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Abstract—An  incremental algorithm for model checking SCC graph. Given a selection of states, calledkaleton
progress properties is proposed. It follows from the folloing  that together satisfy the fairness conditions, one canepvisv
insight: any SCC-closed region of a system’s state graph cae  gafety queries that (1) at least one of the states is unrblcha
represented.by a sequence of inductive assertions. Eachrigion from the system’s initial condition: that (2) one of the skeh
of the algorithm selects a set of states, called a skeletorhat Yy iy
together satisfy all faimess conditions; it then applies afety States cannot reach another, providing a one-way wall; air th
model checkers to attempt to connect the states into a reache  (3) the skeleton can actually be completed to form a “lasso”-
fair cycle. If this attempt fails, the resulting learned lemma  shaped counterexample. How to use the second outcome is the
takes one of two forms: an inductive reachability assertionthat crux of the algorithm.

shows that at least one state of the skeleton is unreachable, . . .
or an inductive wall that defines two SCC-closed regions of Suppose thar” is the one-way wall, an |nduct|ve_ proof that
the state graph. Subsequent skeletons must be chosen enijre one skeleton state cannot reach another. Any fair CyCle must
from one side of the wall. Because a lemma often applies more occur completely on one side of the wall: all of its states
generally than to the one skeleton from which it was derived, must either satisfyP, or they must all satisfy-P. For once
property-dlrected abstraction is achieved. The algorithmis highly a path crosses the wall, it cannot return. Hence, when finding
parallelizable. h . .

fair cycles, the transition relation can be strengthenedhiey
constraintP «» P’, which excludes transitions that cross the
wall P. (Technically, becausg is inductive, only-P — —P’

An incremental-style analysis, one that generates maRynecessary.) This constraint is the incremental infoionat
intermediate lemmas on the way to a proof, yields propertgxpressed by the lemm&. Subsequent skeletons must be
focused abstraction, speed, and the possibility of pdisatie chosen from one side of the wall or the other, and eventually
IC3 demonstrated the power of incrementality for safety eiodevery reachablarenadefined by the sequence of walls must
checking [1]. In this paper, we introduce an increment@dlecome unfair, if the progress property indeed holds. Aiatuc
algorithm for model checking progress properties [2] thaharacteristic of a proof, when IC3 is used as the safety inode
harnesses safety model checkers. checker, is that it potentially splits many arenas, not fhst

While alternatives exist for lifting safety model checkéws arena from which the skeleton was selected. Hence, not every
progress properties [3], incrementality in itself is a viivhile arena need be examined explicitly.
goal—whether one is using parallel resources to implementAfter introducing the problem domain (Section II), Section
a portfolio of many safety model checkers [4] or applyingll describes the algorithm in detail. Then Section IV rekat
the resources to accelerate computation [1]. In additiomsto the proposed algorithm to previous work. Finally, Section
ing computational resources well, an incremental-stylel@ho V investigates empirical characteristics of the algoritim
checker generalizes from specific cases of why the propergfation to other well-known techniques.
might not hold to intermediate lemmas about aspects of the
system that are relevant to proving the property. In this,vitay
achieves property-focused abstraction of the system, igad | Following standard practice, we representfiaite-state
a human verifier, it invests relatively litle computatiomta systemas a tupleS : (i, =, I(z), T(i,Z,7’)) consisting of
discovering each lemma. primary inputsi, state variables, a propositional formula

An SCC-closedregion of the state graph is such thaf (Z) describing the initial configurations of the system, and
every SCC gtrongly connected compongrng either entirely a propositional formulal'(i,z,7') describing the transition
contained in the region or entirely disjoint from the regidhe relation. Primed state variablas represent the next state.
fundamental insight for making an incremental progressehod A state of the system is an assignment of Boolean values
checker is that any SCC-closed region of a system'’s staphgrao all variablesz and is described by aubeoverz, which,
can be represented by a sequence of inductive assertionsgénerally, is a conjunction of literals, eatiteral a variable
other words, intermediate lemmas to characterize the SC@sits negation. An assignmeastto all variables of a formula
of the state graph can take the form of inductive assertiorfs.either satisfies the formula, = F, or falsifies it, s [~ F.
Each assertion definesocme-way wallthat transects the statelf s is interpreted as a state and= F, we say thats is

I. INTRODUCTION

Il. BACKGROUND



an F'-state A formula F' implies another formulaG, written Becauses is finite-state, a nonempty language described by

F = G, if every satisfying assignment df satisfiesG. systemS with fairness conditions must have a computation
A clauseis a disjunction of literals. A subclauseC cis a that takes the form of aeachable fair cycle a “lasso”
claused whose literals are a subset @$ literals. consisting of a “stem” (a finite run) from an initial statg,
A runof S, sg,s1, s2, ..., which may be finite or infinite in so |= I, to an intermediate statg, and a “loop” (also a finite

length, is a sequence of states such that= I and for each run) froms; back to itself that contains at least one staje

adjacent paif(s;, s;+1) in the sequenceji.(i,s;, s;,,) = T. satisfying each fairness conditids;. Our algorithm searches

That is, a run is the sequence of assignments in an executiohsuch reachable fair cycles.

of the transition system. A state that appears in some run of

the system igeachable _ _
An invariance property P(Z), a propositional formula, A- The Basic Algorithm

asserts that onlyP-states are reachabl@ is invariant for The algorithm works in the following manner. It iteratively

the systemS (that is, S-invariant) if indeed onlyP-states executes akeleton queryo obtain a set of states that together

are reachable. IP is not invariant, then there exists a finitesatisfy all fairness conditions. If the query is ever ursfible,

II1. Fair: AN INCREMENTAL ALGORITHM

counterexampleun sg, s1,...,s; such thats, % P. An the algorithm concludes that the languageSofs empty. It
invariance propertyP(z) is inductiveif next attempts to complete the skeleton into a reachable fair
1) (initiation) every initial state satisfies the propertyCycle by executing a set of safety model checking queries
I(z) = P(z); and to connect the initial states to one state of the skeletod, an
2) (consecutiopevery transition from aP-state leads to a €ach state of the skeleton to another in such a way as to
P-state:P(Z) AT (i,Z,T') = P(T'). create a cycle. If it succeeds, then it has found a reachable

fair cycle and thus concludes that the languageSaf not
empty. Otherwise, one of the safety queries fails and retam
inductive proof. If thestem querywhich attempts to connect
L X an initial state to a skeleton state, fails, then the proo¥igies

2 F EaE,Sf'eS C(insecut_.lo_n E/nder asE}Jmpt[étn new global unreachability information. If@/cle querywhich

G @) ANF@)AT(,7,T) = F(I@). attempts to connect one skeleton state to another, fags,ttre

Relative induction is useful for gaining knowledge about groof yields new information about the SCC structureSofn
system in an incremental fashion [2]. particular, the proof says that a fair cycle, if one existsist

Checking asafety propertyf S is reducible to checking an occur completely on one side or the other of the inductive
invariance property. While the work described in this papgkoof (that is, all states of the cycle must satisfy the proof
makes use of safety model checkers, the primary focus is @nall states must falsify it). Both situations thus cause th

analyzingprogress propertie$2]. For this purpose, we needalgorithm to make progress, so that it eventually must find a
to introducefairnessinto our system models. Buchi fairess reachable fair cycle or conclude that one does not exist.
condition B(7) of a systemS is a propositional formula that |y detail, consider systerfi : (i, =, I(z), T(G,T,%), B:
constrains the infinite runs d: infinite runso, s1,s2,...i1sa {By,..., B,}). Let R denote a growing list of global reacha-
computationof S if infinitely many s; satisfy B, s; = B. We  bility assertions, each of which is inductive relative t fire-
represent a system with fairness conditions as the augtherdecessors and provides information about unreachablkesstat
tuple S : (4, 7, 1(Z), T(i,7,7'), B:{B1(T),...,Be(T)})- Let W denote a growing list ofvalls that no fair cycle can
The fundamental question that this paper addresses is that@ss, each of which satisfies consecution relative to pusky
language emptines®oes.S lack computations? generated walls an®R, as discussed in detail later. Walls

Model checking LTL properties of systems motivates thigepresent learned information about the SCC structure ef th
problem. Deciding whether a systeshsatisfies LTL property state graph ofS. A set of walls W defines2™! (possibly
P is reducible to checking language emptiness of the systefpty) arenas; each arena (and, consequently, any union of
constructed as the parallel composition $fand theBuchi  arenas) is SCC-closed. Both lists are empty initially.
automatonA for —P. The resulting system inherits the fairness The skeleton gueryreturns askeletonor, if unsatisfiable,
conditions ofS as well as one additional fairness conditionindicates that the language 8fis empty. A skeleton consists
the Blichi acceptance condition df of a set of states that together satisfy all fairness camti

A fairness conditionB of S is weak [5] if for every The query requires (in its complete form, but see SectieB)lI
computation ofS there existsk such thati > k£ = s; = B. one copy ofz for each fairness conditioB € B:
Weak fairness conditions correspondpersistence properties

An assertionF" is inductive relative toanother assertion,
possibly containing primed variables, if

1) every initial state satisfie8: I(z) = F(7); and

[2]. Multiple weak conditions can be reduced to just one weak B(zp) A /\ R(Tp)

condition so that the search for fair cycles can be restticte RER

to the reachable states that lie on some cycle where the weaks | /\ (ew = W(TB)) A (mew — ~W(Zp))
condition holds globally. When a fairness condition 9fis wew

inherited from a Buchi automaton, its strength is at most tiThe first line of the query requires that the states of a model
strength of the fairness condition of the automaton [6]. be such that each fairness condition is represented bysstate



not known to be unreachable. The second line requires thatabssing the wall is pointless when searching for a cycleesin
states of a model come from the samwena that is, are on it cannot be crossed agaiR. can thus be added 9/, the list
the same side of each wall € W. Thechoice variablesy, of walls that no fair cycle can cross.
for W € W achieve this requirement: a model can only have However, this query does not exploit known information.
one assignment to each choice variable, and that assignnfemta cycle query, each wall” € W constrains the transition
determines on which side of each wall the skeleton appean®lation as follows:

If the skeleton query is satisfiable, any model describes, |f no 1/-skeleton(a skeleton whose states dilé-states)
some set of state§so, ..., s,—1}, wheren < |B|, that satisfy exists, then-TW A —IV".
the fairness conditions, that are not known to be unreaehabl , |f no —11/-skeleton exists, thefi” A TW'.

and that are not separated by any previously discovered wal| Otherwise (if both sides contain skeletons), <> W"'.

(n < |B] if some state satisfies multiple faimess ConOIitiOnl:cinfortunately, encoding the full constraints in the cycle

?nd appleatlrsthorektTatn or_lcte). The ta;]skt;lthsq, IS t(I) atte ries requires a quantifier alternation. Instead, eashna!
0 compiete he skeleton Info a reachable fair cycle or, is tested to learn a new constraint @h such constraints

Fhe att.empt fails, to Iegrn new information in the form of a re collected in theonstraint listC:

inductive reach assertion or a wall about why any reachable , , .

cycle of S cannot contain all of the states of the skeleton.  * If no W—skeleton_ e?(|sts, t_hen adﬁW A ﬁ.W - (Techni-
Any safety model checker that produces counterexample Cally: becauséV” is inductive, ~IW" is sufﬁment.) _

runs or inductive proofs can address this task, although we® If no ~1V-skeleton exists, then adé AW’ (Technically,

discuss later why proofs from certain model checkers, like W is S‘%ff'c'e“t-) , , , .

IC3, make better walls. Leteach(S, C, F,G) be a function * Otherwise, addV’ & W' (W' — W is sufficient.)

that accepts a systess, a set of constraint€’(z,z') on the ~ * Optionally, if W is determined (heuristically) to be un-

transition relation, an initial conditio®’, and a target; and interesting for constraining’, do not add a constraint.

that returns either a counterexample run fromrastate to a It is also possible to exclude regions defined by multiple

G-state, or an inductive prod?(z) separating” from G, that walls—even individual arenas—that lack fair skeletonswHo

is, such that ever, this more general heuristic, while potentially usafihe
. F(z) = P(@) beginning of the analysis, is too expensive for general Tise.
. P(T) > ﬂG(E') and list C is used to constraifi’ during the cycle query:
e« C(x,T)ANP@)AT(i,z,T') = P(T).
Notice thatP is inductive relative to the constrains. reach <S, /\ R A /\ C, si, Si%l) . ()
ReR cecC

For ann-state skeletony + 1 reach-queries are required.
Onestem quendetermines if the skeleton is reachable, giveThis query is satisfiable precisely when the naive cycle
the learned reachability informaticR: query (2) is satisfiable. However, a proof discovered during

evaluating this query need only be inductive relative to the
) (1) information contained ik andC rather than on its own.

There is one technicality: when there is only one state in

the skeleton, the form of the single cycle query is differént

reach <S, /\ R(z), I, so
RER

This query asks whethey is reachable from af-state. While ™. | kel | a ; i
the previous reachability information is not necessaryisit single-state skeleton cycle queagtermines if a state, can

provided to restrict the search. One could instead pose fif@ch itself nontrivially, which is stated as a query deiamy
more general query in which the disjunction of all skeletofn€ther the successors gf can reactso:

states,\/?:_o1 s;, IS the target; or pose queries, one for each

states;, depending on computational resources. If an instance ~ reach <S, /\ BRA N C, post(S, s0), So) )
of a stem query is unsatisfiable, the proof is adde®to RER cec

The remaining: queries areycle querieswhich determine (Safety model checkers such as IC3 can be modified in such
if each states; can reach a successefs,1, Where @, is a way that the post-image does not have to be computed
addition modulon. One can pose up te* queries if the explicitly.) Additionally, a proofP does not eliminate the same
computational resources are available. These queries@m nykeleton from further consideratio®, as a wall, separates
complicated than the stem query because more previousdy-(which satisfies—P) from its successors (which satisfy
derived information can be used. P). However, s, can be selected as a skeleton again. There

A naive cycle query takes the following form: are several solutions to avoid this nontermination situmati
@) (1) constrain the skeleton query so that only states with

some successors in the same arena can be selected, (2) for
If s, cannot reaclhs,q,,1, then the query returns an inductivea cycle proofP, construct a wall defined by = P and
proof P: s; = P, PAT = P', andP = —s;9,1. P isa —-W = -PA-sginstead of the usual wall defined by = P
wall: no cycle can cross it because Restate has anP-state and-W = —P. More powerful refinements of each of these
successor. While a-P-state can have &-state successor, solutions are discussed in Sections IlI-B and 11I-C.

reach (S, true, s;, Sig,1) -



If all queries (1) and (3/4) return counterexamples, thesrumodified algorithm finds a mapthat (heuristically) minimizes
are assembled into a computation that takes the form of @,laghe number of unique indices while still producing a satidéa
proving that the language 6fis nonempty. Otherwise, a proofquery. If because of new information the query becomes
P returned by the stem query provides new global reachabiliysatisfiable, a new map, which may have the same number of
information, soP is added tdR; or a proofP returned by one unique indices but must at least combine conditions diffeye
of the cycle queries provides new information about the SAG€generated. Only when the query corresponding to a bigcti
structure ofS, so P is added to the set of wall3)y, and a mapping is unsatisfiable does the algorithm conclude that th
new constraint may be derived frof and added t@. Then language ofS is empty.
with this new information, the algorithm again executes the The second enhancement reduces the number of poten-
skeleton query. The new information is sufficient to excludgal skeletons by requiring selected states to have naalriv
the same skeleton from being selected again. sequences of successors and predecessors. For each unique
Several aspects of this basic algorithm are nondeterriunishdex,2K unrollings of the transition system are asserted with
and thus invite further detail and heuristics: time-steps ranging from-K to K. An additional constraint
« Selection of the skeleton (Section I1I-B). asserts that either the predecessor sequence or the srccess
« The order in which the stem query and cycle queries aggquence includeg) , itself, or otherwise that the predeces-
executed (Section I-F). sor sequence and the successor sequence are each loop-free,
« The proofs themselves (Section II-D). yielding the following skeleton query:
o Whether to derive a new constraint @hfrom a wall V. - 0 K
Technically, none are required for completeness; using B(xj(B)) A /\ R(Ij(B))
some accelerates the search; and using all can slow the ReR . b kg1
search. Our implementation derives a new constraint from A /\ T(ij(p), Tj(B)> xj(B))
W if one side of W lacks skeletons or if/ consists of Re{—K,... K—1}
a single clause. /\ \/ Ty = T
Section IlI-E discusses an incomplete but effective method | he{-K,...=1,1,... K}
of discovering information about the SCC structure indepen vV (loopFree, A\ loopFree.)
dently of skeletons. AN (ew = W(T;5))) A (mew = =W (T[(p)))
L wew _

B. Choosing Skeletons
here

w
We discuss two enhancements to the basic algorithm. The

firs_,t minimizes the number of states in skeleton_s by formu—loopFree<0 = /\ /\ f;?(B) #* fﬁ(B) ,

lating the skeleton query to force states to satisfy mutipl ke{-K,...,—2} €{k+1,...,—1}

fairness conditions when possible. The intuition is that thandl F is similarly defined

discovered walls might explain more if the separated statés oopFree>o y '

satisfy multlp_le fairness conditions. The second enhaecem Single-State Skeletons

adds constraints to the skeleton query to force a selecatel st , ,

to have at leask-step successor and predecessor sequence&ecall that single-state skeletons must be handled via a

of different states within the arena, unless some statedseth Single-state cycle query (4) that determines whether tiee su

sequences is the state itself. This enhancement effectivEFSSOrs Ofso can reachs. If the query returns a proop,

reduces the number of skeletons to consider. For> 0. then the successors sf must satisfyP since they define the

single-state skeletons with no successors cannot be qrmeﬂnitial condition, whiles, itself must falsify P since it defines

that this enhancement addresses the termination issteiral§€ target. In other words, the proéf cuts the state space

in the previous section. directly through the transitions betwesg and its successors,
To (heuristically) minimize the number of states selecte§© thatso is on the edge of an arena. _
let j : B — {1....,|B|} be a map from the Biichi faimess Consequently, the following propositional query, whicksas

conditions ofS to indices, wherg can map different fairness If so has any-P-successor, must be unsatisfiable:
conditions to the same index. The skeleton query then has the /
following form: so NP AT A /\ A /\ RASE

cec RER
B(@j) N )\ REix) From the unsatisfiable core one can extract a ciibgé s
/\ RER whose - P-states lack—P-state successors. Its negation can
Ben | /\ (ew = W (Zjp))) A (mew = W (Tj(p))) be conjoined to-P to form one side of the wall=P A —d,
wew which eliminates at leasty from consideration.
Potentially fewer copies of the assertions are required. If a successor state of sy is known, for example, when

Of course, the query is only complete, in the sense that & > 0 (Section IlI-B), a similar query can test whethehas
unsatisfiability implies the emptiness of the languageSof P-predecessors. If not, one can extract a cdiliet from the
when each condition is mapped to a unique index. Hence, ttare and strengtheR with —d.



D. Refining IC3 Proofs proof have skeletons, g, ;1 <+ b/,_; constrains future

IC3 discovers inductive proof® in CNF [1]. While ade- cycle queries. . . _
quate as certificates of unreachability, which is what matte ¢ Inductive (relative to previous walls) assertian ., since
in the context of safety model checking, the proofs can be ©Onceb, » becomes 1, it stays 1 iavery arena defined
unnecessarily large and specific to the query. For example, BY the previous two proafs

a proof from a cycle query contains the clauseg 1. We « Similarly, inductive as.sertioris?,g, o ,1_70 are derivgd in
describe several methods of manipulating an 1C3 proof to that order, each holding relative to prior information.
make it more general and to reduce its size. When K > 0 (see Section 1lI-B), the skeleton query becomes

The property can be generalized. LBt= F A —s;q,.1. The unsatisfiable after these walls are generated: becauseeof th
MIC algorithm [7] is applied to—s;q,1 in the context ofP learned constrairtiy < by, each arena has only one state, and
to derive a subclauseC —s;q,1, yielding proof P = F A c.  that state lacks a successor in its arena. The size of thé proo

The proof P can be strengthened by applying MIC iterais thus linear in the size of the counter. This proof sequence
tively to the clauses of” until no further changes are possiblediscovers the obvious ranking function.

We apply this manipulation to global reachability proofs. Unfortunately, discovering the first fact with skeletons re

The proofP can be weakened. Again, |&t= F' Ac, where quires stumbling fortuitously upon the skeleton in which al
c C =8, 1- A MIC-like algorithm is applied to drop clausesb; = 1 ando = 0. This state’s only successor is the state
of F'. First, observe that one can use the unsatisfiable camewhich all b, = 0 ando = 1, so an inductive separating
of F AcAT A—P’, corresponding to consecution, to reducwall is indeedo. However, no other fair state has a successor
P: any clause ofF that is not in the core is unnecessanjn which o = 1, so the resulting walls cannot simply be
Second, observe that dropping an arbitrary clalisan result o (since the successor must satisfy it) 6o (since both
in a non-inductive assertion becaugemight be required to the fair state and its successor satisfy it and thus are not
support other clauses. In this case, consecution fails wihparated). In other words, their walls must invalyditerals
some counterexample statést’). The set of clauses thatand be less informative as a result. Discovering subsequent
t' falsifies in the next state must then be dropped, as thiagts via skeletons requires similarly, although decresg)
are no longer supported. Dropping these clauses may in tdientuitous selections; for example, to discovgr_; requires
require dropping other clauses, and so on. If eveecomes examining precisely the one state for whith_; = 0 and
unsupported (that ig falsifiesc’), the process must backtrackwhose successor hag_; = 1.
to the last inductive assertion; there, the same steps can b# contrast, iteratively testing whether any literal of 8tate
applied to a different clause unless all options have bewariables of the system is itself a proof (that is, satisfimsse-
explored. Alternately, if the process converges on an tiseer cution relative to known information) produces the linsared
for which consecution holds, the first observation can bel usproof quickly. Let¢ be such a literal. Then if the formula
to further reduce the clause set. Then the clause-droppin
process can be attempted again. PP /\ RA /\ CAT NN ()

These manipulations can be combined to heuristically de- ReR cec
rive a minimally-sized proof: iteratively apply strengttieg IS unsatisfiable/ obeys consecution: ondeis true, it is true
followed by weakening until no further changes can be madeenceforth. In this casé,is a wall.

Strengthening may reduce the number of literals, while weak While this heuristic is incomplete, its effectiveness on
ening may reduce the number of clauses. counters suggests that such simple queries should be exe-

cuted frequently, for example, after each additionRoor
E. Skeleton-Independent Proofs C. Experiments show that on more complicated systems,
Skeletons serve to direct the exploration of the SCC struseveral iterations of skeleton-based wall constructiceaier
ture of S; however, some important facts are not easily deriveshportunities to learn new non-skeleton-directed proofs.
by this property-directed method. In addition to counters, this technique quickly derives
Consider, for example, a system consisting of a single information about property automata for favorable encgslin
bit counter whose bits are nameé, ..., b,—1, whereb,_1 of the automata’s transition relations. A one-hot encoding
is most significant; an output bit that switches to 1 the first for example, reveals structural information readily. Reatks

time that the counter reaches all 1s and then stays at lgdived from the system description may also be effective
fairness condition that asserts that infinitely oftesy and an candidates for this heuristic.

initial condition in which all bits are 0. The system is umfai ] )
because = 0 only for the first iteration through the counters™ Executing Queries

values. An ideal proof is constructed as follows: The ideal computational environment in which to run this
« Inductive assertiom, since onceo becomes 1, it stays algorithm is a highly parallel one:
1. No skeleton exists among thestates, so-o A =0’ « n + 1 queries must be analyzed until either all yield
constrains future cycle queries. counterexample runs or one yields a proof.
« Inductive (relative to-o) assertiorb,,_1, since oncé,,_, « Each query can be analyzed by a portfolio of safety model

becomes 1, it stays 1 in theo arena. Both sides of the checkers, even incomplete methods: based on BDDs [8],



BMC [9], interpolation [10], IC3 [1], and simulation.
While any counterexample run is informative, only proo
that are inductive are useful. However, proofs produci
by non-approximating safety checkers (e.g., BDD-bas¢
will causefair to derive walls that are only useful in thg
arena from which the skeleton was drawn, thus hinderi
the algorithm’s ability to generalize from skeletons, a kg
characteristic. Hence, we rely on IC3 for proofs.

o IC3 is itself parallelizable.

« As the overall methodology is incremental, multipl
skeletons can be analyzed simultaneously in the sg
way that multiple counterexamples to induction can
analyzed simultaneously in IC3.

However, if parallel resources are unavailable, one olser
tion has become clear from experimentation: queries must
analyzed in a time sharing fashion. Since only one query n¢
be unsatisfiable to rule out a skeleton, a poor time allonat
can cause excessive time to be wasted on finding irreley
counterexample runs. Varying the order in which queries
executed also seems important, so that one fairness aamd
is not favored over others or over the stem query.

G. A Summary of the Algorithm

Figure 1 lists pseudocode for tligir algorithm.
Two forms of the skeleton quenskel Q are used: the
full query at lines 6, 44, and 46, based on the bijection

betweens and{1,...,|B|} defined at line 4; and the skeleton-

minimization version (Section IlI-B) at line 10, based o th
map j defined at line 8. Notice that the latter version is on

used to enforce a preference on skeletons and not, for erampl

to constructC' at lines 44-49. In this pseudocode, all querig
use the samds’; however, it would be reasonable for th

queries at lines 44 and 46 to use a different unrolling thian

K. In particular, since the full version has as many copies
T as2K|B|, it may only be practical to use an unrolling o
0 or 1 for these queries, which are executed more freque
than the one at line 6.

Lines 13-16 correspond to finding a skeleton-independ
proof (Section IlI-E); if none exist, then this choice isaliéed.
Lines 18-25 correspond to choosing a skeleton (Sections I
and IlI-B) and executing the one stemitenQ) andm cycle
(cycl eQ) queries (Section IlI-F).

Lines 27-50 act on the result of the search for a new pro
If all (safety) queries returned counterexample runs, they
can be formed into a “lasso” representing a computatiofi of
(lines 27-28). Otherwise, it enQ returned proofP, then P
describes new reachability information (lines 30-32).

Otherwise, if either a skeleton-independent praefis
discovered (Section IlI-E) or a cycle query returned prébf
thenP is a wall, andP and—P are SCC-closed regions (line
34-50). If the skeleton has just one state £ 0) and K = 0,

\

bool fair(S : system, K : uint):

SR =0, Wwi=10,C:=10

og for full skeleton query

oy = bijection betweenB and {1,...,|B|}

En hile skel Q(R, W, ¢, K) is sat:

by {for skeleton-minimization ¢B)}

7 7 = mp(R, W, K)

e While skel Q(R, W, j, K) is sat:

me result_ =

be heuristically choose:
{skeleton-independent proof §E)}
let £ be a literal or other predicate

such that query (5)is unsat

abe P =
red alternately:
0 {skeleton-based analysis §A)}
ant L smo1 1= skel QR, W, j, K)
pre in parallel do until
t' all yield counterexamples
or one returns a proof:
stemQ(R, so)
for 1€{0,...,m—1}:
CyC| eQ(R, C, Si Si@ml)
if result is all counterexamples:
return true {non-empty languagg
)F/J elif result is a proof P from stenQ:
s {new reachability information
L R = RU{P}
i elif result is a proof P from

f

then it is necessary to augmen® with additional information
(Section 11I-C), and it might be useful to do so & > 0 as
well (lines 38-40). Line 40 takes liberties with logic: itysa
that—P will henceforth be-~P A —d, so that—P is no longer
simply the negation of. In other words, the listV of walls

ntly

ent

a skeleton-independent search
or a cycleQ:

{P is a wall: P, -P are SCGC-closed}
if m=1: {§C}

d := singleCube(R, C, so, P)

-P = -PA-d

W = WU{P}

if heuristic (P):

{cp is the choice variable forP}
if skel QR, W, v, K)Acp is unsat:
C = =P

elif skel Q(R, W, ¢, K)A—-cp is unsat

C =
else
C = P =P
C = cU{C}

P

return false {empty languagé

© 0O N O U~ W N P

Fig. 1. Thefair algorithm: DoesS have a computation?



must actually be implemented as two lists, one to hold p@sitiSCC-closed region or all transitions of an SCC-closed regio

proofs and the other to hold possibly modified negative oothat does not intersect some fair condition; hence, noitrans

If P is determined heuristically to be interesting (line 42grth of a fair cycle is excluded.

a C constraint is constructed and addeddo(lines 42-50, By similar reasoning, one concludes that, in general, any

Section 11I-A). Lines 44-45 correspond to the case in whicfair cycle must be entirely contained in an arena defined by

no skeleton exists on thé side of the wall; lines 46-47 YW-constraints: for each’ € W, the entire cycle must satisfy

correspond to the case in which no skeleton exists on-tRe either'W or -IW. Hence we have the following lemma.

side of the wall; and lines 48-49 correspond to the typical Lemma 5:If the skeleton query is unsatisfiable, th§mloes

case in which both sides have skeletons but the wall canmelt have a reachable fair cycle.

be crossed. Together these lemmas imply correctness of the algorithm.
If the skeleton-minimization version of the skeleton query Theorem 1:The algorithmfair always terminates, and it

at line 10 is unsatisfiable, then the full version is testelin@ (eturns a reachable fair cycle iff the languagesa$ nonempty.

6, if it is satisfiable, then a new map is constructed at link,8.  ag suggested in Section III-A, the constrairtisthat are

however, the full skeleton query at line 6 is also unsati##iab yseq during cycle queries are unnecessary for completeness

then S does not have a computation (line 52). although crucial for the algorithm to be effective in prac-

H. Correctness tice. Lemma 4 states that these c.onst.raints do not destroy

_ _ i soundness. In contrast, all constraints in the skeletomyque

We prove the correctness of tHair algorithm. The first corresponding to the members of the s@sand W are

three Ierr_1mas formalize the assumption that the safety moﬂ%kessary for completeness, as suggested by Lemmas 1-3,

checker is correct. . which state how the algorithm makes progress. Each new
Lemma 1:A proof is returned for query (1) iffso iS | eqchapility assertiof € R eliminates at least one state from

unreachable front, and such a proof excludes and isS-  peing returned henceforth from a skeleton query: and eash ne

inductive relative toR. wall W e W eliminates at least one pair of states (Lemma 2)

Hence, no subsequent skeleton contains _ or one state (Lemma 3) from further consideration.
Lemma 2:A proof is returned for query (3) iffs;q,1 iS

unreachable froms;, and such a proof separatgsfrom s;q,,1
and isS-inductive relative toR andC, with the exception that
it satisfies initiation with respect te; rather thanl. Several fair cycle detection algorithms have been develope
Hence, no subsequent skeleton contains Bptnds;q, 1. for symbolic model checking. In this section we compare the
Lemma 3:A proof is returned for query (4) iffs, is main ones tdair, focusing on two features: the identification
unreachable from its successors, and such a proof separafeSCC-closed sets and the ability to generalize from facts
the successors af) from sq and isS-inductive relative toR  learned about the model.
andC, with the exception that it satisfies initiation with respec SCC decomposition algorithms [11]-[13] recursively david
to the successors af, rather thani. the states into SCC-closed sets. In that respect, they are th
Combined with eitheik > 0 for the technique of Section closest tofair. However, the walls that they derive are local to
[11-B or the technique of Section 1lI-C to excludg from the the arenas from which SCCs are extracted. Therefore, if the
=P side of the wall, no subsequent skeleton contains language of a model is empty, SCC decomposition must break
Besides progress criteria, these lemmas together impty thi@ all reachable arenas until they become trivial or unfair.
a skeleton can be completed into a reachable fair cycle if ald contrast,fair produces wall that transect the entire state

IV. RELATED WORK

only if all queries return counterexample runs. space; hence, it can prove language emptiness by congjderin
Lemma 4:No transition excluded by a constraifite C is a number of skeletons that is much smaller than the number
on a reachable fair cycle. of nontrivial SCCs.

This lemma is straightforward once one realizes that eachSCC hull algorithms [14], [15] compute an SCC-closed set
C' is derived from (relatively) inductive information. A prbo that contains all fair SCCs and that is empty if no fair SCC
W from a cycle query observes that no path allowed by thexists. In its simplest form, an SCC hull is defined by one wall
currentC that passes from alV-state to alV-state can be (See [15] for hulls defined by two walls.) One side of the wall
part of a cycle, as it can never return to—&V-state. This is known to contain no fair SCC, and the algorithms move the
observation is encoded &8 «+» W’. Additionally, if W-states wall until the SCCs abutting the wall on the other side are alll
(—-W-states) cannot satisfy every fairness condition, then fair. While the wall may be moved across very large numbers
path that has &/ -state 1V -state) can be part of a fair cycle.of SCCs in one step of the procedure, the restriction to a
This observation is encoded @AW’ (=W A=W’). Hence, small, fixed set of walls prevents SCC hull algorithms from
induction on the lisC proves the lemma. learning important facts about the structure of the SCClgrap

Another perspective on this lemma is that a cycle queryg addition, SCC hull algorithms converge to a hull before
proof W, by its inductiveness, describes regidisand—-W declaring a language nonempty. In contréai; is often able
that are SCC-closedith respect toS constrained byC. The to home in on a reachable fair SCC well before the entire state
resulting constraintC' excludes only transitions leaving anspace has been examined. Every skeleton that is examined



focuses the successive skeleton queries on where the f@is S@otentially extending the range of the partial map by one. Of
may lie. course, if the assignment is already orth ..., |B|}, then
Among the first algorithms for BDD-based cycle detectiothe standard skeleton query is also unsatisfiable, and t&# pr
is the one of [16] based on the computation of the transitive complete. Once a map is constructed, it is used until the
closure of the state graph by iterative squaring. The ambroaorresponding skeleton query becomes unsatisfiable, ahwhi
works well for counters, but unlikir, it is often impractical point a new map is constructed. A separate full skeletonyquer
because it computes too much information about the modeabk used throughout execution, as described in Section .Ill-G
In Bounded Model Checking (BMC) [9] cycle detection can The implementation also checks if each proof returned by
be formulated as a SAT query such that a model of an appromieycle query is actually inductive with respect to the gyste
ate formula describes a lasso-shaped path of prescribgthlerand if so, the proof is upgraded to a reachability proof. Whil
in the given finite-state system. Deciding that no lassg@seta the benchmarks did not reveal if this check is worthwhilés it
path exists regardless of length requires the computationioexpensive. Finally, only IC3 is used to answer safety pser
appropriate bounds (e.g., [17]). While this approach dass rand its proofs are refined as described in Section I1I-D.
fix a skeleton in advance, failure to find a path of a given Unlike the case of safety properties, there are no widely
length does not directly translate into information abd t accepted benchmark sets for progress properties. Moreover
SCC-closed sets of the model. By separating the choice mbdels of practical import are difficult to come by. The
the skeleton from the attempt to flesh it out to a cydéd; evaluation therefore relies on models that have been fikshti
incrementally learns inductive lemmas. in the literature as challenging for certain approaches or
The liveness-to-safety conversion of [3] is the most commdhat present features that one may find combined in real-life
approach to prove progress with interpolation-based mogebblem instances. Thabq, cnt, andjc models were written
checking [4], [10]. While safety checking is more developefbr this evaluation; the remaining ones were adapted fradh [1
and arguably better understood than checking for progresdable | reports the results of the experiments, which were
properties, the transformation to safety has several dmakdy run on machines with one 2.67 GHz Intel Core i5 CPU and 8
first, the model's doubled number of state variables neg@B of memory each. CPU times are in seconds. The timeout
tively affects some model checkers; second, the nature ve&s set at 7200 s. For each model, the table shows whether
the problem—cycle detection—is not obvious to the modéte language is empty, the number of latches in the cone of
checker from the encoding; third, the approach is inheyenihfluence of the fairness conditions, the number of 2-input
non-incremental, because it asks the safety model checker AND gates after combinational simplification, and the numbe
a single, monolithic proof that there is no fair cycle. of fairness conditions (with the number of weak conditioms i
In the D'n’C approach [18], SCC decomposition is appliefdarentheses). Next, the results fair are shown: in the latter
to a sequence of increasingly refined abstractions of arsystéhree columns, fof < K < 2 with the skeleton-minimization
If an effective way to choose the abstract models is given, thheuristic enabled, the CPU time and the number of skeletons
approach may be profitably combined withir to initially —examined are reported. f&ir timed out (indicated by a dash)
provide it with simple lemmas about the abstractions. Bothe number of skeletons examined up to that point is given.
methods can leverage the weakness of fairness conditiohbe first column foifair shows similar results foK = 0 with
fair, however, can sometimes discover weakness even on laifye skeleton-minimization heuristic disabled.
structures—even, that is, when weakness is not inherited fr The remaining columns show results for other language
the acceptance condition of a small Biichi automaton. emptiness algorithms. GSH, LS, and DnC are the SCC hull
method of [15], the SCC decomposition method of [12],
and the D'n’C algorithm of [18] as implemented in the
An implementation ofair was evaluated against other cyclédang_empty command of VIS 2.3 [20] (run with dynamic
detection methods on a set of models. Even thofaghis variable ordering enabled and default settings except that
highly parallelizable, the implementation uses only orredd D’n’C is run without preliminary reachability analysis)h&se
of execution but employs a time sharing scheme, as descriltlecee methods were chosen for inclusion in the table because
in Section IlI-F. they represent well the gamut of BDD-based algorithms and
The implementation of skeleton queries differs from theecause GSH and D’n’C without reachability performed bette
description of Section IlI-B: forK = 0, one forward and than the others that were tried.
no backward unrolling is used; fak = 1, two forward and  Finally, the group of columns under LTS refers to the
one backward unrollings are used; and so on. Therefore]ieness-to-safety approach of [3], with reachability ckexd
only adds a clause as in Section IlI-C if it provides addigibn with interpolation as implemented in ABC [4] (ITP), with
information. IC3, and with ABC. For ITP, the parameters controlling ABC
The skeleton-minimization heuristic of Section 1lI-B iswere set to disable its IC3 implementation and to reduce
implemented as a search: map construction is guided the chance of inconclusive runs. A question mark in the ITP
intermediate partial skeleton queries based on partialsmapolumn signals that ABC nevertheless reported the probkem a
If a partial map corresponds to an unsatisfiable query, thte laundecided” before its time was up. For ABC, the parameter
assignment of an index to a fairness condition is incrententeontrolling its use of its IC3 implementation was set to wllo

V. EXPERIMENTAL EVALUATION



TABLE |
EXPERIMENTS

fair BDD-based LTS
model empty latches gates |B]| K =0* K=0 K=1 K=2 GSH LS DnC| ITP IC3 ABC
abg2mf yes 35 383 4(1) 124 1/12 1/8 1/5 1 1 1 — 2 8
abgdmf  yes 67 745 6(1) 3/37 3/39 2/8 3/9 3 - 7 - 11 40
abg8mf  yes 131 1469  10(1) 23/182 168/67 16/14 21/14 | 2794 - - | - 373 157
abq2f yes 61 747 41 3/30 3/55 2/9 4/3 4 10 1 - 10 20
abqaf yes 119 1471 6(1)| 423/221 31/106 13/28 34/46 | 2800 -  213| - 388 -
abq8f yes 235 2923 10(1) /75 -/116 5730/84 4384/65| - - - - 6330 -
cntl2 yes 12 68 1) 170 170 170 170 1 1 0 1 1761 1
cnt32 yes 32 188 1(1) 1/0 1/0 1/0 1/0 - - - ? - -
cnt128 yes 128 764  1(1) 1/0 1/0 1/0 1/0 - - - ? - -
jci2 yes 13 231 1(1) 170 1/0 170 170 1 1 0 9 93 9
jc32 yes 33 631 1(1) 1/0 1/0 1/0 1/0 - - - | 16 - -
jc128 yes 129 2551  1(1) 2/0 2/0 2/0 3/0 - - - | 805 - -
jc128f no 129 2170  1() 2/1 2/1 2/1 2/1 2 2 2 1 1 1
oml yes 29 810 16(16] /99 —1202 —1244 —274 | 272 - 356 | - - -
om2 yes 29 806  16(16) 42/2082 39/2077 42/2083 452071 192 - 8 - 236 -
om3 yes 29 803  16(16 1/0 1/0 2/0 5/0 35 - 25 | - 105 -
nim1 yes 27 769 2(2) 1729 132 1/0 170 1 174 1 - 20 117
nim2 yes 29 788  2(2) | 1309/28 1264/28 1157/18 1457/14 2 120 1 - 1192 177
nim3 no 29 788  2(2) 1/32 1/28 1/3 1/3 1 309 1 1 1 1
gbak yes 37 677 10(1)] 25/182 127172 747184 26/125| 3 7 14 | - 97 90
tarb16 yes 79 1109 17(1) 18/166 157101 17772 7079 | - - - | 60 58 31
tarb32 yes 159 2269  33(1) 146/582 75/204 214/146 956/147 - - - ? - 209
sarb16 yes 50 141 (@) 170 1/0 170 170 1 1 3 ? 5 7
sarb32 yes 98 269 1(1) 1/0 1/0 1/0 1/0 3 1 - ? 157 79
i yes 30 452 2(1) | 1949/5174 393/2222  285/1278  288/1213 8 - 2 - - 281
tf2 no 30 384  2(1) 1/9 1/5 1/2 1/2 2 60 1 1 1 1
tql yes 55 756 3(1) | 2267/3072  3143/4208 2690/2775  5434/31f2645 - 3| - - 737
tq2 no 60 771 4(2) 5/27 4/28 4/22 5/26 | 3056 - 5 2 27 2
fql yes 105 1365  5(1) | —/2920 ~12596 —12485 11771 - - 33| - - -
fq2 no 120 1546  8(4) 21/41 15/39 25/55 29/44 | - - - - 3714 30
it to run through the two-hour time limit. analysis is partly responsible fdair's speed in detecting

The abq models are interconnected queues with bound8@nemptiness fotg2 andfq?2.
sources. Thent models are counters and the models are  For all four configurationsfair decided either 27 or 28 of
the “forward jumping counters” of [3]. Them models are the 30 language emptiness problems and was the only model
used in [15] to prove lower bounds on SCC hull algorithmshecker to solve two of the problems. Behind it, each of GSH,
Thenim models are NIM players. Thgbak model is a finite- DnC, and LTS/IC3 solved 21 problems, and LTS/ABC solved
state version of the bakery protocol. Tteeb models are tree 20 problems. Together the BDD methods solved 22 problems,
arbiters, while thesarb models are McMillan synchronousand the LTS methods solved 26 problems. On 11 models, one
arbiters. Thetf, tg, and fq models are versions of the two-of the fair configurations, typicallyX = 1, was decidedly
gueue example in [21]. faster than the other methods; on 8 models, one of the other

The cnt models illustratefair's ability to find linear-size S methods was decidedly faster. Overddiy was the clear

proofs for counters as discussed in Section I1I-E. Thisitgil Winner on this set of models.

accounts for the good performance fair on models like It is worth noting that the two models théir failed to
the om and nim (NIM player) sets—in which the original prove—em1 andfql—were solved by BDD methods but not
state graph has many SCCs—or like tjteand tarb (tree by LTS methods. Furthermordair generally dominated the
arbiter) sets, in which the composition with a Biichi auttmna LTS methods, with the exception @im2 andtql, both of
breaks the single SCC of the model into a myriad of SCCwhich were, in any case, trivial for at least one BDD method.
While computing the transitive closure would be effectige f In short, fair seems to complement BDD methods and to
counters, it would not work on more complex examples. dominate LTS methods.

The om set contains three models that differ only in the As expected, LS suffered on models with many SCCs, while
transitions out of unreachable states. lon3, fair quickly LTS/ITP had rather unpredictable performance. For many
produces an inductive proof that there are no fair SCCs; fétodels the number of skeletons examinedfaly decreased
the other two models, however, it has to prove, at a mudHth increasingk’, with the largest jump usually occurring
higher cost, that such fair SCCs are unreachable. Combingfweenk = 0 and K = 1; however, ontarb16 andtarb32,
fair with a global reachability engine, perhaps based on BDD&hich have many fairness conditions and thus require large
would benefit the analysis fam1 andom2, but was outside Skeleton queriedair suffered ask’ increased.
the scope of this evaluation. Yet not relying on full readhigb The skeleton-minimization heuristic of Section 1lI-B is



effective at finding small skeletons. Fdf = 0, six of the

skeletons that have more than one staiel (< 2), gbak

(always 3, as there are three disjoint fairness conditjons

tarb32 (< 2), tql (< 2),tg2 (< 2), fg2 (< 4). Furthermore, it

typically resulted in fewer skeletons, as hypothesizath32

andtfl are extreme cases.

These illustrative benchmarks indicate the potential ef th
fair algorithm. However, only practical experience with a suitﬁl]

of industrial benchmarks will reveal the best use of skeleto
minimization, a method for choosing’ dynamically, and a

heuristic for choosing when to enrich tideconstraint set.

We have presented a new incremental algorithm for modé$!
checking progress properties that selects skeletons for fa
cycles and, if it fails to flesh them out, learns inductiveiy)

VI. CONCLUSION

lemmas that divide the states into SCC-closed sets. Araliniti
implementation shows promise, especially when one corssid

that one of the strengths of the proposed approach—thatof be

ing highly parallelizable—was not brought into play. Aneth
important aspect that awaits exploration is the integratid

the new approach into a multi-engine framework, which has

been shown to be key to robust performance in the case
safety properties. [
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