
Detecting Clusters of Fake Accounts in Online Social
Networks

Cao Xiao
University of Washington and

LinkedIn Corporation
xiaoc@uw.edu

David Mandell Freeman
LinkedIn Corporation

dfreeman@linkedin.com

Theodore Hwa
LinkedIn Corporation

thwa@linkedin.com

ABSTRACT
Fake accounts are a preferred means for malicious users of
online social networks to send spam, commit fraud, or oth-
erwise abuse the system. A single malicious actor may cre-
ate dozens to thousands of fake accounts in order to scale
their operation to reach the maximum number of legitimate
members. Detecting and taking action on these accounts
as quickly as possible is imperative in order to protect le-
gitimate members and maintain the trustworthiness of the
network. However, any individual fake account may appear
to be legitimate on first inspection, for example by having a
real-sounding name or a believable profile.

In this work we describe a scalable approach to finding
groups of fake accounts registered by the same actor. The
main technique is a supervised machine learning pipeline
for classifying an entire cluster of accounts as malicious or
legitimate. The key features used in the model are statis-
tics on fields of user-generated text such as name, email ad-
dress, company or university; these include both frequencies
of patterns within the cluster (e.g., do all of the emails share
a common letter/digit pattern) and comparison of text fre-
quencies across the entire user base (e.g., are all of the names
rare?).

We apply our framework to analyze account data on LinkedIn
grouped by registration IP address and registration date.
Our model achieved AUC 0.98 on a held-out test set and
AUC 0.95 on out-of-sample testing data. The model has
been productionalized and has identified more than 250,000
fake accounts since deployment.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval - Spam; I.2.6 [Artificial Intelli-
gence]: Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
AISec’15, October 16, 2015, Denver, Colorado, USA.
© 2015 ACM. ISBN 978-1-4503-3826-4/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808769.2808779.

Keywords
Spam detection, fake profiles, machine learning, data min-
ing, clustering, classification

1. INTRODUCTION
Today people around the world rely on online social net-

works (OSNs) to share knowledge, opinions, and experi-
ences; seek information and resources; and expand personal
connections. However, the same features that make OSNs
valuable to ordinary people also make them targets for a
variety of forms of abuse. For example, the large audi-
ence on a single platform is a prime target for spammers
and scammers, and the trustworthiness of the platform may
make the targets more amenable to falling for scams [2].
The “gamification” aspects of a site (e.g., “Like” or “Follow”
counters) lend to bots engaging in artificial actions to il-
legitimately promote products or services [33, 36]. Details
about connections can be used to extract valuable business
information [19]. And the large amount of member data
available is enticing to scrapers who wish to bootstrap their
own databases with information on real people [30]. Accord-
ing to statistics provided by the security firm Cloudmark,
between 20% and 40% of Facebook accounts could be fake
profiles [11]; Twitter and LinkedIn also face fake account
problems to varying degrees [13,21].

Regardless of the particular motivations for creating fake
accounts, the existence of large numbers of fake accounts can
undermine the value of online social networks for legitimate
users. For example, they can weaken the credibility of the
network if users start to doubt the authenticity of profile
information [20]. They can also have negative impact on
the networks’ ad revenue, since advertisers might question
the rates they pay to reach a certain number of users if many
of them are not real people.

Yet fake accounts are hard to detect and stop. A large-
scale OSN may have millions of active users and billions of
user activities, of which the fake accounts comprise only a
tiny percentage. Given this imbalance, false positive rates
must be kept very low in order to avoid blocking many legiti-
mate members. While some fake accounts may demonstrate
clear patterns of automation, many are designed to be in-
distinguishable from real ones. Security measures such as
CAPTCHAs and phone verification via SMS have been de-
signed to interrogate suspicious accounts and hence raise the
barrier to creating fake accounts. However, the OSN must
still select a subset of accounts to challenge (since challeng-
ing all accounts would place undue friction on the experience
of real users), and once faced with these challenges, spam-

mers can either solve the challenges using CAPTCHA farms
or SIM card farms [7], or they can use the feedback to learn
how to avoid the fake account classifier [16].

While there has been a good deal of research on detecting
fake accounts (see Section 6), including some using machine
learning algorithms, the literature still suffers from the fol-
lowing gaps:

1. None of the existing approaches perform fast detection
of clusters of fake accounts. Most published fake ac-
count detection algorithms make a prediction for each
account [1, 26, 31, 36]. Since a large-scale OSN may
register hundreds of thousands of new accounts per
day and bad actors try to create accounts at scale, it
is more desirable to have a cluster-level detection al-
gorithm that can perform fast, scalable detection and
catch all accounts in a cluster at once.

2. None of the existing approaches are designed to detect
and take action on fake accounts before they can con-
nect with legitimate members, scrape, or spam. Exist-
ing algorithms for fake account detection are in general
based on the analysis of user activities and/or social
network connections [10,17,27,38,39], which means the
fake accounts should be allowed to stay in the network
for a while in order to develop connections and accu-
mulate enough activity data. In practice we want to
catch fake accounts as soon as possible after they are
registered in order to prevent them from interacting
with real users. This creates a challenge since we will
only have some basic information provided during the
registration flow. Hence an algorithm that can cap-
ture as many patterns as it can, based on very limited
profile information, becomes an urgent need.

1.1 Our Contribution
In this work, we develop a scalable and time-sensitive ma-

chine learning approach to finding groups of fake accounts
registered by the same actor. Our apprach solves the chal-
lenges described above as follows:

1. The first step in our pipeline is to group accounts
into clusters, and our machine learning algorithms take
as input cluster-level features exclusively. All of our
features are engineered to describe the whole cluster
rather than individual accounts, and the resulting clas-
sification is on entire clusters. Our approach is scalable
to OSNs that have large amounts of daily account reg-
istrations.

2. Our algorithms use only features available at registra-
tion time or shortly thereafter. In particular, we do
not require graph data or activity data. However, since
the raw data available at registration time is limited,
we must cleverly construct features that will enable
us to distinguish good clusters from bad clusters. In
Section 4 we describe three classes of features that al-
low us to achieve this goal. We also propose generic
pattern encoding algorithms that allow us to collapse
user- generated text into a small space on which we
can compute statistical features.

We implemented our framework as an offline machine learn-
ing pipeline in Hadoop. The pipeline is comprised of three

components: the Cluster Builder, which produces clusters
of accounts to score; the Profile Featurizer, which extracts
features for use in modeling; and the Account Scorer, which
trains machine learning models and evaluates the models on
new imput data. Details of our pipeline can be found in
Section 3.

1.2 Experimental Results
We evaluated our approach on LinkedIn account data. For

training data we sampled approximately 275,000 accounts
registered over a six-month period, of which 55% had been
labeled as fake or spam by the LinkedIn Security team.1

We grouped account-level labels into cluster-level labels for
training our classifiers.

We trained models using random forest, logistic regres-
sion, and support vector machine classifiers. We evaluated
the classifiers’ performance with 80-20 split in-sample test-
ing and out-of-sample testing with a more recent data set.
The latter test is a better approximation of real-life perfor-
mance, since models are trained on data from the past and
run on data from the present.

To measure the classifiers’ performance, we computed AUC
(area under the ROC curve) and recall at 95% precision. In
practice the desired precision rates and thresholds for classi-
fication may be higher or lower depending on business needs
and the relative cost of false positives and false negatives.
We found that the random forest algorithm provided the
best results for all metrics. On the held-out test set, the
random forest model produced AUC 0.98 and recall 0.90 at
95% precision. When run on out-of-sample testing data the
random forest model again performed best, with AUC 0.95
and recall 0.72 at 95% precision.

1.3 Organization of the Paper
The rest of the paper is organized as follows. In Section 2

we provide an overview of the supervised learning methods
that we use in our study, along with metrics for model evalu-
ation. In Section 3 we describe the machine learning pipeline
used to implement our system, and in Section 4 we describe
our approach to feature engineering. Next in Section 5 we
provide results of our experiment on one embodiment of the
proposed approach, describing the performance on testing
data as well as results on live LinkedIn data. We discuss
related work in Section 6, and we consider future directions
in Section 7.

2. TRAINING METHODOLOGIES

2.1 Supervised Learning Methods
During model training, our goal is to construct and se-

lect subsets of features that are useful for building a good
predictor. In our experiments, we considered the following
three regression methods: logistic regression with L1 regu-
larization [34], support vector machine with a radial basis
function kernel [15], and random forest [4], a nonlinear tree-
based ensemble learning method.

Logistic Regression. Given a set S = {(x(i), y(i))}mi=1 ofm

training samples with x(i) as feature inputs and y(i) ∈ {0, 1}
1Note that this sample is not representative of the LinkedIn
member base, but rather is a sampling of accounts that had
been flagged as suspicious for some reason.

as labels, logistic regression can be modeled as

p(y = 1|x, θ) =
1

1 + exp(−θTx)
, (1)

where θ ∈ Rn are the model parameters.
Without regularization, logistic regression tries to find pa-

rameters using the maximum likelihood criterion, while with
regularization, the goal is to control the tradeoff between fit-
ting and having fewer variables being chosen in the model.
In our study, we use L1 penalization to regularize the logistic
regression model. This technique maximizes the probability
distribution of the class label y given a feature vector x,
and also reduces the number of irrelevant features by using
a penalty term to bound the coefficients θ in the L1 norm.
The model parameters θ ∈ Rn are computed as

arg min
θ

∑m
i=1− log p(y(i)|x(i), θ) + β|θ|1. (2)

In this formulation, β is the regularization parameter and
will be optimally chosen using cross-validation.

Support Vector Machine. The second learning algorithm
we consider is the support vector machine (SVM) [3,9,29,35].
The support vector machine algorithm looks for an opti-
mal hyperplane as a decision function in a high-dimensional
space.

Our training dataset again consists of pairs (x(i), y(i)) ∈
Rn × {0, 1}. In our study, since we would like to use a non-
linear classifier, we used SVM with a radial basis function
(RBF) kernel in training. The RBF kernel can be formu-
lated as k(x, x′) = exp(−r‖x − x′‖2). The hyperparameter
r is called the kernel bandwidth and is tuned based on results
of cross-validation.

In principle, the SVM algorithm first maps x into a higher
dimensional space via a function ψ, then finds a hyperplane
H in the higher-dimensional space which maximizes the dis-
tance between the point set ψ(xi) and H. If this hyperplane
is 〈w,X〉 = b (where X is in the higher- dimensional space),
then the decision function is f(x) = 〈w,ψ(x)〉 − b. The sign
of f(x) gives the class label of x. In practice, the function
ψ is implicit and all calculations are done with the kernel k.

In our experiments, we adopt a probability model for clas-
sification using the R package “e1071” [25]. The decision
values of the binary classifier are fitted to a logistic distribu-
tion using maximum likelihood to output numerical scores
indicating probabilities. While we could just as easily use
the raw SVM scores for classification, mapping the scores to
probabilities allows us to compare SVM results with other
models that output probability estimates.

Random Forest. The random forest algorithm [4] is an
ensemble approach that combines many weak classifiers (de-
cision trees) to form a strong classifier (random forest). For
each decision tree, we first sample with replacement from the
original training set to get a new training set of the same
size. Then at each node of the decision tree, we choose m
features at random, and split the decision tree according to
the best possible split among those m features. The value of
m needs to be chosen to balance the strength of individual
trees (higher m is better) against the correlation between
trees (lower m is better). Now given a new sample, the re-
sulting model scores it by running the sample through all
trees, and then combining the results; in the case of a bi-
nary classification problem like ours, the score is simply the
percentage of trees that give a positive result on the sample.

2.2 Evaluation Metrics
All three of our classifiers output real number scores that

can be used to order the samples in a test set. To measure
the classifiers’ performance, we calculate the AUC (area un-
der the ROC curve), precision, and recall. We can calculate
each metric either on the cluster level or on the account
level, where each account is assigned the score output by
the classifier for its parent cluster.

The area under the receiver operating characteristic curve
(AUC) is commonly used in model comparison and can be
interpreted as the probability that the classifier will assign a
higher score to a randomly chosen positive example than to
a randomly chosen negative example. A model with higher
AUC is considered a better model. Advantages of AUC as
a metric are that it doesn’t require choosing a threshold for
assigning labels to scores and that it is independent of class
bias in the test set.

Precision and recall are well known metrics for binary clas-
sification. In our application, precision is the fraction of pre-
dicted fake accounts that are truly fake, while recall is the
fraction of fake accounts in the wild that are caught by the
model. For a classifier that outputs a score or probability,
precision and recall can be calculated for each score thresh-
old, giving a parametric curve. Since false positives in a fake
account model are very costly, our metric of choice for model
evaluation is recall rate at the threshold that produces 95%
precision. (The 95% rate is merely for baselining; in practice
we aim for much higher precision.)

3. MACHINE LEARNING PIPELINE
To make the proposed fake account detection system scal-

able, we designed and implemented a practical machine learn-
ing pipeline involving a sequence of data pre-processing,
feature extraction, prediction and validation stages. The
pipeline consists of three major components, which we de-
scribe below and illustrate in Figure 1.

3.1 Cluster Builder
The Cluster Builder, as its name implies, takes the raw

list of accounts and builds clusters of accounts along with
their raw features. The module takes user-specified param-
eters for (1) minimum and maximum cluster size; (2) time
span of accounts registered (e.g. last 24 hours, last week),
and (3) clustering criteria. The clustering criteria can be as
simple as grouping all accounts that share a common char-
acteristic such as IP address, or a more complex clustering
algorithm such as k-means. Once the initial clusters are
built, user-defined criteria can be added to filter out some
of the clusters that are not likely to be suspicious or may
introduce high false positives. For example, one may wish
to filter out accounts registered from the OSN’s corporate
IP space, as these are likely to be test accounts that should
not be restricted.

The Cluster Builder takes raw member profile tables as
input and outputs a table of accounts with features that
are needed for feature engineering, such as member’s name,
company, and education. Each row of the table represents
one account and contains a“cluster identifier”unique to that
account’s cluster. This table is used as input to the Profile
Featurizer.

In the training phase the Cluster Builder must also use
account-level labels to label each cluster as real or fake.
While most clusters have either all accounts or no accounts

Figure 1: Our learning pipeline implementing the fake account clusters detection approach. We assemble
accounts into clusters, extract features, train or evaluate the model, and assign scores to the accounts in each
cluster.

labeled as fake, there will in general be a few clusters with
some accounts in each group. Thus to compute cluster la-
bels, we choose a threshold x such that the clusters with
fewer than x percent fake accounts are labeled real and those
with greater than x percent fake are labeled fake. The op-
timal choice of x depends on precision/recall tradeoffs (i.e.,
higher values of x increase precision at the expense of recall).
However, as discussed in Section 5.2 below, in practice we
find that the model is fairly insensitive to this choice.

3.2 Profile Featurizer
The Profile Featurizer is the key component of the pipeline.

Its purpose is to convert the raw data for each cluster (i.e.
the data for all of the individual accounts in the cluster) into
a single numerical vector representing the cluster that can be
used in a machine learning algorithm. It is implemented as a
set of functions designed to capture as much information as
possible from the raw features in order to discriminate clus-
ters of fake accounts from clusters of legitimate accounts.

The extracted features can be broadly grouped into three
categories, which we describe at a high level here; further
details can be found in Section 4.

1. Basic distribution features. For each cluster, we
take basic statistical measures of each column (e.g.
company name). Examples include mean or quartiles
for numerical features, or number of unique values for
text features.

2. Pattern features. We have designed “pattern en-
coding algorithms” that map user-generated text to a
smaller categorical space. We then take basic distri-
bution features over these categorical variables. These
features are designed to detect malicious users (espe-

cially bots) that are following a pattern in their ac-
count signups.

3. Frequency features. For each feature value, we com-
pute the frequency of that value over the entire account
database. We then compute basic distribution features
over these frequencies. In general we expect clusters of
legitimate accounts to have some high-frequency data
and some low-frequency data, while bots or malicious
users will show less variance in their data frequencies;
e.g., using only common or only rare names.

3.3 Account Scorer
The Account Scorer’s function is to train the models and

evaluate them on previously unseen data. The Account
Scorer takes as input the output of Profile Featurizer; i.e.,
one numerical factor for each cluster. The specific learn-
ing algorithm used is user-configurable; in our experiments
we consider logistic regression, random forests, and support
vector machines. In “training mode,” the Account Scorer
is given a labeled set of training data and outputs a model
description as well as evaluation metrics that can be used
to compare different models. In “evaluation mode,” the Ac-
count Scorer is given a model description and an input vector
of cluster features and outputs a score for that cluster indi-
cating the likelihood of that cluster being composed of fake
accounts.

Based on the cluster’s score, accounts in that cluster can
be selected for any of three actions: automatic restriction
(if the probability of being fake is high), manual review (if
the results are inconclusive), or no action (if the probability
of being fake is low). The exact thresholds for selecting
between the three actions are configured to minimize false
positives and give human reviewers a mix of good and bad

accounts. The manually labeled accounts can later be used
as training data in further iterations of the model.

4. FEATURE ENGINEERING
The quality of the numerical features output by the Profile

Featurizer is the single most important factor in the effec-
tiveness of our classifiers. We now describe this process in
greater detail.

4.1 Basic Distribution Features
We began with a manual survey of clusters of fake ac-

counts in the LinkedIn data set (see Section 5 for details)
that had already been detected and labeled as fake. We find
that accounts within a large cluster generally show patterns
in their user-entered data such as name, company, or edu-
cation. Sometimes they may be obvious; for example, all
accounts may use identical text for the description of their
current position. Such a pattern can be captured by what
we term a basic distribution feature, in this case the feature
being the number of unique position descriptions. The basic
distribution features we consider include the following:

• For numerical features:

– Min, max, and quartiles.

– Mean and variance.

• For categorical features:

– Number of distinct feature values in the cluster
(both raw count and as a fraction of cluster size).

– Percentage of null values (i.e. empty fields).

– Percentage of values belonging to the mode.

– Percentage of values belonging to the top two fea-
ture values.

– Percentage of values that are unique.

– Numerical features (see above) on the array of
value counts.

– Entropy, computed as
∑
i−pi log(pi), where i ranges

over the feature values and

pi =
number of instances of i

number of distinct feature values
.

For categorical features that take two values we can en-
code the values as 0/1 and compute the numerical features
described above; we can also consider text fields as categor-
ical and compute the corresponding distribution features.

4.2 Pattern features
We often find that when a single entity — whether bot

or human — registers a cluster of fake accounts, the user-
entered text in one or more columns always matches a cer-
tain pattern. For example, the email addresses on the ac-
counts might appear as follows (this is a synthetic sample):

charlesgreen992@domain.com
josephbaker247@domain.com
thomasadams319@domain.com
chrisnelson211@domain.com
danielhill538@domain.com
paulwhite46@domain.com
markcampbell343@domain.com
donaldmitchell92@domain.com
georgeroberts964@domain.com
kennethcarter149@domain.com

Clearly all of these email addresses satisfy the regular ex-
pression [a-z]+[0-9]+@domain\.com . We can apply this reg-

ular expression to the emailaddress to obtain a binary
feature, upon which we can calculate the basic distribution
features described above. In theory we could apply the tech-
niques of Prasse et al. [28] to our training set to generate
a list of spammy regular expressions and use each regular
expression as binary features. However, this approach will
generate a very sparse feature vector and will not generalize
to unseen patterns.

Instead of relying on regular expressions, we have designed
two “pattern encoding algorithms” that map arbitrary text
to a smaller space. The first algorithm normalizes character
classes: the universe of characters is divided into text classes
such as uppercase, lowercase, digit, punctuation, etc., and
each character is mapped to a representative character for
the class, as described in Algorithm 1 below.

Algorithm 1 Pattern Encoding Algorithm (Length-
Preserving)

Require: s.length > 0
1: procedure Encode(s) . 'abc12' → 'LLLDD'
2: i← 0
3: t← ''
4: while i < s.length do
5: if isUpperCase(s[i]) then
6: t← t+ 'U '
7: else if isLowerCase(s[i]) then
8: t← t+ 'L'
9: else if isDigit(s[i]) then

10: t← t+ 'D'
11: else
12: t← t+ 'O'
13: end if
14: end while
15: return t
16: end procedure

This algorithm, which is length-preserving, would be able
to detect email addresses that were all eight letters plus
three digits at the same domain. However, it would not
detect the list of email addresses above since the names and
numbers are of varying length. To address this problem we
use a length-independent variant that collapses consecutive
instances of a class into a single representative, as described
in Algorithm 2 below.

The output of this algorithm on the list of email usernames
(i.e. the text before the @ sign) above would be“LD” in each
case. Our experience shows that it is rare for a collection
of legitimate users to all follow such a pattern, so this is a
good feature for distinguishing clusters of accounts created
by a single entity.

In addition to using the algorithm as described above,
we can add new character classes such as punctuation or
spaces, or we can collapse classes together (e.g. lowercase
and uppercase letters). In this way simple metrics such as
text length and word count can also be subsumed in the
framework. Some of the patterns we used in our analysis
are as follows:

• Encode() (Algorithm 1).

• ShortEncode() (Algorithm 2).

Algorithm 2 Pattern Encoding Algorithm (Length-
Independent)

Require: s.length > 0
1: procedure ShortEncode(s) . 'abc12' → 'LD'
2: i← 0
3: s← Encode(s)
4: curr ← ''
5: t← ''
6: while i < s.length do
7: if curr 6= s[i] then
8: t← t+ s[i]
9: curr ← s[i]

10: end if
11: i← i+ 1
12: end while
13: return t
14: end procedure

• Len(Encode()) using a single character class (i.e. text
length).

• Len(ShortEncode()) using two character classes, space
and non-space (i.e. word count).

• Binary features checking the existence of each charac-
ter class in Encode().

• Encode() on the first character of the text.

Once mapped to a smaller categorical space, we apply
the basic distribution features described in Section 4.1 to
compute numerical features.

4.3 Frequency features
Upon close examination of clusters of fake accounts, we of-

ten find patterns that are apparent to the trained eye but al-
gorithmically hard to describe. For example, consider these
two sets of names (again, a synthetic sample):

Cluster 1 Cluster 2
Charles Green Shirely Lofgren
Joseph Baker Tatiana Gehring
Thomas Adams China Arzate
Chris Nelson Marcelina Pettinato
Daniel Hill Marilu Marusak
Paul White Bonita Naef
Mark Campbell Etta Scearce
Donald Mitchell Paulita Kao
George Roberts Alaine Propp
Kenneth Carter Sellai Gauer

It’s fairly apparent that these names are not randomly
sampled from the population at large. The names in Cluster
1 are all common male names (in fact, they were generated
by taking top-ranked first and last names from U.S. Census
data) and the names in Cluster 2 are all exceedingly rare
— it’s possible there could be someone in the world named
Bonita Naef, but the probability that she would register for
a social network from the same IP address as Alaine Propp
and all the others is quite low.

We quantify this intuition using data from the social net-
work’s entire member base. Specifically, for a given column
of text (such as first name), we compute the frequency of
that text among all of the social network’s members. This
gives a number between 0 and 1, on which we can compute

basic distribution features as described in Section 4.1. We
can do the same for the logarithms of the frequencies or
the ranks of the features in the sorted list of frequencies,
which can help to distinguish extremely rare entries from
somewhat rare entries.

5. EXPERIMENTAL RESULTS

5.1 Data Acquisition
We evaluated our model on labeled LinkedIn account data,

where the labels were provided by LinkedIn’s Security and/or
Trust and Safety teams. Our approach first requires us to
choose a method of clustering accounts. For our study, we
created clusters of LinkedIn accounts by grouping on regis-
tration IP address2 and registration date (in Pacific Time).
We chose this approach primarily because this is a grouping
for which we were able to obtain a large amount of man-
ually labeled data; in Section 7 we discuss other clustering
approaches.

For our training set we collected labeled accounts from the
6-month period December 1, 2013 to May 31, 2014. During
this time the accounts in all (IP, date) clusters satisfying
an internal criterion for suspicious registration were sent to
LinkedIn’s Trust and Safety team for manual review and ac-
tion. We extracted raw profile data for each account in these
clusters and labeled the account as fake if it was restricted
or as real if it was in good standing as of the survey time.
The total number of labeled accounts was 260,644, of which
153,019 were fake accounts and 107,625 were legitimate.

In a similar fashion we obtained data from June 2014 to
be used as “out-of-sample” testing data. This data included
30,550 accounts, of which 15,078 were fake accounts and
15,472 were legitimate.

5.2 Cluster Labeling
The labeled accounts in our data set fell into 20,559 dis-

tinct (IP, date) clusters. The median cluster size was 9; a
histogram of the cluster sizes appears in Figure 2. For each
cluster we calculated the percentage of accounts labeled as
spam; a histogram of this data appears in Figure 3. We
found that 89% of the clusters had either no fake accounts
or all fake accounts, and only 3.8% of clusters had between
20% and 80% fake accounts.

To determine a threshold for labeling a cluster as fake
(see Section 3.1), we ran our random forest classifier using
cluster labels generated by setting three different thresholds:
20%, 50%, and 80%. The resulting AUC metrics at the ac-
count level were 0.9765, 0.9777, and 0.9776, respectively. We
conclude that the relative ordering of scored accounts is in-
sensitive to the cluster-labeling threshold, and we chose 50%
as our threshold for further experiments. At this threshold,
10,456 of our training clusters were labeled as spam and
10,103 were labeled as legitimate. The out-of-sample test
set fell into 2,705 clusters, out of which 1,227 were spam
and 1,478 were legitimate.

5.3 Performance Analysis
We evaluated our proposed approach using the machine

learning algorithms described in Section 2: logistic regres-
sion, SVM, and random forest. We chose these three al-
gorithms to illustrate possible approaches; in principle any
2For accounts registered using IPv6 we grouped on the /56
subnet.

Histogram of Cluster Size

log10(Size of Clusters)

C
ou

nt
 o

f C
lu

st
er

s

0.5 1.0 1.5 2.0 2.5 3.0

0
20

00
40

00
60

00
80

00

Figure 2: Distribution of cluster sizes for our train-
ing data.

Distribution of spam percentage per cluster

Percentage of fake accounts

N
um

be
r o

f c
lu

st
er

s

0.0 0.2 0.4 0.6 0.8 1.0

20
20
0

50
00

Figure 3: Distribution of spam percentage per clus-
ter for our training data.

binary classification algorithm can be used, and the best
algorithm may change depending on the domain area. To
make a fair comparison and evaluation, the parameters of
all supervised learning algorithms were determined through
an 80-20 split cross-validation process. Specifically, 80% of
the training data was used to construct the classifier and the
remaining 20% of the data was used for “in-sample” perfor-
mance testing. The optimal parameter setting is the setting
that maximizes the in-sample testing AUC.

We ran the three aforementioned algorithms using R pack-
ages “glmnet” [14], “e1071” [25], and “randomForest” [23] on
training data, respectively. Table 1 shows the in-sample pre-
diction performance as measured by AUC and recall at 95%
precision. The data show that random forest performs the
best based on both metrics. The other nonlinear classifier,
SVM with RBF kernel, also has good performance in terms
of its AUC value. However, its recall at 95% precision is not
as good as that of random forest, which indicates that for
SVM, although we have high confidence in the fake accounts

we catch, there are still many fake accounts not caught by
the model. Among all models, logistic regression has the
worst performance, because the nonlinearity in the true pat-
terns cannot be well modeled using a linear classifier.

Table 1: 80-20 split testing performance (cluster
level)

Algorithm AUC Recall@p95

Random forest 0.978 0.900
Logistic regression 0.936 0.657
SVM 0.963 0.837

Table 2 shows the testing AUC and recall at 95% precision
for all three algorithms at the account level; that is, when
each account is assigned the score computed for its cluster.
The data show that our prediction for each algorithm is
even more accurate for each account, and an examination
of the data shows that this is caused by the classifiers being
more accurate on larger clusters. (See Table 5 for further
evidence.)

Table 2: 80-20 split testing performance (account
level)

Algorithm AUC Recall@p95

Random forest 0.978 0.935
Logistic regression 0.951 0.821
SVM 0.961 0.889

ROC (80:20)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Random Forest
SVM
Logistic Regression

Figure 4: Comparison of ROC curves for different
models on in-sample data.

We also tested our model on out-of-sample data from
June, 2014. The motivation for doing out-of-sample testing
is that spammers’ patterns in their fake account data will
vary over time as they experiment and learn from failure.
Performing out-of-sample testing simulates this scenario in

ROC (Out of Sample)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Random Forest
SVM
Logistic Regression

Figure 5: Comparison of ROC curves for different
models on out-of-sample data.

production, and provides a practical and useful evaluation
of the real-life performance of the model.

Tables 3 and 4 give the out-of-sample performance com-
parison of the three models trained from training data at the
cluster level and account level, respectively. The data show
that random forest still performs the best based on all met-
rics. The recall at 95% precision for all three algorithms de-
creases as compared with the cross-validation results, which
confirms our assumption that given a certain level of pre-
cision (i.e., the fraction of predicted fake accounts that are
truly fake), there are more fake accounts not being caught
in the newer dataset. The results also indicate that we need
to re-train our model regularly, so as to capture the newer
patterns and increase the fraction of fake accounts caught.

Table 3: Out-of-sample testing performance (cluster
level)

Algorithm AUC Recall@p95

Random forest 0.949 0.720
Logistic regression 0.906 0.127
SVM 0.928 0.522

Table 4: Out-of-sample testing performance (ac-
count level)

Algorithm AUC Recall@p95

Random forest 0.954 0.713
Logistic regression 0.917 0.456
SVM 0.922 0.311

One interesting finding here is that the performances of
the SVM classifier decreases as we move from the cluster
level to the account level. This result implies that unlike

logistic regression and random forests, and SVM does bet-
ter at classifying smaller clusters; it also suggests that an
ensemble approach combining all of the classifiers may lead
to still greater performance.

Analysis by Cluster Size. Table 5 shows the random for-
est results binned by cluster size. We see that as clusters
grow bigger, the model performance improves. If a cluster
has more than 30 accounts, which means on one day from
an IP address there were more than 30 accounts signed up,
we have almost perfect confidence to label this cluster and
all accounts in the cluster. If a cluster has more than 100 ac-
counts, then we can reach 100% accuracy level on all metrics
for the cross-validation set.

Table 5: Random forest performance by cluster size

Cluster Size AUC Recall@p95

1 to 10 0.967 0.817
11 to 30 0.988 0.965
31 to 100 0.988 0.989
greater than 100 1.000 1.000

Analysis of Top Ranked Features. To gain more insight
into the features in our study, we ranked them using the
Gini importance index, which is calculated based on the Gini
index [4]. In our model, the top features included average
frequency counts of the two least common last or first names,
as well as fraction of top patterns generated from our pattern
encoding algorithms in name and email address.

5.4 False Positive and False Negative Analysis
We manually reviewed all accounts in our validation set

and out-of-sample testing set that were predicted to be fake
but were actually labeled as legitimate. We found that the
majority of these were from organizational signups. A num-
ber of members all signed up from the same organization,
which might all come from a single IP address, and some
parts of their profile information may be similar. For ex-
ample, their email addresses may follow a standard pattern
(such as <last name><first initial>@<organization>.org).
To address such false positives, we developed an organiza-
tional account detection model, and we configured our clas-
sifier in production so that organizational accounts that the
model labels as fake are sent for manual review instead of
automatically restricted. This approach helped resolve the
false positive issue greatly.

We also manually reviewed all accounts in both datasets
that were predicted to be legitimate but were labeled by hu-
mans as fake. In many cases, it turned out the prediction
from our model was correct. Usually, if there is a legitimate
mass signup (e.g., during a LinkedIn marketing event), the
large number of signups will fall into a single cluster. This
will likely trigger some previous rule-based model to label
them as fake, and the human labeler might also label it as
fake for the same reason. However, as the size of cluster
grows, the account profile patterns within the cluster will
become more and more diverse, which seems more normal
from the model’s perspective, so the model is able to cor-
rectly label the cluster as good. That also explains why as
clusters grow bigger, the model becomes more and more ac-
curate, as shown in Table 5. Where the model found errors

in the previous human label (as confirmed by our subsequent
manual review), we reversed the previous decision, and re-
labeled those accounts as legitimate.

5.5 Running on Live Data
We implemented the system using Java, Hive, and R,

and trained it on the dataset discussed in Section 5.1. Us-
ing Hadoop streaming, we ran the algorithm daily on new
LinkedIn registrations. The highest-scoring accounts were
automatically restricted. Scores in a “gray area” were sent
to LinkedIn’s Trust and Safety team for manual review and
action. This process allows us to collect quality labeled data
on borderline cases for training future models.

Since its rollout, the model has caught more than 15,000
clusters, comprising more than 250,000 fake LinkedIn ac-
counts. The trend in the model’s precision can be seen in
Figure 6, which plots a 14-day moving average of the pre-
cision. The decrease in precision at one point is due to a
large number of organizational signups that the model erro-
neously flagged; upon addition of the“organization detector”
the precision returned to its previous levels.

Model	
 precision	
 on	
 live	
 LinkedIn	
 data	
 	

(14-­‐day	
 moving	
 average)	

Figure 6: 14-day moving average of model precision
(at the account level) since deployment.

Figure 7 shows a histogram of cluster sizes on live data and
the precision (on the level of clusters) within each bucket.
Most of the clusters detected were relatively small; the me-
dian cluster size was 11 accounts. Contrary to our expe-
rience with the training data, we found that precision did
not in general increase with cluster size, except for the very
largest clusters (of size greater than 100).

6. RELATED WORK
The problem of detecting fake accounts in online social

networks has been approached from a number of different
perspectives, including behavioral analysis, graph theory,
machine learning, and system design.

Using a behavioral perspective, Malhotra et al. [24] de-
velop features to detect malicious users who create fake ac-
counts across different social networks. However, the fea-
tures they propose are all account-level basic profile features.
If the same spammer does not abuse different platforms us-

Distribution of cluster size and precision on live data

log10(cluster size)

N
um

be
r o

f c
lu

st
er

s

0.0 0.5 1.0 1.5 2.0 2.5

0
10
00

30
00

50
00

cluster size
precision

1

P
re
ci
si
on

Figure 7: Distribution of cluster size and precision
on live data.

ing some same basic profile information, the effect of such
features would be reduced.

Much research has been done to analyze fake accounts
in OSNs from a graph-theoretic perspective. Two relevant
surveys are those of Yu et al. [38], who describe a number of
specific sybil defense mechanisms, and Viswanath et al. [37],
who point out that most existing Sybil defense schemes work
by detecting local communities (i.e., clusters of nodes more
tightly knit than the rest of the graph) around a trusted
node.

In more recent graph-theoretic work, Jiang et al. [17] pro-
pose to detect fake accounts by constructing latent interac-
tion graphs as models of user browsing behavior. They then
compare these graphs’ structural properties, evolution, com-
munity structure, and mixing times against those of both
active interaction graphs and social graphs. Mohaisen et
al. [27] detect Sybil nodes, which disrupt the fast mixing
property of social networks, and thus propose several heuris-
tics to improve the mixing of slow-mixing graphs using their
topological structures. Conti et al. [8] analyze social network
graphs from a dynamic point of view to detect adversaries
who create fake profiles to impersonate real people and then
interact with the real people’s friends.

While the above graph-theoretic techniques may be appli-
cable to the clusters of accounts we study in this work, our
goal is to detect clusters before they can make the connec-
tions or engage in the behavior that produces the relevant
graph structures. Thus our approach focuses on signals that
are available at or shortly after registration time, which in-
cludes only a small amount of activity data and little to no
connection data.

Many researchers have applied machine learning algorithms
to the problem of spam detection on OSNs. Fire et al. [12]
use topology anomalies, decision trees, and naive Bayes clas-
sifiers to identify spammers and fake profiles that are used in
multiple social networks. Jin et al. [18] analyze the behavior
of identity clone attacks and propose a detection framework.
Cao et al. [5] develop a ranking algorithm to rank users in on-
line services and detect fake accounts; this rank is calculated
according to the degree-normalized probability of a short
random walk in the non-Sybil region. Tan et al. [32] put the
network spam detection problem in an unsupervised learn-

ing framework, deliberately removing non-spammers from
the network and leveraging both the social graph and the
user-link graph.

Rather than focus on detecting fake accounts after they
penetrate the network, some researchers have focused on
designing the systems themselves to prevent attacks in the
first place. Lesniewski-Laas and Kaashoek [22] propose a
novel routing protocol for distributed hash tables that is ef-
ficient and strongly resistant to Sybil attacks. Chiluka et
al. [6] propose a new design point in the trade-off between
network connectivity and attack resilience of social network-
based Sybil defense schemes, where each node adds links to
only a selective few of its 2-hop neighbors based on a mini-
mum expansion contribution (MinEC) heuristic. Viswanath
et al. [37] present a system that uses routing-based tech-
niques to efficiently approximate credit payments over large
networks.

While system-design techniques for preventing abuse can
be effective, they are often not applicable in practice to a
large-scale network that was originally designed to optimize
for growth and engagement long before abuse became a sig-
nificant issue.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a machine learning pipeline

for detecting fake accounts in online social networks. Rather
than making a prediction for each individual account, our
system classifies clusters of fake accounts to determine whether
they have been created by the same actor. Our evaluation
on both in-sample and out-of-sample data showed strong
performance, and we have used the system in production to
find and restrict more than 250,000 accounts.

In this work we evaluated our framework on clusters cre-
ated by simple grouping on registration date and registra-
tion IP address. In future work we expect to run our model
on clusters created by grouping on other features, such as
ISP or company, and other time periods, such as week or
month. Another promising line of research is to use more
sophisticated clustering algorithms such as k-means or hier-
archical clustering. While these approaches may be fruitful,
they present obstacles to operating at scale: k-means may
require too many clusters (i.e., too large a value of k) to pro-
duce useful results, and hierarchical clustering may be too
computationally intensive to classify millions of accounts.

From a modeling perspective, one important direction for
future work is to apply feature sets used in other spam de-
tection models, and hence to realize multi-model ensemble
prediction. Another direction is to make the system robust
against adversarial attacks, such as a botnet that diversifies
all features, or an attacker that learns from failures. A final
direction is to construct more language-insensitive pattern
matching features; our features assume the text is written
in an alphabet that can be mapped to a small number of
character classes (e.g. uppercase or lowercase) and this does
not readily adapt to pictographic languages such as Chinese.

8. REFERENCES
[1] S. Adikari and K. Dutta. Identifying fake profiles in

LinkedIn. Pacific Asia Conference on Information
Systems Proceedings 2014, 2014.

[2] J. Beall. Publisher uses fake LinkedIn identities to
attract submissions.

http://scholarlyoa.com/2015/02/10/
publisher-uses-fake-linkedin-identities-to-attract-submissions.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A
training algorithm for optimal margin classifiers. In
Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, pages 144–152. ACM
Press, 1992.

[4] L. Breiman. Random forests. Mach. Learn.,
45(1):5–32, Oct. 2001.

[5] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro.
Aiding the detection of fake accounts in large scale
social online services. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 15–15, Berkeley,
CA, USA, 2012. USENIX Association.

[6] N. Chiluka, N. Andrade, J. Pouwelse, and H. Sips.
Social networks meet distributed systems: Towards a
robust sybil defense under churn. In Proceedings of the
10th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’15, pages
507–518, New York, NY, USA, 2015. ACM.

[7] D. B. Clark. The bot bubble: How click farms have
inflated social media currency. The New Republic,
April 20 2015. Available at
http://www.newrepublic.com/article/121551/
bot-bubble-click-farms-have-inflated-social-media-currency.

[8] M. Conti, R. Poovendran, and M. Secchiero.
Fakebook: Detecting fake profiles in on-line social
networks. In Proceedings of the 2012 International
Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2012), ASONAM ’12, pages
1071–1078, Washington, DC, USA, 2012. IEEE
Computer Society.

[9] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, New
York, NY, USA, 2000.

[10] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil
nodes using social networks. Technical Report
MSR-TR-2009-6, Microsoft, January 2009.

[11] Digital Trends Staff. 40 pct. fake profiles on
Facebook? http://www.digitaltrends.com/computing/
fake-profiles-facebook/.

[12] M. Fire, G. Katz, and Y. Elovici. Strangers intrusion
detection - detecting spammers and fake profiles in
social networks based on topology anomalies. ASE
Human Journal, 1(1):26–39, Jan. 2012.

[13] D. M. Freeman. Using Naive Bayes to detect spammy
names in social networks. In A. Sadeghi, B. Nelson,
C. Dimitrakakis, and E. Shi, editors, AISec’13,
Proceedings of the 2013 ACM Workshop on Artificial
Intelligence and Security, Co-located with CCS 2013,
Berlin, Germany, November 4, 2013, pages 3–12.
ACM, 2013.

[14] J. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,
33(1):1–22, 2010.

[15] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer Series in
Statistics. Springer New York Inc., New York, NY,
USA, 2001.

[16] L. Huang, A. D. Joseph, B. Nelson, B. I. P.
Rubinstein, and J. D. Tygar. Adversarial machine
learning. In Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, AISec 2011,
Chicago, IL, USA, October 21, 2011, pages 43–58,
2011.

[17] J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang,
Y. Dai, and B. Y. Zhao. Understanding latent
interactions in online social networks. ACM Trans.
Web, 7(4):18:1–18:39, Nov. 2013.

[18] L. Jin, H. Takabi, and J. B. Joshi. Towards active
detection of identity clone attacks on online social
networks. In Proceedings of the First ACM Conference
on Data and Application Security and Privacy,
CODASPY ’11, pages 27–38, New York, NY, USA,
2011. ACM.

[19] P. Judge. Social klepto: Corporate espionage with fake
social network accounts. https://www.rsaconference.
com/writable/presentations/file upload/br-r32.pdf.

[20] K. Lee. Fake profiles are killing LinkedIn’s value.
http://www.clickz.com/clickz/column/2379996/
fake-profiles-are-killing-linkedin-s-value.

[21] K. Lee, B. D. Eoff, and J. Caverlee. Seven months
with the devils: a long-term study of content polluters
on Twitter. In AAAI International Conference on
Weblogs and Social Media (ICWSM), 2011.

[22] C. Lesniewski-Laas and M. F. Kaashoek. Whanau: A
sybil-proof distributed hash table. In Proceedings of
the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI’10, pages 8–8,
Berkeley, CA, USA, 2010. USENIX Association.

[23] A. Liaw and M. Wiener. Classification and regression
by randomforest. R News, 2(3):18–22, 2002.

[24] A. Malhotra, L. Totti, W. Meira Jr., P. Kumaraguru,
and V. Almeida. Studying user footprints in different
online social networks. In Proceedings of the 2012
International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2012),
ASONAM ’12, pages 1065–1070, Washington, DC,
USA, 2012. IEEE Computer Society.

[25] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel,
F. Leisch, and C. Chang. R package “e1071”. 2014.

[26] A. Mislove, B. Viswanath, K. P. Gummadi, and
P. Druschel. You are who you know: Inferring user
profiles in online social networks. In Proceedings of the
Third ACM International Conference on Web Search
and Data Mining, WSDM ’10, pages 251–260, New
York, NY, USA, 2010. ACM.

[27] A. Mohaisen and S. Hollenbeck. Improving social
network-based sybil defenses by rewiring and
augmenting social graphs. In Revised Selected Papers
of the 14th International Workshop on Information
Security Applications - Volume 8267, WISA 2013,
pages 65–80, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

[28] P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer.
Learning to identify regular expressions that describe
email campaigns. In Proceedings of the 29th
International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012, 2012.

[29] A. Rakotomamonjy. Variable selection using svm
based criteria. J. Mach. Learn. Res., 3:1357–1370,
Mar. 2003.

[30] L. Ruff. Why do people create fake LinkedIn profiles?
http://integratedalliances.com/blog/
why-do-people-create-fake-linkedin-profiles.

[31] M. Singh, D. Bansal, and S. Sofat. Detecting malicious
users in Twitter using classifiers. In Proceedings of the
7th International Conference on Security of
Information and Networks, SIN ’14, pages
247:247–247:253, New York, NY, USA, 2014. ACM.

[32] E. Tan, L. Guo, S. Chen, X. Zhang, and Y. Zhao.
Unik: Unsupervised social network spam detection. In
Proceedings of the 22nd ACM International
Conference on Conference on Information &
Knowledge Management, CIKM ’13, pages 479–488,
New York, NY, USA, 2013. ACM.

[33] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and
V. Paxson. Trafficking fraudulent accounts: The role
of the underground market in Twitter spam and
abuse. In Proceedings of the 22nd USENIX Conference
on Security, SEC’13, pages 195–210, Berkeley, CA,
USA, 2013. USENIX Association.

[34] R. Tibshirani. Regression shrinkage and selection via
the Lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1994.

[35] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc., New York,
NY, USA, 1995.

[36] B. Viswanath, M. A. Bashir, M. Crovella, S. Guha,
K. P. Gummadi, B. Krishnamurthy, and A. Mislove.
Towards detecting anomalous user behavior in online
social networks. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, pages
223–238, Berkeley, CA, USA, 2014. USENIX
Association.

[37] B. Viswanath, M. Mondal, K. P. Gummadi,
A. Mislove, and A. Post. Canal: Scaling social
network-based sybil tolerance schemes. In Proceedings
of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 309–322, New York, NY,
USA, 2012. ACM.

[38] H. Yu. Sybil defenses via social networks: A tutorial
and survey. SIGACT News, 42(3):80–101, Oct. 2011.

[39] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao.
Sybillimit: A near-optimal social network defense
against sybil attacks. IEEE/ACM Trans. Netw.,
18(3):885–898, June 2010.

