QUALIFYING EXAM SYLLABUS

DAVID FREEMAN DFREEMAN@MATH.BERKELEY.EDU

Committee: Bjorn Poonen (Chair); Kenneth Ribet; Edward Schaefer (Santa Clara University); Luca Trevisan (Computer Science)

Date: Thursday, 12 May 2005 at 10.00 am.

1. Major Topic: Cryptography (Applied Mathematics)

- Definitions of secrecy: Shannon secrecy, perfect secrecy, statistical secrecy, computational secrecy, implications
- Pseudorandomness
 - Pseudorandom generators, pseudorandom functions and permutations, definition of advantage
 - Constructions: PRP from PRF, PRF from PRG, PRG from one-way permutation
- Symmetric-key encryption
 - One-time pad, ECB mode, CBC mode, Counter mode
 - Security for symmetric-key cryptosystems: Real-or-random, left-or-right, find-thenguess, semantic security, equivalences (IND-CPA)
 - Attacks on ECB and CBC with counter IV
 - Security of CBC and counter modes
- Message integrity
 - Integrity of plaintext, integrity of ciphertext, definition of advantage
 - Hash functions, *n*-universality
 - Construction of message authentication codes
 - Combining MAC and encryption: good and bad methods
- Asymmetric encryption
 - Trapdoor permutations, definition of advantage, random oracle model
 - Hard-core bits, Goldreich-Levin theorem
 - Chosen-plaintext and chosen-ciphertext security
 - Construction of encryption schemes using trapdoor and hash functions: good and bad methods
 - Public-key primitives: RSA, Rabin trapdoor function, Diffie-Hellman key exchange, ElGamal cryptosystem
- Digital Signatures
 - Security against existential forgery
 - Good and bad protocols: Plain trapdoor function, hash-and-sign, full domain hash, probabilistic full domain hash
- Zero-Knowledge Proofs
 - Bit commitment: definition, construction from trapdoor function, construction from pseudorandom generator
 - Interactive proof system; completeness, soundness
 - Definition of zero-knowledge proof: perfect, statistical, computational
 - Graph 3-colorability proof: algorithm, proof of zero-knowledge

References: M. Bellare and P. Rogeway, *Introduction to Modern Cryptography* (online notes available at http://www-cse.ucsd.edu/users/mihir/cse207/classnotes.html); O. Goldreich, *Foundations of Cryptography*, v. 1-2.

2. Major Topic: Elliptic Curves (Algebra)

- Fundamentals
 - Weierstrass equations, change of coordinates
 - Discriminant, j-invariant
 - Group law: geometric definition, isomorphism with $Pic^0(E)$
- Maps
 - Isogenies, dual isogeny, structure of m-torsion group
 - Tate module, Weil pairing
 - Structure of endomorphism ring and automorphism group
- One-dimensional formal groups
- Elliptic curves over finite fields
 - Hasse's theorem
 - Weil conjectures and proof for elliptic curves
 - Schoof's point-counting algorithm
- Elliptic curves over local fields
 - Minimal Weierstrass equation, reduction, good and bad reduction
 - Points of finite order: injectivity of reduction map, bound on height
 - Criterion of Néron-Ogg-Shafarevich
- Elliptic curves over global fields
 - Weak Mordell-Weil theorem
 - Descent procedure and heights
 - Proof of Mordell-Weil theorem over ℚ
 - Torsion points

Reference: J. Silverman, The Arithmetic of Elliptic Curves, Chapters III-V, VII-VIII.

3. MINOR TOPIC: ALGEBRAIC NUMBER THEORY (ALGEBRA)

- Algebraic integers, ideals, Dedekind domains
 - Unique factorization into primes
 - Finiteness of class group
 - Dirichlet unit theorem
 - Behavior of primes in extensions: splitting, inertia, ramification
 - Hilbert's ramification theory: decomposition and inertia groups
 - Quadratic reciprocity
 - Cyclotomic fields
- Valuations and local fields
 - p-adic numbers and absolute value
 - Classification of valuations on \mathbb{Q}
 - Ostrowski's theorem on complete fields with archimedian valuation
 - Hensel's lemma
 - Classification of local fields
 - Structure of multiplicative group of a local field
 - Newton polygons and Henselian fields

Reference: J. Neukirch, Algebraic Number Theory Chapters I-II.