Checking Safety by Inductive Generalization of
Counterexamples to Induction

Aaron R. Bradley and Zohar Manna

Computer Science Department
Stanford University
Stanford, CA 94305-9045
Email: {arbrad, manng@cs.stanford.edu

Abstract—Scaling verification to large circuits requires some that can reach it, anthany other states that cannot reach it
form of abstraction relative to the asserted property. We dscribe This generalization beyond the states that can reach the CTI
a safety analysis of finite-state systems that generalizesofn contrasts with standard preimage computation

counterexamples to the inductiveness of the safety spedtifin Th f hd d ¢ ints. First
to inductive invariants It thus abstracts the system’s state space € Success or our approach depends on two points. First,

relative to the property. The analysis either strengthens aafety We require a fast method of generating inductive clauses. We
specification to be inductive or discovers a counterexampléo address this challenge in Section IV. Second, small indecti

its correctness. The analysis is easily made parallel. We gvide clauses must exist in practice. The empirical evidence of
experimental data showing how the analysis time decreasestiv Section V suggests that they do. In Section VI, we discuss
the number of processes on several hard problems. ; y S

related techniques and the potential for hybrid approaches

I. INTRODUCTION
Il. PRELIMINARIES

We describe a safety analysis for finite-state systems tll{;\t Propositional Logic
incrementally strengthens a correct specification to b&dad)) o
tive. Each iteration of the analysis choosescnterexample L€t US review a few useful notations and definitions of
to the inductiveness of the specificatienstate that explains Propositional logic. Aliteral ¢ is a propositional variable:
why the specification is not yet inductive. It then genersiz O itS negation—z. A clausec is a disjunction of literals.
from the assumption that this state is unreachable to &R€ Sizelc| of clausec is its number of literals. A subclause
inductive invariant that proves that many states, inclgdine @ E ¢ is a disjunction of a subset of literals of A formula in
counterexample to induction, are unreachable. Thus, giroiceniunctive normal fore{CNF) is a conjunction of clauses.
directed invariant generation, it accomplishes an abstracf e write ¢[7] to indicate that the formulg has variables
the state space of the system relative to the specification. T = {#1,---,2}. An assignments associates a truth value

The main idea of our analysis is the following. Supposgrue; false} with each variabler; of . ¢[s] is the truth value
the given safety property is not inductive. Then there exast Of ¥ On assignmens, ands is a satisfying assignmeruf
counterexample to inductiofCTI): a state that can lead to alf ¥[s] IS true. A partial assignment need not assign values
violation of the property. The analysis attempts to gereegat [© €very variable. _ o
single inductive invariant in the form of a clause that efimtes ~ Finally, & formulay impliesa formulay if every satisfying
this state and many other states as well. If it succeeds, fisignment (that assigns a truth value to every variablg of
generated inductive clause strengthens the propertyr@isey 2Nd ¥) Of ¢ also satisfies). In this case, we say that the
the given property is extended to assert that the CTI state/f&Plication ¢ = ¢ holds. The implicationy = <> holds iff
also unreachable. After many iterations of this proceghgei (if @nd only if) the formulap A —4) is unsatisfiable.
the incrementally strengthe_ned property _becomes inceictig Transition Systems
or a counterexample trace is found. Section Ill presents th
analysis in detail, and Section VIl discusses the analysigem
generally. — : Definition 1 (Boolean Transition System)A Boolean tran-

The application of induction as the basis for generalizatio ition systems : (%, 6, p) has three components:
is the distinguishing feature of this analysis. From one ,CT? y ¢ 5P alariabless — P ' hich
the analysis generalizes to an inductive clause that privags ~ * 2S|§t E proposnfm;]\ ariabless = {1, 2}, whic
many states are unreachable: the CTI state itself, all Htesst ol _t_ € state_q the system.,_ . ,

« aninitial condition, a propositional formul®[z], which

This research was supported in part by NSF grants CCR-00&13CR- describes in which states the system can start;

DAAD19-01-1-0723, and by NAVY/ONR contract NO0014-03-239. The hich d ibes h h | . h f
first author was additionally supported by a Sang Samuel Waitagford whic escribes how the system evolves In each step o

Graduate Fellowship. execution.

SWe model finite-state systems as Boolean transition systems

In p[z,7’'], primed variablest’ represent the values of the « the elementg° are the subclauses of
variablesz in the next state. « the elements are ordered by the subclause reldfion
in particular, the top element is itself, and the bottom
element is the formuléalse (“false”);

« the join operatot ! is simply disjunction;

« the meet operatan is defined as followse; M ¢, is the

disjunction of the literals common te, andc,.

aIt’C is complete; by the Knaster-Tarski theorem [3], [4], every

The semantics of a finite-state system are given by its set
of computations.

Definition 2 (State & Computation) A state s of Boolean
transition systemS is an assignment of the variablas A

computation : so, s1, 52, ... IS a sequence of states such thaf) ne function orl. has a least and a greatest fixpoint.
« so safisfies the initial conditiorti[so] is true; Consider the monotone nonincreasing functiown (L., d)
« and for eachi > 0, s; and s;y; are related byp: hat given the subclause lattide. and the clausel € 2°,
plsi, siv1] is true. returns the (unique) largest subclauseC d such that the

implicationy Ae A p = d’' holds. In other words, it returns the
best under-approximation if. to the weakest precondition
of d. If the greatest fixpoin€ of down(L.,c) satisfies the
implicationd = ¢ of initiation, then it is the largest subclause
of ¢ that is inductive relative t@. Section IV-A describes how
to find ¢ with a number of satisfiability queries linear jo|.

Rather than examining each of the possibly infinitely man¥l Large inductive clauses are undesirable, however, because

computations ofS, however, we apply induction to determind'€Y Provide less information than smaller clauses: they ar
if © is S-invariant. satisfied by more states. We want to finaninimal inductive

subclauseof ¢, an inductive subclause that does not itself
contain any strict subclause that is inductive. Therefare,
examine a fixpoint of anextensivefunction on inductive

A state ofS is reachableif it is in some computation of
S. We are interested in determining for a given syst8rand
formulay if every reachable state & satisfiesp. If so, then
@ is S-invariant, or is aninvariant of S. If not, then there
exists a computation with some statethat falsifiesy; the
prefix of the computation up te is a counterexample trace

Definition 3 (Inductive Invariant) A formula ¢ is S-

inductiveif) . .
it holds initiallv: 6 — (initiation) subclause lattices, which are lattices whose top elements a

* and it is resgNed b(p" Apos o (consecution) inductive. Constructing an inductive subclause lattiaguies
* P y- ¢ _p v i . first computing the greatest fixpoint afown on a larger

In the latter formula,y’ abbreviatesy[7']: each variable is ¢ pclause lattice.

replaced by its corresponding primed variable. To that end, consider the (nondeterministic) function
A formulay is S-inductiverelative toa S-inductive formula implicate(y, ¢) that, given formulay and clausec, returns

¢ if 6 = ¢ as before, and) Ao A p = . a minimal subclausel T ¢ such thaty = d if such a

The two implications — the base case and the inductifd2Use exists, and returns (‘true”) otherwise. This minimal
case, respectively — are therification conditiondor S and Subclausel is known as grime implicate[5], [6]. There can

. WhenS is obvious from the context, we omit it fror- be exponentially many such minimal subclauses, yet thege ma
inductive andS-invariant. not be any prime implicate if» A ¢. Section 1V-B presents

an optimal implementation dmplicate.
I1l. FINITE-STATE INDUCTIVE STRENGTHENING Using implicate, we can find a subclause ef that best
Given transition systens: (z,6, p) and specification for- approximatesd: b : implicate(6, c). Consider the subclause
mulall, is IT S-invariant? Proving thall is inductive answers sublatticeLy . of L. that has top elementand bottom element
the question affirmatively. Howevel] is often invariant yet b. Consider also the extensive operatiop(Ls ., d) that, for
not inductive. A standard approach in this case is to firRlementd of L, ., returns a minimal subclause C ¢ such
a formula y such thatIl A y is inductive; x is called a that the implications) A d A p = €’ andd = e hold. In
strengthening assertiofil]. There are many approaches t®ther words, it computes’ : implicate((v» Ad A p) V d', '),
finding a strengthening assertion for finite-state systeses (& best over-approximation if, . of the disjunction ofd and
Section VI). We describe an approach based on generatlfig strongest postcondition df

many clauses, each of which is inductive relative to the The operationup is a function onL,. — it maps an

previously-generated clauses. element ofL; . to an element ofl, . — precisely when the
) top elementc is inductive. In this case, a fixpoirtt is an

A. Inductive Clauses inductive subclause af that is small in practice. However, it

First, let us consider how to find a single clause that is not necessarily a minimal inductive subclause, as dffer
inductive relative to some formula. Later, we show how to runs ofimplicate result in different fixpoints, some of which
chain the discovery of such clauses together to decide whetmay be strict subclauses of others.

a systemS meets its specificatioll. Our presentation is self- Now for a given clause:, compute the greatest fixpoint
contained but follows the ideas of abstract interpretafln of down on L. to discover inductive clause and its corre-
Consider an arbitrary clausethat need not be inductive. It sponding inductive sublatticE:. Computeb : implicate(0, ¢)
induces thesubclause latticd.. : (2¢,M, L, C) in which to identify the inductive sublatticé;, ; whose bottom element

over-approximate8. Finally, compute a fixpoint ofip on L, argument that and those states that can reachre unreach-
to find a small inductive subclaugeof c. In practice/ is small able to prove that many other states are also unreachable.
but need not be minimal. This generalization contrasts with methods that compute th
A brute-force recursive technique finds a minimal inductivpreimage of a CTI [7]-[9].
subclause. First apply the procedure described abovetto This analysis is naturally made parallel. By simply using
find d. Then recursively treat each immediate strict subclauserandomized decision procedure to obtain the CTIs, each
of d, of which there aréd|. A claused is a minimal inductive process is likely to analyze a different part of the stataesp
subclause ot precisely when each of these recursive calBrocesses need only communicate discovered inductiveedau
fails to find an inductive strict subclause df We call this and — depending on implementation choices (see Section V)
procedureMIC(S, v, c¢). It returns a minimal subclause ef — CTIs that do not yield inductive clauses.
that isS-inductive relative tap, or T if no such clause exists. We call this procedurESIS(S, IT), for finite-state inductive
. _strengtheninglt returns an inductive strengtheningldfif 1T is
B. FSIS: Generalizing from Counterexamples to Induction S-invariant; otherwise, it extracts from the subgoals cargad
Having developed the algorithivIC to discover a minimal to IT a counterexample trace.
inductive subclause of a given clausethe remaining consid-
eration is which clause to provide it. We use negations ofC- One-Step Cone of Influence
counterexamples to inductiofCTIs): II-states that can lead One need not consider a full assignmentas a CTI.
to —II-states. This choice guidedIC to discover inductive Computing aone-step cone of influen¢€OI) — the variables
clauses that are relevant for proving thatis S-invariant, that can possibly impact the truth valueldfin the next state
implicitly abstracting the state-space®felative toll. Hence, — yields a partial assignmentthat describes a set of states,
rather than finding a CNF representation of the exact seither than just a single statg that can lead to a violation
of reachable states af, we expect to find a much smallerof II. Applying MIC to the resulting clause focuses it on
formulay such thatll A x is inductive and represents a largeexcluding all of these states, rather than proving that flust
set of states that all satisfy. states is unreachable for a reason that is unrelated to why the
Suppose thaty is a conjunction of previously-generatecther states are unreachable.
clauses that ar&-inductive relative toll, but IT A x is not
S-inductive. Why isII A x not inductive? One possibility is
that initiation fails: the formulad A —II is satisfied by some This section develops the algorithms introduced in Section
states. In this casell is not S-invariant. [1I-A to discover minimal inductive subclauses.
Another possibility is that consecution fails: the formula , i
LA ApA—IT is satisfied by some pair of statés s'). That A. Computing the Largest Inductive Subclause
is, it is possible foiS to transition from state, which satisfies ~ Recall that the functiomlown(L.,d) computes the largest
II A x, to states’, which satisfies-II’ and thus violates the subclause: C d such that the implication) Ae A p = d
specificationlI. States is a CTI. holds. A straightforward method of computing the greatest
Sinces is an assignment of truth values to variablesSpit ~ fixpoint of down in L. — which iteratively computes under-
can be viewed as a conjunction of literalssifissignse; to be approximations to the weakest precondition — can require
true, the conjunction contains;; if s assignsz; to befalse, (|c|?) satisfiability queries. For systems with many variables,
the conjunction contains:z;. Call this conjunctions. Now, this quadratic cost is prohibitively expensive.
noticing that—3 is a clause, computMIC(S, I A x, —3). We describe a method that requires a linear number of
If MIC returnsT because does not contain a subclause thagueries. Consider checking if the implicatignA ¢ A p = ¢
is inductive relative tdl A y, then updatdl to indicate that holds. If it does, and if the implicatioft = ¢ of initiation also
proving that states is unreachable is a subgoal of proving théolds, therc is inductive relative tap. If it does not, then the
invariance of the originall: II := II A —5. Otherwise, MIC formulayAcApA—c’ is satisfied by some assignmérts’) to
returns ¢, an inductive generalization ofs: ¢ is inductive the unprimed and primed variables. L&be the conjunction
relative toII A y and excludes state and many other states.of literals corresponding ta; and let—¢ be the best over-
Updatey accordingly:x := x A c. approximation to—$ in L., which is the largest clause with
Eventually, eitherII grows so thatd A —II is satisfiable, literals common tac and —5. Then compute the new clause
disproving the specification, diil A y becomes inductive. For d : ¢ —¢. In other words has the literals common toand
x is always inductive relative tdI; and if the formulall A —3. Now recurse onl.
x A pA-II' is unsatisfiable, thefl is inductive relative toy. If at any point during the computation, initiation does not
Which states does an inductive generalization—@f ex- hold, then report failure.
clude? It clearly excludes statelt also excludes all states that This algorithm, which we callLIC(L., c), computes the
can reachs, for it would not be inductive otherwise. HoweverJlargest inductive subclause of the given clause
even the largest inductive subclause-¢f excludes all states
that can reachs, while MIC discovers significantly smaller Proposition 1 (Largest Inductive Subclause)The fixpoint
inductive subclauses in practice. Hend8C generalizes the of the iteration sequence computed byC(L.,c) is the

IV. ALGORITHMS

largest subclause of that satisfies consecution. If it alsolet rec min p So = function

satisfies initiation, then it is the largest inductive suhde |1 - SO
of c. Finding it requires solving at mosD(|c|) satisfiability | 725t — if p(So U?)
queries. then Min p Sy t
elseminp (h:: Sp) t
Proof: Let the computed sequenceige=c, c¢1, ...,ck, let minimalp S = minp|[] S

where the fixpointc, satisfies consecution. Notice that for
eachi > 0, ¢; C ¢;—1 by construction. Suppose thatC ¢
also satisfies consecution, yet it is not a subclause,0fVe 1et rec split (¢, r) = function

Fig. 1. Linear-timeminimal

derive a contradiction. [1 — (¢, r)
Consider position at whiche T ¢; bute IZ ¢;y1; sucha | p] — (ht, 1)
position must occur by the existence @f Now partition ¢; | hihg it — split (hy i f, hor)t

into two clausese V f; f contains the literals of; that are 1et split S, = split (M, M So
not literals ofe. Since consecution does not yet hold tof 1et rec min p sup Sy =

the formulasy) A (e V f) A p A =(e" v f') is satisfiable. Case if |Sy| =1

splitting, one of the following two formulae is satisfiable: then S

@ else let 4y, 79 = split Sy in

ANeApA—e N=f!
pnenpne / if p(sup Ulp)

Y A—eNfApA—e NS (@) then min p sup £y

Formula (1) is unsatisfiable becausesatisfies consecution else if P(S“P Uro)
by assumption. Therefore, formula (2) is satisfied by some then mMin p sup 1o
assignments, s’). Now, because-e[s] evaluates tarue, we else let £ = min p (sup Uro) o in
know thate T —§ (where s is the conjunction of literals let 7 = min p (sup U{) 1o in
corresponding to assignmesi, but thene C ¢; 1 = ¢; 18, tur
a contradiction. let minimalp S = minp [] S

The linear bound on the number of satisfiability queries Fig. 2. Optimalminimal
follows from the observation that each iteration (otherntha
the final one) must drop at least one literal cof]

We thus have an algorithm for computing the largest induget satisfiep, recurse on it; otherwise, recurse on the given
tive subclause of a given clause with only a linear number 8¢t, remembering never to drop that element again.
satisfiability queries. Figure 1 describes this algorithm precisely using an

In practice, during one execution MIC, the clauses that O’Caml-like language. It treats sets as lisf. contains the
are found not to contain inductive clauses should be cach@guired elements of that have already been examined; if

to preclude the future exploration of its subclauses. there are not any remaining elements, retgn Otherwise,
_)) the remaining elements consist bf:: ¢ — a distinguished
B. Computing Prime Implicates elementh (the “head”) and the other elementsthe “tail”).

Recall that the functiorup(L.,d) computes a minimal If p(SyoUt) is true, h is unnecessary; otherwise, it is necessary,
subclause C ¢ such that the implicatiof AdAp)Vd = ¢ so add it toSy;. We provide these details to prepare the reader
holds. As explained in Section IlI-A, the crucial part oo understand an algorithm that makes the optimal number of
implementingup is implementing an algorithm for finding queries top.
minimal implicates:implicate(y, ¢) should return a minimal ~ We can do exponentially better than always making a linear
subclause ofc such thaty = ¢ holds, or T if no such number of queries tp. Suppose we are given two disjoint sets,
subclause exists. We focus anplicate in this section. the “support” setsup and the setS,, such thatp(sup U Sy)

In fact, we consider a more general problem. Considerhmlds butp(sup) does not hold. We want to find a minimal
set of objectsS and a predicate : 2 — {true, false} thatis subsetS C Sy such thatp(sup U S) holds. If Sy has just
monotone onS: if p(Sy) is true and Sy C S; C S, then also one element, then that one element is definitely necessary, s
p(S1) is true. We assume that(.S) is true; this assumption return it. Otherwise, splif, into two disjoint subset, andrg
can be checked with one preliminary query. The problem with roughly half the elements each (see Figure 2 for a peecis
to find a minimal subse§ C S that satisfieg: p(S). description ofsplit). Now if p(sup U ¢p) is true, immediately

The correspondence between this general problem amturse ordy, usingsup again as the support set. If not, but
implicate(y, ¢) is direct: letS be the set of literals of and p(supUrg) is true, then recurse ong, usingsup again as the
p be the predicate that isrue for So C S precisely when support set.

v = \/ So, where\/ Sy is the disjunction of the literals of,. The interesting case occurs when neithesup U £y) nor

A straightforward and well-known algorithm for finding ap(supUrg) hold: in this case, elements are required from both
minimal satisfying subset of requires a linear number of ¢y andry. First, recurse o, usingsupUry as the support set.
gueries tap. Drop an element of the given set. If the remainin@he returned set is a minimal subset of, that is necessary

Qpre p(sup U Sp) A —p(sup) To prove thatS is minimal (that for eack € S, p(S\ {e})

@post VC Sy A p(supUV) is false) for the second part of the second claim, consider the
A Ye € V. =p(sup UV \ {e}) following invariants:
let rec min p sup So = 3y VCS
= 00
Fig. 3. Annotated prototype ahin, whereV is the return value 4) ﬁp(sup)

5) —p(sup UV \ {e}) foree V
Invariant (4) is a function precondition, and invariant$ &8d
(5) are function postconditions.

For invariant (3), note for the base case that the first return
. e L of min returnsV = S, itself; that the next two returns hold
hold. Finally, return/ U r, which is a minimal subset af) by inductive hypothesis; thatC £, andr C ro by inductive
fOFF%?(ZQ;g ;J éitljers) atlo ?eog?s.e definition of this algorithm. To ﬁngypothesis; and, thus, thét = £Ur € £o U o = So-
a mi%imal sgubset OF;S that satisfiep, min is in?tially called For th_e base case of |n_/ar|ant @) Coq3|der that0) l-)y

. ' assumption. For the inductive case, consider that the first t
with an empty support seff and 5. recursive calls have the samap as in the calling context

and thus (4) holds by inductive hypothesis; that at the third

Theorem 1 (Correct) Suppose thats is nonemptyp(S) is recursive call,~p(sup U r); and that at the fourth recursive

for p(supUfUrg) to hold. Second, recurse @g using sup U/
(note: ¢, not ¢y) as the support set. The returned seis a
minimal subset ofr, that is necessary fop(sup U £ U r) to

true, andp(() is false. call, ~p(supUly) and, from (3), that C ¢, so that-p(supUr)
1) min p [] S terminates. follows from monotonicity ofp.
2) Let S = min p [] S. Thenp(S) is true, and for each ~ For the base case of invariant (5), consider that at the first
e€ S, p(S\ {e}) is false. return, —p(sup) by invariant (4). Hence, the one element of

So is necessary. The next two returns hold by the inductive

Proof: The first claim is easy to prove: each level ohypothesis. For the final return, we know by the inductive
recursion operates on a finite nonempty set that is smallgypothesis that-p(sup U £ U r \ {e}) for e € r; hence, all

than the set in the calling context. of r is necessary. Additionally, from the inductive hypothesis
For the second claim, we make an inductive argument ep(sup UroU £\ {e}) for e € ¢, and—p(sup Urq UL\ {e})
correctness. We prove first thatS) is true. We then prove implies that—p(sup Ur U £\ {e}) by monotonicity ofp and
that for eache € S, p(S \ {e}) is false. To prove these because- C r, by invariant (3); hence, all of is necessary.

claims, we prove that five assertions are inductive rfan. In the first call tomin at minimal, sup =) andV = S;
These assertions are summarized as function precondéiahs hence,—p(S \ {e}) for e € S from invariant (5). [|
function postconditions ofmin in Figure 3. Throughout the

proof, letV = min p sup S be the return value. Theorem 2 (Upper Bound) Let.S = min p [] S. Discovering

For the_ firs'g part of the second claim, we establish the requires makingD ((|g| —1)+15| g %) queries top.
following invariants:

1) p(sup U Sp) Proof: Suppose thatS| = 2% and [S| = n2" for

2) p(supUV) somek,n > 0. Each element o5 induces one divergence
Invariant (1) is a function precondition ofin; invariant at some level in the recursion. At worst, these divergences

(2) is a function postcondition afin. Hence, the inductive occur evenly distributed at the beginning, inducifgseparate

argument for (1) establishes that it always holds upon entynary searches over sets of S'%' Hence, S| — 1 calls

to min, while the inductive argument for (2) establishes thab min diverge, while|S|lg % calls behave like in a binary

it always holds upon return afin. search. Noting that each call results in at most two queries
Invariants (1) and (2) are proved simultaneously. For tte p, we have the claimed upper bound in this special case,

base case of (1), note thatd U S) = p(S), which istrue by which is also an upper bound for the general case. (Adding

assumption. For the inductive case, consider g{atp U ¢y) sufficient “dummy” elements to construct the special casesdo

andp(supUrg) are checked before the first two recursive calls)ot change the asymptotic bound.)]
that sup Urg Uy = sup U .Sy for the third recursive call; and For studying the lower bound on the complexity of the
that p(sup U ro U £) is true by invariant (2). problem, suppose théat has precisely one minimal satisfying

For the base case of invariant (2), we know at the firsubset.
return of min that p(sup U Sp) from invariant (1), andV =
Sp. For the inductive case, consider that (2) holds at the nekbeorem 3 (Lower Bound) Any algorithm for determin-
two returns by the inductive hypothesis; and that at thetfouring the minimal satisfying subsef of S must make
return,p(sup U£Ur) holds by the inductive hypothesis of the (|§| +15|1g (M)) queries top.
prior line. 5]

In the first call tomin in minimal, sup = (); hencep(S) = Proof: For the linear componentS|, consider deciding
p(D U S) = true by invariant (2). whetherS is indeed minimal. Since all that is known is that

let rec min f sup Sp = 1) SAT Solver: We instrumented Z- Chaf f version

if |So| =1 “2004.11.15 Simplified” [10] to return original unit clause
then (sup, So) . . that are leaves of the implication graph to aid in computing
else let {o, 7o = Split Sp in minimal implicates. We also refined its memory usage to allow

let v, C = f(supU¥lpy) in
if v
then min f (supNC) (o NC)
else let v, C = f(supUrp) in
ifo
then min f (supNC) (ro N C)
elselet C, £ = min f (supUrg) ¢y in
let sup = supNC in
letrg = roNC in
let C, r = min f (supU¥) 1o in
(supnNC, (({NC)Ur)
let minimal f S =
let _, So = min f [] S in Sy

tens of thousands of incremental calls. For parallel exenst
we tunedZ- chaf f to randomize some of its choices.

Conversion to CNF is minimized by caching the CNF
version of the transition system within the SAT solver. Also
multiple versions of the transition relation are storedclea
version corresponds to a particular slicing of the relation
according to the one-step cone of influence.

2) Depth-First Search:Our implementation takes a depth-
first approach: if it fails to find an inductive clause exclugli
a CTl, it focuses on this subgoal before again considerieg th
rest of the given property.

3) Parallel Algorithm: Each process works mostly indepen-
dently, relying on the randomness of the SAT solver to focus
Fig. 4. Optimalminimal with additional information on different regions of the possible state space of the syste
Upon discovery of an inductive clause, a process reports it
to a central server and receives all other inductive clauses
discovered by other processes since its last report. Beaafus

Therefore,p must be queried for each of tH&| immediate the depth-first treatment of counterexample states, a psoce
strict subsets of can report that a clause is inductivader the assumption that

For the other component, consider that any algorithm muiybgoal states are unrea_chabléthis assumption is incorrect,
be able to distinguish among(|S|,|5]) = S|t the process eventually discovers a counterexample trate. O
: - e ISPUIZISDE - erwise, it eventually justifies this assumption with adutil
possible results using only queriespoThus, the height of a . X v P .
decision tree must be at leastC(|S], |S]). Using Stirling’s |ndupt_|ve clauses. I-_Ic_)wever, other processes may finishrébefo
approximation, receiving these additional clauses. Hence, because anlgish
Si ~ ~ process to terminate receives all clauses, it is the onlggs®
1gm > lg|S|! = 1g|S|! = 1g(]S] — |S])! that is guaranteed to have an inductive strengthening of the
—o(1g|S| +1g(|S| — |S])) safety property.
=9 (|S| 's (lsfﬂé\) Sl (‘S‘\SHSI)) ‘
[|
Hence, the algorithm is in some sense optimal. However, al) PicoJava Il Set:We applied our analysis to the PicoJava
set can have a number of minimal subsets exponential in ftgnicroprocessor benchmark set, previously studied in{11
size. In this situation, the lower bound analysis does nptyap [13]. Each benchmark asserts a safety property about the
In practice, one can often glean more information wheRstruction cache unit (ICU) — which manages the instructio
executing the predicagethan just whether it is satisfied by thecache, prefetches instructions, and partially decodesuitis
given set. For example, a decision procedure for propasitio tions — but includes the implementation of both the ICU
satisfiability (a “SAT solver”) can return amsatisfiable core and the instruction folding unit (IFU), which parses the eyt
Hence, ify) = ¢ holds ¢/ A —c is unsatisfiable), the procedurestream from the instruction queue into instructions anddeis
might return a subclausé C ¢ such thaty) = d also holds. them into groups for execution within a cycle. Including the
However,d need not be minimal. The algorithm of Figure 4FU increases the number of variables in the cone-of-infteen
incorporates this extra information. Rather than a pradipa (COI) and complicates the combinatorial logic. Hence, for
it accepts a functiory that returns two valuesf(S) returns €xample, a static COI analysis is unhelpful. Of the 20 bench-
the same truth value agS); and if p(S) is true, it also returns marks, proof-based abstraction solved 18 [11] (it exhaliste
a subsetS, C S such thatp(S,) holds. This subset is usedthe available 512MB of memory on problems;Pand PJs),
to prune sets appropriately. Additionaliyin returns both the and interpolation-based model checking solved 19 [12]],[13
minimal set and a pruned Support set to use on the other braﬁéﬁ:h within their allotted times of 1000 seconds on 930MHz
of recursion. machines.
2) VIS Set: The second set of benchmarks are from the
) VIS distribution [14]. We applied the analysis to severdidia
A. Implementation properties of models that are difficult for standarinduction
We implemented our analysis in O’Caml. We discuss in{although easy for standard BDD-based model checking) [9].
portant elements of our implementation. k-induction with strengthening fails oneERersoNand HEAP

is monotone ovelS, the information thap(Sy) is false does
not reveal any information abouyt(S;) when Sy \ Sy # 0.

B. Benchmarks

V. EXPERIMENTS

TABLE |

RESULTS FOR ONE PROCESS Figure 5 reports results as a log-log plot for analyzing
_ _ PicoJava Il benchmarks 6, 17, and 18 and VIS benchmark
(Name[[COI| _ Clauseg SAT queried Time[Mem (MB)] HEAP with multiple processes on a cluster of computers with
EJZ ggg g(g) ggi (%‘) 235 (gs gg (g) 4x1.8GHz processors and 8GB of memory. Results for one
Pi s8] 159 (§7)) oK (3'(4K)) 302 292 = 8 processor are the means from Table I. Times for 32 processes
PL || 318] 414 (85) 32K (7.5K)| 1h30m (22m)| 589 (39) are as follows: R 8m; PJ7, 70m; Pds, 9m; andHEAP, 6m.
PJ 67 63 E9g 4K ((lK)) 10s EZS 41 E3g PJ, completed in 50m with 60 processes. All benchmarks
PX 90 70 (8)] 3.5K (.8K 13s (3s 43 (3 e ;
Pl pad TG IK(2K) s (09) =) completed within one hou_r with some number of processes.
Pio || 54 6 (3) 213 (110) 65 (s) 28 (D The plot suggests that time decreases roughly Imearly with
PJs || 352 8 (6)] 234 (149) 2m45s (Im9s) 379 (15) more processes, but onlMEAP trades processes for time
ijlf ggg 2}&5(1(22) 168KK((32-2'8 5030r(“1r(]113m) ggg gg; almost perfectly, possibly because it requires the mostsela.
6 m m . . .
B3+ (211 12K (153) 337K (51K)| 16h20m (3h) 1250 (110 Suboptimal scaling results from generating redundantsgau
PJs || 143[740 (152) 91K (23K)| 2h40m (50m)| 673 (83)
Pi, [52| 83 (L] 4K (4K)| 1im Bm) 237 (31) VI. RELATED WORK
PC 93 7 @[170 (105)] 2m48s (Im] 360 (12) A. Qualitative Comparisons
PG 91 3(0) 42 (1) 51s (4s] 335 (1) -)
PG || o1 30) 20 53s (4s] 335 (1) We compare the cha_racterlstlcs of sevt_aral safety analyses:
PGs 91 9 (4)[229 (109)3m25s (Im18s) 377 (13) bounded model checking (BMC) [15], interpolation-based
PCio g(l) 26Iil(2%% 5?3?<8(55206£)) 52"525; (1(%17? 3%0(2(2)) model checking (IMC) [12], [13]k-induction &) [7]-[9],
HEAP . m m
oET 16 40 140 (D) 75 (05) 72 0) [16], [17], predicate abstracuon with refinement (CEGAR)
[18], [19], and our analysis (FSIS). These analyses are fun-
5 damentally based on computing an inductive set that exslude
10 ' ' ' all error states; they consider the property to prove during
the computation; and they use a SAT solver as the main
computational resource.
R x We now consider their differences.
107 *] 1) Abstraction: IMC and CEGAR compute successively
. * 5 finer approximations to the transition relation. Each agpro
g o x| mation causes a certain set of states to be deemed reachable.
= 5 o When this set includes an error state, IMC incrementsithe
10°} Ol e associated with its postcondition operator, solving laifeC
= & problems, while CEGAR learns a separating predicate. In con
o trast, BMC,kl, and FSIS operate on the full transition relation.
k! strengthens by requiring counterexamples to induction to
102 ‘ ‘ ‘ ‘ ‘ be ever longer paths. FSIS generalizes from CTIs to indectiv
1 4 8 16 32 64

clauses to exclude portions of the state space.
2) Use of SAT SolverBMC, IMC, andkl pose relatively
Fig. 5. Time for multiple processes few but difficult SAT problems in which the transition relati
is unrolled many times. CEGAR and FSIS pose many simple
SAT problems in which the transition relation is not unrdlle
within 1800 seconds; but BDD-based model checking requires3) Intermediate ResultsEach major iteration of IMC and
at most a few seconds for each [9]. CEGAR produces an inductive set that is informative even
when it is not strong enough to prove the property. Each
C. Results successive iteration of FSIS produces a stronger formul th
Table | reports results for executing one process on oegcludes states that cannot be reached without previoisly v
processor of a #1.8GHz computer with 8GB of availablelating the property. Intermediate iterations of BMC aricare
memory. The analysis ran 16 times on each benchmark: Tableot useful, although exceptions include forms of strengjting:
reports the number of variables in the cone of influence aed tvhich we discuss in greater depth below [7]-[9], [17].
mean and standard deviation (in fornmaean(std. dev)) for 4) Parallelizable: Only FSIS is natural to make parallel.
the number of discovered clauses, the number of SAT queriBse difficulty of subproblems grows with successive iteras
made, the required time, and the peak memory usage. ResultBMC, IMC, andkl so that parallelizing across iterations is
are reported only for the nontrivial benchmarks: propsertté not useful. Each iteration of CEGAR depends on previously
benchmarks 0, 1, 4, 11, 12, and 14 of the PicoJava Il dearned predicates. For these analyses, parallelizatigst be
and benchmarks 3, 4, 7, 8, and 9 of the VIS PP£&0set implemented at a lower level, perhaps in the SAT solver.
are inductive. The PicoJava Il benchmarks are labeled PJ Differences suggest ways to combine techniques. For ex-
the others are VIS benchmarks. All 20 of the PicoJava dmple, the key methods of FSIS ahlbdcan be combined, and
benchmarks were solved; three required more than one hoBEIS can serve as the model checker for CEGAR.

processes

B. Other Related Work to the CTI need not be unique. For exampimplicate

Blocking clausesre used in SAT-based unbounded modé$ nondeterministic; and in the dual analysis, computing a
checking [5]. Their discovery is refined to produpeime bestimplicant is nondeterministic. The functiominimal of
blocking clauses, requiring at worst as many SAT calls aection IV-B is a general operator for performing forward
literals [6]. Our minimal algorithm requires asymptotically (Packward) propagation in disjunctive (conjunctive) damsa
fewer SAT calls. A similar algorithm has been proposed in This general perspective on the ideas of this paper suggests
a different context [20], but it handles only sets contagininfurther work in the form of exploring other domains. Addi-
precisely one minimal satisfying subset. tionally, we intend to combine the method wikhinduction.

Strengthening based on under-approximating the states thipally, our analysis is motivated by a classically dedueti
can reach a violating state is applied in the context of approach to verification [1]. We_are exploring analyses for
k-induction [7]-[9], [17]. Quantifier-elimination [7], ATB- other_classes of te_mporal propertles that are also motivaye
based computation of the-level preimage ofs [8], and classically deductive techniques.

SAT-based preimage computation [9] are used to perform the ACKNOWLEDGMENTS

t thening. Inducti lizati liminatgoeen- . .
Srengimening. ‘nductive generatization tan eimina : The authors wish to thank Prof. A. Aiken, A. M. Bradley,

tially more states than preimage-based approaches. . .
y P g PP Prof. E. Clarke, Prof. D. Dill, Dr. A. Gupta, Dr. H. Sipma, Fro
VII. DISCUSSION F. Somenzi, and the anonymous reviewers for their comments;

Let us consider the methods of this paper more generaw'_]d Prof. A. Aiken for the use of his Computer cluster.
The fundamental idea is to generalize from counterexantples

induction (CTIs) to simple inductive invariants. Togethisre 0z M 4 A PrueliT | Verification of Reactive S

. o . Manna an . PnueliTemporal Verification o eactive Systems:
set of s_lmple .|nduct_|v§ invariants strengthens .the spetitio Safety New York: Springer-Verlag, 1995.
to be inductive. Limiting the form of invariants controls [2] P. Cousot and R. Cousot, “Abstract interpretation: diedilattice model
computational costs, while using CTls focuses the anatysis ~ for static analysis of programs by construction or appration of

e : fixpoints,” in POPL ACM Press, 1977, pp. 238-252.
the safety specification. The structure of the analysisaalla [3] B. Knaster, “Un thereme sur les fonctions d'ensemblesinn. Soc.

parallel implementation. Polon. Math, vol. 6, pp. 133-134, 1928.
Two questions are immediate. What are the CTIs? Wha#]l A. Tarski, “A lattice-theoretical fixpoint theorem antsiapplications,’

; ; ; ; A0 Pacific Journal of Mathematigsvol. 5, no. 2, pp. 285-309, 1955.
is the abstract domain for invariant generatlon. When th] K. L. McMillan, “Applying SAT methods in unbounded symk odel

invariant generation is based on propagation, as in thi®pap ~ checking.” inCAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 250264,
these questions are linked: the abstract domain should i@ H.Jin and F. Somenzi, “Prime clauses for fast enumenatibsatisfying

; ; ; _ assignments to boolean circuits,” PAC. ACM Press, 2005.
conjunctive with respect to the CTko that the best over] L. de Moura, H. Ruess, and M. Sorea, “Bounded model cineciind

approximation to the CTI in the domain is sufficiently precis induction: From refutation to verification,” iBAV, ser. LNCS. Springer,
For example, in FSIS, the CTls are (partial) states that 2003.

; ; ; . 18] V. C. Vimjam and M. S. Hsiao, “Fast illegal state identfton for
can lead to violations of the given property; and the domai improving SAT-based induction” iDAG., ACM Press, 2006,

consists of clauses of system variables. Clauses are adiviein [9] M. Awedh and F. Somenzi, “Automatic invariant strengihg to prove
with respect to states like CTls that ought to be unreachable properties in bounded model checking,” AC. ACM Press, 2006.

: s : 10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and Saliy,
We thus start witHI and conjoin invariant clauses to excludé “Chaff: Engineering an Efficient SAT Solver” IDAC, 2001.

error states until CTls no longer exist. [11] K. L. McMillan and N. Amla, “Automatic abstraction withut coun-
As another example, consider the dual analysis in which the tzeri;amples." iNTACAS ser. LNCS, vol. 2619. Springer, 2003, pp.
set of reachable states is grown until it is inductive witho 12] K. L. McMillan, “Interpolation and SAT-based model aking " in CAV,
including any —II-states. Now, the CTlIs are (partial) stateS = ser. LNCS, vol. 2725. Springer, 2003, pp. 1-13.
that are reachable in one step from the currently reachablel —. “A(r:)glicatiogs ch) Cri;ig !nterpozl’c(l)%ts in modelzchéng-” in TACAS
. [; ; : ser. LNCS, vol. 3440. pringer, 5, pp. 1-12.
Set’_ and the abstract df’ma',” is cubes, which are_ Conjum“?ﬂ] VIS [Online]. Available: http://visi.colorado.edukis
of literals. Hence, the invariant cubes are combined thinoug@is] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolimodel
disjunction to grow the reachable set. Each round of inwéria checking without BDDs,” inTACAS Springer, 1999, pp. 193-207.

: ; s : : [16] M. Sheeran, S. Singh, and G. Stalmarck, “Checking gafeoperties
generation discovers minimal inductive subcubef the cube using induction and a SAT-solver” IRMCAD, ser. LNCS, vol. 1954.

defined by the CTI that includes only-states. Springer, 2000.
In another application, we explored inductive generaiirat [17] R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Pitermand M. Vardi,

! : i : “SAT-based induction for temporal safety properties,"BMC, 2004.
from CTls to affine Inequa“tles [21]' In the domain of th 18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Cawaxample-

analysis, invariant generation is not based on propagation guided abstraction refinement for symbolic model checkirig,ACM

Once the form of the CTI and the abstract domain are] vol. 50, no. 5, pp. 752—794,h2003. . ke, ‘Wdevel
: ; ; ; ; - ~+:[9] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, ‘\/deve
fixed, one desires to find a_greateSt inductive generalnatl[} predicate abstraction and refinement for verifying RTL legyi’ in DAC,
to each CTI. Standard techniques suggest how to perform one 2qos,
direction of propagation in the abstract domain [2]. Howevel20] A. Zeller, *Yesterday, my program worked. Today, it dosot. Why?”

. . P in ESEC / SIGSOFT FSH999, pp. 253-267.
the other direction must suffer from the nondetermlnlsr[I}l] A. R. Bradley and Z. Manna, “Verification constraint ptems with

inherent in over- (under-) approximating in a disjunctieerg- strengthening,” iNCTAC, ser. LNCS, vol. 3722. Springer, 2006.
junctive) domain, so that a greatest inductive generatinat

REFERENCES

