2

Additional Exercises for

The Calculus of Computation by Aaron R. Bradley and Zohar Manna (published by Springer)

October 29, 2007

This document contains exercises of two types: those that we failed to think of before publication; and those that address technical errors in the book.

Chapter 7

1. (*Divides constraints) Prove the important direction of Theorems 7.13 and 7.15: that solutions to the original divides constraints are reported as solutions.

Chapter 10

- 1. (Theories with Equality) In Chapter 10, we failed to appreciate a subtle point: the concept of stably infinite theories is typically treated in the context of a variation of FOL in which equality is explicitly part of the logic (see [92]), whereas we treat the predicate = like any other. When equality is explicitly part of the logic, each domain element of an interpretation differs from every other element. However, when = is interpreted (for example, in $T_{\rm E}$), a domain may have multiple elements that are deemed equal. This situation interferes with the definition of stably infinite. ((a) Why?) The following two corrections address the issue:
 - Correction of definition on page 284: A theory T has equality if its signature Σ includes the binary predicate =; its axioms imply reflexivity, symmetry, and transitivity of equality; and its other functions and predicates obey the (function congruence) and (predicate congruence) axiom schemata.
 - Correction of definition on page 270: A theory T that has equality is **stably infinite** if for every quantifier-free Σ -formula F, if F is T-satisfiable, then there exists some T-interpretation that satisfies F and that has a domain whose quotient by (the interpretation of) = is of infinite cardinality; that is; there is an infinite number of unequal elements.
 - b) Suggest a theory that is not stably infinite but that would be considered "stably infinite" according to the definition in the book. *Hint:* See Example 10.2 on page 270, but add the axioms of equality. Why is it actually stably infinite?
 - c) Describe a method for constructing from any interpretation of a theory with equality a similar interpretation but in which each element of the domain differs from every other element according to the interpretation of =. Hint: Recall from Chapter 9 that the quotient of a set by

- a congruence relation is a set isomorphic to taking one representative per congruence class.
- d) What problem does the incorrect definition of *stably infinite* cause in the proof of Theorem 10.16?
- 2. (*More than two theories) To extend the Nelson-Oppen procedure to n theories $T_1, \ldots, T_n, n > 2$, one could in principle compose the theories incrementally: combine T_1 with T_2 ; then combine $T_1 \cup T_2$ with T_3 , and so on. However, one additional fact is needed: the combination theory $T_1 \cup T_2$ is stably infinite if both T_1 and T_2 are stably infinite. (Please review the previous exercise first.)
 - a) Prove that the correct definition of **stably infinite** given in the previous exercise is equivalent to the following statement: A theory T with signature Σ is stably infinite if for every quantifier-free Σ -formula F, each T-interpretation I of F can be extended to a T-interpretation whose domain has infinite cardinality (and in particular is such that the quotient of the domain by = also has infinite cardinality; that is, there is an infinite number of unequal elements). Hint: Consider constructing a Σ -formula describing a given interpretation with a finite domain.
 - b) Use this new definition to argue that $T_1 \cup T_2$ is stably infinite when T_1 and T_2 are.

Chapter 11

1. (Sets and Multisets)

a) Define a theory T_{S} of finite sets with signature

$$\Sigma_{\mathsf{S}} = \{=, \ \cup, \ \setminus, \ \subset, \ \in\}$$

that includes the basic set operations union $(s_1 \cup s_2)$ and set complement $(s_1 \setminus s_2)$, which consists of the elements of s_1 that are not elements of s_2); and predicates subset $(s_1 \subset s_2)$, membership $(e \in s_1)$, and equality $(s_1 = s_2)$. Describe a decision procedure that reduces quantifier-free Σ_S -formulae to equisatisfiable Σ_A -formulae in the array property fragment.

b) Define a theory T_{M} of finite multisets with signature

$$\Sigma_{\mathsf{M}} = \{=, \ \uplus, \ \setminus, \ \mathsf{C}, \ \subset, \ \mathsf{setof} \} \ .$$

A multiset is like a set except that it allows multiple occurrences of elements. The *count* function $\mathsf{C}(s,e)$ returns the number of occurrences of e in s. $s_1 \uplus s_2$ is the multiset union of s_1 and s_2 : $\mathsf{C}(s_1 \uplus s_2,e) = \mathsf{C}(s_1,e) + \mathsf{C}(s_2,e)$. For multiset complement, $\mathsf{C}(s_1 \setminus s_2,e) = \max(0, \mathsf{C}(s_1,e) - \mathsf{C}(s_2,e))$. Similarly, $s_1 \subset s_2$ iff $\mathsf{C}(s_1,e) \leq \mathsf{C}(s_2,e)$ for all elements e of s_2 . Finally, the setof function maps multisets to sets: $\mathsf{C}(\mathsf{setof}(s),e) = 1$ iff $\mathsf{C}(s,e) > 0$, and 0 otherwise. Describe a decision procedure that reduces quantifier-free \varSigma_M -formulae to equisatisfiable \varSigma_A -formulae in the array property fragment.