
Checking Safety by Inductive Generalization of
Counterexamples to Induction

Aaron R. Bradley and Zohar Manna

Computer Science Department
Stanford University

Stanford, CA 94305-9045
Email: {arbrad, manna}@cs.stanford.edu

Abstract—Scaling verification to large circuits requires some
form of abstraction relative to the asserted property. We describe
a safety analysis of finite-state systems that generalizes from
counterexamples to the inductiveness of the safety specification
to inductive invariants. It thus abstracts the system’s state space
relative to the property. The analysis either strengthens asafety
specification to be inductive or discovers a counterexampleto
its correctness. The analysis is easily made parallel. We provide
experimental data showing how the analysis time decreases with
the number of processes on several hard problems.

I. I NTRODUCTION

We describe a safety analysis for finite-state systems that
incrementally strengthens a correct specification to be induc-
tive. Each iteration of the analysis chooses acounterexample
to the inductiveness of the specification: a state that explains
why the specification is not yet inductive. It then generalizes
from the assumption that this state is unreachable to an
inductive invariant that proves that many states, including the
counterexample to induction, are unreachable. Thus, through
directed invariant generation, it accomplishes an abstraction of
the state space of the system relative to the specification.

The main idea of our analysis is the following. Suppose
the given safety property is not inductive. Then there exists a
counterexample to induction(CTI): a state that can lead to a
violation of the property. The analysis attempts to generate a
single inductive invariant in the form of a clause that eliminates
this state and many other states as well. If it succeeds, the
generated inductive clause strengthens the property. Otherwise,
the given property is extended to assert that the CTI state is
also unreachable. After many iterations of this process, either
the incrementally strengthened property becomes inductive
or a counterexample trace is found. Section III presents the
analysis in detail, and Section VII discusses the analysis more
generally.

The application of induction as the basis for generalization
is the distinguishing feature of this analysis. From one CTI,
the analysis generalizes to an inductive clause that provesthat
many states are unreachable: the CTI state itself, all the states

This research was supported in part by NSF grants CCR-01-21403, CCR-
02-20134, CCR-02-09237, CNS-0411363, and CCF-0430102, byARO grant
DAAD19-01-1-0723, and by NAVY/ONR contract N00014-03-1-0939. The
first author was additionally supported by a Sang Samuel WangStanford
Graduate Fellowship.

that can reach it, andmany other states that cannot reach it.
This generalization beyond the states that can reach the CTI
contrasts with standard preimage computation.

The success of our approach depends on two points. First,
we require a fast method of generating inductive clauses. We
address this challenge in Section IV. Second, small inductive
clauses must exist in practice. The empirical evidence of
Section V suggests that they do. In Section VI, we discuss
related techniques and the potential for hybrid approaches.

II. PRELIMINARIES

A. Propositional Logic

Let us review a few useful notations and definitions of
propositional logic. Aliteral ℓ is a propositional variablex
or its negation¬x. A clause c is a disjunction of literals.
The size|c| of clausec is its number of literals. A subclause
d ⊑ c is a disjunction of a subset of literals ofc. A formula in
conjunctive normal form(CNF) is a conjunction of clauses.

We write ϕ[x] to indicate that the formulaϕ has variables
x = {x1, . . . , xn}. An assignments associates a truth value
{true, false} with each variablexi of x. ϕ[s] is the truth value
of ϕ on assignments, ands is a satisfying assignmentof ϕ
if ϕ[s] is true. A partial assignmentt need not assign values
to every variable.

Finally, a formulaϕ impliesa formulaψ if every satisfying
assignment (that assigns a truth value to every variable ofϕ

and ψ) of ϕ also satisfiesψ. In this case, we say that the
implication ϕ ⇒ ψ holds. The implicationϕ ⇒ ψ holds iff
(if and only if) the formulaϕ ∧ ¬ψ is unsatisfiable.

B. Transition Systems

We model finite-state systems as Boolean transition systems.

Definition 1 (Boolean Transition System)A Boolean tran-
sition systemS : 〈x, θ, ρ〉 has three components:

• a set of propositionalvariablesx = {x1, . . . , xn}, which
hold the state of the system;

• an initial condition, a propositional formulaθ[x], which
describes in which states the system can start;

• and atransition relation, a propositional formulaρ[x, x′],
which describes how the system evolves in each step of
execution.

In ρ[x, x′], primed variablesx′ represent the values of the
variablesx in the next state.

The semantics of a finite-state system are given by its set
of computations.

Definition 2 (State & Computation) A state s of Boolean
transition systemS is an assignment of the variablesx. A
computationσ : s0, s1, s2, . . . is a sequence of states such that

• s0 satisfies the initial condition:θ[s0] is true;
• and for eachi ≥ 0, si and si+1 are related byρ:
ρ[si, si+1] is true.

A state ofS is reachableif it is in some computation of
S. We are interested in determining for a given systemS and
formulaϕ if every reachable state ofS satisfiesϕ. If so, then
ϕ is S-invariant, or is an invariant of S. If not, then there
exists a computation with some states that falsifiesϕ; the
prefix of the computation up tos is a counterexample trace.

Rather than examining each of the possibly infinitely many
computations ofS, however, we apply induction to determine
if ϕ is S-invariant.

Definition 3 (Inductive Invariant) A formula ϕ is S-
inductiveif

• it holds initially: θ ⇒ ϕ, (initiation)
• and it is preserved byρ: ϕ ∧ ρ⇒ ϕ′. (consecution)

In the latter formula,ϕ′ abbreviatesϕ[x′]: each variable is
replaced by its corresponding primed variable.

A formulaϕ is S-inductiverelative toaS-inductive formula
ψ if θ ⇒ ϕ as before, andψ ∧ ϕ ∧ ρ⇒ ϕ′.

The two implications — the base case and the inductive
case, respectively — are theverification conditionsfor S and
ϕ. WhenS is obvious from the context, we omit it fromS-
inductive andS-invariant.

III. F INITE-STATE INDUCTIVE STRENGTHENING

Given transition systemS : 〈x, θ, ρ〉 and specification for-
mulaΠ, is Π S-invariant? Proving thatΠ is inductive answers
the question affirmatively. However,Π is often invariant yet
not inductive. A standard approach in this case is to find
a formula χ such thatΠ ∧ χ is inductive; χ is called a
strengthening assertion[1]. There are many approaches to
finding a strengthening assertion for finite-state systems (see
Section VI). We describe an approach based on generating
many clauses, each of which is inductive relative to the
previously-generated clauses.

A. Inductive Clauses

First, let us consider how to find a single clause that is
inductive relative to some formulaψ. Later, we show how to
chain the discovery of such clauses together to decide whether
a systemS meets its specificationΠ. Our presentation is self-
contained but follows the ideas of abstract interpretation[2].

Consider an arbitrary clausec that need not be inductive. It
induces thesubclause latticeLc : 〈2c,⊓,⊔,⊑〉 in which

• the elements2c are the subclauses ofc;
• the elements are ordered by the subclause relation⊑:

in particular, the top element isc itself, and the bottom
element is the formulafalse (“false”);

• the join operator⊔ is simply disjunction;
• the meet operator⊓ is defined as follows:c1 ⊓ c2 is the

disjunction of the literals common toc1 andc2.
Lc is complete; by the Knaster-Tarski theorem [3], [4], every
monotone function onLc has a least and a greatest fixpoint.

Consider the monotone nonincreasing functiondown(Lc, d)
that, given the subclause latticeLc and the claused ∈ 2c,
returns the (unique) largest subclausee ⊑ d such that the
implicationψ∧e∧ρ⇒ d′ holds. In other words, it returns the
best under-approximation inLc to the weakest precondition
of d. If the greatest fixpoint̄c of down(Lc, c) satisfies the
implicationθ ⇒ c̄ of initiation, then it is the largest subclause
of c that is inductive relative toψ. Section IV-A describes how
to find c̄ with a number of satisfiability queries linear in|c|.

Large inductive clauses are undesirable, however, because
they provide less information than smaller clauses: they are
satisfied by more states. We want to find aminimal inductive
subclauseof c, an inductive subclause that does not itself
contain any strict subclause that is inductive. Therefore,we
examine a fixpoint of anextensivefunction on inductive
subclause lattices, which are lattices whose top elements are
inductive. Constructing an inductive subclause lattice requires
first computing the greatest fixpoint ofdown on a larger
subclause lattice.

To that end, consider the (nondeterministic) function
implicate(ϕ, c) that, given formulaϕ and clausec, returns
a minimal subclaused ⊑ c such thatϕ ⇒ d if such a
clause exists, and returns⊤ (“true”) otherwise. This minimal
subclaused is known as aprime implicate[5], [6]. There can
be exponentially many such minimal subclauses, yet there may
not be any prime implicate ifϕ 6⇒ c. Section IV-B presents
an optimal implementation ofimplicate.

Using implicate, we can find a subclause ofc that best
approximatesθ: b : implicate(θ, c). Consider the subclause
sublatticeLb,c of Lc that has top elementc and bottom element
b. Consider also the extensive operationup(Lb,c, d) that, for
elementd of Lb,c, returns a minimal subclausee ⊑ c such
that the implicationsψ ∧ d ∧ ρ ⇒ e′ and d ⇒ e hold. In
other words, it computese′ : implicate((ψ ∧ d ∧ ρ) ∨ d′, c′),
a best over-approximation inLb,c of the disjunction ofd and
the strongest postcondition ofd.

The operationup is a function onLb,c — it maps an
element ofLb,c to an element ofLb,c — precisely when the
top elementc is inductive. In this case, a fixpoint̄c is an
inductive subclause ofc that is small in practice. However, it
is not necessarily a minimal inductive subclause, as different
runs of implicate result in different fixpoints, some of which
may be strict subclauses of others.

Now for a given clausec, compute the greatest fixpoint
of down on Lc to discover inductive clausēc and its corre-
sponding inductive sublatticeLc̄. Computeb : implicate(θ, c)
to identify the inductive sublatticeLb,c̄ whose bottom element

over-approximatesθ. Finally, compute a fixpoint ofup onLb,c̄

to find a small inductive subclausēd of c. In practice,d̄ is small
but need not be minimal.

A brute-force recursive technique finds a minimal inductive
subclause. First apply the procedure described above toc to
find d̄. Then recursively treat each immediate strict subclause
of d̄, of which there are|d̄|. A claused̄ is a minimal inductive
subclause ofc precisely when each of these recursive calls
fails to find an inductive strict subclause of̄d. We call this
procedureMIC(S, ψ, c). It returns a minimal subclause ofc
that isS-inductive relative toψ, or ⊤ if no such clause exists.

B. FSIS: Generalizing from Counterexamples to Induction

Having developed the algorithmMIC to discover a minimal
inductive subclause of a given clausec, the remaining consid-
eration is which clausec to provide it. We use negations of
counterexamples to induction(CTIs): Π-states that can lead
to ¬Π-states. This choice guidesMIC to discover inductive
clauses that are relevant for proving thatΠ is S-invariant,
implicitly abstracting the state-space ofS relative toΠ. Hence,
rather than finding a CNF representation of the exact set
of reachable states ofS, we expect to find a much smaller
formulaχ such thatΠ∧χ is inductive and represents a larger
set of states that all satisfyΠ.

Suppose thatχ is a conjunction of previously-generated
clauses that areS-inductive relative toΠ, but Π ∧ χ is not
S-inductive. Why isΠ ∧ χ not inductive? One possibility is
that initiation fails: the formulaθ ∧ ¬Π is satisfied by some
states. In this case,Π is notS-invariant.

Another possibility is that consecution fails: the formula
Π∧χ∧ρ∧¬Π′ is satisfied by some pair of states(s, s′). That
is, it is possible forS to transition from states, which satisfies
Π ∧ χ, to states′, which satisfies¬Π′ and thus violates the
specificationΠ. States is a CTI.

Sinces is an assignment of truth values to variables ofS, it
can be viewed as a conjunction of literals: ifs assignsxi to be
true, the conjunction containsxi; if s assignsxi to be false,
the conjunction contains¬xi. Call this conjunction̂s. Now,
noticing that¬ŝ is a clause, computeMIC(S, Π ∧ χ, ¬ŝ).
If MIC returns⊤ becausês does not contain a subclause that
is inductive relative toΠ ∧ χ, then updateΠ to indicate that
proving that states is unreachable is a subgoal of proving the
invariance of the originalΠ: Π := Π ∧ ¬ŝ. Otherwise,MIC
returns c̄, an inductive generalization of¬ŝ: c̄ is inductive
relative toΠ ∧ χ and excludes states and many other states.
Updateχ accordingly:χ := χ ∧ c.

Eventually, eitherΠ grows so thatθ ∧ ¬Π is satisfiable,
disproving the specification, orΠ∧ χ becomes inductive. For
χ is always inductive relative toΠ; and if the formulaΠ ∧
χ∧ ρ∧¬Π′ is unsatisfiable, thenΠ is inductive relative toχ.

Which states does an inductive generalization of¬ŝ ex-
clude? It clearly excludes states. It also excludes all states that
can reachs, for it would not be inductive otherwise. However,
even the largest inductive subclause of¬ŝ excludes all states
that can reachs, while MIC discovers significantly smaller
inductive subclauses in practice. Hence,MIC generalizes the

argument thats and those states that can reachs are unreach-
able to prove that many other states are also unreachable.
This generalization contrasts with methods that compute the
preimage of a CTI [7]–[9].

This analysis is naturally made parallel. By simply using
a randomized decision procedure to obtain the CTIs, each
process is likely to analyze a different part of the state-space.
Processes need only communicate discovered inductive clauses
and — depending on implementation choices (see Section V)
— CTIs that do not yield inductive clauses.

We call this procedureFSIS(S,Π), for finite-state inductive
strengthening. It returns an inductive strengthening ofΠ if Π is
S-invariant; otherwise, it extracts from the subgoals conjoined
to Π a counterexample trace.

C. One-Step Cone of Influence

One need not consider a full assignments as a CTI.
Computing aone-step cone of influence(COI) — the variables
that can possibly impact the truth value ofΠ in the next state
— yields a partial assignmentt that describes a set of states,
rather than just a single states, that can lead to a violation
of Π. Applying MIC to the resulting clause¬t̂ focuses it on
excluding all of these states, rather than proving that justthe
states is unreachable for a reason that is unrelated to why the
other states are unreachable.

IV. A LGORITHMS

This section develops the algorithms introduced in Section
III-A to discover minimal inductive subclauses.

A. Computing the Largest Inductive Subclause

Recall that the functiondown(Lc, d) computes the largest
subclausee ⊑ d such that the implicationψ ∧ e ∧ ρ ⇒ d′

holds. A straightforward method of computing the greatest
fixpoint of down in Lc — which iteratively computes under-
approximations to the weakest precondition — can require
Ω(|c|2) satisfiability queries. For systems with many variables,
this quadratic cost is prohibitively expensive.

We describe a method that requires a linear number of
queries. Consider checking if the implicationψ ∧ c ∧ ρ ⇒ c′

holds. If it does, and if the implicationθ ⇒ c of initiation also
holds, thenc is inductive relative toψ. If it does not, then the
formulaψ∧c∧ρ∧¬c′ is satisfied by some assignment(s, s′) to
the unprimed and primed variables. Letŝ be the conjunction
of literals corresponding tos; and let¬t̂ be the best over-
approximation to¬ŝ in Lc, which is the largest clause with
literals common toc and¬ŝ. Then compute the new clause
d : c⊓¬t̂. In other words,d has the literals common toc and
¬ŝ. Now recurse ond.

If at any point during the computation, initiation does not
hold, then report failure.

This algorithm, which we callLIC(Lc, c), computes the
largest inductive subclause of the given clausec.

Proposition 1 (Largest Inductive Subclause)The fixpoint
of the iteration sequence computed byLIC(Lc, c) is the

largest subclause ofc that satisfies consecution. If it also
satisfies initiation, then it is the largest inductive subclause
of c. Finding it requires solving at mostO(|c|) satisfiability
queries.

Proof: Let the computed sequence bec0 = c, c1, . . . , ck,
where the fixpointck satisfies consecution. Notice that for
eachi > 0, ci ⊑ ci−1 by construction. Suppose thate ⊑ c

also satisfies consecution, yet it is not a subclause ofck. We
derive a contradiction.

Consider positioni at which e ⊑ ci but e 6⊑ ci+1; such a
position must occur by the existence ofe. Now partition ci
into two clauses,e ∨ f ; f contains the literals ofci that are
not literals ofe. Since consecution does not yet hold forci,
the formulaψ ∧ (e ∨ f) ∧ ρ ∧ ¬(e′ ∨ f ′) is satisfiable. Case
splitting, one of the following two formulae is satisfiable:

ψ ∧ e ∧ ρ ∧ ¬e′ ∧ ¬f ′ (1)

ψ ∧ ¬e ∧ f ∧ ρ ∧ ¬e′ ∧ ¬f ′ (2)

Formula (1) is unsatisfiable becausee satisfies consecution
by assumption. Therefore, formula (2) is satisfied by some
assignment(s, s′). Now, because¬e[s] evaluates totrue, we
know that e ⊑ ¬ŝ (where ŝ is the conjunction of literals
corresponding to assignments); but thene ⊑ ci+1 = ci ⊓ ¬ŝ,
a contradiction.

The linear bound on the number of satisfiability queries
follows from the observation that each iteration (other than
the final one) must drop at least one literal ofc.

We thus have an algorithm for computing the largest induc-
tive subclause of a given clause with only a linear number of
satisfiability queries.

In practice, during one execution ofMIC, the clauses that
are found not to contain inductive clauses should be cached
to preclude the future exploration of its subclauses.

B. Computing Prime Implicates

Recall that the functionup(Lc, d) computes a minimal
subclausee ⊑ c such that the implication(ψ∧d∧ρ)∨d′ ⇒ e′

holds. As explained in Section III-A, the crucial part of
implementingup is implementing an algorithm for finding
minimal implicates:implicate(ϕ, c) should return a minimal
subclause ofc such thatϕ ⇒ c holds, or ⊤ if no such
subclause exists. We focus onimplicate in this section.

In fact, we consider a more general problem. Consider a
set of objectsS and a predicatep : 2S 7→ {true, false} that is
monotone onS: if p(S0) is true andS0 ⊆ S1 ⊆ S, then also
p(S1) is true. We assume thatp(S) is true; this assumption
can be checked with one preliminary query. The problem is
to find a minimal subset̄S ⊆ S that satisfiesp: p(S̄).

The correspondence between this general problem and
implicate(ϕ, c) is direct: letS be the set of literals ofc and
p be the predicate that istrue for S0 ⊆ S precisely when
ϕ⇒

∨

S0, where
∨

S0 is the disjunction of the literals ofS0.
A straightforward and well-known algorithm for finding a

minimal satisfying subset ofS requires a linear number of
queries top. Drop an element of the given set. If the remaining

let rec min p S0 = function

| [] → S0

| h :: t → if p(S0 ∪ t)
then min p S0 t

else min p (h :: S0) t
let minimal p S = min p [] S

Fig. 1. Linear-timeminimal

let rec split (ℓ, r) = function

| [] → (ℓ, r)
| h :: [] → (h :: ℓ, r)
| h1 :: h2 :: t → split (h1 :: ℓ, h2 :: r) t

let split S0 = split ([], []) S0

let rec min p sup S0 =
if |S0| = 1
then S0

else let ℓ0, r0 = split S0 in

if p(sup ∪ ℓ0)
then min p sup ℓ0
else if p(sup ∪ r0)

then min p sup r0
else let ℓ = min p (sup ∪ r0) ℓ0 in

let r = min p (sup ∪ ℓ) r0 in

ℓ ∪ r
let minimal p S = min p [] S

Fig. 2. Optimalminimal

set satisfiesp, recurse on it; otherwise, recurse on the given
set, remembering never to drop that element again.

Figure 1 describes this algorithm precisely using an
O’Caml-like language. It treats sets as lists.S0 contains the
required elements ofS that have already been examined; if
there are not any remaining elements, returnS0. Otherwise,
the remaining elements consist ofh :: t — a distinguished
elementh (the “head”) and the other elementst (the “tail”).
If p(S0∪t) is true, h is unnecessary; otherwise, it is necessary,
so add it toS0. We provide these details to prepare the reader
to understand an algorithm that makes the optimal number of
queries top.

We can do exponentially better than always making a linear
number of queries top. Suppose we are given two disjoint sets,
the “support” setsup and the setS0, such thatp(sup ∪ S0)
holds butp(sup) does not hold. We want to find a minimal
subsetS̄ ⊆ S0 such thatp(sup ∪ S̄) holds. If S0 has just
one element, then that one element is definitely necessary, so
return it. Otherwise, splitS0 into two disjoint subsetsℓ0 andr0
with roughly half the elements each (see Figure 2 for a precise
description ofsplit). Now if p(sup ∪ ℓ0) is true, immediately
recurse onℓ0, usingsup again as the support set. If not, but
p(sup∪r0) is true, then recurse onr0, usingsup again as the
support set.

The interesting case occurs when neitherp(sup ∪ ℓ0) nor
p(sup∪r0) hold: in this case, elements are required from both
ℓ0 andr0. First, recurse onℓ0 usingsup∪r0 as the support set.
The returned setℓ is a minimal subset ofℓ0 that is necessary

@pre p(sup ∪ S0) ∧ ¬p(sup)
@post V ⊆ S0 ∧ p(sup ∪ V)

∧ ∀e ∈ V. ¬p(sup ∪ V \ {e})
let rec min p sup S0 =

Fig. 3. Annotated prototype ofmin, whereV is the return value

for p(sup∪ℓ∪r0) to hold. Second, recurse onr0 usingsup∪ℓ
(note: ℓ, not ℓ0) as the support set. The returned setr is a
minimal subset ofr0 that is necessary forp(sup ∪ ℓ ∪ r) to
hold. Finally, returnℓ ∪ r, which is a minimal subset ofS0

for p(sup ∪ ℓ ∪ r) to hold.
Figure 2 gives a precise definition of this algorithm. To find

a minimal subset ofS that satisfiesp, min is initially called
with an empty support set ([]) andS.

Theorem 1 (Correct) Suppose thatS is nonempty,p(S) is
true, andp(∅) is false.

1) min p [] S terminates.
2) Let S̄ = min p [] S. Thenp(S̄) is true, and for each

e ∈ S̄, p(S̄ \ {e}) is false.

Proof: The first claim is easy to prove: each level of
recursion operates on a finite nonempty set that is smaller
than the set in the calling context.

For the second claim, we make an inductive argument of
correctness. We prove first thatp(S̄) is true. We then prove
that for eache ∈ S̄, p(S̄ \ {e}) is false. To prove these
claims, we prove that five assertions are inductive formin.
These assertions are summarized as function preconditionsand
function postconditions ofmin in Figure 3. Throughout the
proof, letV = min p sup S0 be the return value.

For the first part of the second claim, we establish the
following invariants:

1) p(sup ∪ S0)
2) p(sup ∪ V)

Invariant (1) is a function precondition ofmin; invariant
(2) is a function postcondition ofmin. Hence, the inductive
argument for (1) establishes that it always holds upon entry
to min, while the inductive argument for (2) establishes that
it always holds upon return ofmin.

Invariants (1) and (2) are proved simultaneously. For the
base case of (1), note thatp(∅ ∪ S) = p(S), which is true by
assumption. For the inductive case, consider thatp(sup ∪ ℓ0)
andp(sup∪r0) are checked before the first two recursive calls;
that sup ∪ r0 ∪ ℓ0 = sup ∪S0 for the third recursive call; and
that p(sup ∪ r0 ∪ ℓ) is true by invariant (2).

For the base case of invariant (2), we know at the first
return of min that p(sup ∪ S0) from invariant (1), andV =
S0. For the inductive case, consider that (2) holds at the next
two returns by the inductive hypothesis; and that at the fourth
return,p(sup ∪ ℓ∪ r) holds by the inductive hypothesis of the
prior line.

In the first call tomin in minimal, sup = ∅; hence,p(S̄) =
p(∅ ∪ S̄) = true by invariant (2).

To prove thatS̄ is minimal (that for eache ∈ S̄, p(S̄ \ {e})
is false) for the second part of the second claim, consider the
following invariants:

3) V ⊆ S0

4) ¬p(sup)
5) ¬p(sup ∪ V \ {e}) for e ∈ V

Invariant (4) is a function precondition, and invariants (3) and
(5) are function postconditions.

For invariant (3), note for the base case that the first return
of min returnsV = S0 itself; that the next two returns hold
by inductive hypothesis; thatℓ ⊆ ℓ0 andr ⊆ r0 by inductive
hypothesis; and, thus, thatV = ℓ ∪ r ⊆ ℓ0 ∪ r0 = S0.

For the base case of invariant (4), consider that¬p(∅) by
assumption. For the inductive case, consider that the first two
recursive calls have the samesup as in the calling context
and thus (4) holds by inductive hypothesis; that at the third
recursive call,¬p(sup ∪ r0); and that at the fourth recursive
call,¬p(sup∪ℓ0) and, from (3), thatℓ ⊆ ℓ0, so that¬p(sup∪ℓ)
follows from monotonicity ofp.

For the base case of invariant (5), consider that at the first
return,¬p(sup) by invariant (4). Hence, the one element of
S0 is necessary. The next two returns hold by the inductive
hypothesis. For the final return, we know by the inductive
hypothesis that¬p(sup ∪ ℓ ∪ r \ {e}) for e ∈ r; hence, all
of r is necessary. Additionally, from the inductive hypothesis,
¬p(sup ∪ r0 ∪ ℓ \ {e}) for e ∈ ℓ, and¬p(sup ∪ r0 ∪ ℓ \ {e})
implies that¬p(sup ∪ r ∪ ℓ \ {e}) by monotonicity ofp and
becauser ⊆ r0 by invariant (3); hence, all ofℓ is necessary.

In the first call tomin at minimal, sup = ∅ andV = S̄;
hence,¬p(S̄ \ {e}) for e ∈ S̄ from invariant (5).

Theorem 2 (Upper Bound) Let S̄ = min p [] S. Discovering

S̄ requires makingO
(

(|S̄| − 1) + |S̄| lg |S|
|S̄|

)

queries top.

Proof: Suppose that|S̄| = 2k and |S| = n2k for
somek, n > 0. Each element of̄S induces one divergence
at some level in the recursion. At worst, these divergences
occur evenly distributed at the beginning, inducing|S̄| separate
binary searches over sets of size|S|

|S̄|
. Hence,|S̄| − 1 calls

to min diverge, while|S̄| lg |S|

|S̄|
calls behave like in a binary

search. Noting that each call results in at most two queries
to p, we have the claimed upper bound in this special case,
which is also an upper bound for the general case. (Adding
sufficient “dummy” elements to construct the special case does
not change the asymptotic bound.)

For studying the lower bound on the complexity of the
problem, suppose thatS has precisely one minimal satisfying
subset.

Theorem 3 (Lower Bound) Any algorithm for determin-
ing the minimal satisfying subset̄S of S must make
Ω

(

|S̄| + |S̄| lg
(

|S|−|S̄|

|S̄|

))

queries top.

Proof: For the linear component,|S̄|, consider deciding
whetherS̄ is indeed minimal. Since all that is known is thatp

let rec min f sup S0 =
if |S0| = 1
then (sup, S0)
else let ℓ0, r0 = split S0 in

let v, C = f(sup ∪ ℓ0) in
if v

then min f (sup ∩ C) (ℓ0 ∩ C)
else let v, C = f(sup ∪ r0) in

if v

then min f (sup ∩C) (r0 ∩ C)
else let C, ℓ = min f (sup ∪ r0) ℓ0 in

let sup = sup ∩C in

let r0 = r0 ∩ C in

let C, r = min f (sup ∪ ℓ) r0 in

(sup ∩ C, (ℓ ∩ C) ∪ r)
let minimal f S =
let , S0 = min f [] S in S0

Fig. 4. Optimalminimal with additional information

is monotone overS, the information thatp(S0) is false does
not reveal any information aboutp(S1) when S1 \ S0 6= ∅.
Therefore,p must be queried for each of the|S̄| immediate
strict subsets of̄S.

For the other component, consider that any algorithm must
be able to distinguish amongC(|S|, |S̄|) = |S|!

|S̄|!(|S|−|S̄|)!
possible results using only queries top. Thus, the height of a
decision tree must be at leastlgC(|S|, |S̄|). Using Stirling’s
approximation,

lg |S|!

|S̄|!(|S|−|S̄|)!
≥ lg |S|! − lg |S̄|! − lg(|S| − |S̄|)!

− o(lg |S̄| + lg(|S| − |S̄|))

= Ω
(

|S| lg
(

|S|

|S|−|S̄|

)

+ |S̄| lg
(

|S|−|S̄|

|S̄|

))

.

Hence, the algorithm is in some sense optimal. However, a
set can have a number of minimal subsets exponential in its
size. In this situation, the lower bound analysis does not apply.

In practice, one can often glean more information when
executing the predicatep than just whether it is satisfied by the
given set. For example, a decision procedure for propositional
satisfiability (a “SAT solver”) can return anunsatisfiable core.
Hence, ifψ ⇒ c holds (ψ∧¬c is unsatisfiable), the procedure
might return a subclaused ⊑ c such thatψ ⇒ d also holds.
However,d need not be minimal. The algorithm of Figure 4
incorporates this extra information. Rather than a predicate p,
it accepts a functionf that returns two values:f(S) returns
the same truth value asp(S); and ifp(S) is true, it also returns
a subsetS0 ⊑ S such thatp(S0) holds. This subset is used
to prune sets appropriately. Additionally,min returns both the
minimal set and a pruned support set to use on the other branch
of recursion.

V. EXPERIMENTS

A. Implementation

We implemented our analysis in O’Caml. We discuss im-
portant elements of our implementation.

1) SAT Solver: We instrumented Z-Chaff version
“2004.11.15 Simplified” [10] to return original unit clauses
that are leaves of the implication graph to aid in computing
minimal implicates. We also refined its memory usage to allow
tens of thousands of incremental calls. For parallel executions,
we tunedZ-chaff to randomize some of its choices.

Conversion to CNF is minimized by caching the CNF
version of the transition system within the SAT solver. Also,
multiple versions of the transition relation are stored; each
version corresponds to a particular slicing of the relation
according to the one-step cone of influence.

2) Depth-First Search:Our implementation takes a depth-
first approach: if it fails to find an inductive clause excluding
a CTI, it focuses on this subgoal before again considering the
rest of the given property.

3) Parallel Algorithm: Each process works mostly indepen-
dently, relying on the randomness of the SAT solver to focus
on different regions of the possible state space of the system.
Upon discovery of an inductive clause, a process reports it
to a central server and receives all other inductive clauses
discovered by other processes since its last report. Because of
the depth-first treatment of counterexample states, a process
can report that a clause is inductiveunder the assumption that
subgoal states are unreachable. If this assumption is incorrect,
the process eventually discovers a counterexample trace. Oth-
erwise, it eventually justifies this assumption with additional
inductive clauses. However, other processes may finish before
receiving these additional clauses. Hence, because only the last
process to terminate receives all clauses, it is the only process
that is guaranteed to have an inductive strengthening of the
safety property.

B. Benchmarks

1) PicoJava II Set:We applied our analysis to the PicoJava
II microprocessor benchmark set, previously studied in [11]–
[13]. Each benchmark asserts a safety property about the
instruction cache unit (ICU) — which manages the instruction
cache, prefetches instructions, and partially decodes instruc-
tions — but includes the implementation of both the ICU
and the instruction folding unit (IFU), which parses the byte
stream from the instruction queue into instructions and divides
them into groups for execution within a cycle. Including the
IFU increases the number of variables in the cone-of-influence
(COI) and complicates the combinatorial logic. Hence, for
example, a static COI analysis is unhelpful. Of the 20 bench-
marks, proof-based abstraction solved 18 [11] (it exhausted
the available 512MB of memory on problems PJ17 and PJ18),
and interpolation-based model checking solved 19 [12], [13],
each within their allotted times of 1000 seconds on 930MHz
machines.

2) VIS Set: The second set of benchmarks are from the
VIS distribution [14]. We applied the analysis to several valid
properties of models that are difficult for standardk-induction
(although easy for standard BDD-based model checking) [9].
k-induction with strengthening fails on PETERSONand HEAP

TABLE I
RESULTS FOR ONE PROCESS

Name COI Clauses SAT queries Time Mem (MB)

PJ2 306 6 (2) 202 (64) 38s (3s) 212 (9)
PJ3 306 6 (3) 201 (78) 37s (3s) 213 (9)
PJ5 88 159 (27) 12K (3.4K) 30s (9s) 50 (3)
PJ6 318 414 (85) 32K (7.5K) 1h30m (22m) 589 (39)
PJ7 67 63 (9) 4K (1K) 10s (2s) 41 (3)
PJ8 90 70 (8) 3.5K (.8K) 13s (3s) 43 (3)
PJ9 46 27 (5) 1K (.2K) 4s (1s) 35 (2)
PJ10 54 6 (3) 213 (110) 6s (1s) 48 (1)
PJ13 352 8 (6) 234 (149) 2m45s (1m9s) 379 (15)
PJ15 353 145 (68) 6K (3.5K) 30m (17m) 493 (79)
PJ16 290 241 (186) 18K (22K) 50m (1h10m) 539 (96)
PJ17 211 1.2K (153) 337K (51K) 16h20m (3h) 1250 (110)
PJ18 143 740 (152) 91K (23K) 2h40m (50m) 673 (83)
PJ19 52 83 (11) 4K (.4K) 11m (5m) 237 (31)
PC1 93 7 (4) 170 (105) 2m48s (1m) 360 (12)
PC2 91 3 (0) 42 (1) 51s (4s) 335 (1)
PC5 91 3 (0) 42 (1) 53s (4s) 335 (1)
PC6 91 9 (4) 229 (109) 3m25s (1m18s) 377 (13)
PC10 91 21 (10) 598 (260) 5m35s (1m47s) 370 (8)
HEAP 30 2.6K (237) 58K (60K) 4h20m (45m) 330 (25)
PET 16 4 (0) 140 (11) 2s (0s) 44 (0)

1 4 8 16 32 64
10

2

10
3

10
4

10
5

processes

tim
e

(s
)

PJ6
PJ17
PJ18
heap

Fig. 5. Time for multiple processes

within 1800 seconds; but BDD-based model checking requires
at most a few seconds for each [9].

C. Results

Table I reports results for executing one process on one
processor of a 4×1.8GHz computer with 8GB of available
memory. The analysis ran 16 times on each benchmark: Table I
reports the number of variables in the cone of influence and the
mean and standard deviation (in formatmean(std. dev.)) for
the number of discovered clauses, the number of SAT queries
made, the required time, and the peak memory usage. Results
are reported only for the nontrivial benchmarks: properties of
benchmarks 0, 1, 4, 11, 12, and 14 of the PicoJava II set
and benchmarks 3, 4, 7, 8, and 9 of the VIS PPC60x 2 set
are inductive. The PicoJava II benchmarks are labeled PJx;
the others are VIS benchmarks. All 20 of the PicoJava II
benchmarks were solved; three required more than one hour.

Figure 5 reports results as a log-log plot for analyzing
PicoJava II benchmarks 6, 17, and 18 and VIS benchmark
HEAP with multiple processes on a cluster of computers with
4×1.8GHz processors and 8GB of memory. Results for one
processor are the means from Table I. Times for 32 processes
are as follows: PJ6, 8m; PJ17, 70m; PJ18, 9m; andHEAP, 6m.
PJ17 completed in 50m with 60 processes. All benchmarks
completed within one hour with some number of processes.

The plot suggests that time decreases roughly linearly with
more processes, but onlyHEAP trades processes for time
almost perfectly, possibly because it requires the most clauses.
Suboptimal scaling results from generating redundant clauses.

VI. RELATED WORK

A. Qualitative Comparisons

We compare the characteristics of several safety analyses:
bounded model checking (BMC) [15], interpolation-based
model checking (IMC) [12], [13],k-induction (kI) [7]–[9],
[16], [17], predicate abstraction with refinement (CEGAR)
[18], [19], and our analysis (FSIS). These analyses are fun-
damentally based on computing an inductive set that excludes
all error states; they consider the property to prove during
the computation; and they use a SAT solver as the main
computational resource.

We now consider their differences.
1) Abstraction: IMC and CEGAR compute successively

finer approximations to the transition relation. Each approxi-
mation causes a certain set of states to be deemed reachable.
When this set includes an error state, IMC increments thek

associated with its postcondition operator, solving larger BMC
problems, while CEGAR learns a separating predicate. In con-
trast, BMC,kI, and FSIS operate on the full transition relation.
kI strengthens by requiring counterexamples to induction to
be ever longer paths. FSIS generalizes from CTIs to inductive
clauses to exclude portions of the state space.

2) Use of SAT Solver:BMC, IMC, andkI pose relatively
few but difficult SAT problems in which the transition relation
is unrolled many times. CEGAR and FSIS pose many simple
SAT problems in which the transition relation is not unrolled.

3) Intermediate Results:Each major iteration of IMC and
CEGAR produces an inductive set that is informative even
when it is not strong enough to prove the property. Each
successive iteration of FSIS produces a stronger formula that
excludes states that cannot be reached without previously vio-
lating the property. Intermediate iterations of BMC andkI are
not useful, although exceptions include forms of strengthening,
which we discuss in greater depth below [7]–[9], [17].

4) Parallelizable: Only FSIS is natural to make parallel.
The difficulty of subproblems grows with successive iterations
in BMC, IMC, andkI so that parallelizing across iterations is
not useful. Each iteration of CEGAR depends on previously
learned predicates. For these analyses, parallelization must be
implemented at a lower level, perhaps in the SAT solver.

Differences suggest ways to combine techniques. For ex-
ample, the key methods of FSIS andkI can be combined, and
FSIS can serve as the model checker for CEGAR.

B. Other Related Work

Blocking clausesare used in SAT-based unbounded model
checking [5]. Their discovery is refined to produceprime
blocking clauses, requiring at worst as many SAT calls as
literals [6]. Our minimal algorithm requires asymptotically
fewer SAT calls. A similar algorithm has been proposed in
a different context [20], but it handles only sets containing
precisely one minimal satisfying subset.

Strengthening based on under-approximating the states that
can reach a violating states is applied in the context of
k-induction [7]–[9], [17]. Quantifier-elimination [7], ATPG-
based computation of then-level preimage ofs [8], and
SAT-based preimage computation [9] are used to perform the
strengthening. Inductive generalization can eliminate exponen-
tially more states than preimage-based approaches.

VII. D ISCUSSION

Let us consider the methods of this paper more generally.
The fundamental idea is to generalize from counterexamplesto
induction (CTIs) to simple inductive invariants. Together, the
set of simple inductive invariants strengthens the specification
to be inductive. Limiting the form of invariants controls
computational costs, while using CTIs focuses the analysison
the safety specification. The structure of the analysis allows a
parallel implementation.

Two questions are immediate. What are the CTIs? What
is the abstract domain for invariant generation? When the
invariant generation is based on propagation, as in this paper,
these questions are linked: the abstract domain should be
conjunctivewith respect to the CTIso that the best over-
approximation to the CTI in the domain is sufficiently precise.

For example, in FSIS, the CTIs are (partial) states that
can lead to violations of the given property; and the domain
consists of clauses of system variables. Clauses are conjunctive
with respect to states like CTIs that ought to be unreachable.
We thus start withΠ and conjoin invariant clauses to exclude
error states until CTIs no longer exist.

As another example, consider the dual analysis in which the
set of reachable states is grown until it is inductive without
including any¬Π-states. Now, the CTIs are (partial) states
that are reachable in one step from the currently reachable
set; and the abstract domain is cubes, which are conjunctions
of literals. Hence, the invariant cubes are combined through
disjunction to grow the reachable set. Each round of invariant
generation discovers aminimal inductive subcubeof the cube
defined by the CTI that includes onlyΠ-states.

In another application, we explored inductive generalization
from CTIs to affine inequalities [21]. In the domain of the
analysis, invariant generation is not based on propagation.

Once the form of the CTI and the abstract domain are
fixed, one desires to find a greatest inductive generalization
to each CTI. Standard techniques suggest how to perform one
direction of propagation in the abstract domain [2]. However,
the other direction must suffer from the nondeterminism
inherent in over- (under-) approximating in a disjunctive (con-
junctive) domain, so that a greatest inductive generalization

to the CTI need not be unique. For example,implicate
is nondeterministic; and in the dual analysis, computing a
best implicant is nondeterministic. The functionminimal of
Section IV-B is a general operator for performing forward
(backward) propagation in disjunctive (conjunctive) domains.

This general perspective on the ideas of this paper suggests
further work in the form of exploring other domains. Addi-
tionally, we intend to combine the method withk-induction.
Finally, our analysis is motivated by a classically deductive
approach to verification [1]. We are exploring analyses for
other classes of temporal properties that are also motivated by
classically deductive techniques.

ACKNOWLEDGMENTS

The authors wish to thank Prof. A. Aiken, A. M. Bradley,
Prof. E. Clarke, Prof. D. Dill, Dr. A. Gupta, Dr. H. Sipma, Prof.
F. Somenzi, and the anonymous reviewers for their comments;
and Prof. A. Aiken for the use of his computer cluster.

REFERENCES

[1] Z. Manna and A. Pnueli,Temporal Verification of Reactive Systems:
Safety. New York: Springer-Verlag, 1995.

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM Press, 1977, pp. 238–252.

[3] B. Knaster, “Un the
¯
ore

¯
me sur les fonctions d’ensembles,”Ann. Soc.

Polon. Math., vol. 6, pp. 133–134, 1928.
[4] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,”

Pacific Journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.
[5] K. L. McMillan, “Applying SAT methods in unbounded symbolic model

checking.” inCAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 250–264.
[6] H. Jin and F. Somenzi, “Prime clauses for fast enumeration of satisfying

assignments to boolean circuits,” inDAC. ACM Press, 2005.
[7] L. de Moura, H. Ruess, and M. Sorea, “Bounded model checking and

induction: From refutation to verification,” inCAV, ser. LNCS. Springer,
2003.

[8] V. C. Vimjam and M. S. Hsiao, “Fast illegal state identification for
improving SAT-based induction,” inDAC. ACM Press, 2006.

[9] M. Awedh and F. Somenzi, “Automatic invariant strengthening to prove
properties in bounded model checking,” inDAC. ACM Press, 2006.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” inDAC, 2001.

[11] K. L. McMillan and N. Amla, “Automatic abstraction without coun-
terexamples.” inTACAS, ser. LNCS, vol. 2619. Springer, 2003, pp.
2–17.

[12] K. L. McMillan, “Interpolation and SAT-based model checking,” in CAV,
ser. LNCS, vol. 2725. Springer, 2003, pp. 1–13.

[13] ——, “Applications of Craig interpolants in model checking.” in TACAS,
ser. LNCS, vol. 3440. Springer, 2005, pp. 1–12.

[14] VIS. [Online]. Available: http://visi.colorado.edu/∼vis
[15] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolicmodel

checking without BDDs,” inTACAS. Springer, 1999, pp. 193–207.
[16] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties

using induction and a SAT-solver,” inFMCAD, ser. LNCS, vol. 1954.
Springer, 2000.

[17] R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Piterman,and M. Vardi,
“SAT-based induction for temporal safety properties,” inBMC, 2004.

[18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[19] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word level
predicate abstraction and refinement for verifying RTL verilog.” in DAC,
2005.

[20] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?”
in ESEC / SIGSOFT FSE, 1999, pp. 253–267.

[21] A. R. Bradley and Z. Manna, “Verification constraint problems with
strengthening,” inICTAC, ser. LNCS, vol. 3722. Springer, 2006.

