
1

Notes on Arrays

The decision procedure for the array property fragment (APF) of the the-
ory of arrays TA (with uninterpreted indices) presented in [2, 1] is unsound:
it can report unsatisfiable when the given ΣA-formula is TA-satisfiable. The
source of the unsoundness is the use of λ in Steps 4 and 6 ([1], pp. 295–296):
it assumes that the domain of indices is arbitrarily large so that there is always
some index value that is unequal to all values of terms in I.

To correct the problem, we add a new axiom schema to TA that restricts
the domains of arrays to be infinite: for each positive natural number n, there
is an axiom

∀x1, . . . , xn. ∃y.

n∧

i=1

y 6= xi .

The decision procedure is sound and complete with respect to the APF of this
augmented theory.

Notice that T Z

A
and its decision procedure for its APF is correct because

integer-indexed arrays naturally have an infinite domain (the integers).
We illustrate the effects of this axiom schema through an example.
Consider the formula

F : (∀i. a[i] = v) ∧ (∀i. b[i] 6= v) ∧ (∀i. i 6= j → a[i] = b[i]) .

If an array can have a finite domain, the formula is satisfiable: let the interpre-
tation’s domain have one element to which j is assigned. But the procedure
for TA introduces λ, resulting in the constraints

a[λ] = v ∧ b[λ] 6= v ∧ (λ 6= j → a[λ] = b[λ]) ∧ λ 6= j ,

in particular,

a[λ] = v ∧ b[λ] 6= v ∧ a[λ] = b[λ] ,

which is clearly unsatisfiable. Hence, the procedure reports unsatisfiable. In
the context of the new axiom schema, this formula is indeed unsatisfiable: no
interpretation with a domain of cardinality greater than one (in particular,
no interpretation with an infinite domain) satisfies F . But without the axiom
schema, F is satisfiable.

When reasoning about arrays in programs, using TA (with the necessary
axiom schema) does not make sense: arrays are typically bounded. Let us
consider what one might write using T Z

A
instead:

G : (∀i. 0 ≤ i ≤ n − 1 → a[i] = v)
∧ (∀i. 0 ≤ i ≤ n − 1 → b[i] 6= v)
∧ (∀i. 0 ≤ i ≤ n − 1 ∧ i 6= j → a[i] = b[i]) .

2

Here, n is intended to be the lengths of a and b. The atom i 6= j is written
i ≤ j − 1 ∨ i ≥ j + 1 in the ARP of T Z

A
. Hence,

I = {0, n − 1, j − 1, j + 1} .

Instantiating the quantifiers over I reveals that G is satisfied by any T Z

A
-

interpretation in which n = 1 and j = 0. The values of a and b outside of the
interval [0, 0] don’t matter.

In other words, while the logical entities corresponding to a and b can be
indexed by any integer, the interval that we actually care about is [0, 0]: a and
b have “length” 1. In a C program, one only wants to access an array within
its declared bounds; the other positions can be indexed (unfortunately), but
they are not considered to be part of our understanding of the array, and
doing so often results in a program crash.

What is the value of TA then? TA serves as a base theory on which to
model sets, multisets, and hashtables. The axiom schema introduced above
parallels the requirement that the QFF fragments of the theories of sets,
multisets, and hashtables must be stably infinite to work within a Nelson-
Oppen combination.



References

1. Aaron R. Bradley and Zohar Manna, The Calculus of Computation: Decision
Procedures with Applications to Verification, Springer, 2007.

2. Aaron R. Bradley, Safety Analysis of Systems, Stanford PhD Thesis, 2007,
(available at http://ece.colorado.edu/~bradleya).


