values that are then reduced across the machine with a
dynamic collective (described in Section , an asynchronous collective operation
that supports a dynamically determined number of participants. The result is then
broadcast to all shards.
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private_v_ghost

Figure 3.4: Region tree with hierarchical partitions.

3.4.3 Hierarchical Region Trees

Regent permits recursive partitioning of regions. Among many other uses, this feature
enables a common idiom in which the programmer constructs a top-level partition
of a region into two subsets of elements: those which are guaranteed to never be
involved in communication, and those which may need to be communicated. This
design pattern, in combination with the region tree analysis described in Section
enables an important communication optimization that reduces data movement for
distributed-memory execution, and also substantially reduces the cost of the dynamic
computation of intersections described in Section [3.3.3]

Figure shows a possible modification to the region tree from Figure that
uses this optimization. The top-level region B has been partitioned into two subregions
that represent all the private elements (i.e. those never involved in communication)
and ghost elements (i.e. those that are involved in communication). The new partition
SB represents the subset of elements of the original PB partition involved in communi-
cation. Similarly, the new PB and QB partitions have been intersected with the regions
all private and all_ghost.

Notably, the top-level partition in this new region tree is disjoint, and thus by
consulting the region tree the compiler is able to prove that the partition PB is disjoint
from QB and SB. As a result, the compiler is able to prove that the subregions of PB are
not involved in communication (as they are provably disjoint from all other subregions),

and can avoid issuing copies for PB. Additionally, because PB has been excluded from
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the set of partitions involved in communication, the compiler is able to skip any
intersection tests with PB and other partitions. As in most scalable applications the
set of elements involved in communication is usually much smaller than those not
involved in communication, so placing the private data in its own disjoint subregion
can reduce the runtime cost of computing intersections.

An application of this technique to a more full-featured application code is described

in detail in Section [7.2



Chapter 4
Translation to Legion

Regent programs may be highly dynamic: in particular, the precise dependencies
between tasks, sets of elements contained in regions (and overlapping elements between
pairs of regions), and the scheduling of tasks on processors and placement of regions
in distributed memories may be dynamic and not amenable to static analysis. To
leverage this dynamic behavior, Regent targets a dynamic runtime for task-based
parallelism, Legion [13].

Legion, though also a task-based system, provides lower-level abstractions compared
to Regent. Several features which are implicit in Regent, such as the management
of the memory associated with a region, are more explicit in Legion. The Regent
compiler is responsible for managing the translation into this more explicit model.

In this chapter we describe the relevant features of the Legion runtime system and
how they differ from Regent, and then present a translation from the Regent language
to Legion runtime APIs. Note that several aspects of the translation described in this
chapter result in potentially suboptimal performance. These are addressed through

further optimizations described in Chapter 5

4.1 Features of the Legion Runtime System

Legion is implemented as a software out-of-order processor. Tasks (like instructions) are

scheduled for possibly out-of-order execution on a set of physical resources. Similarly,

44
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regions (like registers) are virtualized. A given region may be mapped to zero or more
physical instances in memory at any given point in the program execution. Thus in
Legion there is a distinction between between logical and physical abstraction layers
in Legion that does not exist in Regent. Separating the logical and physical levels
permits important patterns, such as having multiple copies of read-only data, to be
expressed directly.

The Legion C++ API allows programmers to write efficient task-based programs
that run out-of-order, asynchronously, and in a distributed fashion. However, because
Legion is written in C++, which does not understand the semantics of tasks and
regions, the Legion API is forced to expose functionality beyond the logical layer of the
programming model. Programmers must generally write Legion programs with some
awareness of both the logical and physical levels. In contrast, Regent only exposes the
logical level, and the compiler is responsible for managing the translation from logical
to physical abstractions.

As a running example used throughout this chapter, Figures and show
excerpts from an implementation of the proxy application PENNANT in Regent and
Legion. The implementation of PENNANT is described in more detail in Chapter [7]
For the purposes of the present discussion, these code comparisons serve to highlight
the substantial differences in usability between Regent and Legion. The specific

aspects of the code samples are discussed along with the relevant features, below.

4.1.1 Regions

A region is the product of an index space (set of indices) and a field space (set of
fields). Like an array of structs in a traditional language, a region holds a value for
every index in the index space, for each field in the field space. At any given point in
the apparently sequential execution of the program, a region can be as a snapshot
mapping indices to values. However, unlike an array in a conventional programming
language, there is not necessarily a one-to-one mapping between a region and its
representation in physical memory.

As noted above, a region may correspond to zero or more physical instances (actual
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1 task adv_pos_full(points : region(point), dt : double) where
2 reads(points.{x0, u0, f, maswt}), writes(points.{x, u})
3do

4 var fuzz = 1le—99

5 var dth = 0.5 x dt

6 for p in points do

7 var pap = (1.0 / max(p.maswt, fuzz))*p.f

8  var pu = p.u0 + dtxpap

9 p.u=pu

10 p.x = p.x0 + dth*(pu + p.u0)
11 end

12 end

(a) PENNANT leaf task implementation in Regent.

1 void adv_pos_full(const Task xtask,
const std::vector<PhysicalRegion> &regions,
Context ctx, HighLevelRuntime *runtime)

PhysicalRegion pointsO = regions[0];

Accessor<double, SOA> points_x0_x(points0, PX0-X);
Accessor<double, SOA> points_x0_y(points0, PX0.Y);
Accessor<double, SOA> points_u0_x(points0, PU0_X);
Accessor<double, SOA> points_u0_y(points0, PU0-Y);
10 Accessor<double, SOA> points_f x(points0, PF_X);

11 Accessor<double, SOA> points_f_y(points0, PF_Y);

12 Accessor<double, SOA> points_maswt(pointsO, PMASWT);
13 PhysicalRegion pointsl = regions[1];

2
3
4
5
6
7
8
9

14
15
16
17

Accessor<double, SOA>
Accessor<double, SOA>
Accessor<double, SOA>
Accessor<double, SOA>

points_x_x(pointsl, PX_X
points_x_y(pointsl, PX_Y
points_u_x(pointsl, PU_X
points_u_y(pointsl, PU_Y

)
)
)
)

)
)
)

3

18 Future f0 = task—>futures[0];

19 double dt = f0.get_result<double>();

20 double fuzz = 1e—99;

21 double dth = 0.5 % dt;

22 IndexIterator it(points0.get_logical region().get-index_space());
23 while (it.has_next()) {

24 size_t count;

25  ptr_t start = it.next_span(count);

26 ptr-t end(start.value + count);

27 for (ptr_t p = start; p < end; p++) {

28 double frac = (1.0 / max(points_maswt.read(p), fuzz));
29 double pap_x = frac * points_f x.read(p);

30 double pap_y = frac * points_f_y.read(p);

31 double pu_x = points_u0_x.read(p) + dt * pap_x;

32 double pu_y = points_u0_y.read(p) + dt * pap_y;

33 points_u_x.write(p, pux);

34 points_u_y.write(p, pu-y);

35 points_x_x.write(p, points_x0_x.read(p) +

36 dth#(pux + points_u0_x.read(p)));
37 points_x_y.write(p, points_x0_y.read(p) +

38 dth*(pu_y + points_u0_y.read(p)));
39}

40 }

41}

(b) PENNANT leaf task implementation in Legion C++ APL

Figure 4.1: PENNANT leaf tasks in Regent and C++.
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var dt, dtmax = conf.dtmax, conf.dtmax
var dthydro = 0.0
var time, tstop = 0.0, conf.tstop
while time < tstop do
dt = calc_global_dt(dt, dtmax, dthydro, time, tstop)
for i = 0, conf.npieces do
adv_pos_full(points_all_private_p[i], dt)
end
for i = 0, conf.npieces do
dthydro min= calc_dt_hydro(zones_all_p[i], dt, dtmax)
end
time += dt
end

(a) Excerpt from PENNANT main simulation loop in Regent.

1 Future dt = Future::from_value<double>(conf.dtmax);
2 Future dthydro = Future::from_value<double>(0.0);

3 double dtmax = conf.dtmax;

4 Future time = Future::from_value<double>(0.0);

5 double tstop = conf.tstop;

6 runtime— >unmap_region(ctx, pr_points_all_private);

7 while (time.get_value<double>() < tstop) {

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57}

double buffer[2];

buffer[0] = dtmax;

buffer[1] = tstop;

TaskArgument global_args0((void x)&buffer[0], sizeof(buffer));

TaskLauncher launcherO(CALC_GLOBAL_DT, global_args0, ArgumentMap());
launcher0.add_future(dt);

launcher0.add_future(dthydro);

launcher0.add_future(time);

dt = runtime—>execute_task(ctx, launcher0);

Domain domain = Domain::from_rect<1>(

Rect<1>(Point<1>(0), Point<1>(conf.npieces — 1)));
IndexLauncher launcherl(ADV_POS_FULL, domain, TaskArgument(), ArgumentMap());
launcherl.add_region_requirement(

RegionRequirement(points_all_private_p, 0 /* identity projection x/, READ_ONLY, EXCLUSIVE, points_all_private));

launcherl.add_field (0, PX0_X);
launcherl.add_field(0, PX0.Y);
launcherl.add_field(0, PU0_X);
launcherl.add_field(0, PUO.Y);
launcherl.add_field(0, PF_X);
launcherl.add_field(0, PF.Y);
launcherl.add_field(0, PMASWT);
launcherl.add_region_requirement(

RegionRequirement(points_all_private_p, 0 /* identity projection x/, READ_WRITE, EXCLUSIVE, points_all_private));

launcherl.add_field(1, PX_X);
launcherl.add_field(1, PX.Y);
launcherl.add_field(1, PU_X);
launcherl.add_field(1, PU_Y);
launcherl.add_future(dt);
runtime—>execute_index_space(ctx, launcherl);

TaskArgument global_args2((void *)&dtmax, sizeof(double));
IndexLauncher launcher2(CALC_DT_HYDRO, domain, global_args2, ArgumentMap());
launcher2.add_region_requirement (

RegionRequirement(zones_all_p, 0 /* identity projection */, READ_ONLY, EXCLUSIVE, zones));
launcher2.add_field(0, ZDL);
launcher2.add_field(0, ZVOLO);
launcher2.add_field(0, ZVOL);
launcher2.add_field(0, ZSS);
launcher2.add_field(0, ZDU);
launcher2.add_future(dt);
dthdyro = runtime— >execute_index_space(ctx, launcher2,

REDOP_ADD_DOUBLE);

TaskLauncher launcher3(ADD_DOUBLE,
TaskArgument(), ArgumentMap());

launcher3.add_future(time);

launcher3.add_future(dt);

time = runtime— >execute_task(ctx, launcher3);

(b) Excerpt from PENNANT main simulation loop in Legion C++ APIL
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Figure 4.2: Excerpt from PENNANT main simulation loop in Regent and C++.
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instantiations of the region in memory). However, the full correspondence of a region

involves some additional layers of complexity that must be managed by the application:

e One logical region

corresponds to zero or more region requirements

which each correspond to one or more physical instance

containing one or more fields.

And each field of a physical instance corresponds to exactly one accessor.

A region requirement (RegionRequirement in the Legion API) is the fundamental
unit of privilege in Legion. A region requirement names a region, a privilege (read,
write, etc.), and a set of fields. Most Legion APIs that involve an effect on a regions
actually take region requirements. For example, the API for launching a task takes
a list of region requirements rather than regions. Legion’s internal mechanisms for
tracking privileges operate at the level of region requirements. Examples of region
requirements can be seen in Figure lines 21-35 and 41-47; they are also implicit
in the regions argument of Figure [4.1b]

Each region requirement corresponds to one or more physical instances. Physical
instances are the actual unit of allocated memory in the system. As the objects
contained inside regions may consist of multiple fields, a physical instance contains
memory for a set (or subset) of fields of the elements in the region.

Each physical instance has a layout in memory: struct-of-arrays (S0A), or array-of-
structs (A0S), etc. In certain cases, it may be beneficial to use different layouts for
different sets of fields. To support this, Legion permits a region requirement to be
mapped to multiple physical instances.

Finally, accessors are used to actually access the data contained in a physical
instance. In C++ API, the Accessor type makes extensive use of C++ templates
in order to amortize the cost of computing values such as strides and base pointers

for accessing the physical instance, and to provide constant-folding of compile-time
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information about instance layouts (such as strides, in certain layouts). These can be
seen in Figure lines 6-17.

A Legion programmer is responsible for managing the correspondence of a region
into its constituent parts, and packing those pieces as necessary to call tasks, etc.
Furthermore, when a parent task calls a subtask with a subregion of one of its regions,
Legion requires that the programmer explicitly specify the parent region on which
the parent task has privileges. Thus the programmer is responsible for tracking all
parent-child relationships between regions. As described in Section [4.2.1] in Regent

these correspondences are managed transparently by the compiler.

4.1.2 Index and Region Trees

In Legion, the distinction between an index space and a region on that index space is
more explicit than it is in Regent. This distinction is particularly noticeable when
partition a region into subregions. In Legion, partitioning is performed only on index
spaces. Partitioning can be seen as dividing an index space into a tree of subspaces.
This tree is mirrored implicitly in the region tree. That is, creating a partition of an

index space implicitly creates a parallel partition on all regions of the index space.

4.1.3 Mapping

Regions are logical containers and must be mapped to one or more physical instances
prior to use. Mapping can be critical to performance, and a correct decision can
depend on architecture or application-specific factors. As such, Legion chooses to
expose these decisions to the user via the Mapper API. The Mapper object is queried
during the program execution whenever the runtime needs to map a region to a
physical instance. Legion also provides a default implementation of the mapper that
uses heuristics to provide a reasonable out-of-the-box experience.

There is an additional issue with respect to mapping and subtasks. By default, at
the start of a task Legion automatically maps each region used by the task, and when
the task ends each of those regions is unmapped. Before launching a subtask a parent

task must also unmap (release access to the memory of) any region that the child task
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needs to use. As the parent and child execute concurrently, this is needed to avoid
data races due to concurrent access to regions shared between the parent and child.
By default, the Legion runtime unmaps all of the parent’s regions before calling a child
and remaps them when the child terminates. While this default behavior guarantees
correct execution, if the parent and child have interfering privileges for a region (e.g.,
both can write the region) then the parent will block until the child terminates, as the
parent’s call to map the region following the call must block until the child finishes.
Blocking in the parent task is potentially harmful to performance as it prevents the
parent task from running ahead of execution and thus restricts the parallelism which
is available for Legion to exploit in the execution of the application. In the worst case,
excessive mapping and unmapping can serialize the execution of the application.

For optimal performance, Legion programmers must explicitly manage the mapping
of regions through explicit map and unmap calls provided by the Legion interface.
By unmapping a region, the programmer notifies the runtime that the data in that
region is not required by the parent task until a corresponding map call is issued. The
map call causes the runtime to query the Mapper object to choose a new (or existing)
physical instance, and then blocks the parent task until that instance becomes valid.
In typical usage, programmers unmap all regions before entering a main loop, and
remap all regions once the loop completes, which ensures that the runtime can avoid
blocking when issuing tasks within that loop. An example of such an unmap call can
be seen in Figure line 6.

4.1.4 Tasks

Tasks are the fundamental unit of control in both Regent and Legion. Tasks are issued
in program order, exactly as they are written in the text, and every possible program
execution is guaranteed to be indistinguishable from serial execution. As discussed
in Section [4.1.1], tasks specify the regions they use via a set of region requirements
(consisting of a region, privilege, and set of fields).

Legion performs an analysis to determine when tasks interfere (i.e. perform conflict-

ing operations on the same or aliased regions), building a dependence graph over the
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tasks in the program as the program executes. Legion’s dynamic dependence analysis
imposes a cost with every task launched. This cost is proportional to the number of
region requirements used to describe a task, and thus the calling convention used for
tasks has a non-trivial impact on the overhead incurred by the Legion runtime.

To ensure that the runtime overhead stays off the critical path as much as possible,
the Legion runtime is itself asynchronous and performs its analysis in parallel to
the execution of the application [13]. The goal is for the runtime to run ahead of
the application, issuing tasks and analyzing task interference in advance of when
those tasks can actually run. Thus the overhead of the runtime analysis of tasks
only becomes a factor in the overall execution time of the application if the total
duration of the runtime analysis exceeds the total running time of the application, or
if a blocking operation causes the analysis to be exposed on the critical path of the
application. Pipeline stalls, blocking operations, and excessive analysis costs can all
cause the runtime to fall behind relative to the application and hurt the performance
of the application. Legion mitigates these issues by providing more sophisticated
abstractions which can result in higher performance, but also have more complex

semantics. These features are discussed below.

Leaf Tasks

Task execution and analysis in Legion is pipelined. In general, a task must complete
a pipeline stage before it passes to the next stage. If a given stage stalls for any
reason, that task and any tasks that depend on it also stall. Mapping, described in
greater detail in Section [£.1.3] is one pipeline stage. When a task is mapped, physical
instances are chosen for each of its region requirements.

Because tasks can execute subtasks, Legion must wait for all subtasks to map
before it can consider a parent task to have completed mapping. In general the only
way to know that a parent task cannot issue more subtasks is if the parent task has
terminated. This can result in unnecessary pipeline stalls when the task in question is
one that never intends to launch any subtasks.

Legion allows users to annotate tasks as leaf tasks if they launch no subtasks, a

mechanism inherited from Sequoia [35]. In Legion, the runtime considers the mapping
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of a leaf task to be complete once the task itself is mapped (even if the task has not
begun execution), avoiding unnecessary pipeline stalls for dependent operations. Users

of the Legion C++ API must manually annotate leaf tasks to avoid such stalls.

Futures

Tasks can produce results in one of two ways: via direct return values, or as a side-
effect on a region argument. In Legion, operations can block whenever a parent task
consumes the direct return value produced by one of its child tasks. Since blocking a
parent task is undesirable, the Legion runtime provides ways of avoiding blocking on
both kinds of task results.

When a task produces a direct return value, Legion returns immediately with a
future representing the not-yet-produced result of the task. Parent tasks can block
to obtain the value of a future, but Legion also supports passing futures as inputs to
other subtasks without blocking in the parent task. In this way, the programmer can
describe the flow of values between subtasks without blocking, allowing the runtime
to run further ahead and hide runtime analysis costs. Futures are visible in the C++
sample codes in Figure lines 18-19 and Figure lines 13-15, 36, 48, and
54-55. Note that in tasks that take both future and immediate arguments, such as
calc_global_dt in Figure on lines 8-16, the future arguments must be explicitly
filtered and added to the task launch separately from immediate arguments; the user
is responsible for maintaining the consistency of this code with the implementations

of the tasks themselves.

Index Launches

Even when execution does not stall in the runtime or block in the application, if
the throughput of the dynamic analysis itself is not sufficient, the runtime can still
fall behind. Legion provides a number of features that can be used to mitigate the
cost of this analysis. Most notably, an index space task launch (or index launch) can
substantially reduce the cost of analysis of a repetitive set of tasks.

Conceptually, an index launch simply represents a loop of task launches. Figure
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lines 6-8 and 9-11 show two examples of Regent loops that can be transformed into
index launches. The corresponding C++ code is shown in Figure lines 18-37
and 39-50. Because the tasks in an index launch are all similar, the cost of analyzing
these tasks can be reduced. Note that the Legion runtime places several structural

restrictions on index launches to ensure that they are well-behaved:

1. A launch domain (an index space) must be explicitly specified. One task is

launched for each index in the launch domain.

2. Arguments to all tasks in the index launch must be computed outside the launch,
guaranteeing that arguments are available and that no arguments depend on

side-effects from tasks within the launch.
3. Futures, if any, are added to the launch as a whole, not to individual tasks.
4. Region requirements can be in one of two forms:

e Individual region requirements name a single region to be used by all tasks

in the launch.

e Partition requirements name a subregion of the partition per task in the
launch (such as p[i] for each index i in the launch domain). If the index
expression is non-trivial (e.g. p[£(i)] for a non-identify function f), then

the user must supply a projection functor implementing f.

5. Because an index launch implies parallel execution, all the tasks must be non-
interfering. That is, the region requirements must be mutually disjoint, or use

non-interfering privileges (read-only, or reductions).

6. If tasks within the launch return a value, then the launch as a whole is allowed
to either return a map with all the resulting futures, or to reduce the futures

into a single value via a user-specified reduction operator.

When executing an index launch, the runtime still performs dynamic checks to

ensure that the tasks within the launch are non-interfering. However, Legion is able
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to amortize these checks across the entire index launch instead of performing them
individually. Note that, while this reduces the cost of analysis for N tasks to O(1), the
overall cost of launching N tasks is still O(NN) because a single node is still responsible
for all tasks. In particular, on a distributed-memory machine, this requires one node to
send N messages to other nodes informing them of what tasks to execute. While index
launches improve the scalability of Regent programs, control replication, described in

Chapter 3| is generally required for scaling to very large numbers of nodes.

4.1.5 Variants

Instance layouts can have a significant impact on the performance of tasks. Further-
more, the optimal instance layout (and corresponding implementation of a task) may
depend on the architecture of the machine. Legion permits multiple variants of a task
to be registered simultaneously. During execution, the mapper is able to dynamically
select the appropriate variant to execute for each task.

Variants are distinguished from each other by a set of layout constraints describ-
ing the layout that the variant expects. In general, high-performance variants are
expected to specify their layout constraints in great detail so that the implementation
can constant-fold information such as the strides of the physical instances into the
implementation code. Legion programmers are responsible for supplying variants,
describing the associated layout constraints, and ensuring that the layout constraints

match the expectations of the variant implementations.

4.2 Code Generation from Regent into Legion

Regent only exposes the logical aspects of the programming model to the user. Features
such as physical instances, futures, and variants are managed transparently by the
compiler. In Regent, unlike in Legion, users really can think of the program as simply
a sequential code with tasks as function and region as arrays of structs.

The initial translation from Regent to Legion does not attempt to be optimal.

Instead, a number of features are provided by subsequent optimizations to the code.
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These optimizations are described in detail in Chapter [5]

4.2.1 Regions

The constituent parts of regions, index spaces and field spaces, must be managed
through a series of API calls in Legion. In Regent, these are much more streamlined.
Index spaces are created automatically for each region based on the size of the region.
Field spaces are created automatically from the element type of the region. In cases
where a region contains a nested struct (e.g. a struct containing a struct), Regent
automatically flattens the nested struct in the resulting field space; Legion does not
support nested fields.

When partitioning a region, the corresponding index space is implicitly partitioned;
Regent hides the parallel index space and region trees from the user.

Regent manages the correspondence between regions, region requirements, physical
instances, and accessors transparently on behalf of the user. This mapping is tracked
in the code generator of the compiler and thus imposes no additional runtime overhead.
These differences are illustrated in the difference between Figure and Figure

When creating region requirements, Regent can automatically determine the
correct parent region from which to derive privileges by consulting the compiler’s
static representation of the region tree for the task, along with the task’s declared

privileges. Region trees were previously discussed in Section |3.2]

4.2.2 Variants

Instance layouts can have a significant impact on the performance of Regent tasks. For
performance, Regent generates high-performance variants of each task that are heavily
optimized for specific instance layouts. By default, Regent generates a single variant
for each task that assumes a default instance layout appropriate for vectorization
and for constant-folding of the strides of physical instances. In future work we are
interested in investigating the use of a static mapping language, which parallels the
Legion mapping API, to allow the user to generate additional variants of tasks in

Regent.
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Each variant of a Regent task only works for a specific layout. Regent generates
the appropriate layout constraints for Legion automatically to ensure that Legion

generates instances in the correct layout for each task.

4.2.3 Task Calling Convention

Regent tasks are simply functions that operate on region arguments, and task calls
are written as normal function calls.

In Legion, task calls are somewhat more involved. The various kinds of arguments—
regions, futures, and immediates—must be separated and are attached separately
to the task launch. Region arguments to tasks must be decomposed into region
requirements where each region requirement is a tuple of a region, privilege, and a set
of fields. As the cost of dynamic analysis in Legion is a function of the total number
region requirements, rather than the number of task launches, the calling convention
used has an impact on the cost of analysis of tasks. A naive approach, which simply
builds a region requirement per region, privilege, and field, would have cost on the
order of O(RF') where R is the number of regions used in task arguments and F is
the average number of fields used per region. Instead Regent uses an optimized calling
convention below which reduces this cost to O(R), which is the optimum.

Regent’s calling convention operates as follows. Regent enumerates the privileges
and fields declared in the target task. For each parameter, Regent maps the parameter
region to the actual argument being passed to the task. Regent then collects 3-
tuples containing (region, privilege, field) for all region arguments, and sorts these
lexicographically. Regions are ordered by the position of the parameter in the original
task. Privileges are ordered in the following way: reads, then writes, then reductions
by reduction operator. Fields are ordered by the position of the field in the original
field space. This ensures a stable, deterministic, and predictable ordering to region
requirements. Regent then applies a group-by operator (borrowed from relational
algebra) to group region requirements by region and privilege. This produces a set
of fields for each region and privilege. Finally, due to a requirement in the Legion

runtime, reduction privileges are split out into individual requirements, one per field.
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Note that the predictability and determinism of the calling convention is also a
necessary precondition to designing a useful foreign function interface for Regent.
Such an interface is described in more detail in Section [6.3]

Futures also require some attention. Regent tasks may generally be called with
either future or immediate (non-future) arguments. In the Legion C++ API, futures
are passed separately from immediates, and the coordination of which arguments
are passed in which mode is left to the programmer. Although it would be possible
in the Regent compiler to generate different variants of a task for each call site,
such an approach could potentially lead to an exponential increase in the amount of
code compiled. Instead, Regent follows a calling convention where either futures or
immediates can be passed to the same task. To support both future and immediate
arguments to the same task, Regent tasks use an extra immediate argument to encode
which subsequent arguments are being passed as futures. This argument is a bitmask
where each bit represents a subsequent argument, if the bit is set to 1 then the argument
is passed as future, otherwise 0. When unpacking arguments, Regent maintains a
count of the number of future arguments unpacked up to that point, and increments
the count each time a future argument is unpacked.

The correspondence between Regent and hand-written Legion code can be seen,
for example, in Figure line 5 and Figure lines 8-16. The primary difference
between the hand-written Legion code and the Regent calling convention is that the
hand-written Legion code does not use an additional bitmask field to describe which

parameters are passed in futures.

4.2.4 Additional Optimizations

Other aspects of optimal code generation are left to subsequent optimizations. The
placement of map and unmap calls is discussed in Section declaration of leaf tasks

in Section [5.2] generation of index launches in Section and futures in Section [5.4]



Chapter 5
Optimizations

As illustrated in Section [4 Regent simplifies the Legion programming model and
provides a higher level of abstraction that is concerned only with logical, rather than
physical, constructs. The Regent compiler is able to manage the correspondences
between logical and physical constructs in a way that achieves performance comparable
to a hand-written Legion C++ implementation, and significantly better than a naive
compiler. This section describes a number of optimizations that together allow the
Regent compiler to achieve performance comparable to hand-tuned code written to

the Legion C++ API.

5.1 Mapping Elision

Regent frees programmers of the burden of managing physical instances of regions by
statically computing correct and optimal placements of map and unmap calls. The
Regent type system guarantees that the compiler has complete information about
what regions can be accessed within any task. The compiler uses this information
to perform a flow-sensitive analysis over the AST to determine the spans over which
regions are used and inserts the map and unmap calls at the boundaries of spans
when switching between usage in a parent and a child task. Redundant map and
unmap calls resulting from repeated task launches are eliminated entirely, and the

placements of map and unmap calls is chosen such that the blocking map calls occur

o8
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as late as possible in the program. In the case where a region is not used at all within
a task, the compiler issues a single unmap call at the top of the task and leaves the
region unmapped for the entire duration of the task’s execution. In contrast, the
Legion runtime, in the absence of manually placed calls to map and unmap, is forced

to continue to map and unmap the region throughout the task’s execution.

5.2 Leaf Tasks

As discussed in Section correctly identifying leaf tasks is an important opti-
mization for Legion programs, as otherwise the Legion runtime must consider the
mapping of a task still in progress until it can be certain all child tasks have mapped
(which is only known to be the case when the task itself finishes executing, as a task
can in general continue to launch subtasks as long as it is still executing). Regent
automatically infers at compile time which tasks are leaf tasks. The compiler knows
all call targets and is therefore able to determine, using a flow-insensitive analysis,
whether a given task calls any subtasks. These annotations are guaranteed to be

correct and precise, in contrast to the user-provided leaf task annotations in Legion.

5.3 Index Launches

Whenever possible, the Regent compiler transforms loops of task launches into index

space task launches. The analysis for this optimization proceeds in multiple phases:

1. The compiler begins with a structural analysis of the code to determine whether
the loops in question are eligible for transformation into an index space launch.

Currently all simple loops containing single task launches are considered eligible.

2. For each loop, the compiler determines whether the body of the loop (aside
from the task call itself) is side-effect free. In particular, the loop body must
not read or modify data that the task itself might read or modify. Doing so
would introduces a loop-carried dependence and shows the loop is not fully

parallelizable.
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3. For each argument to the task launch, the compiler determines whether the
argument in question is eligible to be transformed into an argument for an index

task launch. Arguments must be one of:

e a non-region value;
e a region value that is provably loop invariant;

e a region value that is provably an analyzable function of the loop index;
i.e., it is an expression such as a partition access p[i] indexed by the loop

variable 7.

4. The compiler then performs a static variant of Legion’s dynamic non-interference
analysis. For each region-typed argument, the compiler determines whether it
is statically non-interfering with other region-typed arguments. As with the
dynamic analysis, the compiler has several dimensions along which to prove

non-interference:

e disjointness, either because the region types are incompatible, or because

the compiler can statically prove disjointness through the static region tree
(Section [3.2);

e field disjointness, because the arguments use different fields; or

e privileges, because both arguments use compatible privileges (e.g. both

read-only, or both reductions with the same reduction operator).

If the analysis determines that a task launch is eligible for optimization, the
compiler emits the code to perform the index task launch.

It is worth noting that while this optimization looks similar in its basic outlines
to forall-style constructs in other languages and programming models, it behaves
quite differently in many respects. In particular, when index launch optimization
fails (because any of the properties above cannot be established), that does not imply
the resulting code runs sequentially. The Legion runtime will perform its standard
dynamic analysis, and will parallelize all tasks that are dynamically non-interfering,

regardless of whether the compiler performs the optimization or not. This optimization
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simply allows the runtime to amortize the dynamic analysis costs in cases where the
loops can be analyzed statically. Thus, Regent has a much more forgiving fallback for
when static analysis is insufficient than language implementations that rely solely on

static analysis.

5.4 Futures

In Legion, tasks can return futures, which can be passed to other tasks without
blocking, allowing applications to build chains of asynchronous operations ahead of
the actual computation. The Regent compiler can automatically lift variables and
simple operations to futures to take advantage of these benefits. This optimization

has three phases:

e The compiler first performs a flow-insensitive analysis to determine which vari-
ables are assigned to futures at any point within each task. Any such variables

are automatically promoted to hold futures.

e The compiler then issues calls to automatically wrap and unwrap futures when
storing a concrete value into a future-typed variable, or when reading a future-
typed value because a concrete value is required. Tasks do not require arguments
to be concrete, and can therefore be issued in advance of when the concrete

values of futures are ready.

e Finally, the compiler emits tasks to allow simple side-effect free operations (such

as arithmetic) to be performed directly on futures.

Note that the calling convention for Regent, discussed in Section permits
future and immediate arguments to be used interchangeably, and in any number and
order. Thus this optimization can be applied aggressively without needing to be

concerned for the number of futures that might or might not be passed to tasks.
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5.5 Pointer Checks Elision

As noted in [68], static type checking of Legion programs allows certain classes of
pointer checks to be elided. Regent preserves all the properties of the type system
which make this possible. In particular, all pointer types in Regent explicitly contain
one or more regions that they point into. Regent checks these annotations to ensure
correctness at compile time, and elides the dynamic pointer checks, which are often

prohibitively expensive at runtime.

5.6 Dynamic Branch Elision

In addition, Regent is able to elide certain classes of dynamic branches when accessing
pointers in Legion. Pointers that can point into multiple different regions (e.g., private
or ghost points in PENNANT, as described in Section carry some dynamic tag
bits encoding the region the pointer currently points to. In some cases, however, the
memory for the two regions is actually co-located at runtime (e.g. because of a decision
to map both regions to the same physical instance), allowing the dynamic branches
on the tag bits to be elided. The compiler emits code that automatically detects such

cases at runtime and selects the fast path when it is available.

5.7 Vectorization

Regent leaf tasks frequently feature loops over regions. In many cases, the Regent
compiler is able to vectorize these loops automatically, often exceeding performance
provided by traditional autovectorizers.

Regent performs runtime code generation to LLVM [48] via Terra [33]. While
LLVM provides an autovectorizer, the low level of abstraction of the LLVM IR means
that the vectorizer frequently misses vectorization opportunities or chooses the wrong
optimization strategies for its vector code. Regent’s native understanding of regions
allows the vectorizer to make these decisions with improved precision. Regent uses

Terra’s built-in vector types to produce explicit vector instructions for LLVM, resulting
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in significant performance gains in many cases.
Regent derives this advantage in precision from two sources. First, Regent has
improved information about aliasing through type, field, and region-based analysis.

In particular:

e While accesses for composite types are ultimately expressed as array accesses
to fundamental types (integers, double-precision floating point, etc.), Regent is

able to compare the original types to determine if there is potential for aliasing.

e Furthermore, even for identical types, Regent knows which fields are accessed

and may be able to use this information to prove independence.

e Finally, when two accesses are to different regions, Regent may be able to use

its knowledge of region disjointness to prove that accesses are independent.

Beyond this, Regent has access to implicit information about the costs of potential
vectorization opportunities through regions. Regions are hierarchical and distributed
data structures intended to provide opportunities for parallelism. Therefore, when
Regent sees an outer loop over a region, and an inner loop (over something other
than a region), Regent can infer with high confidence that the outer loop is the better
opportunity for vectorization. In some cases, largely because it lacks comparable
information for its cost model, LLVM chooses to vectorize the inner rather than outer

loop, resulting in degraded performance.

5.8 OpenMP

In cases where Regent can generate vectorized code, the compiler can also automatically
generate code to target other programming models, such as OpenMP. The primary
benefit to using OpenMP in Regent is to reduce runtime overhead by reducing the
number of tasks (e.g. producing one task per node instead of one task per core). Note
that Regent is not a source-to-source compiler and does not make use of the C++
compiler in any way to generate OpenMP code. Instead, Regent directly targets
the OpenMP ABI. This means that Regent can automatically generate OpenMP
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tasks without using any user-level pragmas, and that Regent’s OpenMP support,
unlike OpenMP implementations in C++ and Fortran, is sound and cannot result in
erroneous parallel execution of code for which such execution is not safe.

In practice, the underlying OpenMP implementation used in Regent is provided
by Realm, the portability layer that Legion targets. Thus, Regent OpenMP code
is not even linked against a conventional OpenMP runtime. This implementation
strategy means that OpenMP tasks execute as tasks in the normal way, preserving
task parallelism in the application. In addition, Realm’s support for OpenMP permits
multiple instances of OpenMP tasks to be executing simultaneously on different sets

of processors, for example to take advantage of NUMA properties of the machine.



Chapter 6
Implementation

We have implemented an optimizing Regent compiler using Terra [33], a low-level
programming language with semantics comparable to C, but with extensive and
sophisticated support for metaprogramming via multi-stage programming [67]. Terra
is embedded inside Lua [42], a high-level scripting language with first-class functions.
Lua plays the same role for Terra that C++ templates play for C++, and provides
many of the same benefits. However, Lua/Terra provides superior ease of use, because
the metaprogramming language is a full programming language rather than C++’s
restricted template language.

Terra uses LLVM [48] to provide efficient JIT compilation of Terra functions to fast
machine code. As noted in Section [5.7] Terra makes it possible to perform vectorization
and specialization with full awareness of the vector instruction set supported by the
machine. The use of LLVM as the JIT compiler also allows both Terra and Regent
functions to call and link easily against native C libraries.

Regent is implemented as a co-embedded language within Terra. The Terra API
provides support for extending the parser with additional keywords, which when seen
in the source program text cause Terra to invoke the embedded language compiler.
Regent overloads a number of keywords—most notably, the task keyword—allowing
the Regent language to interoperate seamlessly with both Lua and Terra. Regent
tasks may call Terra functions and have access to all data types supported by Terra,

including structs, arrays, and explicit vector types. The Regent compiler uses this
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information to provide automatic structure slicing [14] for struct types stored inside
logical regions. Regent tasks may also be dynamically specialized, using Lua, to
provide multiple implementations, which are JI'T compiled prior to starting the Legion

runtime.

6.1 Runtime Support

In non-control replicated Regent programs, Legion discovers parallelism between tasks
by computing a dynamic dependence graph over the tasks in an executing program.
Control replication removes the need to analyze inter-shard parallelism, but Legion is
still responsible for parallelism within a shard as well as any parallelism in the code
outside of the scope of control replication.

A notable feature of Legion is its deferred execution model. All operations (tasks,
copies, and even synchronization) execute asynchronously in the Legion runtime. This
is an important requirement for supporting task parallelism, as it guarantees that the
main thread of execution does not block and is subsequently able to expose as much
parallelism as possible to the runtime system.

Legion targets Realm, a low-level runtime that supports execution on a wide variety

of machines [69]. Realm uses GASNet [73] for active messages and data transfer.

6.2 Mapping

All tasks in Regent, including the shard tasks produced by control replication, are
processed through the Legion mapping interface [13]. This interface allows the user
to define a mapper that controls the assignment of tasks to physical processors,
assignment of regions to physical instances in specific memories, and the layouts of
instances. At the user’s discretion, these decisions may be delegated to a library
implementation. Legion provides a default mapper which provides sensible defaults
for many applications.

When using control replication, a typical strategy is to assign one shard to each

node, and then to distribute the tasks assigned to that shard among the processors
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of the node. However, substantially more sophisticated mapper implementations are
also possible; in general mappers are permitted to be stateful and/or dynamic in their
decision making.

Regent and control replication are mostly agnostic to the mapping used. The
exception is that Regent task variants place some constraints on the layouts of instances
used, as described in Section [£.2.2] However, these constraints are provided by Regent
to the runtime and thus any valid mapper decision is guaranteed to produce an

acceptable layout for use in Regent.

6.3 Foreign Function Interface

In any practical system it is necessary to be able to interoperate with components
written in other languages. Regent provides a foreign function interface (FFI) for
this purpose. The Regent FFI supports two main use cases: calling C functions from

Regent tasks, and calling Legion APIs.

6.3.1 Calling C Functions

Fortunately, Terra provides much of the support required for calling C functions. Terra
can parse C header files via the includec built-in function, and can link dynamic
shared objects with 1inklibrary. This is sufficient for calling functions of simple
values such as sin and printf. Note that this also enables calling languages such as
Fortran which can support a C calling convention.

However, it is also important to support calling C functions that operate on the
contents of regions. For example, rather than implement matrix multiply in Regent,
it would be more productive (and likely more efficient) to call an optimized version of
the dgemm function. Regent provides a number of mechanisms to support this.

Typically, C functions that manipulate memory expect to receive pointers, possibly
with strides or other layout information. Regent provides two functions to assist in
this. The __physical(R) function returns an array of physical instances for the region

R, one per field for which the current task has privileges. The __fields(R) function
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returns an array of Legion field IDs for R. Regent does not provide a direct way to
obtain a pointer to a field of R as there are potentially many ways to do so, and the
choice will generally be application specific. However, with the physical instances and
field IDs, applications can use the Legion APIs as described below to obtain accessors

and/or raw pointers to memory.

6.3.2 Calling Legion APIs

Legion is written in C++, but also provides C functions that wrap the important
entry points for the API. These are exposed in Regent via regentlib.c, and can be
directly called inside Regent tasks.

Many Legion API calls require either a reference to the Legion runtime object
or to the context handle of the current task. These can be accessed in Regent via
the functions __runtime and __context. In addition Regent provides the function
_raw(R) which returns the C API handle for many types of objects R such as regions,
index spaces, partitions, etc.

With these functions, it is possible to write code in Regent which uses the Legion
API directly. This enables Regent tasks to call Legion tasks written in C++ or
other languages, and (along with the functions for obtaining instances above) to call

non-Legion functions which support a C APL

6.3.3 Calling Regent Tasks from C++4

No special support is required to call Regent tasks from Legion C++ code. The calling
convention for Regent tasks is documented in Section [4.2.3 and can be followed in
a straightforward way to generate calls to Regent tasks. The arguments to Regent
tasks are packed, along with the bitmask to signal the use of futures, in a struct and
follow the normal C++ rules for alignment of fields. In all other respects Regent
tasks operate as normal Legion tasks: regions, futures, phase barriers, and dynamic

collectives are all passed in the normal Legion manner.
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6.3.4 Interactions with Optimizations

A number of FFI features interact with Regent’s optimizations. For example, using
the __physical function provides access to physical regions which Regent is not able
to track, and thus using the __physical function inhibits the use of Regent’s inner
task optimization. Similarly, the use of __context inhibits Regent’s leaf optimization
as the context object enables the use of a large number of Legion API calls which
might be invalid inside a leaf task. Notably, this restriction does not apply to the
__runtime call as the runtime object alone is not sufficient to execute such API calls;
this permits leaf tasks to use Legion API calls which query the region tree, but not
modify it.

6.3.5 Generating Object Files

When integrating Regent with external applications, two approaches can be taken:
either the Regent tasks can be compiled separately and linked into the external
application, or the external application code can be compiled first and linked into
Regent. Regent supports both approaches.

Regent provides a regentlib.saveobj function that compiles Regent tasks and
produces either an executable binary (which can be useful for running Regent applica-
tions on machines where a dependence on LLVM would be problematic), or an object
file. An object file can be linked in to an existing application as desired.

If external C or C++ code is to be used in Regent, this code must be wrapped
in a pure C API and compiled as a shared library. Regent can then use the code by
loading the appropriate header file with includec and then linking a shared library
with linklibrary.

6.4 Metaprogramming

Metaprogramming is a technique for performing programmatic code generation. Terra
supports metaprogramming via the Lua scripting language, in which it is embedded.

Thus it is natural to extend Regent to support metaprogramming as well.
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While not strictly a required feature, the advantage of metaprogramming in Regent
is that it provides a natural way to support code generation for parallel programs
and languages. For example, a compiler for a domain specific language could use
Regent to automatically generate efficient and scalable parallel code. In contrast,
a more traditional approach would be to generate code to a lower-level, explicitly
parallel programming API such as pthreads or MPI. However, such an approach can be
time consuming, as the semantic gap between the domain-specific language and these
low-level parallel APIs can be quite large, and error-prone, as the compiler author
is exposed to the same potential pitfalls as users of explicit parallelism are generally
exposed. Worse, explicitly parallel APIs are typically not composable, making it
difficult to construct systems out of multiple domain-specific languages. Even when
targeting a dynamic, implicitly parallel runtime system such as Legion, there are a
number of ways in which naive code generation can lead to poor performance. Regent
provides easy-to-use sequential semantics and takes on responsibility for discovering
parallelism in the program, and for any optimizations required to achieve performance.
Regent also enables composability: calls to tasks from a domain-specific language
can be inserted into arbitrary Regent code while preserving the intended semantics,
enabling parallelism within and between domain-specific languages and other Regent
libraries or user code.

In the remainder of this section we describe features available in Regent that enable

metaprogramming.

6.4.1 Symbols, Quote and Escape

Regent provides three key operators for generating code and composing programs to
produce larger programs.

Symbols name Regent variables, and can be generated with regentlib.newsymbol (
type, name). Both arguments are optional. If a type is not supplied, it will be inferred
from the type of the variable initializer used in the variable declaration. A type is
always required if the symbol is to be used as a parameter to a task.

Quotes represent ASTs for Regent expressions or statements. Regent provides
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two quote operators: rexpr ... end and rquote ... end for expressions and
statements, respectively. For example, the expression rquote x += 1 end describes
a Regent statement that increments the variable x. As in Terra, rexpr and rquote
are Lua expressions, and are intended to be used inside a Lua script to build up ASTs
for the bodies of tasks.

Quotes can be composed using the escape operator [...]. The expression ...
inside the brackets is a Lua expression which is evaluated at the time that the quote
itself is evaluated in Lua. The rules for lexical scoping of Regent quotes and escapes
are identical to those used in Terra [33]. In the following code, the reference to x
inside the escape is well-defined and refers to a Regent symbol: quote var x = 0;
[do_something(x)] end. Quotes can composed to produce larger sets of expressions

and statements, allowing entire tasks to be constructed programmatically.

6.4.2 Task Generation

Regent tasks need not be defined at the top level of the program, and can be created
within arbitrary Lua code. This means that Regent tasks may be dynamically generated
based on the inputs to the program. Note however that the regentlib.start call
which begins execution of the Regent program does not return, and thus dynamic task
generation is currently limited to the initial phase of the program execution, before
any tasks have begun to execute.

Task bodies, parameter lists, and privileges can be generated dynamically with
quotes. A task body must be a Regent expression or statement. Task parame-
ters must be Regent symbols, or lists of symbols. Privileges are constructed via
the function regentlib.privilege(mode, region, field) where mode is one of
regentlib.reads, regentlib.writes, or regentlib.reduces(op), region is a Re-
gent symbol naming a region parameter, and field (optional) is a string naming a field
within the region.

To assist in debugging, the Regent compiler provides a mode in which all tasks
are automatically pretty-printed to the console. This can be used to inspect the

generated code to ensure that the code being produced has the desired effect. This
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mode can also be used to inspect the result of any optimizations performed by the
Regent compiler—to ensure that all desired optimizations are being applied, and if

necessary to debug issues in the Regent optimizations themselves.

6.4.3 Type, Dimension, and Field Polymorphism

Metaprogramming can also be used to achieve a variety of kinds of polymorphism
which are otherwise not possible in non-metaprogrammed Regent. In particular, the
types of parameters, types and dimensionality of regions, and privileges and sets of
fields used in tasks, may all be customized via metaprogramming.

In Regent, all references to types (e.g. the T in var x : T) are Lua expressions.
This is also true of types that appear in the declarations of task parameters, and of
course in the type arguments to Regent symbols. This enables type polymorphism in
the language, as any type expression can be replaced by a Lua variable or expression
as needed. Lua functions can also be used to generate multiple copies of a task for
different types, and Lua code can be used to generate the appropriate call sites for
such tasks.

While the size and extent of regions in Regent is dynamic, the number of dimensions
is a static property of the region’s type in order to ensure that Regent can generate
high-performance code. As a result, codes that aim to be polymorphic over dimensions
should use metaprogramming as above to customize the types of regions to account
for startup-time dynamic numbers of dimensions in regions.

The sets of fields in field spaces, and fields accessed in tasks, can also be customized
via metaprogramming. This can be useful, for example, when a common task or piece
of code is used repeatedly with different fields. The names of fields in Regent are
represented as strings. Most places which accept a single field can also be used in

metaprogramming with a list of fields.
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Case Study

In this chapter we consider the design and implementation of a non-trivial proxy
application, PENNANT, in Regent. As a proxy application, PENNANT is designed to
reflect the patterns of computation and memory accesses typical of a broader class of
applications (in this case, unstructured mesh codes), while being small enough to allow
the code to be ported easily to a variety of architectures and programming models.
The reference PENNANT implementation, provided by Los Alamos National Lab, is
written in C++ and can be configured to use MPI, OpenMP, MPI+OpenMP, or none
of the above (for sequential execution), and has been heavily tuned for performance.
The code is approximately 2500 lines (ignoring blank lines and comments). The initial
Regent implementation of PENNANT was completed in under two weeks, including
time to learn and understand the structure of the reference code. As PENNANT
was also the first non-trivial code to be written in Regent, this also included time to
make a number of minor adjustments to the Regent language. The implementation of
PENNANT in Regent drove a number of design and implementation decisions in the

compiler and motivated a number of optimizations that Regent provides.

7.1 PENNANT Overview

PENNANT is a Lagrangian hydrodynamics proxy application for unstructured meshes
from Los Alamos National Laboratory [36]. PENNANT implements a subset of the
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functionality in FLAG [25], a shock-hydro code used in production at Los Alamos.
Compared to FLAG, PENNANT is restricted to 2D unstructured meshes (rather than
2D or 3D), and simulates only a subset of the physics in FLAG, explicitly excluding
the shock portion of the code.

PENNANT simulates hydrodynamics using a 2D unstructured mesh. The fun-
damental constituents of the mesh in 0, 1, and 2 dimensions are called points, edges
and zones. Because the mesh is unstructured, zones are polygons with an arbitrary
number of edges. Rather than manage dynamically-sized lists of edges for each zone,
PENNANT performs most operations on intermediary data structures called sides
which represent the triangular area between an edge and the center of a zone. Sides
contain pointers to zones and points, but not vice versa. Because PENNANT is
a Lagrangian code, the points in the mesh move in the simulation space over the
duration of the simulation, causing the mesh to deform. However, the logical structure
of the mesh (i.e. the pointers between the mesh elements) does not change over time.

PENNANT includes several types of physics, which are computed in phases within

each time step in the simulation:

1. First, the dt for the time step is determined, and the positions of points in the

mesh are advanced halfway (i.e. by $d¢ in time).

2. Second, various properties of sides and zones are computed, culminating in an

accumulation of forces from sides into points.

3. Third, this force is used to accelerate points and compute the fully advanced

positions of points (by the remaining %dt in time).

4. Finally, zones are again updated, and the dt for the next time step is computed.
In simulations such as PENNANT, the size of a time step depends on the
physical properties of the mesh, and as the mesh can deform, these must be
recomputed on each time step. This requires the use of a scalar reduction to

compute dt, which has the potential to be a bottleneck at large node counts.

In a parallel and distributed implementation of PENNANT, the mesh must be
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Figure 7.1: Naive PENNANT data partitioning: zones (left), sides (middle), and
points: write sets of phases 1, 3 (bottom left) and read/reduce sets of phases 2, 4
(bottom right).

partitioned into submeshes in order to distribute work between the various proces-
sors of the machine. Figure shows an example of a mesh that could be used
with PENNANT:; in this case the mesh has been divided into three submeshes. In
both reference and Regent implementations, the primary partitioning of the mesh
is over zones. Every zone belongs to exactly one submesh, as the access patterns
in PENNANT do not require the values of zones to be communicated. This also
leads to a straightforward partitioning of sides, as each side belongs exclusively to a
zone, and again need not be communicated. However, the points of the mesh require
communication as different phases of the application require different sets of points as
shown on the bottom of Figure [7.1 Phases 1 and 3 of the simulation perform writes
to the sets of points shown on the bottom left. Phases 2 and 4 perform either reads
or reductions to sets of points on the bottom right; note that points at the boundaries
between submeshes exist in the read/reduce sets of multiple tasks. Because of these
overlapping access patterns, multiple processors may race to update the forces on these
aliased points. In a shared-memory machine, these accesses may be mediated through
atomic operations or other synchronization; no explicit communication is required. In
a distributed-memory environment, the partial sums of forces must be communicated

and synchronized. Both of these implementation details can be seen as a necessary
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outcome of the fundamentally overlapping access patterns in the application. Thus a
central concern in the design of an implementation of PENNANT is the management
of the communication implied by such aliased access patterns.

In the OpenMP implementation of PENNANT, the required synchronization is
handled by the implicit barrier at the end of each parallel loop; the accumulation
of forces into points is managed by computing partial sums over sides and using a
separate parallel loop to read these partial sums and compute the final forces on
points. (An implementation using atomic operations would also be possible, but this
approach is not taken in the OpenMP reference, in part for better consistency with
the MPI implementation.) OpenMP relies on shared-memory semantics to avoid any
need for explicit partitioning or data movement.

The MPI implementation requires additional work as the mesh must be explicitly
distributed throughout the machine. Again, the partitioning of zones and sides is
straightforward as these access patterns do not overlap and there is no need for
communication. Points, however, require communication. Points at the boundaries
between submeshes are duplicated, and one of the duplicates of each point is named
the master. Other copies are named slaves. All computations on points are performed
on the master copy and results communicated to the slaves. In the phase where forces
are accumulated onto points, partial sums are computed on sides, these partial sums
are communicated to the master, and the final sum computed for each point and then

broadcast back out to slaves.

7.2 Regent Implementation

The primary concerns in the design of a Regent implementation are the decomposition
of the program control into tasks, and the partitioning of regions into subregions that
accurately name the elements to be used by the various tasks. A straightforward
implementation would exploit Regent’s sequential semantics to maintain the consis-
tency of a single (conceptually shared) copy of the mesh. In this sense, the Regent
implementation—despite the use of explicit partitioning—resembles a shared-memory

implementation more than it does an explicitly distributed implementation such as in
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MPI. In Regent, points that exist at boundaries between submeshes may be included
in multiple aliased subregions, but are not duplicated and explicitly communicated as
in MPL.

A Regent program achieves parallelism by dividing the computation into tasks. In
this case, the program might consist of a task per phase of the simulation per chunk
of the mesh. More fine-grained tasks are also possible, and would expose additional
task parallelism in the application, but as described in Section [7.4] various factors
push us towards an implementation where tasks are fused to the maximum extent
possible, resulting in exactly one task per phase.

In Regent, data structures are stored in regions. For PENNANT, each kind of
mesh element (zone, side, or point) is stored in a separate region, and elements of sides
contain pointers to elements of the other two regions. For parallel and distributed
execution, these top-level regions must be partitioned into subregions naming the sets
of elements needed by the various tasks in the application. For zones and sides, these
subregions correspond to the colored submeshes shown in Figure 7.1l For points, a
simple partitioning scheme could simply use two partitions of the points, naming the
write and read/reduce sets shown on the bottom left and bottom right of the figure,
respectively.

While the naive partitioning in Figure is appealing in its simplicity, in practice
this partitioning scheme leads to unnecessary data movement and analysis cost at
runtime. The root of the problem is that the naive scheme does not take care to
separate elements that will be communicated from those not involved in communication.
Because this information is not provided by the user, a Regent implementation is
forced to choose between two undesirable options: either it can perform potentially
unnecessary data movement (i.e. copying all the shaded points of a given color, rather
than just those with multiple colors), or it can perform a dynamic analysis to determine
which elements are involved in communication (i.e. requiring an all-pairs comparison
of the sets of elements in subregions). Fortunately, Regent’s support for hierarchical
partitions allow the user to express this information directly, avoiding the need for
the compiler and runtime to second-guess the user’s decisions.

Figure [7.2] shows the result of this hierarchical partitioning applied to the original
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Figure 7.2: Hierarchical PENNANT data partitioning: zones (top left), sides (top
middle), and points: all private vs. all ghost (top right), private (bottom left), master
(bottom middle) and ghost (bottom right).

example mesh. Instead of using two partitions of points, the new scheme uses four
partitions. The initial partition, which is shown in the upper right of Figure
divides points into two sets: all private (the solid-shaded points, which are not in-
volved in communication) and all ghost (the hatched points, which may be involved
in communication at some point in the application execution). This stage is critical
because it identifies to the Regent compiler which points are or are not involved in com-
munication. Note the two subregions (all private and all ghost) are disjoint. Because
the partition is disjoint, there will be no subsequent need to consider any interactions
between private and ghost points; private points will never be communicated, and
in control replication no intersections between private and ghost subregions need be
considered.

The subregions of this top-level partition are then further partitioned an additional
three times. On the bottom right of Figure the private points are partitioned to
identify the subsets that belong to each of the three submeshes. This partition is again
disjoint, which guarantees that the Regent compiler need not consider interactions
between the private points belonging to each of the submeshes. In the bottom middle,

the master partitions plays a role similar to the master points created in MPI. During
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certain phases of the application, various computations will be performed on the
master partition, and this partition must be disjoint to permit these computations to
proceed in parallel. On the bottom right, the ghost partition identifies the points that
need to be read from each submesh, and as a given point may need to be read from
multiple submeshes, this partition is aliased.

Thanks to Regent’s sequential semantics, this partitioning is relatively transparent
to the application. Although the sets of elements in each subregion must be explicitly
identified, the consistency of subregions is managed by the Regent compiler and
runtime. Subregions behave as views or aliases of the parent region. If an object is
contained in multiple overlapping subregions, any update to that object is visible to
any task that follows in program order and that references the object through any
other aliased subregion. This means that references through pointers between objects
(e.g. from sides to points) are automatically valid as long as the task in question has
requested privileges on the appropriate regions. This is in contrast to MPI, where
overlapping access patterns such as the one in PENNANT require the application to
explicitly create duplicate sets of master and slave points and manage the consistency
of those duplicates.

Figure shows an excerpt from an implementation of PENNANT that follows
this strategy. The code shows phases 2 and 3 of the application, where forces are
accumulated onto points and then forces used to update the velocity and position
of the points themselves. For simplicity, and because only points are involved in
communication, the code only shows data usage for points, and only for a single field
f of the point objects representing the force exerted on each point.

In Regent, the effects of a task are completely described by the arguments and
privileges in the task’s declaration. Thus, for the purposes of the top-level design of
an application, it is sufficient to declare the tasks as in lines 1-4 of Figure [7.3] and
leave the bodies of the tasks to be implemented later. The task calc_forces on lines
1-2 reads and writes the f field of the private subregion belonging to each submesh,
and applies reductions over + to the ghost subregion. (For regions of user-defined
data types, a privilege may optionally name a specific field within the elements of

the region.) The task adv_pos_full on lines 3-4 reads the accumulated forces from
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1 task calc_forces(private : region(point), ghost : region(point))
2 where reads writes(private.f), reduces +(ghost.f) do ... end
s task adv_pos_full(private : region(point), master : region(point))
4 where reads(private.f, master.f) do ... end

5

6 —— 1inside the main simulation task:

7 var points = region(.. ., point)

s var private_vs_ghost = partition(disjoint, points, ...)

o var private = partition(disjoint, private_vs_ghost[0], ...)

10 var master = partition(disjoint, private_vs_ghost[1], ...)

11 var ghost = partition(aliased, private_vs_ghost[1], ...)
12while t < T do

13 dt = dtnext

12 fori=0,Ndo

15 calc_forces(private[i], ghost][i])

16 end

17 —— implied communication from ghost to master

18 fori=0, N do

19 adv_pos_full(private[i], master[i])

20 end

21 dtnext = ... —— computed via scalar reduction

2 t4+=dt

23 end

Figure 7.3: Excerpt from PENNANT Regent implementation control flow.

private and master subregions and (not shown) writes the velocity and position fields
of both regions.

Lines 8-11 of Figure show the partitioning calls used to create the hierarchical
partitions shown in Figure [7.2] Line 8 creates the initial top-level partition between
all private and all ghost points in the mesh. Lines 9 and 10-11 then create nested
partitions of the respective subregions: a disjoint partition of the private points, and
disjoint and aliased partitions of the ghost points. These calls show the use of the
original style Regent partitioning calls using arbitrary coloring objects that map colors
(small integers) to sets of points. (The colorings themselves are not shown.) It is also
possible to compute the same partitions via the sublanguage of dependent partitioning
operators described in Section [2.3.2 However, PENNANT was originally written at a

time when these operators were not available in Regent.
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7.3 Leaf Tasks

After the top-level control flow and partitioning scheme is decided, the remaining
work in a Regent implementation consists of defining leaf tasks which perform the
actual work in the application. Fortunately, leaf tasks are usually straightforward to
implement. Figure shows the implementation of the adv_pos_full task declared
above. The task loops over points, reading the forces (f) computed from the previous
step and finally updating velocity (u) and position (x).

For comparison, an equivalent C++ implementation that uses the Legion runtime
API is shown in Figure [7.4b] The primary differences include:

1. Physical instances are explicitly unpacked from the task’s arguments (lines 5
and 13).

2. Accessors for each field are constructed (lines 6-12 and 14-17).
3. Arguments passed as futures are explicitly unpacked (lines 18-19).

4. The C++ code explicitly iterates over spans of contiguous elements so that the

inner loop can avoid a call into the iterator (lines 22-27).

5. Fields of complex types are explicitly expanded into multiple fields of basic types
(lines 29-30, 31-32, 33-34, and 35-38).

All of this complexity is hidden and managed automatically by the compiler in the
Regent implementation as described in Chapter [4]

7.4 Cache Blocking

The reference implementation of PENNANT employs a critical cache-blocking opti-
mization which prevents the application from becoming memory-bound and allows it
to scale with reasonable efficiency to the cores within a node. In the reference code,
the inner loops have been strip-mined to form double-nested loops where the outer

loops iterate over chunks of elements that are small enough to fit in the L2 cache of a
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1 task adv_pos_full(points : region(point), dt : double) where
2 reads(points.{x0, u0, f, maswt}), writes(points.{x, u})
3do

4 var fuzz = 1le—99

5 var dth = 0.5 x dt

6 for p in points do

7 var pap = (1.0 / max(p.maswt, fuzz))*p.f
8  var pu = p.u0 + dtxpap

9 p.u=pu

10 p.x = p.x0 + dth*(pu + p.u0)

11 end

12 end

(a) PENNANT leaf task implementation in Regent.

1 void adv_pos_full(const Task xtask,
const std::vector<PhysicalRegion> &regions,
Context ctx, HighLevelRuntime *runtime)

PhysicalRegion pointsO = regions[0];

Accessor<double, SOA> points_x0_x(points0, PX0-X);
Accessor<double, SOA> points_x0_y(points0, PX0.Y);
Accessor<double, SOA> points_u0_x(points0, PU0_X);
)

Accessor<double, SOA> points_u0_y(points0, PU0-Y);
Accessor<double, SOA>

points_f_x(points0, PF_X);
Accessor<double, SOA>

points_f_y(points0, PF_Y);
Accessor<double, SOA> points_maswt(pointsO, PMASWT);
PhysicalRegion pointsl =

2
3
4
5
6
7
8
9

10
11
12

13 regions(1];

14
15
16
17

Accessor<double, SOA>
Accessor<double, SOA>
Accessor<double, SOA>
Accessor<double, SOA>

points_x_x(pointsl, PX_X
points_x_y(pointsl, PX_Y
points_u_x(pointsl, PU_X
points_u_y(pointsl, PU_Y

)
)
)
)

)
)
)

3

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41}

Future f0 = task—>futures[0];
double dt = f0.get_result<double>();
double fuzz = 1e—99;
double dth = 0.5 % dt;
IndexIterator it(points0.get_logical region().get-index_space());
while (it.has_next()) {
size_t count;
ptr_t start = it.next_span(count);
ptr_t end(start.value 4+ count);
for (ptr_t p = start; p < end; p++) {
double frac = (1.0 / max(points_maswt.read(p), fuzz));
double pap_x = frac * points_f x.read(p);
double pap_y = frac * points_f_y.read(p);
double pu_x = points_u0_x.read(p) + dt * pap_x;
double pu_y = points_u0_y.read(p) + dt * pap_y;
points_u_x.write(p, pux);
points_u_y.write(p, pu-y);
points_x_x.write(p, points_x0_x.read(p) +
dth#(pux + points_u0_x.read(p)));
points_x_y.write(p, points_x0_y.read(p) +
dth*(pu_y + points_u0_y.read(p)));
}

}
(b) PENNANT leaf task implementation in Legion C++ APL

Figure 7.4: PENNANT leaf tasks in Regent and C++.
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CPU core. Because the mesh is unstructured and contains pointer data structures
with internal consistency properties that must be maintained, the optimization is
challenging to implement in a general-purpose compiler and thus must be implemented
manually. The Regent implementation follows the same pattern as the reference code,
although the definition of a chunk has been tweaked slightly to keep more elements in
cache when switching from looping over different kinds of data structures (from zones
to sides or vice versa). Fortunately, this optimization has a minimal impact on the
signature of a task, and thus all of Regent’s higher-level optimizations (most notably
control replication) are not impacted by the manual application of this optimization
in the code.

In the Regent implementation, the chunks used for cache blocking are represented
as an addition level of partitioning in the region tree (a second level for zones and
sides, and a third level for points). No tasks are ever launched on the individual
chunks; instead entire partitions of chunks are passed to the leaf tasks, and those
tasks contain double-nested loops first over chunks and then over elements of chunks.
The partitions themselves are subsumed by the existing region arguments to tasks
and thus do not impact privileges the tasks require.

Due to the multiple types of physics it uses, PENNANT does have some task
parallelism available, which could potentially enable flexibility in the scheduling of
tasks. However, exploiting this task parallelism interferes with the cache blocking
optimization described above. Because the cache blocking optimization prevents
PENNANT from being memory-bound, it is much more important to preserve that
optimization than to expose task parallelism in the application. In the Regent
implementation of PENNANT, we manually fused the tasks in order to preserve the
contents of the cache. The result of this fusion is that the Regent implementation of

PENNANT uses one task per phase of the computation as described above.



Chapter 8
Evaluation

In this chapter we follow up on the qualitative evaluation of Regent in Chapter
and attempt to quantify the impact of Regent on programmer productivity and
performance. To conduct these experiments, we ported five small applications into
Regent: three unstructured and two structured codes. These applications, ranging
from approximately 1000 to 4000 lines of code, are intended to represent meaningful
subsets of larger applications or classes of applications. Three of the five applications
have hand-written and manually tuned C or C++ implementations that employ either
MPI or some variety of MPI+X for parallelism. For one version of one of the four
applications we considered a C++ Legion reference implementation of the same code.

To quantitatively evaluate Regent’s productivity, we compare the number of lines
of code in the Regent and reference implementations. While lines of code comparisons
have some limitations, this provides some empirical evidence that Regent provides
meaningful productivity benefits for programmers.

The performance benchmarks evaluate Regent’s progress towards two distinct goals.
First, is Regent capable of generating kernels with performance competitive with
hand-tuned C and C++ code? Note that this is not strictly necessary, because Regent
tasks can always call C or C++ functions directly. However, Regent’s productivity
benefits are much more significant when entire codes can be entirely written in Regent.

Second, is Regent capable of matching the single- and multi-node scalability of

reference implementations written in well-known parallel programming models? In

84
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all cases, we report absolute performance, as this is the measure that is ultimately
relevant to end users, though parallel efficiency is also of interest, particularly with
control replication.

The experiments in this chapter were originally conducted in two parts, and thus
are described separately. There are some differences between the experiments. Most
notably, the initial experiments were conducted without control replication, and thus
evaluate performance only on single or small numbers of nodes. The second set of
experiments evaluate the effectiveness of control replication specifically and focus
primarily on scaling to large numbers of nodes.

In the following section, we describe the benchmarks used in the experiments.

Then we consider each of the sets of experiments.

8.1 Benchmarks

We evaluate Regent versions of five applications: a circuit simulation on a sparse
unstructured graph; MiniAero, an explicit solver of the compressible Navier-Stokes
equations on a 3D unstructured mesh; PENNANT, a Lagrangian hydrodynamics
simulation on a 2D unstructured mesh; a stencil benchmark on a regular grid; and
Soleil-X, a turbulence and particle solver on a 3D structured grid. Each application is

described below.

8.1.1 Circuit

Circuit, introduced in [13], is a distributed simulation of an electrical circuit, operating
over an arbitrary, unstructured graph of nodes and wires. The simulation consists of
three phases. The first phase reads the voltages of nodes from the previous phase
and determines the current moving along each wire using an iterative solution to the
differential equations of the RLC model of the circuit. The second phase reads the
current on each wire and computes the resulting charge that accumulates on each
node in the circuit. The third phase computes updated voltages based on the charge

at each node. Of these, the first stage dominates overall execution time, and because
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the iterative method is compute-limited, the application has high compute intensity.

We consider two variations on the circuit simulation design. The original C++
Legion implementation from [13] is used in the initial experiments, to enable a direct
apples-to-apples comparison with Regent. The C++ implementation uses hand-
written SSE vector intrinsics in the compute-limited portions of the code, and is highly
optimized. The Regent version relies entirely on Regent’s auto-vectorizer to achieve
the same performance. The input problem tested was a randomly generated circuit
with some internal structure. Specifically, the nodes in the input graph are divided
into subgraphs which are densely connected, with fewer wires (5%) crossing between
subgraphs. However, while a smaller number wires cross between subgraphs, the
choice of which subgraph to connect to is still random, and thus the overall structure
of the communication of the application is still dense: almost every compute node in
the machine can be expected to communicate with every other node. As a result, this
version of the application is inherently communication-bound at higher node counts
and thus not appropriate for scaling studies at very large numbers of nodes.

In the second set of experiments, the structure of the graph was modified to permit
scaling the simulation to large numbers of nodes. Specifically, the new simulation
modifies the random function used in selecting which subgraph an external wire
should connect to. Instead of using an unconstrained random function, the function
is constrained so that each subgraph touches at most six other subgraphs, and
external wires are randomly assigned from among these. This results in an overall
communication graph that is sparse. In addition, the percentage of external wires was
increased to 20% from 5%, which increases the volume of communication to offset the
decrease in the amount of connectivity between subgraphs.

Both Legion and Regent implementations of Circuit take advantage of the hier-
archical partitioning structure described in Section [3.4.3] In Circuit, because only a
fraction of the wires are involved in communication, the set of nodes connected to
those wires is bounded and can be determined at initialization time. Circuit uses a
top-level partition to separate all private nodes, which are internal to a subgraph, from
shared nodes, which exist at the boundaries between subgraphs. Following this the two

regions of private and shared nodes are further subdivided by subgraph to identify the



CHAPTER 8. EVALUATION 87

halos and sets of internal nodes in each subgraph. This structure identifies explicitly
the elements that are involved in communication, enabling further optimizations in

Legion and Regent.

8.1.2 PENNANT

PENNANT is a Lagrangian hydrodynamics proxy application for unstructured meshes
from Los Alamos National Laboratory [36]. The reference implementation of PEN-
NANT is written in C++ and supports configurations that use OpenMP, MPI, and
MPI+OpenMP. The Regent implementation of PENNANT is discussed in detail in
Chapter [7]

PENNANT includes a dynamic computation of the dt which is used to increment
the simulation time on every time step. This requires the use of a scalar reduction,
which has the potential to be a bottleneck at large node counts. Unfortunately,
this scalar reduction is completely exposed as there is no additional task parallelism
available to hide the additional latency. Fortunately however, the stop condition at
the top of the main simulation loop depends only on the previous, rather than current,
dt, so this scalar reduction does not cause the control thread to block. In the Regent
implementation, tasks are issued one iteration ahead of execution, which is sufficient
to hide the latency of the dynamic runtime analysis.

PENNANT employs a cache-blocking optimization which prevents the application
from becoming memory-bound and enables reasonable scaling to the cores within a
node. This optimization does not impact the application of control replication because
the details of the cache blocking are subsumed by and hidden behind the signature of
a task.

However, a result of this cache-blocking optimization is that the tasks in the
application are fused to the maximum extent possible. Thus PENNANT exposes no
task parallelism at all to the Legion runtime, which causes PENNANT to be somewhat
more sensitive to runtime overhead than other applications.

As in Circuit, PENNANT also applies the hierarchical partitioning scheme from
Section [3.4.3] In the case of PENNANT, points are involved in communication, and
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thus the points are partitioned hierarchically. This partitioning is described in detail
in Section [7.2] Zones and sides need not be partitioned hierarchically as they are not

involved in communication; a single disjoint partition suffices for each.

8.1.3 MiniAero

MiniAero is a computational fluid dynamics mesh proxy application from the Mantevo
suite [38] developed at Sandia National Laboratories. MiniAero uses uses a Runge-
Kutta fourth-order time marching scheme to solve the compressible Navier-Stokes
equations on a 3D unstructured mesh. The reference version of the application
is written in a hybrid style, using MPI for inter-node communication and Trilinos
Kokkos [34] for intra-node parallelism. (Kokkos is a portability layer for C++ that
compiles down to pthreads (on CPUs), also developed at Sandia.)

The mesh elements in MiniAero are cells and faces. The mesh is divided into
submeshes via a simple disjoint partitioning of cells. Cells at the boundaries between
submeshes are members of the halos of other submeshes, and are thus involved
in communication. The Regent implementation of MiniAero uses a hierarchical
partitioning scheme to separate communicated and non-communicated elements. Faces
are duplicated at submesh boundaries, and thus are not involved in communication.

MiniAero is mostly memory-bound, and thus is sensitive to optimizations that
improve locality. When implementing MiniAero in Regent, we noticed that locality,
and thus performance, benefits substantially from using a hybrid data layout, where
some fields are stored in SOA layout and others are stored in AOS layout. The versions
of Legion used in the experiments did not support this kind of hybrid layout, and thus
the initial Regent implementation of MiniAero uses arrays to achieve the same effect.
However, this served as a proof of concept for the value of these hybrid layouts (with
different fields simultaneously in SOA or AOS layout), and support for these layouts

has since been added to Legion.
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8.1.4 Stencil

Stencil is a 2D structured benchmark from the Parallel Research Kernels (PRK) [71}/72].
Note that, as support for structured regions was not available in Regent at the time
of the initial experiments, this benchmark is included only in the latter experiments
for control replication.

The code performs a stencil of configurable shape and radius over a regular grid.
Our experiments use the default configuration: a radius-2 star-shaped stencil on a grid
of double-precision floating point values. In our experiments we compare a Regent
implementation against the MPI and MPI4+OpenMP reference codes provided by
PRK.

Because Stencil is a structured application, it is possible to identify the grid
elements involved in communication even more precisely than in the unstructured
applications above. At each step in the computation, halos of grid elements must be
communicated with the subgrids to the north, south, east and west. (In a star-shaped
stencil, no elements are communicated diagonally.) These communication patterns are
all independent, and thus a top level partition divides the regions five ways: one way
for elements not involved in communication at all, and four ways for communication
in each of the cardinal directions. Then, each of the four subregions involved in
communication is then partitioned two ways to identify producers and consumers
of values in each direction. This structure identifies to Regent and Legion precisely
which elements must be communicated. Note that, under control replication, only
four sets of intersections must be computed: one for each of the cardinal directions,
between the producer and consumer partitions of each of those directions. No other
intersections must be considered at all, because of the static disjointness information
that is inherent in this region tree structure.

For this application, we use the Regent foreign function interface to call into C
implementations of the kernels. These kernels are called from Regent tasks which
declare the appropriate privileges, thus optimizations such as control replication need
not reason about the effects of calls to C functions. We have also built a pure Regent

implementation which uses metaprogramming to construct optimized kernels for the
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stencil; however the Regent auto-vectorizer does not yet have full support for multi-
dimensional regions and thus for these experiments we only consider the version which

uses C kernels.

8.1.5 Soleil-X

Soleil-X is a turbulence solver that uses a 3D structured grid of cells with particles
that track the movement of the fluid in a bidirectionally-coupled simulation. Soleil-X
is therefore a hybrid structured /unstructured code: the fluid computation is entirely
structured, while the particles move freely and are represented with an unstructured
region.

Of all the applications in this evaluation, Soleil-X is the only application not
written directly in Regent. Instead, Soleil-X is written in a domain specific-language
Ebb [16] for physical simulations that targets Regent. Ebb supports forall-style parallel
loops with stencil-like access patterns. Ebb programs do not contain any explicit data
partitioning or tasks; these are generated automatically by the Ebb compiler. We
used an implementation of Ebb for Regent to evaluate the performance of Soleil-X
on distributed-memory machines. Regent was in this case an enabling technology,
allowing a efficient and scalable implementation of Ebb to be created quickly, without
needing to write a compiler to directly produce low-level distributed code. Ebb was
also able to take advantage of Regent’s support for generating high-performance
kernels.

Soleil-X also depends on Regent’s support for structured grids and thus is included

only in the second set of experiments.

8.2 Initial Experiments

In our initial experiments, we consider the productivity and performance of Regent
on three unstructured benchmark applications. First, to quantify productivity, we
compare the lines of code of each Regent implementation against a reference. Second,

we explore the impact of the optimizations described in Chapter [5l And third, we
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Regent
Application | Reference | Total Mapper Partitioning
Circuit 1701 969 144 159
PENNANT 2416 1789 244 163
MiniAero 3993 2836 193 51

Figure 8.1: Non-comment, non-blank lines of code for Regent and reference implemen-
tations.

consider the performance and scalability of each Regent application. Note that control
replication was not available at the time these experiments were performed, thus in
these experiments we consider performance only on a single node or small number of
nodes.

The experiments were done on the Certainty supercomputer [1]. Each node has
two sockets with an Intel Xeon X5650 per socket for a total of 12 physical cores per
node (24 threads with hyperthreading). Nodes are connected with Mellanox QDR
Infiniband. The Legion runtime and all three C++ reference codes have been compiled
with GCC 4.9.2. Regent uses LLVM 3.5 for code generation.

8.2.1 Lines of Code

We evaluate the productivity of Regent by comparing the number of lines of codes
in each Regent implementation against each reference. Figure [8.1| summarizes the
results.

It is worth acknowledging up front the limitations of such measurements. Not all
benefits can be accounted for by way of lines of code. Regent’s sequential semantics is
an example of a benefit with enormous impact which does not necessarily translate
to a direct reduction in lines of code. Beyond this, the benchmarks chosen do not
make substantial use of task parallelism. If additional task parallelism were added to
any of these benchmarks, the OpenMP and MPI versions would require substantial
rewriting to take advantage of it, while the Regent implementations would all exploit
this parallelism with no additional effort.

When comparing to OpenMP and MPI in particular, note that Regent (somewhat

counterintuitively) requires the user to be more explicit about organization and
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placement of data. Despite this, the Regent codes evaluated were all shorter than
their corresponding reference versions. In addition, two improvements to the Regent
language have been identified that have the potential to dramatically reduce the
lines of code associated with certain activities (specifically partitioning and mapping).
These improvements were not available at the time of the original experiments, but
have been called out separately in the results to indicate the potential upside. These
are also discussed in more detail below.

Of the three applications, Circuit is shows the largest difference: the Regent
implementation is 43% smaller than the Legion C++ implementation. This is mostly
due to the use of SSE vector intrinsics in the Circuit source code. In our experience,
C++ compilers are unable to generate code of the same quality automatically, while
Regent’s auto-vectorization achieves the performance of the hand-written vector code.
The Regent implementation did not use any explicit vectors or vector intrinsics.

PENNANT in Regent is approximately 25% shorter than the OpenMP reference
code (43% when excluding mapper and partitioning code). Note that the line counts
in Figure |8.1] exclude common code used in both applications—specifically, the mesh
initialization code, which the Regent implementation borrowed from the reference.

The Regent implementation of MiniAero is about 30% shorter than the MPI+Kokkos
reference code (35% when excluding mapper and partitioning code).

In all cases, the lines of code reported for Regent include a mapper written in C++
that targets the Legion mapper API. The mapper column under Regent in Figure [8.1
reports the lines of code contained in mapper implementations for each application.
In practice these mappers are quite simple and the C++ code to implement one is
needlessly verbose. In the future, we are interested in investigating the possibility
of a domain-specific language for mappers that could potentially replace the C+-+
implementations used in these experiments. We have an initial prototype of such a
language, and the preliminary results are encouraging, suggesting that the lines of
code associated with mapping can be significantly reduced.

Each of the Regent implementations also includes code to partition regions into
subregions. The number of lines of code associated with partitioning is reported in

the partitioning column under Regent in Figure 8.1} The numbers reported here use
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Key | Optimization

map | Mapping Elision

leaf | Leaf Task Optimization

idx | Index Launch Optimization

fut Future Optimization

dbr | Dynamic Branch Elision

vec | Vectorization

all All of the Optimizations Above

Figure 8.2: Legend key for knockout experiments.

the current Legion partitioning API, which is known to be verbose. As noted in [70], a
more expressive sublanguage for partitioning can dramatically reduce the size of this
code. In fact, for each of the applications above, less than 10 lines of code are required
with the partitioning sublanguage. Once this support is available in Legion, this more

expressive sublanguage for partitioning will also be made available in Regent.

8.2.2 Impact of Optimizations

Next, to demonstrate the impact of the compiler optimizations performed by Regent,
we perform knockout experiments for each application, disabling each optimization
presented in Chapter [5|in turn. In addition, we perform double knockout experiments,
measuring performance with all possible pairs of two optimizations disabled, and
call out a few interesting combinations. As several of the optimizations impact the
achieved parallelism, we evaluate each configuration in a parallel configuration and
compare against the best sequential performance achieved by Regent. The labels for
the various optimizations are described in Figure [8.2] Pointer check elision has been
previously demonstrated to have a significant impact on performance |68 and has
been left out of the knockout to reduce clutter.

Figure [8.3] summarizes the results. Two classes of effects are visible. Some
optimizations (or pairs of optimizations), when disabled, result in a loss of parallel
execution. The combination of index launch and mapping optimizations is an example
of such a pair. Fortunately, there are relatively few such combinations. Most other
optimizations have a smaller impact, about 10-15%. While these effects may seem

inconsequential compared to a loss of parallelism, they are still important to overall
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Figure 8.3: Knockout experiments. The red line in each graph shows the best sequential
Regent performance.

application efficiency. An application without any of these optimizations would
lose a total of about 50%, an amount which is often considered unacceptable in
high-performance application development.

As mentioned above, certain optimizations impact the parallelism available in the
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application; index launch optimization and mapping elision are two such optimizations.
When both are disabled simultaneously, the code runs sequentially. (The red line
on each graph indicates the best performance on a single-thread.) As described in
Section the Legion runtime, in the absence of the map and unmap calls placed by
the compiler, must copy back the results of each task execution before returning control
to caller. This creates an effective barrier between consecutive tasks, but the effect
is not noticeable as long as index launch optimization is able to parallelize the task
launches. Disabling both optimizations serializes the code. But if either optimization
is disabled by itself, the application continues to run in parallel at somewhat reduced
throughput.

This redundancy allows Regent to be much more robust in the presence of dynamic
behavior. Traditional optimizations for parallelism can fail in situations where the
independence of tasks cannot be proven statically. In these situations, Regent is able
to fall back on the Legion runtime to discover parallelism dynamically. As a result,
most optimizations for parallelism, when disabled individually, have only a 10-15%
impact on overall performance. This impact is due to either unnecessary blocking,
stalls in the runtime analysis pipeline, or increased overhead, as noted in Section [4.1.4]
and thus is more noticeable in applications where the runtime overhead is already
more exposed. PENNANT is such an application, because the dynamic computation
of dt at the end of the time step loop prevents the runtime from running more than
one iteration ahead of the application. However, the result of a failed optimization in
traditional static compilers would be sequential execution, and in Regent this only
occurs when at least two optimizations fail.

Some more subtle effects are also visible in the knockout results. PENNANT’s
pattern of task launches is such that when leaf optimization alone is disabled, the
Legion runtime must stall for mapping to complete in order to ensure that all the
dependencies are correctly captured. Circuit and MiniAero are structured differently
from PENNANT and therefore are not impacted significantly by the absence of leaf
optimization (in combination with index launches or otherwise).

PENNANT also shows the most benefit from eliminating dynamic branches. In

contrast to Circuit and MiniAero which are generally compute or memory bound,
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certain performance critical kernels in PENNANT contain long chains of dependent
math instructions, which in turn depend on conditional memory accesses (when
dynamic branch elision is not enabled). At 10 cores, throughput improves by 15%
if dynamic branches can be eliminated. Dynamic branch elision does not have a
significant impact on the other applications and is hidden in those graphs to reduce

clutter.

8.2.3 Performance

We now consider the performance of Regent implementations of the three applications
against the various reference codes. Figure [8.4] shows the absolute performance of

each of the three applications while strong scaling.

Circuit

We compare the performance of Regent against a hand-tuned and manually vec-
torized CPU implementation written to the C++ Legion API. We evaluate both
implementations on a graph with 800K wires connecting 200K nodes. Figure
shows the strong scaling performance of Regent against the baseline C++ Legion
implementation running on up to 8 nodes on Certainty. Notably, the fully-optimized
Regent implementation—which is written in a straightforward way with no use of
explicit vectors or vector intrinsics, and is less than half the total number of lines
of code—achieves performance comparable to the manually vectorized C++ code,
exceeding the performance that can be achieved by using the LLVM 3.5 vectorizer

alone.

PENNANT

Figure [8.4b] evaluates Regent against an OpenMP implementation of PENNANT for
strong scaling a problem containing approximately 2.6M zones.

Regent performs better than OpenMP for all core counts up to 10, surpassing
OpenMP by 8% at 10 cores. Starting at 12 cores, Regent performance degrades

because the additional compute threads interfere with threads Legion uses for dynamic
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Figure 8.4: Initial strong-scaling performance.

dependence analysis and data movement. The Legion runtime is also unable to
exclusively allocate physical cores for each thread and abandons pinning altogether,
leading to increased interference between application threads.

PENNANT performance is sensitive to the NUMA architecture of the machine.
OpenMP performance was substantially impacted by CPU affinity, and a manual
assignment of threads to cores was needed for optimal performance. Regent automati-

cally binds threads to cores when possible and round robins threads between NUMA



CHAPTER 8. EVALUATION 98

domains, and thus performs well with minimal manual tuning.

MiniAero

Figures and compare strong scaling performance between a Regent imple-
mentation and the baseline MPI4+Kokkos version on a problem size with 4M cells and
13M faces running on up to 4 nodes on Certainty.

Regent outperforms MPI+Kokkos on 8 cores by a factor of 2.8X through the use of
a hybrid SOA-AOS data layout, as noted in Section [8.1.3] The improved data layout

substantially boosts cache reuse and improves utilization of memory bandwidth.

8.3 Control Replication Experiments

We evaluate performance and scalability of control replication in the context of Regent
with the five applications described in Section [8.1] For each application we consider
a Regent implementation with and without control replication and when available a
reference implementation written in MPI or a flavor of MPI+X.

For each application, we report weak scaling performance on up to 1024 nodes
of the Piz Daint supercomputer [7], a Cray XC50 system. Each node has an Intel
Xeon E5-2690 v3 CPU (with 12 physical cores) and 64 GB of memory. Legion was
compiled with GCC 5.3.0. The reference codes were compiled with the Intel C/C++
compiler 17.0.1. Regent used LLVM for code generation: version 3.8.1 for Stencil and
PENNANT and 3.6.2 for MiniAero and Circuit.

Finally, we report the running times of the dynamic region intersections for each

of the applications at 64 and 1024 nodes.

8.3.1 Circuit

We evaluate the weak scaling performance of a sparse circuit simulation based on
[13]. The implicitly parallel version from [13] was already shown to be substantially
communication bound at 32 nodes and would not have scaled to significantly more

nodes, regardless of the implementation technique. The input for this problem was a
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randomly generated sparse graph with 100k edges and 25k vertices per compute node
as described in Section [8.1.T} the application was otherwise identical to the original.

Figure shows weak scaling performance for the simulation up to 1024 nodes. (In
the legend control replication is abbreviated as CR.) Regent with control replication
achieves 98% parallel efficiency at 1024 nodes. Regent without control replication
matches this performance at small node counts (in this case up to 16 nodes) but
then efficiency begins to drop rapidly as the overhead of having a single master task

launching many subtasks becomes dominant, as discussed in Section [I.2]

8.3.2 PENNANT

Figure shows weak scaling performance for PENNANT on up to 1024 nodes,
using a problem size of 7.4M zones per node. The single-node performance of the
Regent implementation is less than the reference because the underlying Legion
runtime requires a core be dedicated to analysis of tasks. This effect is noticeable on

PENNANT because, due to the cache blocking optimization in the implementation
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Figure 8.6: Weak scaling for PENNANT.

of PENNANT (described in Section , the code is mostly compute-bound. This
optimization impacts even the data structure layouts, as the (otherwise unordered)
mesh elements are grouped into chunks to be processed together. In spite of this,
control replication applied seamlessly to the code, as the details of the cache blocking
optimization are limited to the structure of the region tree (which subsumes the chunk
structure of the original code) and the bodies of tasks (whose details are accurately
summarized by the privileges declared in the task declaration).

However, the performance gap which is visible at a single node closes at larger
node counts as Regent is better able to achieve asynchronous execution to hide the
latency of the global scalar reduction to compute the dt in the next time step of
the application. At 1024 nodes, control replication achieves 87% parallel efficiency,
compared to 82% for MPI and 64% for MPI4+OpenMP.
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Figure 8.7: Weak scaling for MiniAero.

8.3.3 MiniAero

As described in Section [8.1.3 MiniAero is a 3D unstructured mesh proxy application
that includes an explicit solver for the compressible Navier-Stokes equations. The
reference is written in MPI+Kokkos. In these experiments, we ran the reference in
two configurations: one MPI rank per core, and one MPI rank per node (using Kokkos
support for intra-node parallelism).

Figure[8.7shows weak scaling absolute performance for the various implementations
of MiniAero on a problem size of 512k cells per node. As described in Section [8.2.3
Regent out-performs the reference MPI+Kokkos implementations of MiniAero on
a single node, mostly by leveraging the improved hybrid data layout features of
Legion [14].

Control replication achieves slightly over 100% parallel efficiency at 1024 nodes
due to variability in the performance of individual nodes; as before, Regent without

control replication struggles to scale beyond a modest number of nodes. Although the
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Figure 8.8: Weak scaling for Stencil.

rank per node configuration of the MPI+Kokkos reference provides initial benefits to
single-node performance, performance eventually drops to the level of the rank per

core configuration.

8.3.4 Stencil

We test the Stencil benchmark from the PRK suite in its default configuration: a
radius-2 star-shaped stencil on a grid of double-precision floating point values. We
evaluate weak scaling performance on 40k? grid points per node, comparing Regent
with and without control replication against the MPI and MPI+OpenMP reference
codes provided by PRK. Both reference codes require square inputs and thus were
run only at node counts that were even powers of two.

As noted in Section [3.1] all analysis for control replication was performed at the
task and region level. Control replication was able to optimize code containing affine

access patterns, without requiring any specific support for affine reasoning in the
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Figure 8.9: Weak scaling for Soleil-X.

compiler.

Figure [8.8| shows weak scaling performance for Stencil up to 1024 nodes. Control
replication achieved 99% parallel efficiency at 1024 nodes, whereas Regent without
control replication rapidly drops in efficiency when the overhead of launching an

increasing number of subtasks begins to dominate the time to execute those subtasks.

8.3.5 Soleil-X

Figure shows the weak scaling performance of Soleil-X on up to 1024 nodes.
Soleil-X was configured to use a grid of 2562 cells and 1M particles per machine node.

We ran Soleil-X in two configurations: with a task per core, as programs normally
do in Regent; and with a task per node, using Regent’s support for OpenMP. Note
that this did not involve a C++ compiler in any way, or the use of OpenMP pragmas.
Instead, when configured to use OpenMP, the Regent compiler directly generates
calls to the OpenMP ABI for loops within tasks that can be executed in parallel (as
described in Section . Notably, Regent only optimizes loops in this way when it can

prove that the iterations are safe to execute in parallel, unlike traditional OpenMP, in
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Application Nodes | Shallow (ms) Complete (ms)
Civeuit 64 7.8 2.7
T 1024 143 4.7
. 64 15 17
Minifero o 259 43
64 6.8 14
PENNANT 1024 125 124
. 64 2.7 0.4
Stencil oy 78 1.3

Table 8.1: Running times for region intersections on each application at 64 and 1024
nodes.

which user-provided pragmas are trusted and thus unsound. Furthermore, on Legion,
the OpenMP ABI is provided by Realm, Legion’s performance portability layer. Thus
for the purposes of Regent, OpenMP is used to expose parallelism below the level of
Legion, and permits Regent to reduce the number of tasks that must be exposed to
the Legion runtime.

Soleil-X achieved 77% parallel efficiency at 1024 nodes with Regent support for
OpenMP enabled. Without OpenMP support Regent achieves similar parallel efficiency
up to 512 nodes. At 1024 nodes, the configuration without OpenMP experiences a
crash in the GASNet active messaging layer used by Legion.

Soleil-X also uses a dynamic time step as described previously with respect to

PENNANT, requiring the use of a scalar reduction to compute dt for each time step.

8.3.6 Dynamic Intersections

As described in Section [3.3.3] dynamic region intersections are computed prior to
launching a set of shard tasks in order to identify the communication patterns and
precise data movement required for control-replicated execution. Table reports the
running times of the intersection operations measured during the above experiments
while running on 64 and 1024 nodes. Shallow intersections are performed on a single
node to determine the approximate communication pattern (but not the precise sets
of elements that require communication); these required at most 259 ms at 1024 nodes

(15 ms at 64 nodes). Complete intersections are then performed in parallel on each
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node to determine the precise sets of elements that must be communicated with other
nodes; these took at most 124 ms. Both times are much less than the typical running

times of the applications themselves, which are often minutes to hours.



Chapter 9

Related Work

Parallelism research has a long history, both within the high performance computing
community and more broadly. To keep the following discussion manageable, we focus
on two areas. First, in Section [9.1] we consider parallel programming systems which
provide implicit parallelism, where the system is responsible to some degree for the
management of parallelism in the application. Second, Section surveys explicitly
parallel programming systems where parallelism is instead the responsibility of the
user. Regent provides aspects of both styles, though the primary thrust of the design

and our key contributions focus on the implicitly parallel aspects of the language.

9.1 Implicit Parallelism

Broadly speaking, implicitly parallel programming models are ones which provide
some form of sequential (imperative, functional or declarative) semantics. The system
is responsible, at least to some degree, for finding parallelism in the program, and for
generating correct parallel code that obeys the original program semantics. As a result,
implicitly parallel programming models typically rely at least to some degree on static
and/or dynamic program analysis to determine what parallelism is available in the
program. Note that parallelism in such programming models may still be user-visible
to some degree (e.g. the user may be asked to identify the portions of code that are

appropriate for parallel execution), though typically the use of sequential semantics

106
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isolates the user from traditional pitfalls of explicitly parallel programming as data

races and deadlocks.

9.1.1 Automatic Parallelizing Compilers

Automatic parallelizing compilers [19,37,43] attempt to generate parallel code from
programs written in traditional, sequential programming languages. This problem
has proven to be extremely challenging when the programs in question were written
without regard to parallelism—i.e. so-called “dusty-deck” programs, usually written in
Fortran. More success has been achieved for sequential programs in restricted domains.
In particular, programs consisting of affine loops are amenable program analysis via the
polyhedral method and can be automatically optimized by a compiler for distributed
memory, as shown in [21]. However, in practice this limitation is quite restrictive,
and many high-performance computing applications such as unstructured mesh codes
cannot be expressed in this form. The general problem remains unsolved for a static
compiler analysis and thus some form of dynamic analysis, changes to the programming
model, or both, are required. Regent uses a combination of carefully selected language
features and a hybrid static/dynamic program analysis and optimization, allowing it

to effectively address codes such as simulations on unstructured meshes.

9.1.2 Inspector/Executor Methods

Inspector/executor (I/E) methods have been used to compile a class of sequential
programs with affine loops and irregular accesses for distributed memory [53}54]. As
in control replication, a necessary condition for I/E methods is that the memory
access patterns are fixed within the loop, so that the inspector need only be run
once. Use of an inspector allows the read/write sets of program statements to
be determined dynamically when the necessary static analysis is infeasible in the
underlying programming language, enabling distributed, parallel execution of codes
written in conventional languages. This approach has been demonstrated to scale to
256 cores. However, the time and space requirements of the inspector limit scalability

at very large node counts. Also, the I/E approach relies on generic partitioning
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algorithms such as automatic graph partitioning [26},60].

Kwon et al. describe a technique for compiling OpenMP programs with regular
accesses to MPI code [47] that is similar to the inspector/executor method. A
hybrid static/dynamic analysis is used to determine the set of elements accessed by
each parallel loop. For efficiency, the dynamic analysis maintains a bounded list of
rectangular section fragments at communication points. As a result, non-affine accesses
cause analysis imprecision that results in replicated data, increased communication,
and limited scalability. The approach has been demonstrated to scale to 64 cores.

Like the two approaches above, Regent’s control replication optimization uses a
combined static/dynamic analysis to obtain precise information about access patterns.
At a high level, the key difference is that control replication leverages a programming
model with explicit support for coarse-grain operations (tasks), data partitioning (of
regions into subregions), and the simultaneous use of multiple partitions of the same
data. Control replication performs analysis at this coarsened level rather than at the
level of individual loop iterations, resulting in a more efficient dynamic analysis and in-
memory representation of the access patterns of each loop without any loss of precision.
Furthermore, hierarchically nested partitions enable control replication to skip analysis
at runtime for data elements not involved in communication (further reducing memory
usage for the analysis). Finally, explicit language support for partitioning allows
control replication to leverage application-specific partitioning algorithms, which are
often more efficient and yield better results than generic algorithms. As a result,
control replication is able to support more complex access patterns more efficiently,

resulting in better scalability.

9.1.3 Loop-Level Parallelism

In many parallel programs, it is common for the available parallelism to be contained
in loops. OpenMP [31] is a language extension for exploiting the form of parallelism
that is now in widespread use in high-performance computing. Programs in traditional
sequential languages can be incrementally converted into OpenMP programs by adding

compiler directives to loops instructing the compiler to execute these loops in parallel.
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OpenMP is explicitly unsound and does not attempt (and in fact cannot check) the
correctness of user-specified compiler directives. In general, OpenMP relies heavily
on shared memory to avoid the need for the user to describe or the compiler to
understand data movement in the application. OpenMP was originally intended for
use in single-node, shared-memory machines. Distributed implementations of OpenMP
are possible but challenging; of these the most successful to date has been the one by
Kwon et al. described in Section 0.1.2]

A number of other efforts to support OpenMP on distributed-memory machines tar-
get software distributed shared-memory (DSM) systems [11},39,/59]. These approaches
have reduced implementation complexity compared to approaches such as I/E that
leverage dedicated compiler and runtime technology, but have limited scalability due
to the limitations of general-purpose, page-based DSM systems.

In contrast, Regent leverages a sound type system [68,70], and thus can offer more
aggressive static and dynamic optimizations, allowing Regent to execute seamlessly

and efficiently in a distributed environment despite providing sequential semantics.

9.1.4 Fork-Join Parallelism

Fork-join parallelism is a style of parallelism where the application forks to execute
parallel work and then joins to wait on the completion of that work. As with Regent
in the absence of control replication, fork-join parallelism suffers from a sequential
bottleneck on the repeated creation and destruction of parallel workers during fork
and join operations. A compiler-assisted approach for generating SPMD code from
fork-join parallel programs—via the insertion of barriers—is well known [30]. However,
this approach depends on the use of shared memory, and generalizing the approach
to distributed memory requires a precise analysis of the memory accesses in the
application. It is exactly this analysis of memory accesses that Regent addresses via
control replication. By exploiting the structure of user-defined partitions, control
replication is able to achieve an effective and reliable transformation of implicitly
parallel programs into SPMD code for distributed-memory machines. In addition,

control replication uses point-to-point synchronization (rather than barriers), and
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preserves task parallelism to the extent that it exists in the application.

Cilk [2] is a well-known language for fork-join parallelism on shared-memory
machines. Cilk extends the C language with the keywords spawn to fork a task and
sync to join on forked tasks. The sequence of spawn and sync statements can be
viewed as defining a dependence graph between tasks, though the structures that
can be expressed are limited as the sync call blocks on all locally spawned tasks and
does not permit the specification of individual dependencies between tasks. Memory
accesses are not tracked by Cilk, making the language unsound, and thus the user is
responsible for ensuring that the necessary synchronization is in place; otherwise data
races may occur. Previous versions of Cilk supported distributed-memory machines
but with the restriction that there be no memory accesses at all except to parameters
or return values of tasks, severely limiting the expressiveness of the programming
model. In contrast, Regent employs a sound type in which the privileges (and thus
side-effects) of tasks are explicit, allowing the implementation to seamlessly provide
distributed-memory execution.

Cilk employs a work-stealing scheduler for tasks. This is also available in Regent
and is exposed via the mapper; i.e. in Regent the user can choose to use work-stealing

for tasks, or another generic or application-specific placement scheme, at their option.

9.1.5 Data Parallelism

Data-parallel languages are a subclass of general implicitly parallel languages that
restrict programs to data-parallel operators over collections of objects such as arrays.
Within the constraints of this subset, data parallel languages can make it very easy
to express certain classes of parallel algorithms and, as with other implicitly parallel
languages, avoid by construction pitfalls of explicit parallel programming such as data
races and deadlocks.

Efforts in data-parallel languages such as High Performance Fortran (HPF) [45,56]
pioneered compilation techniques for a variety of machines, including distributed-
memory. In HPF, a single (conceptual) thread of control creates implicit data-

parallelism by specifying operations over entire arrays in a manner similar to traditional
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Fortran. This data parallelism is then mapped to a distributed-memory system via
explicit user-specified data distributions of the arrays—though the compiler is still
responsible for inferring shadow regions (i.e. halos that must be communicated)
from array accesses. Several implementations of HPF achieved good scalability on
structured application [58/61]. The HPF specification provides extensions for very
limited support for sparse data in CSR format (and other similar formats), but no
implementations are available for these extensions and no extensions address more
general unstructured applications. Regent provides support for both structured and
unstructured applications, and Regent’s support for multiple partitions enable a more
effective hybrid static/dynamic analysis of the intersections of partitions, in Regent’s
control replication optimization, which serve a similar purpose to HPF’s shadow
regions.

The Chapel [27] language supports a variety of styles of parallelism, including
implicit data parallelism and explicit PGAS-style parallelism. This multiresolution
design reduces the burden placed on the compiler to optimize Chapel’s data parallel
subset because users can incrementally switch to other forms of parallelism as needed.
However, use of Chapel’s explicitly parallel features expose users to the hazards of
traditional explicitly parallel programming.

Compared to Regent, Chapel’s data parallel subset (which is most similar to
Regent’s implicit parallelism) only supports a single, static distribution of data, and
limited task parallelism. Regent’s support for multiple and hierarchical partitions is
critical for control replication to optimize implicitly parallel programs for efficient

execution on distributed memory machines.

9.1.6 Functional Parallelism

Parallelism has also been explored in the context of functional programming languages.
Functional languages provide a number of advantages in this regard. First, programs
are composed of functions that are side-effect free, and thus any functional programs
(not just those that are data-parallel) are trivially safe to execute in parallel. Second,

support for first-class and higher-order functions leads to a natural expression of
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parallel pattern such as map and reduce. In particular, these patterns enable certain
forms of data parallelism to be expressed naturally.

MapReduce [32] and Spark [74] are functional programming models that provide
support for data parallelism in distributed-memory environments. MapReduce pro-
vides support for only two operators, map and reduce, and only in a very specific
configuration where each function is only called once, and in a specific order (map
and then reduce). Despite the restrictiveness of this model, MapReduce is useful for a
variety of data processing workloads. However, for iterative applications, MapReduce
can be very inefficient as data is read from persistent storage (such as disk) on each it-
eration. Spark provides a broader set of operators and is designed so that intermediate
results in iterative applications can be maintained in memory and need not be written
to disk. MapReduce and Spark were both originally intended for use in industrial data
centers, and thus have been tuned for applications with very different performance
characteristics and more coarse-grained tasks than typical high-performance computing
applications. In order to efficiently parallelize an application, tasks in MapReduce
and Spark must generally be on the order of seconds or larger, whereas Regent and
other systems for high-performance computing are generally optimized for tasks on
the order of milliseconds or tens of milliseconds. Regent (with control replication) has
been demonstrated to efficiently schedule tasks of at this granularity on 1024 nodes
(12288 cores).

The use of execution templates to reduce control overhead [49] has been explored
as a way to improve the scalability of a centralized scheduler. Execution templates
can be created, modified, and executed dynamically. Thus execution templates permit
substantially more flexibility than Regent’s control replication optimization. However,
execution templates still require a centralized control to trigger execution, and thus
the overhead is O(N) (or O(log N)) where N is the number of nodes rather than O(1)

as it is in Regent with control replication.
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9.1.7 Nested Parallelism

NEsL [18] is a language for nested data parallelism. Nested parallelism provides two
advantages over traditional (flat) data parallelism. First, for applications with irregular
parallelism (where the iterations of the outermost parallel loop are themselves parallel
and take variable time), nested parallel implementations may be able to achieve
superior performance by exploiting better load balancing across processors. Second,
nested parallel languages promote composability of parallelism, which is increasingly
important as supercomputer architectures make increasing uses of deep memory
hierarchies.

Regent makes heavy use of nested data and task parallelism. Tasks may recursively
launch subtasks to expose additional parallelism to the system. Control replication
and other Regent optimizations apply locally to a task and thus are fully composable

with nested parallelism.

9.1.8 Implicit Task Parallelism

Task-based parallel systems attempt to overcome the limitations of traditional data
parallel languages by focusing on parallelism at the granularity of user-defined tasks.
Although there is considerable variation in the design of these systems, the unifying
feature of these systems is a directed acyclic graph of dependencies between tasks.
This dependence graph captures both data and task parallelism in an application and
leads naturally to asynchronous execution and aggregation of data transfers, both of
which are essential for performance on modern supercomputers. A key question in
the design of task-based systems is whether the specification of the dependence graph
is implicit or explicit. This section describes implicit task-parallel systems; explicit
systems are described in Section [0.2.3]

Among implicit task-parallel systems, dependencies between tasks are typically
determined automatically based on the arguments passed to tasks along with privileges
declared on task arguments. A key design question for these systems is how precisely
to track accesses to data. In particular, does the system support multiple partitions

of a given region, or only a single disjoint partition? We will first consider systems
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that support multiple partitions.

Models with Multiple Partitioning

Legion [13] is a runtime system for implicit task parallelism that leverages dynamic
program analysis to compute a dynamic dependence graph from programs with
sequential semantics. Legion provides extensive support for data partitioning [68,[70],
and in particular supports dynamic, multiple, hierarchical, and overlapping partitions
of a given region. This data model is very expressive and allows the programmer to
specify with precision the exact data required in each task. As a result, the dependence
graph Legion computes is an accurate representation of the data movement in the
program, enabling efficient distributed execution. However, due to its implementation
as a runtime system, implicitly parallel Legion programs suffer from a sequential
bottleneck in the analysis of tasks (and particularly the data usage of tasks) that can
inhibit scalability at large numbers of nodes.

Legion also supports the use of more involved explicit communication constructs
that enable scaling to very large node counts [14]. However, the explicit approach
can be time-consuming and error-prone, and was identified in a recent study [15] as a
challenge for this class of programming systems.

Regent targets the Legion runtime, but provides additional static checks that are
not possible in a dynamic runtime system written in a traditional language. Regent
leverages these static guarantees to offer control replication, which distributed Legion’s
dynamic analysis across multiple nodes so the overhead remains constant in the number
of nodes. Regent also allows the explicit style, although implicit parallelism is strongly
preferred. Regent (with control replication) can be seen as greatly increasing the
performance range of the implicit style, allowing more whole codes and subsystems of
codes to be written in this more productive and more easily maintained style.

Sequoia [35] is a language for array-based implicitly task-parallel programs. Sequoia
supports multiple, hierarchical, and aliased partitions of an array; however in Sequoia
the task tree and the sizes of arrays and partitions must be completely determined at
compile-time. The Sequoia compiler [46] thus has access to complete static information

about the structure of the program and data and can generate efficient code for
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distributed-memory targeting a low-level runtime system [41]. A number of additional
features allow the language to express certain classes of irregular parallelism [12],
however the data model of Sequoia is still restrictive and does not adapt well to
unstructured applications. This is in contrast to Regent, which allows substantially
more flexible behavior: in particular, the number of tasks, values of arguments to tasks,
and precise dependencies (and exact set of elements that must be communicated)
between tasks are all permitted to be dynamic, even when using control replication.

Sequoia, like Regent, provides a user-visible mapping interface which allows the
user to tune the execution of a Sequoia application. Unlike Regent, a mapping in
Sequoia is a static file and must be provided as an input to the compiler. Sequoia
provides an autotuner for the mapping interface [55] that is able to relieve the user
of the burden of manually mapping an application. In future work we would like to
explore similar facilities for Regent.

DPJ [20] is a language for region-based implicit task parallelism based on Java.
DPJ is similar to Regent in that it employs a region-based type system to track the
effects of tasks. However, unlike Regent, DPJ’s regions are not first class and are
simply static names for sets of objects. Parallelism is identified statically by the
compiler, and the compiler must be conservative in cases where disjointness cannot be
statically proven. As a result, DPJ’s support for partitioning is also more restrictive.
DPJ permits multiple, hierarchical partitions of arrays, but not aliased partitions,
and the set of supported partitioning operators is very limited. DPJ was developed
for shared-memory systems and has not been demonstrated on distributed-memory

machines.

Models with Single Partitioning

In contrast to the above, several task-based parallel systems allow only a single,
disjoint partition of a given region (or equivalently, no partitioning, in which case all
objects are disjoint by construction). This approach favors implementation simplicity;
in particular, a subregion may be identified by the index of the first element of the
subregion, making many of the sophisticated checks in Regent unnecessary. However,

this decision comes with a cost, as it significantly reduces the expressivity of the model.
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This makes it substantially more difficult to describe certain classes of applications in
a natural way, and critically reduces the precision of the information the system has
about data movement in the application.

StarPU [10] is a runtime system for implicit task parallelism on single (possibly
heterogeneous) node. Task dependencies are computed based on privileges and
arguments to tasks. Two extensions to StarPU enable distributed execution. StarPU-
MPI [9] adds support for explicit message passing via MPI. This approach exposes
the programmer to the hazards of explicit distributed programming. An alternative
extension generates MPI calls implicitly based on data usage in the program [8].
However, in this approach the sequence of tasks must be executed on all nodes, and
thus the time to submit tasks is not O(1) with the number of nodes (as with control
replication) but grows with the number of nodes. StarPU supports only a single
partition of a region at a time; this partition may be changed during the execution
of the program but must be changed simultaneously on all nodes, requiring global
communication to shuffle the data in addition to a global synchronization point. In
contrast, Regent supports multiple simultaneous partitions and only requires data
movement when the data is actually required by a remote task.

PaRSEC [22] is a runtime system for explicit task parallelism with a frontend
compiler that adds support for implicit task parallelism. The frontend compiler
takes as input programs with affine accesses over arrays and generates an explicit
task-parallel program targeted at the PAaRSEC runtime API. Unlike Regent, PaRSEC
does not provide support for implicit task parallelism for more general languages, thus
limiting the extent to which the approach can be applied to programs with sequential
semantics. PaRSEC only supports a single, disjoint partition of arrays.

OpenMP version 4.0 [4] provides support for shared-memory task-based parallelism
in traditional languages via compiler directives. OpenMP tasks declare privileges in,
out, or tnout on task parameters. Dependencies over tasks are computed based on the
privileges and the values of arguments passed to tasks; arguments may be pointers
to individual elements or dense array sections. However, as with OpenMP’s parallel
loop constructs, programmer assertions about task privileges are implicitly trusted,

and unlike Regent the compiler does not and cannot check these assertions soundly.
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Arguments to tasks are not permitted to overlap; thus OpenMP’s data model is
equivalent to a single, disjoint partitioning of data. For distributed-memory execution,
OpenMP tasks must be composed with an explicitly distributed programming model
such as MPI. Direct implementations of OpenMP with support for tasks on distributed
memory have not been demonstrated.

Jade [57] is an older programming language for implicit task parallelism. Jade
does not support data partitioning; instead objects are the units of data movement
in the system. This is equivalent to a system that allows only a single, disjoint
partition of a given region. Jade natively supports distributed-memory execution,
but due to inefficiency inherent in a model with only single partitioning has not been
demonstrated to scale efficiently on modern supercomputers. Regent employs multiple

partitions specifically to address these challenges.

9.1.9 Speculative Parallelism

Thread-level speculation (TLS) [52}/65] is a hybrid hardware and software approach
to parallelizing sequential programs. In TLS, iterations of loops run speculatively
in parallel, even when the compiler cannot prove statically that it is safe to do
so. Conflicting memory accesses are caught dynamically during execution and the
iterations that issued those accesses rolled back and re-executed. The mechanism for
determining conflicts relies on hardware support and piggybacks on the hardware’s
cache coherence mechanism. Therefore, TLS can be expected to scale as well as cache
coherence protocols in multi-core processors, i.e. to single nodes but not to the scale
of modern supercomputers. Regent’s control replication places more restrictions on

the program source, but in exchange provides scalability to large numbers of nodes.

9.1.10 Domain-Specific Languages

Domain-specific languages (DSLs) have a number of potential advantages over general-
purpose languages and runtimes. In particular, by restricting the input domain of
the system, DSL implementations may be able to exploit deep domain knowledge to

automatically parallelize programs with sequential or declarative semantics. However,
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DSLs by definition restrict the input domain of the language and thus any given DSL
cannot be expected to be applicable to all possible problems of interest.

Ebb [16] is a DSL for physical simulations. Ebb supports forall-style parallel loops
and is able to generate code for CPUs and GPUs via LLVM. Because Ebb and Regent
are both implemented in Terra [33], an implementation of Ebb using Regent is also
straightforward. Ebb programs are able to automatically take advantage of control
replication for efficient execution on distributed-memory machines.

Scout [50] is an embedded DSL in C++ that supports forall-style parallel loops.
Scout uses LLVM for code generation for CPUs and GPUs and leverages Legion for
distributed execution.

Delite [23] is a compiler framework and runtime for embedded DSLs on heteroge-
neous architectures for which a number of DSLs have been implemented [40,/66]. The
Delite compiler framework provides support for parallel patterns that can implemented
efficiently in hardware, in addition to general-purpose and domain-specific optimiza-
tions on those parallel patterns. The Delite backend compiler and runtime provide

support for code generation and execution on heterogeneous machines, respectively.

9.2 Explicit Parallelism

Explicitly parallel programming models are ones that provide explicitly parallel pro-
gram semantics. In general, such systems expose the user to the various and well-known
pitfalls of traditional parallel programming such as data races and deadlocks, and
frequently suffer from inferior ease of use compared to implicitly parallel programming
models. The trade-off justifying this cost is that often these programming models
are designed to offer as close to bare-metal performance as possible. The system
implementation offers no help to the user for finding parallelism in the program, but
this also means that the system cannot fail to find parallelism (e.g. due to an overly
conservative compiler optimization) because the parallelism is explicitly specified by
the user. It is a goal of Regent to provide superior ease of use (via sequential semantics)
while maintaining performance comparable to these systems at least for key classes of

codes of interest in high-performance scientific computing.



CHAPTER 9. RELATED WORK 119

9.2.1 Message Passing

Message passing, particularly via MPI [64], is the dominant programming paradigm on
supercomputers today. MPI is a SPMD programming model where multiple copies, or
ranks, of a program execute simultaneously (usually one rank per physical processor).
The address space in message passing models is not shared between ranks, and thus
the user must explicitly distribute data between the various local memories of the
ranks. Somewhat ironically, this distribution—though it must be explicit in the user’s
mind when designing the program—is not made explicit in the text of the program
source, thus compounding issues already inherent in explicit parallel and distributed
programming. The user is responsible for avoiding well-known pitfalls of explicitly
parallel and distributed programming such as deadlocks, mismatched message sends
and receives, non-determinism in control flow, etc.

Achieving overlap between communication and computation can be a challenge in
message passing models such as MPI. The asynchronous APIs provided by MPI require
the user to explicitly find other code to execute while waiting for the asynchronous
operation to complete. By definition, this code must be unrelated to asynchronous
operation, otherwise it would depend on the result of that operation. As a result, the
proper use of asynchronous constructs in MPI requires that the user apply contortions
to the code that can be particularly damaging to the readability and maintainability
of the code. In many cases, production applications select to prefer maintainability
over extracting the last ounce of performance from the code, and thus may leave
performance on the table [14]. Regent provides sequential semantics, but the underlying
execution proceeds by constructing a dependence graph of tasks which can be executed
in a deferred fashion, thus providing both better ease of use and potentially superior
performance.

When used in heterogeneous supercomputers, MPI is typically augmented to
produce various MPI+X programming models. For example, MPI4+OpenMP might
be used in machines with multiple cores per node and MPI+CUDA might be used
in machines with NVIDIA GPUs. These hybrid models introduce additional com-
plications. Data movement can be especially challenging. For performance, it is

desirable to perform data movement asynchronously and to overlap it with useful
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computation. By definition, the only computations that can be overlapped must
be unrelated to the data transfers, thus causing contortions to the code when this
optimization is applied by hand. In an MPI4+X model, this data transfer may need to
be performed in two parts: for example when using MPI+CUDA for GPUs separate
APIs are required for asynchronous copies via MPI and CUDA and their progress
must be monitored separately. Furthermore, the node-level programming model may
introduce additional synchronization points, such as OpenMP does at the end of each
parallel loop, potentially negating any gains made. As a result, it can be challenging
to properly exploit the performance benefits of heterogeneous supercomputers with
MPI+X. By targeting Legion, Regent is able to leverage a runtime system that fully
manages data transfers to and from any heterogeneous processors, improving the

performance portability of codes to such systems.

9.2.2 Partitioned Global Address Space

Partitioned Global Address Space (PGAS) languages such as Split-C [29], UPC [5] and
Titanium [3] address some of the pitfalls of explicit message passing. Unlike message
passing models, PGAS languages support a global address space. Thus pointers to
data are valid anywhere in the machine, though the data might not be present in
local memory. Attempts to access non-local data typically result in a message to the
remote machine; if these accesses are to individual elements, the accesses may be
very inefficient. Regent is similar to PGAS models in that the names of regions are
valid anywhere in the machine, and pointers to elements inside regions are effectively
indices that are also valid anywhere. Unlike PGAS models, Regent focuses heavily
on asynchronous execution and bulk data transfers to achieve efficient execution on
modern supercomputers. Regent also provides sequential semantics by default and

avoid pitfalls of explicitly parallel programming present in PGAS models.

9.2.3 Explicit Task Parallelism

Realm [69] and OCR [6] are runtime systems for explicit task-based parallelism on
heterogeneous distributed-memory machines. StarPU [10] and PaRSEC [22] also
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provide an explicitly task-parallel layer, though most end users are expected to use
the implicitly task-parallel interfaces to these systems. Tasks in these models take
events as preconditions and produce events as postconditions. These events may be
used by the application to construct a dependence graph over tasks. An advantage of
this approach is that the overhead of launching tasks is reduced as there is no built-in
dynamic analysis to determine the dependence graph. However, due to the nature
of the task abstraction, the runtime system itself has no knowledge of the desired
behavior of the underlying application and thus has no way to ensure correct execution
of an application written for its interface. The programmer is thus exposed to most of
the traditional hazards of explicitly parallel programming. In practice, these systems
are not designed to be targeted directly by the end user but by the designer of a
higher-level system such as Regent which will typically take responsibility for the
discovery of dependencies between tasks.

Concurrent Collections (CnC) [24] is a graph specification language for explicit
task parallelism. Unlike the systems above, where tasks and dependencies are created
dynamically via runtime calls, in CnC the dependence graph is specified statically in
a graph specification language. To capture certain forms of dynamic behavior, the
CnC graph describes not only data dependencies but also control dependencies. Tasks
themselves are specified separately and are not able to be checked by the system for
adherence to the CnC graph specification.

Uintah [51] is a domain-specific runtime system for programs operating on struc-
tured meshes. Uintah supports tasks that operate patches of a mesh, and manages
asynchronous execution and data movement between tasks. Dependencies between
tasks are specified explicitly and are the responsibility of the user, though certain
classes of bugs such as cycles in the dependence graph can be caught automatically

during program execution.

9.2.4 Places

X10 [28] is an explicitly parallel programming language with places and hierarchical

tasks. Places identify distinct local memories and the compute resources associated
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with them. As with PGAS models, pointers to data are valid anywhere in the machine;
however unlike PGAS models only local data may be accessed directly, and remote
data must be accessed by performing a task launch on the remote node. Places
support the launching of asynchronous tasks that may explicitly move computation
and data around the machine. As a result, programming with places is explicit parallel
programming.

Flat X10 [17] is a subset of this language that restricts programs to a two-level task
hierarchy where the top level consists of forall-style parallel loops. A compiler for Flat
X10 is able to transform the program into a SPMD-style X10 program with explicit
synchronization between tasks. However, as the original Flat X10 program already
contains explicit communication (in the form of remote task launches), the compiler
need not make changes to the structure of communication in the program. In contrast,
control replication is able to automatically generate efficient explicit communication

for an implicitly parallel program with implicit data movement.

9.2.5 Actors

Charm++ [44] is an actor-based programming model for high-performance computing.
Actors represent units of locally-addressable data and methods that may be invoked
on that data. Actors may be moved dynamically between nodes for load-balancing
purposes. Actors are similar to tasks in that they lead to a natural expression of task
parallelism in the application, and the chain of method calls between actors can be
seen as forming a dependence graph of sorts. Actor-based programming is explicitly

parallel programming and subject to the normal pitfalls therein.



Chapter 10
Conclusion

This thesis has presented Regent, a programming language for task-based implicit
(and explicit) parallelism inspired by the Legion programming model. Regent uses
a combination of static and dynamic analysis, compile-time program transformation
and runtime scheduling to achieve performance on modern supercomputers. For
several classes of programs of interest in high-performance scientific computing, such
as unstructured mesh codes, Regent is the first (to the best of our knowledge) to
demonstrate practical levels of scalability (up to 1024 nodes and 12288 cores) for
implicitly parallel versions of these codes. Essential to these results are a number
of static optimizations performed by the Regent compiler, and in particular a novel
control replication optimization that automatically transforms implicitly parallel
programs into scalable SPMD-style codes.

Regent has been used to develop several mini-applications, as the backend for a
DSL for grid and particle based codes, and has even served as the basis of a Stanford
course in parallel programming. In this time, we have validated that Regent works for
the use cases for which it was intended. We have also identified a number of use cases
which require additional thought and investigation.

Today, Regent users still need to write custom mappers in C++. This is something
that affects many first-time users as they begin performance runs of Regent applications.
The C++ mapping interface is verbose, which is unsurprising, given the power it

exposes, and that it is expressed in C++. For a while now, we have thought it would
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make sense to design a complementary language to Regent for writing mappers. Such a
language could radically reduce the burden of tuning a Regent application for different
architectures.

Regent’s choice to target Legion has allowed very rapid development of the language.
However, Legion’s dynamic analysis also imposes a cost that has at times been
limiting—thus the focus on control replication to make Regent applications scale.
Having demonstrated that control replication works effectively in Regent, we are
now investigating whether a similar optimization can be provided directly by the
Legion runtime. A difference between Regent and Legion is that in order for Legion
to effectively apply control replication, changes will need to be made to the program
source. For example, it is only reasonable to dynamically control replicate programs
already phrased in terms of index launches. There will likely be other restrictions,
and in general these will be properties that Legion cannot check on its own, but will
rely on the programmer to maintain. In this sense, while we hope to provide some
of the same performance benefits in Legion proper, the soundness benefits can only
come from a compiled language such as Regent.

Another possible avenue of investigation would be to attempt to generate a static
dataflow program, bypassing Legion’s dynamic analysis (at least within the context of
a task) and generating code directly to Realm, Legion’s underlying execution layer.
Regent’s control replication optimization, as a by-product, produces what can be seen
as a static representation of the program’s dataflow. While control replication itself
only uses this to generate explicit copies and synchronization, a similar optimization
could potentially generate direct calls into a lower-level API such as Realm. The
upside would be much lower runtime overhead, enabling Regent to perform efficiently
with much more fine-grained tasks.

A compelling property of Regent, and other task-based models, is how they
focus on application structure (trees of tasks and regions, and their dependencies or
relationships) rather than execution on a particular machine. This structure makes it
easier to target complex hardware. Ultimately, by making the hardware easier to use,
task-based models such as Regent enable hardware architects to be more aggressive in

their designs. In an era where Moore’s Law may soon end, this may be turn out to be
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critical to continued improvements in performance.
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