Notes on Sets and Multisets

Consider a theory $T_{\text {set }}$ of sets with signature
$\Sigma_{\text {set }}:\{\in, \subseteq,=, \subset, \cap, \cup, \backslash\}$,
where symbols are intended as follows:

- $e \in s: e$ is a member of s;
- $s \subseteq t: s$ is a subset of t;
- $s=t: s$ and t are equal;
- $s \subset t: s$ is a strict subset of t;
- $s \cap t$ is the intersection of s and $t ;$
- $s \cup t$ is the union of s and t;
- $s \backslash t$, the set difference of s and t, is the set that includes all elements of s that are not members of t.

The language is redundant; for example, \subset is definable from \subseteq and $=$. Let us encode an arbitrary $\Sigma_{\text {set }}$-formula as a Σ_{E}-formula (or a Σ_{A}-formula).
To do so, simply consider the atoms:

- $e \in s$: let $s(\cdot)$ be a unary predicate; then replace $e \in s$ by $s(e)$;
- $s \subseteq t: \forall e . e \in s \rightarrow e \in t$, or in other words, $\forall e . s(e) \rightarrow t(e)$;
- $s=t: \forall e . s(e) \leftrightarrow t(e)$;
- $s \subset t: s \subseteq t \wedge s \neq t$;
- $u=s \cap t: \forall e . u(e) \leftrightarrow s(e) \wedge t(e) ;$
- $u=s \cup t: \forall e . u(e) \leftrightarrow s(e) \vee t(e) ;$
- $u=s \backslash t: \forall e . u(e) \leftrightarrow s(e) \wedge \neg t(e)$.

Atoms with complex terms can be written more simply via "flattening" (as in the Nelson-Oppen procedure); for example, write $s \cap(t \cap u)$ as $s \cap w \wedge w=t \cap u$. Then the encodability of an arbitrary $\Sigma_{\text {set }}$-formula into a Σ_{E}-formula follows by structural induction.

Satisfiability of the quantifier-free fragment of $T_{\text {set }}$ is decidable: simply apply the decision procedure for T_{A} to the new formula.

Consider a theory $T_{\text {mset }}$ of multisets with signature

$$
\Sigma_{\text {mset }}:\{C, \leq,=,<, \uplus, \cap,-\}
$$

Multisets can have multiple occurrences of elements, are the symbols are intended as follows:

- $C(s, e)$: the number of occurrences (the "count") of e in s;
- $s \leq t$: the count of each element of s is bounded by its count in t;
- $s=t$: element counts are the same in s and t;
- $s<t$: the count of each element of s is bounded by its count in t, and some element has a lower count;
- $s \uplus t$ is the multiset union, whose counts are the element-wise sums of counts in s and t;
- $s \cap t$ is the multiset intersection, whose counts are the element-wise minima of counts in s and t;
- $s-t$ is the multiset difference, whose counts are the element-wise maxima of 0 and the difference of counts in s and t.

Let us encode an arbitrary $\Sigma_{\text {mset }}$-formula as a $\left(\Sigma_{\mathrm{E}} \cup \Sigma_{\mathbb{Z}}\right)$-formula (or a $\left(\Sigma_{\mathrm{A}} \cup \Sigma_{\mathbb{Z}}\right)$-formula). A multiset is modeled by an uninterpreted function whose range is the nonnegative integers. Now consider the atoms:

- $C(s, e)$: let s be a unary function whose range is \mathbb{N}; then replace $C(s, e)$ by $s(e)$ and conjoin $\forall e . C(s, e) \geq 0$ to the formula;
- $s \leq t: \forall e . s(e) \leq t(e)$;
- $s=t: \forall e . s(e)=t(e)$;
- $s<t: s \leq t \wedge s \neq t$;
- $u=s \uplus t: \forall e . u(e)=s(e)+t(e)$;
- $u=s \cap t: \forall e .(s(e)<t(e) \wedge u(e)=s(e)) \vee(s(e) \geq t(e) \wedge u(e)=t(e))$;
- $u=s-t$: $\forall e .(s(e)<t(e) \wedge u(e)=0) \vee(s(e) \geq t(e) \wedge u(e)=s(e)-t(e))$.

As before, encodability follows by structural induction.
Exercise: Consider augmenting $\Sigma_{\text {mset }}$ with set operations and a function set that maps a multiset m to a set s, where $e \in s$ iff $C(m, e)>0$. Describe how to encode formulae of the augmented signature into $T_{\mathrm{E}} \cup T_{\mathbb{Z}}$.

