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Abstract

Constructing Abelian Varieties for Pairing-Based Cryptography

by

David Stephen Freeman

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Kenneth A. Ribet and Professor Edward F. Schaefer, Co-chairs

Abelian varieties that have small embedding degree with respect to a large prime-order

subgroup are key ingredients for implementing pairing-based cryptographic systems. Such

“pairing-friendly” abelian varieties are rare and thus require specific constructions.

We begin by giving a single coherent framework that classifies the known constructions

of pairing-friendly ordinary elliptic curves. This abstract framework leads us to discover

several new constructions of such curves. Our most important contribution in this regard

is the construction of elliptic curves of prime order with embedding degree 10, which solves

an open problem posed by Boneh, Lynn, and Shacham. We also describe a procedure for

generating families of pairing-friendly elliptic curves with variable CM discriminant, which

can be used to increase the degree of randomness in cryptosystem parameters.

We then consider higher-dimensional abelian varieties. We provide two algorithms

that, given a CM field K, construct Frobenius elements π of pairing-friendly ordinary

abelian varieties with complex multiplication by K. Both algorithms generalize existing

constructions of pairing-friendly ordinary elliptic curves. The first generalizes the method

of Cocks and Pinch, while the second generalizes that of Brezing and Weng and leads to

varieties over smaller fields than the first. Given the output π of either algorithm, one can

then use complex multiplication methods to construct explicitly an abelian variety with

Frobenius element π.

Finally, we turn to the question of the complex multiplication methods used to con-

struct explicit examples of pairing-friendly abelian varieties. We focus on the Chinese

remainder theorem algorithm of Eisenträger and Lauter for computing Igusa class polyno-
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mials of quartic CM fields. One of the steps of this algorithm requires determining whether

endomorphism rings of Jacobians of genus 2 curves over small prime fields are isomorphic to

the ring of integers in a given quartic CM field. We provide an efficient probabilistic algo-

rithm that carries out this computation. Using our algorithm to determine endomorphism

rings, we have implemented a probabilistic version of the full Eisenträger-Lauter algorithm

in MAGMA and used it to compute Igusa class polynomials for several quartic CM fields

K.
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Chapter 1

Introduction

1.1 Pairings in cryptography

The use of abelian varieties in public-key cryptography goes back to the mid-1980s,

when Victor Miller [89] and Neal Koblitz [65] independently proposed using groups of points

on elliptic curves in discrete logarithm-based cryptosystems. The discrete logarithm prob-

lem on elliptic curves has now been studied extensively for more than twenty years, and it

appears that the initial claim that the problem is computationally infeasible is still sound

— to this day, there is no algorithm that solves the problem in less than exponential time.

Higher-dimensional abelian varieties first appeared on the scene when Koblitz [66]

proposed that the discrete logarithm problem is also infeasible on Jacobians of hyperelliptic

curves over finite fields. The supposed advantage of g-dimensional abelian varieties over

elliptic curves is that one can work over a field that is a factor of g smaller while retaining

the same level of security, thus leading to potential speed advantages. However, it is only

recently that the arithmetic operations on these varieties have been optimized to the point

where, for certain applications, Jacobians of hyperelliptic curves are now competitive with

elliptic curves in terms of performance at a given security level [11].

In the early days of elliptic curve cryptography, supersingular elliptic curves were often

proposed for use in cryptosystems. Supersingular curves E over finite fields Fq have the

feature that their number of Fq-rational points is easy to count, which was important in

the days before fast point-counting algorithms were developed. However, in 1993 Menezes,

Okamoto, and Vanstone [86] showed that the Weil pairing can be used to reduce the discrete

logarithm problem on a supersingular elliptic curve E over Fq to the same problem in the
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multiplicative group of some extension field Fqk with k ≤ 6. Shortly thereafter, Frey and

Rück [43] devised a similar reduction using the Tate pairing, which also applies to higher-

dimensional abelian varieties. Since there exist subexponential-time algorithms for discrete

logarithms in multiplicative groups of finite fields, the discrete logarithm can usually be

computed faster in F×
qk than in E(Fq), and thus these reductions were interpreted as attacks

on the discrete logarithm problem on elliptic curves.

After the publication of the MOV and Frey-Rück attacks, supersingular elliptic curves

were commonly perceived as “weak” and thus unsuitable for cryptography. This attitude

reigned until 2000, when Antoine Joux [60] proposed a one-round protocol for three-party

key agreement using the Weil or Tate pairings on supersingular elliptic curves. Joux’s key

observation was that the curve parameters can be chosen so that the discrete logarithm

problem is still infeasible even after the MOV or Frey-Rück reduction, and that the bilinear

property of the pairing allows one to perform computations in the “target group” F×
qk that

previously appeared to require a discrete logarithm.

Joux’s discovery opened the floodgates, and in the next few years many important

cryptosystems were constructed that made use of bilinear maps. The greatest success was

the development of identity-based encryption, which was discovered independently by Sakai,

Ohgishi, and Kasahara [109] and Boneh and Franklin [14], and which solved a problem first

posed by Shamir in 1984 [114]. Other notable accomplishments include short signature

schemes [17], broadcast encryption with small ciphertexts [15], and applications to private

information retrieval and zero-knowledge proofs [16]. The subject has now expanded to the

point where the First International Conference in Pairing-Based Cryptography was held in

Tokyo in 2007; 86 papers were submitted and 18 were presented at the conference [121].

This work is no longer completely theoretical, either — at least one company, Voltage,

Inc. [126], has brought pairing-based cryptography to market.

All of the pairing-based cryptographic constructions use the pairing as a “black box”;

that is, they can be implemented using any groups on which there is a nondegenerate bilinear

map, or pairing. While the security proofs of these systems usually make use of assumptions

such as the “bilinear Diffie-Hellman assumption” [14], in the most general sense the security

level of the system is determined by the complexity of the discrete logarithm problems in

the domain (“source group”) and codomain (“target group”) of the pairing.

At present, the only known pairings between groups in which the discrete logarithm

problems are computationally infeasible are the Weil and Tate pairings on abelian varieties
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over finite fields, and their variants such as the Eta [7] and Ate [56] pairings. If A is a

abelian variety defined over the field Fq of q elements, these pairings in general take as

input a point P defined over Fq and a point Q defined over some extension field Fqk , and

produce as output an element e(P,Q) of the multiplicative group F×
qk .

For a pairing-based system using A to be secure, the discrete logarithm problems in

A(Fq) and F×
qk must both be infeasible. The best known generic discrete logarithm algorithm

on abelian varieties (in both theory and practice) is the parallelized Pollard rho algorithm

[104, 123]. This algorithm has heuristic running time O(
√
r/m), where r is the size of largest

prime-order subgroup of A(Fq) and m is the number of processors used. In dimensions g ≥ 3

index calculus methods have been developed that can solve the discrete logarithm problem

in time Õ(q2−2/g), where the implied constant depends on g [1, 49, 53, 48]. For fixed

g these methods are still exponential in the field size q; however if the size of the group

A(Fq) is held constant, index calculus methods are subexponential in the dimension g. Thus

abelian varieties of high dimension are usually considered to be unsuitable for cryptographic

applications.

On the other side of things, the best algorithm for discrete logarithm computation in

finite fields is the index calculus attack (e.g., [99]), which has running time subexponential

in the field size. Thus to achieve the same level of security on both sides of the pairing,

the size qk of the extension field must be significantly larger than r. The ratio of these

sizes is computed from three parameters: the embedding degree, which is the degree k of

the extension field required by the pairing; the dimension g of the abelian variety; and a

parameter ρ, which is defined to be g log q/ log r and which roughly measures the size of

the entire group A(Fq) relative to the size of the prime-order subgroup that provides input

points to the pairing. The ratio of the number of bits in the extension field size to the

number of bits in the subgroup order is thus given by ρ · k/g.
There has been much speculation about the exact sizes of r and qk required to match

standard sizes of keys for symmetric encryption, using for example the Advanced Encryption

Standard (AES) [74, 101]. We outline in Table 1.1 one view of the matter for g = 1 or 2,

distilled by Mike Scott from material taken from various authoritative sources, in particular

[47] and [74]. The listed bit sizes are those matching the security levels of the SKIPJACK,

Triple-DES, AES-Small, AES-Medium, and AES-Large symmetric key encryption schemes.

By a “b-bit security level,” we mean the minimum number of bit operations necessary to

break the system is (conjecturally) 2b. In dimensions g ≥ 3 the subgroup size r should be
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Table 1.1: Bit sizes of parameters for one- and two-dimensional abelian varieties and cor-
responding embedding degrees to obtain commonly desired levels of security.

Security level Subgroup size Extension field size ρ · k
(in bits) r (in bits) qk (in bits) g = 1 g = 2

80 160 960 – 1280 6 – 8 12 – 16
112 224 2200 – 3600 10 – 16 20 – 32
128 256 3000 – 5000 12 – 20 24 – 40
192 384 8000 – 10000 20 – 26 40 – 52
256 512 14000 – 18000 28 – 36 56 – 72

increased to take into account the existence of index calculus attacks, and the embedding

degree k adjusted to take into account both r and g.

As we can see from the table, to achieve varied levels of security it is necessary to

construct curves with varying embedding degree. However, in their paper on the Weil

pairing reduction, Menezes, Okamoto and Vanstone [86] showed that supersingular elliptic

curves always have embedding degree k ≤ 6. Rubin and Silverberg [108] generalized this

work to show that for g ≤ 6, supersingular abelian varieties always have embedding degree

k ≤ 7.5g. Since these values are at the low end of the security spectrum (as Table 1.1 shows

for the case where g = 1 or 2 and ρ ≈ 1), to obtain efficient performance at higher security

levels we must construct non-supersingular varieties that have larger embedding degrees.

As we will see in Section 1.2.3 below, this is in general a hard problem. We thus have the

following

Motivating Problem. Given positive integers b, k, and g, construct a g-dimen-

sional abelian variety over a finite field that has a b-bit prime-order subgroup

and embedding degree k.

Any solution to this problem must be feasible for b of cryptographic size, i.e., large

enough so that the discrete logarithm problem in a group whose order is a b-bit prime

number is computationally infeasible. For current technology this means b ≥ 160. By

“construct,” we mean that we wish to describe the given abelian variety explicitly in a

way such that both arithmetic on the abelian variety and pairings can be computed in a

reasonable amount of time with current hardware and software.

The statement of the Motivating Problem refers to the size of the subgroup on the

abelian variety and the embedding degree, but does not address directly the third parameter
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needed to compute the security level in the finite field, namely the ρ-value. In general,

varieties with small ρ-values are desirable in order to speed up arithmetic on the abelian

variety. For example, an elliptic curve with a 160-bit subgroup and ρ = 1 is defined over

a 160-bit field, while a curve with a 160-bit subgroup and ρ = 2 is defined over a 320-

bit field, and group operations and pairings can be computed much more quickly on the

first curve. In addition, the cryptographic elements of a pairing-based protocol (such as

keys and ciphertexts) usually consist of points on the abelian variety and are described in

terms of coordinates in Fq, so systems using abelian varieties with smaller ρ-values require

less bandwidth for the same security level. Thus in our attempts to solve the motivating

problem, we prefer abelian varieties with smaller ρ-values, with our ultimate goal being

varieties with a prime number of points, which have ρ ≈ 1.

1.2 Pairing-friendly abelian varieties

Before we discuss our contribution to the solution of the Motivating Problem, we give

some relevant background on elliptic curves and abelian varieties and define the technical

terminology we will use throughout this dissertation.

For further background, Silverman [117] provides an excellent exposition of elliptic

curves; information on abelian varieties can be found in the article of Waterhouse and Milne

[129], which focuses on varieties over finite fields, and those of Milne [90, 92], which treat

varieties over arbitrary fields. Lang’s book [72] is a standard reference for basic algebra,

while Hartshorne’s [55] is the same for algebraic geometry.

An abelian variety A is a smooth, projective, absolutely irreducible algebraic variety

with a group structure whose operations are given by algebraic morphisms. An elliptic curve

is a one-dimensional abelian variety, and an abelian surface is a two-dimensional abelian

variety. If A is an abelian variety defined over a field F (written A/F ), we denote by A(F )

the group of F -rational points of A. If r is an integer, then A[r] denotes the group of all

r-torsion points of A defined over an algebraic closure F of F . We denote by A(F )[r] the

group of r-torsion points of A defined over F . If A has dimension g and r is prime to the

characteristic of F , then A[r] ∼= (Z/rZ)2g.

A positive-dimensional abelian variety A/F is simple (or F -simple) if it is not isogenous

over F to a product of lower-dimensional abelian varieties. We say thatA is absolutely simple

if it not isogenous over F to a product of lower-dimensional abelian varieties.
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1.2.1 Frobenius endomorphism and CM fields

Let Fq denote the finite field of q elements. Every abelian variety A defined over Fq
has an endomorphism called the Frobenius endomorphism, which is denoted by π and which

operates by raising the coordinates of a point to the qth power. The Frobenius endomor-

phism satisfies a monic, integer polynomial hA known as the characteristic polynomial of

Frobenius, which is the characteristic polynomial of the action of π on the Tate module T`

for any prime ` - q [90, §12]. By a theorem of Weil [90, Theorem 19.1], all of the complex

roots of hA have absolute value
√
q; a monic, irreducible polynomial in Z[x] with this prop-

erty is called a q-Weil polynomial, and any root is called a q-Weil number. By Honda-Tate

theory [122], q-Weil polynomials are in one-to-one correspondence with isogeny classes of

simple abelian varieties over Fq.

If A is simple, then hA is a power of an irreducible polynomial and we can view

π as an element of a number field K. The field K is either a CM field, which is an

imaginary quadratic extension of a totally real field, or the field Q(
√
q) [122]. We call a

CM field K primitive if it contains no proper CM subfields. The full endomorphism algebra

E = EndF (A) ⊗ Q is a central simple algebra over K = Q(π), and by a theorem of Tate

[122] it satisfies

2 · dim(A) = [E : K]1/2[K : Q]. (1.1)

Since A(Fq) is the kernel of the endomorphism π − 1, we have

#A(Fq) = hA(1). (1.2)

If E = K = Q(π), then we also have

#A(Fq) = NormK/Q(π − 1). (1.3)

A g-dimensional abelian variety A defined over a field F of characteristic p is ordinary

if dimFp A[p] = g, or equivalently, if the middle coefficient of hA is prime to p. We say that A

is supersingular if A is F -isogenous to a product of supersingular elliptic curves. Silverman

[117, Theorem 3.1] characterizes supersingular elliptic curves, while Galbraith [44, Theorem

1] gives several equivalent conditions for an abelian variety to be supersingular. We call

a q-Weil number π ordinary or supersingular if the corresponding abelian variety (in the

sense of Honda-Tate theory [122]) is the same. If g ≥ 2 then there are g-dimensional abelian

varieties that are neither ordinary nor supersingular.
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If A is ordinary and simple then the endomorphism ring End(A) is commutative. It

then follows from (1.1) that E = K = Q(π) and K has degree 2g, where g = dimA. In

this case, End(A) is an order O in the ring of integers of K (denoted OK). We take the

statement A has complex multiplication by K or CM by K to mean that End(A)⊗Q ∼= K,

and we take the statement A has CM by O to mean that End(A) ∼= O ⊂ OK . We will

discuss the theory of complex multiplication further in Chapter 4.

In the case of elliptic curves, we will often work with the trace of the Frobenius en-

domorphism, which is defined to be the integer t = π + π. Equation (1.2) then tells us

that

#E(Fq) = q + 1− t. (1.4)

The trace satisfies the Hasse bound |t| ≤ 2
√
q [117, §5.1], which leads to upper and lower

bounds on the number of Fq-rational points of E:

q − 2
√
q + 1 ≤ #E(Fq) ≤ q + 2

√
q + 1.

If E/Fq is an elliptic curve with trace t, then t is relatively prime to q if and only if E is

ordinary.

1.2.2 Curves and Jacobians

Throughout this dissertation, a curve will refer to a smooth, projective, absolutely

irreducible algebraic variety of dimension one. We will often describe curves by equations

in two variables, possibly with a singularity at infinity, such as C : y2 = f(x). In this case

we take the curve C to be the normalization of the projective closure of the affine plane

curve defined by this equation. The genus of a curve C is the dimension of the space of

regular differentials on C.

A hyperelliptic curve over a field F is a curve C/F of genus g ≥ 2 for which there exists

a two-to-one map, defined over F , from C to the projective line P1. If the characteristic of

F is not 2, any hyperelliptic curve of genus g can be represented by an affine model of the

form y2 = f(x), where f is a polynomial in F [x] of degree 2g+1 or 2g+2 with no multiple

roots. All curves of genus 2 are hyperelliptic (see [55, Exercise IV.1.7]).

If C is a curve over F , the Jacobian of C, denoted Jac(C), is a principally polarized

abelian variety over F of dimension g, where g is the genus of C. The group Jac(C)(F ) is

isomorphic to the group Pic0(C) given by linear equivalence classes of degree-zero divisors
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on C, the base extension of C to F . (For more information on Jacobians, see [91].) We will

denote by O the trivial divisor class, which is the identity in the group Jac(C)(F ). When

we say that a curve C has complex multiplication by a field K or an order O, we mean that

Jac(C) has this property.

If C is a genus 1 curve given by a Weierstrass equation of the form y2 = f(x) with

deg f = 3, we denote by O the single point at infinity in the projective closure of this affine

curve. We then have an isomorphism of varieties C → Jac(C) given by φ : P 7→ [P − O].

We will identify C with Jac(C) by this isomorphism, and call C an elliptic curve.

1.2.3 Pairings and embedding degrees

Let A be an abelian variety defined over a field F , and let r be a positive integer

relatively prime to charF . Let µr be the group of rth roots of unity in an algebraic closure

of F . The Weil pairing is a nondegenerate, bilinear, Galois-equivariant map

eweil,r : A[r]× Â[r]→ µr,

where Â is the dual of A. (If A is principally polarized, as is the case when A is a Jacobian,

then Â ∼= A.) For definitions of the Weil pairing and proofs of its properties, see [117, §3.8]

for elliptic curves and [90, §16] for general abelian varieties.

If F is a finite field, the Tate pairing is a nondegenerate, bilinear, Galois-equivariant

map

etate,r : A(F )[r]× Â(F )/rÂ(F )→ F×/(F×)r.

If µr ⊂ F , then the target group F×/(F×)r is isomorphic to µr; otherwise it is isomorphic

to µs for some s | r. For a definition of the Tate pairing and proofs of its properties, see

[33].

From these descriptions it is apparent that if F is finite, then to obtain Weil or Tate

pairing values of order r we must work over a field containing the rth roots of unity.

Definition 1.2.1. Let A be an abelian variety defined over a field F , and let r be a positive

integer relatively prime to char(F ). We say that A has embedding degree k with respect to

r if

1. A has a F -rational point of order r, and

2. [F (µr) : F ] = k.
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If C is a curve, then we say that C has embedding degree k with respect to r if and only if

the Jacobian of C does.

We often ignore r when stating the embedding degree, as it is usually clear from the

context.

The embedding degree gets its name because we can use a pairing to embed a cyclic

subgroup of A(F ) of order r into the multiplicative group of the degree-k extension of F .

The Menezes-Okamoto-Vanstone attack on the discrete logarithm problem on supersingular

elliptic curves [86] makes use of such an embedding. If A is a g-dimensional abelian variety

defined over Fq with q = pd and m is the multiplicative order of p modulo r, then the

quantity m/dg is a good measure of the security of cryptosystems based on A [58]. If Fq is

a prime field (i.e., d = 1) then this quantity is equal to k/g.

For constructive applications of pairings, the embedding degree of A needs to be

small enough so that the pairing is easy to compute, but large enough so that the discrete

logarithm in F×
qk is computationally infeasible. Balasubramanian and Koblitz [5] showed

that for a random elliptic curve E over a random field Fq and a prime r ≈ q, the probability

that E has embedding degree less than log2 q with respect to r is vanishingly small, and

in general the embedding degree can be expected to be around r. Luca, Mireles, and

Shparlinski [79] have obtained similar results for fixed values of q, and we expect analogous

results to hold in higher dimensions. We conclude that if r is around 2160 (the smallest value

currently acceptable for security in implementations) pairings on a random abelian variety

will take values in a field of roughly 2160 bits, so the computation is completely hopeless.

To avoid the Pohlig-Hellman attack [103], the points on A used in cryptographic

protocols should have prime order. Thus we wish to construct abelian varieties over finite

fields that have points of large prime order r and small embedding degree with respect to

r. Such varieties are (informally) called “pairing-friendly.”

Constructions of pairing-friendly abelian varieties make substantial use of the theory

of cyclotomic polynomials and cyclotomic fields. We recall a few basic facts here; for a

deeper discussion, see Lidl and Niederreiter’s book [77]. For every positive integer k, we let

ζk denote a primitive kth root of unity in Q, i.e., an algebraic number such that (ζk)k = 1

and (ζk)` 6= 1 for any positive ` < k. The minimal polynomial of ζk over Q is called the kth

cyclotomic polynomial and is denoted Φk(x). These polynomials have integer coefficients
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and can be defined recursively by setting Φ1(x) = x− 1 and using the formula

xk − 1 =
∏
d|k

Φd(x) (1.5)

for k > 1. The degree of Φk(x) is denoted ϕ(k) and is also called Euler’s phi function; it

gives the number of positive integers less than or equal to k that are relatively prime to k.

Lemma 1.2.2. Let A be an abelian variety over a finite field Fq with an Fq-rational point

of order r. If r is relatively prime to q then the following conditions are equivalent:

1. A has embedding degree k with respect to r.

2. k is the smallest integer such that r divides qk − 1.

3. k is the multiplicative order of q modulo r.

Furthermore, if r is a prime not dividing k then these conditions are equivalent to

4. Φk(q) ≡ 0 (mod r), where Φk is the kth cyclotomic polynomial.

Proof. The equivalence of (1) and (2) follows from the fact that the multiplicative group of

a finite field is cyclic, and the equivalence of (2) and (3) follows trivially from the definitions.

Now suppose r is prime and (2) holds, so r | qk−1 but r - qi−1 for any 1 ≤ i < k. By

(1.5) and since r is prime, this means r | Φk(q). Conversely, if (4) holds, then (1.5) implies

that r | qk − 1. It remains to show that r - qi − 1 for any 1 ≤ i < k. We follow Menezes’

proof [85, Lemma 6.3]. Let f(x) = xk − 1 and F = Z/rZ. Then F is a field. Since r - k, we

have gcd(f(x), f ′(x)) = 1 in F[x]. Thus, f has only single roots in F. Using (1.5) and the

fact that q is a root of Φk(x) over F, we obtain Φd(q) 6≡ 0 (mod r) for any d | k, 1 ≤ d < k.

Therefore, r - qd−1 for any d | k, 1 ≤ d < k. Finally, we note that r - qi−1 for any positive

i that does not divide k, since in this case we would have r | qgcd(i,k) − 1.

We can also give a characterization of the embedding degree in terms of the Frobenius

endomorphism π.

Corollary 1.2.3. Let A/Fq be a simple abelian variety with Frobenius endomorphism π,

and suppose that K = Q(π) equals End(A) ⊗ Q. Let k be a positive integer, Φk the kth

cyclotomic polynomial, and r a square-free integer not dividing kq. If

NormK/Q(π − 1) ≡ 0 (mod r),

Φk(ππ) ≡ 0 (mod r),
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then A has embedding degree k with respect to r.

Proof. Since r is square-free, the first condition tells us that A(Fq) has a cyclic subgroup

of order r, while the second tells us that condition (4) of Lemma 1.2.2 holds for each prime

dividing r.

We also observe that in the case of an elliptic curve E/Fq with trace of Frobenius t

and a cyclic subgroup of order r, the formula for the number of points (1.4) implies that

q ≡ t− 1 (mod r), and thus we can rephrase Lemma 1.2.2 in terms of t− 1:

Corollary 1.2.4. Let E be an elliptic curve over a finite field Fq with trace of Frobenius t

and an Fq-rational point of order r. If r is relatively prime to q then the following conditions

are equivalent:

1. E has embedding degree k with respect to r.

2. k is the smallest integer such that r divides (t− 1)k − 1.

3. k is the multiplicative order of t− 1 modulo r.

Furthermore, if r is a prime not dividing k then these conditions are equivalent to

4. Φk(t− 1) ≡ 0 (mod r), where Φk is the kth cyclotomic polynomial.

For implementation purposes, the subgroup of prime order r should be close as possible

to the full group A(Fq), with the “ideal” case being that r is actually the full group order.

Since this ideal is difficult to achieve in practice, we define a parameter ρ that represents how

close to this ideal a given g-dimensional abelian variety is. Using the fact that #A(Fq) ≈ qg

[90, Theorem 19.1], we can approximate the ratio of the size (in bits) of this group order to

the size (in bits) of the subgroup order r by the parameter

ρ =
g log q
log r

. (1.6)

We can interpret the ρ-value of an abelian variety as the ratio of the abelian variety’s

required bandwidth to its security level. As we discussed in Section 1.1, abelian varieties

with ρ-values close to 1 usually provide the best performance in implementations. However,

such varieties are often limited to specific, small embedding degrees k, and thus to achieve

comparable security levels in A[r] and F×
qk it is not uncommon to use varieties with larger

ρ-values.



12

1.2.4 Complex multiplication methods

From the discussion above, we see that the problem of constructing a pairing-friendly

abelian variety essentially reduces to determining a q-Weil number π and a subgroup size

r that have the relationship specified by Corollary 1.2.3, and then constructing an explicit

abelian variety over Fq with Frobenius element π. The bulk of this dissertation is dedicated

to solving the first problem. The latter task is achieved by complex multiplication methods,

or CM methods, which we now discuss.

The key idea underlying CM methods is the following: by the Serre-Tate theory of

canonical liftings [78], every ordinary abelian variety A over Fq is the reduction modulo a

suitable prime p over q of an abelian variety A0 over Q with End(A0) ∼= End(A). Further-

more, if A is a simple, principally polarized abelian variety of dimension g ≤ 3, then A0 is

the Jacobian of a genus g curve C0/Q.

At present, CM methods have only been developed in dimension g ≤ 3. In these cases,

we have the following:

Proposition 1.2.5. Let π be an ordinary q-Weil number, and suppose that the number field

K = Q(π) is a primitive CM field of degree 2g with g ≤ 3. Then there is a genus g curve

C/Fq such that End(Jac(C)) ∼= OK , the ring of integers of K, and either

1. C is elliptic or hyperelliptic and Jac(C) has Frobenius element π, or

2. C is a smooth plane quartic and Jac(C) has Frobenius element π or −π.

Proof. The result is well-known for g = 1, so we consider the cases g = 2 or 3. Let A be the

isogeny class of abelian varieties over Fq with Frobenius element π. Since K is primitive and

π is ordinary, it follows from the Honda-Tate theorem [122, Théorème 1] that any abelian

variety A ∈ A is absolutely simple.

Suppose there is an A ∈ A that is principally polarized and has endomorphism ring

isomorphic to OK . Then by theorems of Weil (for g = 2) and Oort and Ueno (for g = 3)

[100], A is Fq-isomorphic to the Jacobian of a genus g curve C. If C is hyperelliptic, then

there is a hyperelliptic curve C/Fq such that Jac(C) is Fq-isomorphic to A (see e.g. [73,

Appendix, §7]), proving statement (1). If C is not hyperelliptic then there is a curve C/Fq
such that Jac(C) is Fq-isomorphic to either A or its quadratic twist A′ (again, see e.g. [73,

Appendix, §7]). Any nonhyperelliptic curve of genus 2 or 3 is a smooth plane quartic, so
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statement (2) now follows from the facts that End(A′) ∼= End(A) and A′ has Frobenius

element −π.

It remains to show that there is an A ∈ A that is principally polarized and has

endomorphism ring isomorphic to OK . Let K0 be the maximal totally real subfield of K.

By the work of Howe [59, Propositions 5.7 and 10.1], it suffices to show that there is a finite

prime p of K0 that ramifies in K. For g = 2, a variation of Howe’s proof of [59, Lemma

12.1] shows that if there is no finite prime p of K0 that ramifies in K, then K contains an

imaginary quadratic subfield, contradicting the assumption that K is primitive. For g = 3,

the result follows directly from [59, Corollary 10.3].

Proposition 1.2.5 has as an immediate consequence that given a primitive CM field K

and an ordinary Weil number π ∈ OK , we can solve the construction problem by compiling

the finite list of Q-isomorphism classes of curves in characteristic zero whose Jacobians have

CM by OK . From representatives of this list, we obtain a list C of curves over Fq whose

Jacobians have CM by OK by reducing at some fixed prime p over q. Changing the choice

of the prime p amounts to taking the reduction at p of conjugate curves, which also have

Jacobians with CM by OK .

For every curve C ∈ C, we compute the set of its twists, i.e., all the curves up to Fq-

isomorphism that become isomorphic to C over Fq. If C is elliptic or hyperelliptic (which

is always the case when g ≤ 2), then there is at least one twist C ′ of a curve C ∈ C whose

Jacobian has the specified Frobenius element π. This curve can be selected from the list

of twists using the fact that # Jac(C)(Fq) = NormK/Q(π − 1). (Note that while efficient

point-counting algorithms do not exist for varieties of dimension g > 1, if q � g we can

determine probabilistically whether an abelian variety over Fq has a given order by choosing

a few random points, multiplying by the expected order, and seeing if the result is always

the identity.) If C is not hyperelliptic, then it may happen that we can only find a curve C ′

such that Jac(C ′) has Frobenius element −π; in this case the desired abelian variety is the

quadratic twist of Jac(C ′), which cannot be described as the Jacobian of a curve over Fq.

It now remains only to construct the list of curves over Q with CM by OK .

In genus 1, where we are dealing with elliptic curves, the problem has been studied

extensively. The j-invariants of elliptic curves over Q with CM by the ring of integers OK of

a quadratic imaginary field K are the roots of the Hilbert class polynomial of K, which is a

monic, square-free polynomial with integer coefficients. There are three different approaches
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to computing the Hilbert class polynomial: a complex-analytic algorithm [3, 35], a Chinese

remainder theorem algorithm [23, 2], and a p-adic algorithm [29, 20]. The best running

time for these algorithms is Õ(h2
K), where hK is the class number of K [35, 20]. Since

the degree of the Hilbert class polynomial is hK and the bit size of the coefficients grows

roughly linearly in hK , this running time is essentially the best possible. At present, the

largest class number for which the elliptic curve CM method is feasible is hK = 105 [35].

Analogous methods exist for constructing genus 2 curves over Q with CM by the ring

of integers OK of a given quartic CM field K. In this case, the solutions rely on computing

the curves’ absolute Igusa invariants via the computation of the Igusa class polynomials

for K, which lie in Q[x]. (A precise definition of the Igusa class polynomials appears on

page 96.) Again there are three different approaches to computing the class polynomials:

a complex-analytic algorithm [119, 124, 131, 27], a Chinese remainder theorem algorithm

[34], and a p-adic algorithm [51]. These algorithms are less extensively developed than their

elliptic curve analogues; at present they can handle only very small quartic CM fields, and

there is no running time analysis for any of them. We discuss the genus 2 CM method in

more detail in Chapter 5, focusing on the Chinese remainder approach.

In genus 3, the invariant theory and the corresponding theory of class polynomials

have been developed only in two special cases. The first, due to Weng [130], is the case

of hyperelliptic curves with CM by a degree-6 field K containing Q(i). The second, due

to Koike and Weng [70], is the case of Picard curves (curves of the form y3 = f(x) with

deg f = 4) with CM by a degree-6 field K containing Q(ζ3). In both cases the class

polynomials are computed via a complex-analytic algorithm, and the algorithms are again

limited to very small CM fields K.

In each of these cases the correspondence between curves and absolute invariants

commutes with reduction at p. It follows that we can find the invariants of curves C/Fq
that have CM by OK by computing roots of the class polynomials in Fq. (See [34, Theorem

2], reproduced as Theorem 5.1.2 below, for a precise statement of this result in the case

g = 2.) An explicit equation for the curve C can then be computed from the invariants

using well-known formulas for g = 1, using Mestre’s algorithm [88] for g = 2, and using the

appropriate algorithms in the two tractable cases with g = 3 [130, 70]. The requirement

that Jac(C) be ordinary is essential, and ensures that p = char(Fq) does not divide the

denominator of any coefficient of the class polynomial; see [54, Section 4] for further details

in the case g = 2.
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Explicit CM theory has not been developed for dimensions g ≥ 4, save for a few specific

examples. Moreover, “most” principally polarized abelian varieties of dimension g ≥ 4 are

not Jacobians, as the moduli space of Jacobians has dimension 3g − 3, while the moduli

space of abelian varieties has dimension g(g+1)/2. For implementation purposes we prefer

Jacobians or even hyperelliptic Jacobians, as these are the only abelian varieties on which

group operations and pairings can be computed efficiently over finite fields of cryptographic

size.

1.2.5 Algorithms

Many of the results in this dissertation are presented in the form of algorithms. We

define an algorithm to be a sequence of computations that can be implemented on a Turing

machine and is guaranteed to terminate after a finite amount of time. A probabilistic

algorithm is an algorithm that has access to an external source of input from which truly

random bits can be generated. When we say that a probabilistic algorithm terminates in a

finite amount of time, we mean that for any valid input the expected running time∫ ∞

0
tP (t)dt,

where P (t) is the probability of terminating at time t, is finite.

Our definition does not take into account whether an algorithm produces correct out-

put; an algorithm’s proof of correctness is separate from its statement. When we say that

a probabilistic algorithm is correct, we mean that for any valid input it produces correct

output with probability greater than 1/2. We also make no a priori claims about the run-

ning time of our algorithms. Indeed, showing that our algorithms can run in polynomial

time with negligible error probability will often be an essential part of our discussion.

In general we will not distinguish between probabilistic and deterministic algorithms.

Indeed, some of our algorithms contain steps such as “choose element x from set Y ” that

can be implemented either deterministically or probabilistically. Obviously, any algorithm

that makes explicit reference to randomness in its description will be probabilistic.

1.2.6 Miscellaneous notation

We denote by Z the ring of integers, and by Q, R, and C the fields of rational, real,

and complex numbers respectively. If F is a field we denote by F an algebraic closure of F .

Unless otherwise stated, all fields are assumed to be separable.
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The “big-O” notation f(x) = O(g(x)) means that there exist positive constants C

and N such that for any x > N , |f(x)| ≤ C |g(x)|. If g(x) > 1 for x sufficiently large, the

“soft-O” notation f(x) = Õ(g(x)) means that there is some positive integer k such that

f(x) = O(g(x) logk g(x)). Note that f(x) = Õ(g(x)) implies that f(x) = O(g(x)1+ε) for

any ε > 0. Analogous definitions hold for functions of several variables.

1.3 Scope of this dissertation

In this dissertation we present several new contributions to the solution of the Moti-

vating Problem of page 4. We focus on the case where the abelian variety in question is

ordinary, as supersingular varieties of low dimension have already been classified by Rubin

and Silverberg and been shown to have bounded embedding degree k in any dimension g,

and varieties of intermediate type are poorly understood in the context of pairing-friendly

abelian varieties.†

In Chapter 2 we give an abstract and general framework that classifies the known

constructions of pairing-friendly ordinary elliptic curves. Our framework allows the practi-

tioner to quickly determine the various attributes of any such construction, making it easy

to select a construction for any specified set of performance and security requirements.

More importantly, our framework leads us to discover new constructions of pairing-

friendly ordinary elliptic curves. We describe these new constructions in Chapter 3. Our

most important contribution in this regard is the construction of elliptic curves of prime

order with embedding degree 10, which solves an open problem posed by Boneh, Lynn,

and Shacham [17]. We also describe a procedure for generating families of pairing-friendly

elliptic curves with variable CM discriminant, which will be useful for those who desire the

maximum possible degree of randomness in cryptosystem parameters.

In Chapter 4 we study higher-dimensional abelian varieties. We provide two algorithms

that, given a CM fieldK, construct Frobenius elements π of pairing-friendly ordinary abelian

varieties with CM by K. Both algorithms generalize existing constructions of pairing-

friendly ordinary elliptic curves. The first method generalizes the construction of Cocks

and Pinch [25] and works for (nearly) arbitrary subgroup sizes r. The second generalizes

the method of Brezing and Weng [19] and leads to varieties with better ρ-values than the
†There is one discussion in the literature of such intermediate varieties, due to Hitt [57], which gives

existence results for pairing-friendly abelian surfaces of intermediate type in characteristic 2. Explicit con-
struction of pairing-friendly varieties of this type remains an entirely open problem.
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first. Given the output π of either algorithm, one can then use complex multiplication

methods to construct explicitly an abelian variety with Frobenius element π.

Finally, in Chapter 5 we turn to the question of the CM methods used to construct

explicit examples of pairing-friendly abelian varieties. We focus on implementation aspects

of Eisenträger and Lauter’s Chinese remainder theorem algorithm [34] for computing Igusa

class polynomials of quartic CM fields. One of the steps of this algorithm requires deter-

mining whether endomorphism rings of Jacobians of genus 2 curves over small prime fields

are isomorphic to the full ring of integers in a given quartic CM field. Our contribution is

to provide an efficient probabilistic algorithm that carries out this computation. Using our

algorithm to determine endomorphism rings, we have implemented a probabilistic version

of the full Eisenträger-Lauter CRT algorithm in MAGMA [18] and used it to compute Igusa

class polynomials for several quartic CM fields K with small discriminant. We find that

in practice the running time of the CRT algorithm is dominated not by the endomorphism

ring computation but rather by the need to compute p3 curves for many small primes p.
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Chapter 2

A Taxonomy of Pairing-Friendly

Elliptic Curves

2.1 Introduction

During the time that pairing-based cryptography has been studied in earnest, numer-

ous researchers have worked on the Motivating Problem of page 4 in the case of elliptic

curves, i.e., g = 1, and there now exist many methods for constructing pairing-friendly el-

liptic curves. In this chapter we gather these constructions into a single coherent framework.

A diagram outlining our classification is given in Figure 2.1.

Our framework will aid the practitioner by allowing him or her to select elliptic curves

for any desired combination of performance and security requirements. More importantly,

by determining the abstract properties that make the existing constructions work, we can

use these properties to produce new constructions that improve on the known ones. These

new constructions appear in Chapter 3.

The designers of the first pairing-based protocols proposed the use of supersingular

elliptic curves [14]; we discuss these curves in Section 2.2.2. However, supersingular curves

are limited to embedding degree k = 2 for prime fields and k ≤ 6 in general [86], so for

higher embedding degrees we must turn to ordinary curves.

There are a large number of constructions of ordinary elliptic curves with prescribed

embedding degree. All of these constructions are based on the complex multiplication (CM)

method of curve construction (see Section 1.2.4), and all construct curves over prime fields.
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Figure 2.1: Classification of pairing-friendly elliptic curves
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The highest-level distinction we make in our framework is between methods that con-

struct individual curves and those that construct families of curves. The former type are

methods that give integers q and r such that there is an elliptic curve E over Fq with a

subgroup of order r and embedding degree k with respect to r. The latter type are methods

that give polynomials q(x) and r(x) such that if q(x0) is prime for some value of x0, there

is an elliptic curve E over Fq(x0) with a subgroup of order r(x0) and embedding degree k

with respect to r(x0). Families of curves have the advantage that the sizes of the finite field

and the prime-order subgroup can be varied simply by specifying x0.

There are two constructions in the literature that produce ordinary elliptic curves with

small embedding degree that are not given in terms of families: the method of Cocks and

Pinch [25] and that of Dupont, Enge, and Morain [32]. In Section 2.3 we describe these two

methods and discuss their merits and drawbacks.

The remaining constructions of ordinary elliptic curves with small embedding degree

fall into the category of families of curves. Here we make another distinction. The construc-

tion of such curves depends on our being able to find integers x, y satisfying an equation of

the form

Dy2 = 4q(x)− t(x)2
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for some fixed positive integer D and polynomials q(x) and t(x). The parameter D is the

“CM discriminant” (which we often call simply the “discriminant”), which we will define

formally in Section 2.2. In some cases, this equation will only have solutions for some set of

(x, y) that grows exponentially; we call such families sparse. In others, this equation may

be satisfied for any x, i.e., we can write y as a polynomial in x and the equation gives an

equality of polynomials; we call such families complete.

Sparse families, discussed in Section 2.4, are primarily based on the ideas of Miyaji,

Nakabayashi, and Takano [93]. These families give most of the known constructions of

curves of prime order, but are limited to small embedding degrees k. Complete families,

discussed in Section 2.5, exist for arbitrary k but usually give curves with ρ > 1. All

of the constructions of complete families can be viewed as choosing a polynomial r(x)

parametrizing the pairing-friendly subgroup size and computing polynomials in Q[x] that

map to certain elements of the number field K = Q[x]/(r(x)). We can further classify the

complete families according to properties of the number field K. We briefly list the families

and the corresponding type of number field.

• Cyclotomic families (§2.5.1): K is a cyclotomic field, r is a cyclotomic polynomial,

and K contains
√
−D for some small D. Constructions given in [8, 19].

• “Sporadic” families (§2.5.2): K is a (perhaps trivial) extension of a cyclotomic field, r

is not a cyclotomic polynomial, andK contains
√
−D for some smallD. Constructions

given in [9, 62].

• Scott-Barreto families (§2.5.3): K is a (perhaps trivial) extension of a cyclotomic field,

and K contains no
√
−D for any small D. Constructions given in [113].

Much of the material in this chapter is joint work with Michael Scott of Dublin City

University (Ireland) and Edlyn Teske of the University of Waterloo (Canada). A more

comprehensive exposition of these topics appears in [41].

2.2 How to generate pairing-friendly elliptic curves

In this section we discuss the common properties of the various constructions of pairing-

friendly elliptic curves. As we saw in Section 1.2.3, it is unlikely that a “random” elliptic

curve over a finite field will have small embedding degree with respect to a large prime-

order subgroup, and thus construction of curves with these properties requires specialized
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algorithms. All such algorithms currently in the literature follow essentially the same high-

level structure:

1. Fix k, and compute integers t, r, q such that there is an elliptic curve E/Fq that has

trace t, a subgroup of prime order r, and embedding degree k.

2. Use the complex multiplication method to find the equation of the curve E over Fq.

The difficult part of such algorithms is finding t, r, q as in Step (1) while ensuring that

Step (2) remains feasible.

We now specialize to the case where E is ordinary; a discussion of supersingular curves

can be found in Section 2.2.2. An ordinary elliptic curve with the properties described in

Step (1) exists if and only if the following conditions hold:

1. q is prime or a prime power.

2. r is prime.

3. t is relatively prime to q.

4. r divides q + 1− t.

5. r divides Φk(q), where Φk is the kth cyclotomic polynomial.

6. 4q − t2 = Dy2 for some square-free positive integer D and some integer y.

Condition (1) ensures that there is a finite field with q elements. Since the proportion

of prime powers to primes is virtually zero, we will in general take q to be a prime number.

Condition (6) implies that t ≤ 2
√
q; together with condition (3) this implies that there exists

an ordinary elliptic curve E defined over Fq with #E(Fq) = q + 1 − t (cf. [128, Theorem

4.1]). Conditions (2) and (4) combine to tell us that E(Fq) has a subgroup of prime order r.

By Lemma 1.2.2, condition (5) is equivalent to E having embedding degree k with respect

to r.

We now know that if such t, r, q can be constructed, then there exists an ordinary

elliptic curve E/Fq with embedding degree k and an order-r subgroup. The characteristic

polynomial of Frobenius for E is x2−tx+q, and thus condition (6) implies that End(E)⊗Q ∼=
Q(
√
−D). By Proposition 1.2.5, we may assume that End(E) is isomorphic to the ring of

integers of K = Q(
√
−D). We may thus compute the j-invariant of E as a root of the
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Hilbert class polynomial for OK , modulo a prime over q. If the class number hK of K is

sufficiently small then this class polynomial can be constructed in a reasonable amount of

time; in practice we can take hK < 105 [35].

The equation in condition (6) is called the CM equation. We call the integer D the

CM discriminant of E/Fq; it is defined to be the square-free part of the nonnegative integer

4q − t2. (Other authors may define the CM discriminant to be negative, or to be the

discriminant of the quadratic imaginary field Q(
√
−D).) If we use condition (4) to write

q + 1− t = hr for some positive integer h, then the CM equation is equivalent to

Dy2 = 4hr − (t− 2)2. (2.1)

We call h the cofactor of the pairing-friendly curve.

2.2.1 Families of pairing-friendly curves

For applications, we would like to be able to construct curves of specified bit size.

To this end, we describe “families” of pairing-friendly curves for which the curve param-

eters t, r, q are given as polynomials t(x), r(x), q(x) in terms of a parameter x. The idea

of parametrizing t, r, q as polynomials has been used by several different authors in their

constructions, including Miyaji, Nakabayashi, and Takano [93]; Barreto, Lynn, and Scott

[8]; Scott and Barreto [113]; and Brezing and Weng [19]. Our definition of a family of

pairing-friendly curves is a formalization of ideas implicit in these works. The definition

provides a concise description of many existing constructions and gives us a framework that

we can use to discover previously unknown pairing-friendly curves.

Since the values of q(x) and r(x) will be the sizes of a field and a group in which we

wish to do cryptography, respectively, the polynomials we construct will need to have the

property that for many values of x, q(x) is a prime power (which in general we will take to

be a prime) and r(x) is prime or a small cofactor times a prime. However, one drawback

to the description of q and r as polynomials is that very little is known about prime values

of polynomials. For example, it is not even known that x2 + 1 takes an infinite number of

prime values. Thus when describing the polynomials that we wish to take prime values, we

must impose conditions that make it likely that they will do so.

Our definition is motivated by the following fact: if f(x) ∈ Z[x], then a famous

conjecture of Buniakowski and Schinzel (see [72, p. 323]) says that a non-constant f(x)

takes an infinite number of prime values if and only if f has positive leading coefficient, f is
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irreducible, and gcd({f(x) : x ∈ Z}) = 1. Furthermore, a conjecture of Bateman and Horn

[10] vastly generalizes the prime number theorem to give the expected density of such prime

values. For our purposes we must also consider polynomials with rational coefficients; our

definition incorporates the natural generalization of these conjectures to such polynomials.

Definition 2.2.1. Let f(x) be a polynomial with rational coefficients. We say f represents

primes if the following conditions are satisfied:

1. f(x) is non-constant.

2. f(x) has positive leading coefficient.

3. f(x) is irreducible.

4. f(x) ∈ Z for some x ∈ Z (equivalently, for an infinite number of x ∈ Z).

5. gcd({f(x) : x, f(x) ∈ Z}) = 1.

For future reference, we note that if there is some x such that f(x) = ±1, then

conditions (4) and (5) are both satisfied. We need one more definition before we can define

families of pairing-friendly curves.

Definition 2.2.2. A polynomial f(x) ∈ Q[x] is integer-valued if f(x) ∈ Z for every x ∈ Z.

For example, f(x) = 1
2(x2 + x+ 2) is integer-valued and represents primes.

Definition 2.2.3. Let t(x), q(x), r(x) ∈ Q[x] be nonzero polynomials.

(i) For a given positive integer k and positive square-free integer D, the triple (t, r, q)

represents a family of elliptic curves with embedding degree k and discriminant D if

the following conditions are satisfied:

1. q(x) = p(x)d for some d ≥ 1 and p(x) that represents primes.

2. r(x) is non-constant, irreducible, and integer-valued, and has positive leading

coefficient.

3. r(x) divides q(x) + 1− t(x).

4. r(x) divides Φk(t(x)− 1), where Φk is the kth cyclotomic polynomial.

5. The equation Dy2 = 4q(x)− t(x)2 has infinitely many integer solutions (x, y).
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If these conditions are satisfied, we often simply call (t, r, q) a family.

(ii) We say that a family (t, r, q) is ordinary if gcd(t(x), q(x)) = 1.

(iii) We say that a family (t, r, q) is complete if for every integer x there is some integer y

that satisfies the equation Dy2 = 4q(x) − t(x)2; otherwise we say that the family is

sparse.

(iv) We say that (t, r, q) represents a potential family of curves if conditions (2)–(5) of (i)

are satisfied; in this case q(x) may or may not be a power of a p(x) that represents

primes.

Part (i) of Definition 2.2.3 is designed so that if (t, r, q) represents a family of curves

with embedding degree k, and (x0, y0) is a solution to the equation of condition (5) such

that p(x0) is prime, then there exists an elliptic curve E/Fq(x0) with a subgroup of order

r(x0) and embedding degree k. If the class number of Q(
√
−D) is less than 105 then E can

be constructed via the CM method. In practice we will usually have d = 1 in condition (1),

so q(x) will represent primes and the curves we construct will be defined over prime fields.

For cryptographic applications, we also need r(x0) to be prime or very nearly prime;

the conditions (2) on r(x) suggest that this will often be the case. We can then use the

following algorithm to search for an x0 with the desired properties.

Algorithm 2.2.4.

Input: polynomials q(x) and r(x) ∈ Q[x] satisfying conditions (1) and (2) of Definition

2.2.3 (i), respectively, and a positive integer y0.

Output: positive integers x0 and h such that q(x0) is prime and r(x0) is h times a

prime.

1. Compute integers a, b such that q(ax+ b) is integer-valued and represents primes.

2. Set h← gcd({q(ax+ b)r(ax+ b) : x ∈ Z}).

3. Set r̃(x)← r(x)/h.

4. Set x1 ← y0.

5. Repeat x1 ← x1 + 1 until q(ax1 + b) and r̃(ax1 + b) are prime integers.

6. Set x0 ← ax1 + b. Return h and x0.
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The input y0 is the starting point for the search, and should be chosen so that r(y0)/h

is at least the minimum size desired for security. Since h does not depend on the input yo,

if the h output by the algorithm is too large we can try again with a larger y0.

Proposition 2.2.5. Suppose the q(x) and r(x) input into Algorithm 2.2.4 have degrees

d1 and d2 respectively. If the Bateman-Horn conjecture [10] is true, then the expected

running time of the algorithm is O(d1d2(logαδy0)2), where δ is the smallest integer such

that δq(x) ∈ Z[x] and α = max{q(x)r(x) : |x| ≤ δ/2}.

Proof. We first show that integers a, b as in Step (1) always exist. Write q(x) = q̃(x)/δ;

then q̃(x) ∈ Z[x]. Write the factorization of δ as

δ =
∏

p prime

pep .

Since q(x) represents primes, for each p there exists a bp such that q(bp) is an integer not

divisible by p, and thus pep divides q̃(bp) exactly. Let a and b be integers such that

a =
∏
p|δ

pep+1, b ≡ bp (mod pep+1) for all p | δ.

Then q(ax + b) is integer-valued and is nonzero mod p for every p dividing δ. For every p

not dividing δ, ax + b ranges through all residue classes mod p, so there is some residue

class of x mod p for which p does not divide q̃(ax + b). Thus there is no prime p dividing

q(ax+ b) for all x, which is equivalent to q(ax+ b) representing primes.

Let h be as in Step (2). Since q(ax+ b) and r(ax+ b) are integer-valued and q(ax+ b)

represents primes, there is some c such that

gcd
(
{q(ax+ b) : x ≡ c mod h}

)
= 1,

gcd
(
{r(ax+ b) : x ≡ c mod h}

)
= h.

It follows that the values of the polynomials q(ahx+ac+ b) and r̃(ahx+ac+ b) are integers

with no common divisor. The Bateman-Horn conjecture implies that we should expect to

test roughly d1d2(log ahy0)2 values of x1 before we find one for which q(ax1 + b) is prime

and r(ax1 + b) is h times a prime. Since log a = O(log δ) and h ≤ α, the result follows.

Proposition 2.2.5 shows that heuristically, the expected number of executions of Step

(5) is linear in the degrees of q and r, and quadratic in the number of bits in y0. We note
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(and find in practice) that the a computed in Step (1) can be smaller than the a produced

in the proof of the proposition, and that there may be multiple valid choices of b for a given

a. In addition, the α of the statement is usually a gross overestimate.

Condition (3) of Definition 2.2.3 (i) ensures that for a given value x0 for which q(x0)

is prime, r(x0) divides #E(Fq(x0)). If in fact r(x0) = q(x0) + 1− t(x0), then for values of x

for which r(x0) and q(x0) are both prime, #E(Fq) will be prime. This is the “ideal” case,

but it is difficult to achieve in practice. We therefore extend our definition of the parameter

ρ (1.6) to indicate how close to this ideal a given family of curves is.

Recall that the ρ-value of a g-dimensional abelian variety over Fq with respect to a

subgroup of order r is ρ = g log q/ log r. If q = q(x) and r = r(x) are parametrized as

polynomials, then for large x the ρ-value approaches g deg q/ deg r. This analysis leads to

the following definition of ρ-value for a family of elliptic curves:

Definition 2.2.6. Let t(x), r(x), q(x) ∈ Q[x], and suppose (t, r, q) represents a family of

elliptic curves with embedding degree k. The ρ-value of the family represented by (t, r, q),

denoted ρ(t, r, q), is

ρ(t, r, q) = lim
x→∞

log q(x)
log r(x)

=
deg q(x)
deg r(x)

.

The Hasse bound |#E(Fq)− q + 1| ≤ 2
√
q implies that ρ(t, r, q) is always at least

1. (For individual curves, ρ(E) ≥ 1 − 2 log 2
log r .) If (t, r, q) represents curves of prime order,

then deg r = deg q and ρ = 1. Note, however, that the converse may not be true: if

ρ(t, r, q) = 1, then we may find that for any curve E in this family #E(Fq) = hr(x) where

h is a constant-size cofactor. (For examples of such families, see [46, §3].)

We conclude this section by demonstrating some properties of ρ for ordinary elliptic

curves with embedding degree 1 or 2.

Proposition 2.2.7. Suppose (t, r, q) represents a family of ordinary elliptic curves with

embedding degree k ≤ 2 and discriminant D.

1. If k = 1, then ρ(t, r, q) ≥ 2 if either of the following conditions holds:

(a) deg t(x) ≥ 1, or

(b) there are an infinite number of integer solutions (x, y) to the CM equation (2.1)

for which r(x) is square free and relatively prime to D.

2. If k = 2, then ρ(t, r, q) ≥ 2.
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Proof. Since r(x) divides Φk(t(x)−1) and deg Φk = 1, if Φk(t(x)−1) 6= 0 then we must have

deg t(x) ≥ deg r(x). Thus by the Hasse bound ρ(t, r, q) ≥ 2. It remains to consider the cases

k = 1, t(x) = 2 and k = 2, t(x) = 0. If t(x) = 0 then the family of curves is not ordinary,

a contradiction. Now suppose k = 1 and t(x) = 2; then the CM equation (2.1) becomes

Dy2 = 4h(x)r(x). The hypothesis (1b) implies that there are an infinite number of x for

which h(x) ≥ r(x), and therefore deg h(x) ≥ deg r(x). Since deg q(x) = deg h(x)+deg r(x),

we conclude that ρ ≥ 2.

Remark 2.2.8. Let E/Fq be an ordinary elliptic curve that has embedding degree k ≤ 2

with respect to r, and let D be the CM discriminant of E. Using the same reasoning as in

the proof of Proposition 2.2.7, one can show that if either

1. k = 1, r is square free, and gcd(r,D) = 1, or

2. k = 2, and q and r are prime,

then ρ(E) ≥ 2(1− ε), with ε→ 0 as r →∞.

2.2.2 Supersingular curves

Recall that an elliptic curve E/Fq with #E(Fq) = q+1− t is supersingular if and only

if gcd(t, q) > 1. Supersingular curves have embedding degrees k ∈ {1, 2, 3, 4, 6} [86], and

furthermore k = 2 is the only possible embedding degree over prime fields Fq with q ≥ 5.

By the Hasse bound, group orders of supersingular curves are of the form q + 1 − t with

t2 ∈ {0, q, 2q, 3q, 4q}.
The only known general method to construct supersingular curves is reduction of CM

curves in characteristic zero. In particular, the CM curves y2 = x3 + ax and y2 = x3 + b

defined over Q reduce to supersingular curves over Fp for all primes p ≡ 3 (mod 4) and

p ≡ 2 (mod 3) respectively. These two curves will suffice for most applications; Algorithm

2.2.11 gives an explicit procedure for constructing a supersingular curve over any given

prime field.

For fields of characteristic 2 and 3, representatives for each Fq-isomorphism class of

supersingular curves have been determined by Menezes and Vanstone [87] and Morain [95],

respectively. Supersingular curves with k = 4 or 6 exist only in characteristic 2 and 3,

respectively, and Menezes [84] has characterized prime-order supersingular curves in these

cases. Thus we limit our discussion in this section to curves with k ≤ 3.
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Remark 2.2.9. Supersingular curves are commonly perceived as “weak” curves, and thus

as not desirable for cryptographic applications. However, Koblitz and Menezes [68] argue:

There is no known reason why a nonsupersingular curve with small embedding
degree k would have any security advantage over a supersingular curve with the
same embedding degree.

On the other hand, as opposed to ordinary curves with embedding degree k > 1,

supersingular curves have the added advantage that they have distortion maps (in the

sense of Verheul [125]), which is a desirable feature in some pairing-based applications [24].

Embedding degree k = 1

Supersingular curves with embedding degree k = 1 exist only over finite fields Fq
where q = ps with s even. Then we can write q − 1 = (

√
q + 1)(

√
q − 1), so r | q − 1 if

r | (√q + 1) or r | (√q − 1). For a supersingular curve with k = 1 over Fq, this requires

#E(Fq) = q ± 2
√
q + 1, that is, t = ±2

√
q [45], and we see that such curves must have

ρ ≥ 2.

To construct supersingular curves with embedding degree 1, we let q′ =
√
q and let

E/Fq′ be a curve with trace zero, i.e., #E(Fq′) = q′+1. Then the characteristic polynomial

of the q′-power Frobenius endomorphism is x2 + q′, which factors as (x+ i
√
q′)(x− i

√
q′).

The Weil conjectures [117, Theorem V.2.2] then tell us that the characteristic polynomial

of the q-power Frobenius map is (x − q′)2, so #E(Fq) = (q′ − 1)2 = q − 2
√
q + 1. Thus

even though E/Fq′ has embedding degree 2, if we consider E as a curve over Fq then E has

embedding degree 1 with respect to r.

We will see in Section 2.2.2 how to construct a trace-zero curve over Fq′ with an order-

r subgroup for arbitrary r. Since we may take log q′/ log r arbitrarily close to 1 for such

curves, the ρ-value for E/Fq with embedding degree 1 can be made arbitrarily close to 2,

and we see from the discussion above that this is the best possible ρ-value. If for some

reason we want our curve to have q+2
√
q+1 points, we may simply take a quadratic twist

(over Fq) of the curve with q − 2
√
q + 1 points.

We conclude that in any case where a supersingular curve E/Fq with k = 1 and

ρ(E) = ρ0 is desired, we may obtain an entirely equivalent setup by choosing a supersingular

curve E′/F√q with k = 2 and ρ(E′) = ρ0/2.
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Embedding degree k = 2

The case of embedding degree 2 offers the most flexibility; in fact, we can construct

curves over prime fields with arbitrary subgroup size and ρ-value. For embedding degree

k = 2 we require r | q+ 1. This is certainly the case if t = 0, and such supersingular curves

can be defined over both prime and non-prime fields.

Construction of supersingular curves in characteristic greater than 3 makes use of the

following theorem:

Theorem 2.2.10 ([71, Theorem 13.12]). Let L be a number field, and E/L be an elliptic

curve with complex multiplication. Suppose End(E) ⊗ Q = Q(
√
−D). Let p | p be a prime

of L where E has good reduction. Then the reduction of E mod p is supersingular if and

only if p does not split in Q(
√
−D), i.e.,

(
−D
p

)
6= 1.

Given a subgroup size r, if we choose any even h such that q = hr − 1 is prime, then

we have the following algorithm (combining the constructions of Koblitz and Menezes [68,

§7] and Bröker [21, §3.4]) for constructing a curve over Fq with embedding degree 2 with

respect to r.

Algorithm 2.2.11.

Input: a prime q ≥ 5.

Output: a supersingular elliptic curve E/Fq.

1. If q ≡ 3 (mod 4), return y2 = x3 + ax for any a ∈ F×q .

2. If q ≡ 5 (mod 6), return y2 = x3 + b for any b ∈ F×q .

3. If q ≡ 1 (mod 12), do the following:

(a) Let D be the smallest prime such that D ≡ 3 (mod 4) and
(
−D
q

)
= −1.

(b) Compute the Hilbert class polynomial HD of Q(
√
−D).

(c) Compute a root j ∈ Fq of HD (mod q).

(d) Let m = j/(1728− j), and return y2 = x3 + 3mc2x+ 2mc3 for any c ∈ F×q .

The conditionD ≡ 3 (mod 4) in Step (3a) guarantees that the Hilbert class polynomial

HD has a root in Fq [21, §3.4]. Note that this construction allows us to choose r and h

almost completely arbitrarily, so we may make our choices so that r has low Hamming
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weight or some other special form. In particular, Boneh, Goh, and Nissim [16] observe that

we may choose r to be a large composite number such as an RSA modulus; curves with

such group orders are used in some recent pairing-based protocols.

We see from Theorem 2.2.10 that the popular supersingular curves y2 = x3 + ax and

y2 = x3+b are simply special cases of the general construction method, for the two equations

define CM curves over Q with CM discriminant 1 and 3, respectively. However, these two

cases have the additional nice property that the distortion maps are easy to compute, as

both curves have automorphisms defined over Fq2 . Koblitz and Menezes [68] give explicit

determinations of the distortion maps in both cases.

Embedding degree k = 3

A supersingular curve over Fq of prime order has embedding degree k = 3 if and only

if q = ps with s even, and t = ±√q [93]. In characteristic p > 3, the only such curves are

those of the form

y2 = x3 + γ,

where γ is a non-cube in F×q [95]. If we specialize to the case q = p2 where p ≡ 2 (mod 3)

is a large prime, then we have #E(Fp2) = p2 ± p + 1. If the sign of the middle term is

positive (i.e., t = −p), then for certain p = 3x− 1 we may find curves of prime order, since

r(x) = (3x − 1)2 + (3x − 1) + 1 represents primes in the sense of Definition 2.2.1. In the

case where t = p we find that #E(Fq) must be a multiple of 3 and can be equal to 3 times

a prime.

We can recast these results in our language of “families” (Definition 2.2.3). Depending

on the sign of t we have one of

t(x) =− 3x+ 1, r(x) = 9x2 − 3x+ 1, q(x) = (3x− 1)2;

t(x) = 3x− 1, r(x) = 9x2 − 9x+ 3, q(x) = (3x− 1)2.

Since 4q(x)− t(x)2 = 3(3x−1)2, the triple (t, r, q) represents a family of elliptic curves with

embedding degree 3 and discriminant 3. The ρ-value for this family is 1; in particular, if

r(x) and 3x− 1 are prime then we may construct a curve over Fq(x) with embedding degree

3 and prime order.

Since arithmetic in Fp2 for suitably chosen p can be as fast as arithmetic in Fp′ with

p′ ≈ p2, this is a good method for generating useful curves with embedding degree 3 and
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small ρ-value. Note that particularly fast Fp2 arithmetic results when optimal extension

fields [4] are used; Duan, Cui and Chan [31] give sample families and curves for this setup.

2.3 Generating ordinary elliptic curves with arbitrary em-

bedding degree

We begin our survey of methods for constructing pairing-friendly ordinary elliptic

curves with the two most general methods in the literature, the Cocks-Pinch method and

the Dupont-Enge-Morain method. Both methods can be used to construct curves with

arbitrary embedding degree; however, both methods produce curves with ρ ≈ 2, which may

not be suitable for certain applications. Neither method produces families of curves in the

sense of Definition 2.2.3, but we will see in Section 2.5 that the Cocks-Pinch method does

generalize to produce families with ρ < 2. Furthermore, the Cocks-Pinch method has the

advantage that it can produce curves with prime-order subgroups of nearly arbitrary size.

The subgroups of Dupont-Enge-Morain curves, on the other hand, must have an order r

that divides a value of a certain polynomial, which results in the value of r being more

difficult to specify precisely.

2.3.1 The Cocks-Pinch method

In an unpublished manuscript [25], Cocks and Pinch gave a procedure for constructing

pairing-friendly curves with arbitrary embedding degree k. The Cocks-Pinch method fixes

a subgroup size r and a CM discriminant D and computes t such that the CM equation

must be satisfied.

Theorem 2.3.1 ([25]). Fix a positive integer k and a positive square-free integer D. Execute

the following steps.

1. Let r be an odd prime such that k | r − 1 and
(−D
r

)
= 1.

2. Let z be a kth root of unity in (Z/rZ)×. (Such a z exists because k | r − 1.) Let

t′ = z + 1.

3. Let y′ = (t′ − 2)/
√
−D (mod r).

4. Let t be the unique lift of t′ to (0, r], and let y be the unique lift of y′ to (0, r]. Let

q = (t2 +Dy2)/4.
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If q is an integer and prime, then there exists an elliptic curve E over Fq with an order-r

subgroup and embedding degree k. If the class number of Q(
√
−D) is less than 105 then E

can be constructed via the CM method.

The key feature of this algorithm is that y is constructed so that Dy2 + (t − 2)2 is

divisible by r. With q chosen such that the CM equation 4q − t2 = Dy2 is satisfied, this

yields 4(q + 1− t) ≡ 0 mod r. Lastly, the choice of t ensures that Φk(t− 1) ≡ 0 mod r.

We observe that there is no reason to believe a priori that we can find a t or y that

is much smaller than r, and thus in general we find that q ≈ r2. We conclude that the

curves produced by this method tend to have ρ-values around 2. However, these curves are

easy to generate, and in particular we can take r to be (nearly) arbitrary, so r can have low

Hamming weight or other desirable features.

The Cocks-Pinch method is important not only because it is the most flexible algorithm

for constructing ordinary pairing-friendly curves, but also because it can be generalized to

produce families of elliptic curves with ρ < 2 (Section 2.5) and higher-dimensional pairing-

friendly abelian varieties (Chapter 4).

Remark 2.3.2. In Step (4) we could in fact choose t and y to be any integers congruent

to t′ and y′ modulo r. In particular, if we wish to generate a curve with a given ρ-value

ρ0 ≥ 2, we could add to t and y an integer divisible by r and of size roughly rρ0/2.

Remark 2.3.3. Rubin and Silverberg [107] have observed that the Cocks-Pinch method

can be used to construct curves with embedding degree k with respect to r when r is a

large composite number, such as an RSA modulus. As in the case where r is prime, these

curves have ρ-value around 2.

2.3.2 The Dupont-Enge-Morain method

Whereas the Cocks-Pinch method fixes an r and then computes t and q such that the

CM equation is satisfied, the approach of Dupont, Enge, and Morain [32] is to compute t

and r simultaneously using resultants. The theory of resultants is discussed in [72, §IV.8].

Theorem 2.3.4 ([32]). Fix a positive integer k, and execute the following steps.

1. Compute the resultant

R(a) = Resx(Φk(x− 1), a+ (x− 2)2).
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2. Choose a such that a = Dy2 with D square-free, and let r be the largest prime factor

of R(a).

3. Compute g(x) = gcd(Φk(x− 1), a+ (x− 2)2) in Fr[x].

4. Let t′ ∈ Fr be a root of the polynomial g. If there is no such root, go to Step (2) and

choose a different a.

5. Let t be the unique lift of t′ to (0, r]. Let q = (t2 + a)/4.

If q is an integer and prime, then there exists an elliptic curve E over Fq with an order-r

subgroup and embedding degree k. If the class number of Q(
√
−D) is less than 105 then E

can be constructed via the CM method.

The key idea of the Dupont-Enge-Morain method is to use the following property of

resultants [72, Corollary IV.8.4]: if f(x) and g(x) are polynomials over a field K, then

Resx(f(x), g(x)) = 0 if and only if f(x) and g(x) have a common root in K. If we consider

Φk(x − 1) and a + (x − 2)2 to be polynomials in the two variables a, x, then the resultant

R is a single-variable polynomial in a of degree ϕ(k). If we fix a and take r to be a prime

factor of R(a), then R(a) ≡ 0 (mod r), and thus Φk(x−1) and a+(x−2)2 have a common

factor g(x) when considered as polynomials mod r, i.e., in Fr[x]. In practice we find that if

k is small and r is of cryptographic size then the factor g(x) is linear, so we can find a root

t′ ∈ Fr that lifts to an integer t. The values of t and r computed thus satisfy r | Φk(t− 1)

and r | Dy2 + (t − 2)2. By construction of q, the CM equation holds, which then yields

q + 1− t ≡ 0 (mod r).

We observe that there is again no reason to believe a priori that t is much smaller

than r, and thus in general we find that q ≈ r2. We conclude that the curves produced by

this method also tend to have ρ values around 2.

Like the Cocks-Pinch method, the Dupont-Enge-Morain method is effective for com-

puting curves for arbitrary embedding degree k. However, whereas in the former method we

could choose the subgroup size r nearly arbitrarily, in this method r is a factor of a value of

the polynomial R(a). Since r must be of cryptographic size, it will usually only be compu-

tationally feasible to find such an r if the remaining factors of R(a) are small, so in general

r will be roughly the size of R(a). Since R(a) has degree ϕ(k) and is irreducible (because it

is the resultant of two irreducible polynomials), the factors r we find will grow roughly like

aϕ(k). Thus the possible subgroup orders r are more restricted in the Dupont-Enge-Morain
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method than in the Cocks-Pinch method. This is the only significant difference between

the two methods, and thus we recommend using the Cocks-Pinch method for applications

where a curve with arbitrary embedding degree and ρ ≈ 2 is desired.

2.4 Sparse families of pairing-friendly curves

Recall that to construct families of pairing-friendly curves, we search for polynomials

t(x), r(x), q(x) that satisfy certain divisibility conditions modulo r(x), and for which the

CM equation

Dy2 = 4q(x)− t(x)2 = 4h(x)r(x)− (t(x)− 2)2 (2.2)

has infinitely many solutions (x, y). Here, h(x) is the “cofactor” satisfying

h(x)r(x) = q(x) + 1− t(x).

In practice, for any t(x) we can easily find r(x) and q(x) satisfying the divisibility

conditions modulo r(x); the difficulty arises in choosing the polynomials so that Dy2 =

4q(x) − t(x)2 has infinitely many integer solutions. In general, if f(x) is a square-free

polynomial of degree at least 3, then there will be only a finite number of integer solutions

to the equation Dy2 = f(x) (cf. Proposition 2.4.5 below). Thus we conclude that (t, r, q)

can represent a family of curves only if f(x) has some kind of special form.

We now consider one of these special forms: namely, the case where f(x) is quadratic.

We show that in this case, one integral solution to the equation Dy2 = f(x) will give us

infinitely many solutions. This is the technique that Miyaji, Nakabayashi and Takano [93]

use to produce curves with embedding degree 3, 4, or 6, and we will use the same technique

in Section 3.1 to construct curves with embedding degree 10.

The idea is as follows: since f(x) is quadratic, we complete the square to write the

equation Dy2 = f(x) as u2−D′v2 = T for some constants D′ and T , and observe that (u, v)

is a solution to this equation if and only if u+ v
√
D′ has norm T in the real quadratic field

Q(
√
D′). By Dirichlet’s unit theorem, there is a one-dimensional set of norm-one integral

elements of this field; multiplying each of these units by our element of norm T gives an

infinite family of elements of norm T . We then show that a certain fraction of these elements

can be converted back to solutions of the original equation.

Theorem 2.4.1. Fix an integer k > 0, and suppose the polynomials t(x), r(x), q(x) ∈ Q[x]

satisfy conditions (1)–(4) of Definition 2.2.3 (i). Let f(x) = 4q(x)− t(x)2. Suppose f(x) =
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ax2 + bx+ c, with a, b, c ∈ Z, a > 0, and b2 − 4ac 6= 0. Let D be a square-free integer such

that aD is not a square. If the equation Dy2 = f(x) has an integer solution (x0, y0), then

(t, r, q) represents a family of curves with embedding degree k.

Proof. Completing the square in the equation Dy2 = f(x) and multiplying by 4a gives

aD(2y)2 = (2ax+ b)2 − (b2 − 4ac).

If we write aD = D′w2 withD′ square-free and make the substitutions u = 2ax+b, v = 2wy,

T = b2 − 4ac, the equation becomes

u2 −D′v2 = T. (2.3)

Note that since aD is not a square, we have D′ > 1.

Under the above substitution, a solution (x0, y0) to the original equation Dy2 = f(x)

gives an element u0 +v0
√
D′ of the real quadratic field Q(

√
D′) with norm T . Furthermore,

this solution satisfies the congruence conditions

u0 ≡ b (mod 2a)

v0 ≡ 0 (mod 2w).
(2.4)

We wish to find an infinite set of solutions (u, v) satisfying the same congruence conditions,

for we can transform such a solution into an integer solution to the original equation. To

find such solutions we employ Dirichlet’s unit theorem [98, §1.7], which tells us that the

integer solutions to the equation α2 −D′β2 = 1 are in one-to-one correspondence with the

real numbers

α+ β
√
D′ = ±(α0 + β0

√
D′)n

for some fixed (α0, β0) and any integer n. The real number α0 + β0

√
D′ is either a funda-

mental unit of the real quadratic field Q(
√
D′) or (if the norm of the fundamental unit is

−1) the square of a fundamental unit.

Reducing the coefficients of α0 + β0

√
D′ modulo 2a gives an element z of the ring

R =
Z[x]

(2a, x2 −D′)
.

Furthermore, since (α0 + β0

√
D′)(α0 − β0

√
D′) = 1, z is invertible in R, i.e., z ∈ R×. Since

R× is a finite group of size less than 4a2, there is an integer m < 4a2 such that zm = 1 in
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R×.† Lifting back up to the full ring Z[
√
D′], we see that (α0 +β0

√
D′)m = α1 +β1

√
D′ for

integers α1, β1 satisfying

α1 ≡ 1 (mod 2a),

β1 ≡ 0 (mod 2a).
(2.5)

Now for any integer n we can compute integers (u, v) such that

u+ v
√
D′ = (u0 + v0

√
D′)(α1 + β1

√
D′)n. (2.6)

We claim that (u, v) satisfy the congruence conditions (2.4). To see this, let αn + βn
√
D′ =

(α1 + β1

√
D′)n. The conditions (2.5) imply that αn ≡ 1 (mod 2a) and βn ≡ 0 (mod 2a).

Combining this observation with the formulas

u = αnu0 + βnv0D
′

v = αnv0 + βnu0,

we see that u ≡ u0 ≡ b (mod 2a) and v ≡ v0 (mod 2a). Furthermore, v0 ≡ 0 (mod 2w)

and 2w divides 2a (since aD = D′w2 and D is square free), so we conclude that v ≡ 0

(mod 2w).

The new solution (u, v) thus satisfies the congruence conditions (2.4). Any integer n

gives such a solution, so by setting x = (u − b)/2a and y = v/2w for each such (u, v), we

have generated an infinite number of integer solutions to the equation Dy2 = f(x). This is

condition (5) of Definition 2.2.3 (i); by hypothesis (t, r, q) satisfy conditions (1)–(4), so we

conclude that (t, r, q) represents a family of curves with embedding degree k.

Remark 2.4.2. More generally, we may find an infinite family of curves in the case where

f(x) = g(x)2h(x), with h(x) quadratic. Specifically, if we let y = y′g(x), then given one

integral solution (x, y′) to the equation Dy′2 = h(x) we may use the method of Theorem

2.4.1 to find an infinite number of solutions. However, we currently know of no examples

for which f(x) is of this form.

Remark 2.4.3. We see from (2.6) that solutions to the Pell equation (2.3) grow exponen-

tially, and thus only very few values of x satisfy our original equation Dy2 = f(x). (Indeed,

even the smallest solution will be exponential in the bit size of D [75].) Thus the families

of Theorem 2.4.1 will be sparse (in the sense of Definition 2.2.3).
†In fact, since z is an element of the norm-one subgroup of R×, m is bounded above by 2sa, where s is

the number of distinct primes dividing 2a. A more detailed study of the group R× appears in [36].
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Remark 2.4.4. The argument in the proof of Theorem 2.4.1 can easily be made into an

algorithm for finding x and y, using for example using one of the techniques described by

Matthews [83] or Robertson [105] to find a fundamental solution to the equation (2.3), and

using the continued fraction expansion of
√
D′ to find the fundamental unit (or its square)

α0 + β0

√
D′ [75].

Theorem 2.4.1 tells us that if f(x) is quadratic and square free, we obtain a family

of curves of the prescribed embedding degree for each D. If f(x) is instead a linear or

constant function times a square, then we obtain a family of curves for a single D. In this

case the family is complete (in the sense of Definition 2.2.3), and such examples belong in

the discussion of Section 2.5.

We conclude this section with a partial converse to Theorem 2.4.1; namely, if the

degree of f(x) is at least 3, then we are unlikely to find an infinite family of curves.

Proposition 2.4.5. Let (t, r, q) be polynomials with integer coefficients satisfying conditions

(1)–(4) of Definition 2.2.3, and let f(x) = 4q(x) − t(x)2. Suppose f(x) is square free and

deg f(x) ≥ 3. Then (t, r, q) does not represent a family of elliptic curves with embedding

degree k.

Proof. Since f(x) is square free (i.e., has no double roots) and has degree at least 3, the

equation Dy2 = f(x) defines a smooth affine plane curve of genus g ≥ 1. By Siegel’s

Theorem [117, Theorem IX.4.3] such curves have a finite number of integral points, so

condition (5) of Definition 2.2.3 is not satisfied.

2.4.1 MNT curves

Miyaji, Nakabayashi and Takano [93] were the first to propose ordinary pairing-friendly

curves, for embedding degrees k = 3, 4, and 6. In fact, ordinary curves of prime order with

embedding degrees 3, 4, or 6 have been fully characterized as follows:

Theorem 2.4.6 ([93]). Let q be a prime and E/Fq be an ordinary elliptic curve such that

r = #E(Fq) is prime. Let t = q + 1− r.

1. Assume q > 64. E has embedding degree k = 3 if and only if there exists x ∈ Z such

that t = −1± 6x and q = 12x2 − 1.

2. Assume q > 36. E has embedding degree k = 4 if and only if there exists x ∈ Z such

that t = −x or t = x+ 1, and q = x2 + x+ 1.
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3. Assume q > 64. E has embedding degree k = 6 if and only if there exists x ∈ Z such

that t = 1± 2x and q = 4x2 + 1.

In all three cases, the proof (of the “only if” part) of Theorem 2.4.6 starts out with

the condition r | Φk(q) and exploits the primality of the group order. All of the proofs are

entirely elementary.

Remark 2.4.7. It is easy to show (see [63]) that if both r and q are primes greater than 64

then there is an elliptic curve E/Fq with embedding degree 6, discriminantD, and #E(Fq) =

r if and only if there is an elliptic curve E′/Fr with embedding degree 4, discriminant D,

and #E′(Fr) = q.

In all three cases of Theorem 2.4.6, the CM equation Dy2 = 4q(x) − t(x)2 defines a

curve of genus zero, with the right-hand side being quadratic in x. In each case, by a linear

change of variables, the CM equation can be transformed into a generalized Pell equation

of the form (2.3). Specifically,

1. for k = 3, setting u = 6x± 3 and v = y yields u2 − 3Dv2 = 24,

2. for k = 4, setting u = 3x+ 2 (if t = −x) or u = 3x+ 1 (if t = x+ 1), and v = y yields

u2 − 3Dv2 = −8, and

3. for k = 6, setting u = 6x∓ 1 and v = y yields u2 − 3Dv2 = −8.

(The signs in (1) and (3) are to match those in Theorem 2.4.6.) We can then find solutions

(x, y) (if any exist) using the procedure of Theorem 2.4.1 (cf. Remark 2.4.4).

Now, the MNT strategy for generating ordinary elliptic curves of prime order with

embedding degree k = 3, 4, or 6 is the following: repeatedly select small discriminants

D and compute solutions (u, v) to equation (2.3) (with T = 24 or T = −8) until the

corresponding q = q(x) and r = q(x) + 1 − t(x) are primes of the desired bit length.

Then there exists an elliptic curve over Fq with r points and embedding degree 3, 4, or 6,

respectively, which can be constructed via the CM method.

The search for MNT curves can be sped up slightly by noting that if k = 3, it is

necessary that D ≡ 19 (mod 24) [93], and if k = 4 or 6 then necessarily D ≡ 3 (mod 8)

and D 6≡ 5 (mod 10). Also, T must be a quadratic residue modulo 3D in all cases.

The major downside of MNT curves is that (as noted in Remark 2.4.3) the families

obtained are sparse. In fact, Luca and Shparlinski [80, 81] give a heuristic argument that
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for any upper bound D, there exist only a finite number of MNT curves with discriminant

D ≤ D, with no bound on the field size! On the other hand, specific sample curves of

cryptographic interest have been found, such as MNT curves of 160-bit, 192-bit, or 256-bit

prime order (see, for example, [101] and [112]).

2.4.2 Extensions of the MNT strategy

The MNT strategy has been extended by Scott and Barreto [113], and by Galbraith,

McKee and Valença [46], by allowing a small constant-size cofactor h.

Starting out with (2.2), Scott and Barreto [113] fix small integers h and d and substitute

r = Φk(t− 1)/d and t = x+ 1, to obtain the equation

Dy2 = 4h
Φk(x)
d
− (x− 1)2. (2.7)

As the right-hand side is quadratic in x for k = 3, 4, or 6, just as with MNT curves we

can transform (2.7) into a generalized Pell equation of the form (2.3) by an appropriate

linear substitution of x. Subsequently, the MNT strategy can be applied to find curves with

embedding degrees k = 3, 4, or 6 of almost-prime order.

Galbraith, McKee and Valença [46] give a complete characterization of curves with

embedding degree 3, 4 and 6 with cofactors 2 ≤ h ≤ 5. This is achieved by mimicking

the Miyaji-Nakabayashi-Takano proof of Theorem 2.4.6, but substituting hr for #E(Fq),

followed by an explicit (but tedious) analysis for h = 2, 3, 4, 5. Just as in the prime-order

case, all resulting parametrizations for t are linear in x, and all resulting parametrizations

for q are quadratic in x, so that the resulting CM equations Dy2 = 4q(x) − t(x)2 are

quadratic in x and allow for a transformation into generalized Pell equations.

Given the nature of the solutions of Pell equations, we once again obtain sparse families.

2.5 Complete families of pairing-friendly curves

Once again, we start out with the CM equation

Dy2 = 4q(x)− t(x)2 = 4h(x)r(x)− (t(x)− 2)2 (2.8)

and search for polynomials t(x), r(x), q(x) that satisfy certain divisibility conditions and

for which the CM equation has infinitely many solutions (x, y). The constructions in this

section work by choosing the parameters D, t(x), r(x), q(x) such that the right-hand side of
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the CM equation is always D times a perfect square, and thus the equation is satisfied for

every integer x. These constructions thus give complete families of curves in the sense of

Definition 2.2.3.

There are two principal strategies for constructing complete families, one due to Scott

and Barreto [113] and the other due originally to Barreto, Lynn, and Scott [8], and in its

fullest generality to Brezing and Weng [19]. Both start in the same way: fix an embedding

degree k, choose an irreducible polynomial r(x) ∈ Z[x] such that K = Q[x]/(r(x)) is a

number field containing the kth roots of unity, and then choose t(x) to be a polynomial

mapping to 1 + ζk, where ζk is a primitive kth root of unity in K.

At this point the two strategies diverge. Brezing and Weng use the fact that if K

contains a square root of −D, then since r(x) = 0 in K, we can factor the CM equation

(2.8) in K as (
t(x)− 2 + y

√
−D

)(
t(x)− 2− y

√
−D

)
≡ 0 mod r(x).

Since t(x) 7→ ζk + 1 ∈ K, it now becomes clear that if we choose y(x) to be a polynomial

mapping to (ζk− 1)/
√
−D in K, then the CM equation is automatically satisfied for any x.

If we do not know that K contains an element of the form
√
−D for some D, then

we may apply the Scott-Barreto strategy. This strategy is to take the t(x) and r(x) from

above and search (usually via computer) for cofactors h(x) that make the right-hand side

of the CM equation (2.8) either a perfect square or a linear factor times a perfect square.

The CM equation then becomes

Dy2 = (ax+ b)g(x)2.

If a = 0 then we take D = b and y = g(x). If a > 0, we may choose any D and make

the substitution x 7→ Dz2−b
a . If we then set y = zg(x), the CM equation is automatically

satisfied for any z.

In both cases we finish by constructing q(x) as

q(x) =
1
4
(
t(x)2 +Dy(x)2

)
.

If q(x) represents primes and r(x) has positive leading coefficient, then (t, r, q) represents a

complete family of pairing-friendly curves.

The success of either strategy depends heavily on the choice of number field K. The

obvious choice is to set K to be a cyclotomic field Q(ζ`) for some ` that is a multiple of
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k, and define r(x) to be the `th cyclotomic polynomial Φ`(x). Then K contains the kth

roots of unity. Furthermore, it is a standard result of the theory of cyclotomic fields that K

contains
√
−1 if 4 | `, K contains

√
−2 if 8 | `, and K contains

√
(−1
p )p for any odd prime

p dividing `. Thus, for any k and D we can use a cyclotomic field in the Brezing-Weng

construction; see Murphy and Fitzpatrick’s work [96] for more details. We call families

constructed in this manner “cyclotomic families,” and we discuss some of the most efficient

constructions in Section 2.5.1 below.

We may achieve even better success by choosing K to be a (perhaps trivial) extension

of a cyclotomic field, with r(x) not a cyclotomic polynomial. There are two ways of creating

such an extension. The first is to make the substitution x 7→ u(x) for some polynomial u.

If Φ`(u(x)) is irreducible we have gained nothing, but if Φ`(u(x)) factors as r1(x)r2(x) with

r1 irreducible, then we may set K = Q[x]/(r1(x)). Then K is a field containing the `th

roots of unity, and u(x) maps to an `th root of unity in K. If we know that
√
−D ∈ Q(ζ`),

then
√
−D ∈ K as well, and we may use the Brezing-Weng construction; otherwise we may

apply the Scott-Barreto construction.

The second method, due to Kachisa, Schaefer, and Scott [62] is to find a non-cyclotomic

polynomial r(x) such thatK = Q[x]/(r(x)) is isomorphic to the cyclotomic field Q(ζ`). Such

a polynomial r(x) can be computed as the minimal polynomial of a random element of Q(ζ`).

Given this r(x), we can find a polynomial t(x) mapping to 1 + ζk in K and proceed as in

the Brezing-Weng method.

Since nontrivial factorizations of Φ`(u(x)) are rare for random u(x) and, furthermore,

the q(x) produced by the Kachisa-Schaefer-Scott technique do not usually represent primes,

we will call families of curves obtained by either of these techniques “sporadic” families; they

are discussed in Section 2.5.2 below. Although such families are rare, they may have better

ρ-values than curves constructed using a cyclotomic field. This was most spectacularly

demonstrated by Barreto and Naehrig [9], who used this method to construct curves of

prime order with embedding degree 12 (Example 2.5.7 below).

2.5.1 Cyclotomic families

Barreto, Lynn, and Scott [8], and independently, Brezing and Weng [19], both observed

that if we apply the Cocks-Pinch method but parametrize t, r, q as polynomials, then we can

improve on this value of ρ. Brezing and Weng stated the construction in greatest generality;
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their theorem is below.

Theorem 2.5.1 ([19]). Fix a positive integer k and a positive square-free integer D. Execute

the following steps.

1. Find an irreducible polynomial r(x) ∈ Z[x] with positive leading coefficient such that

K = Q[x]/(r(x)) is a number field containing
√
−D and the cyclotomic field Q(ζk).

2. Choose a primitive kth root of unity ζk ∈ K.

3. Let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1 in L.

4. Let y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/
√
−D in L. (So, if s(x) maps

to
√
−D then y(x) ≡ (2− t(x))s(x)/D mod r(x).)

5. Let q(x) ∈ Q[x] be given by (t(x)2 +Dy(x)2)/4.

If q(x) represents primes, then the triple (t(x), r(x), q(x)) represents a family of curves with

embedding degree k and discriminant D.

The ρ-value for this family (Definition 2.2.6) is

ρ(t, r, q) =
2 max{deg t(x),deg y(x)}

deg r(x)
.

Since we can always choose t(x) and y(x) to have degree strictly less than r(x), we see

that this method can produce families with ρ-values strictly less than 2. In general, we

expect the smallest possible degree for t(x) and y(x) to be deg(r)−1, so ρ will not be much

less than 2. However, for certain clever choices of the number field K, we may construct

polynomials t and y with smaller degree, thus improving the ρ-value. We will now examine

in detail some constructions for certain sets of k.

Barreto, Lynn, and Scott [8] gave the first construction along the lines of Theorem

2.5.1. They construct families by taking the polynomial r(x) defining the number field K

to be the kth cyclotomic polynomial, choosing ζk 7→ x in K (so t(x) = 1 + x),† and using

the fact that if k is divisible by 3 then
√
−3 ∈ K. Brezing and Weng [19] set r(x) to be a

cyclotomic polynomial Φ`(x) for some ` that is a multiple of the desired embedding degree

k and choosing various representatives for ζk in Q[x]/(r(x)). The discriminants D in these

†Here and in the following examples, for α ∈ K and f(x) ∈ Q[x] we use the notation α 7→ f(x) to mean
that f(x) represents α in K = Q[x]/(r(x)).
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constructions are often taken to be 1 or 3. The tricky part of most of these constructions

is ensuring that the resulting q(x) represents primes.

The constructions we present in this section are generalizations of constructions al-

ready existing in the literature. Construction 2.5.2 is based on an example of Brezing and

Weng [19, §3, Example 3], while Constructions 2.5.3 and 2.5.4 adapt this example to even

embedding degrees k. Construction 2.5.5 generalizes examples of Brezing and Weng [19,

§3, Example 4] and Barreto, Lynn, and Scott [8, §3.1]. Finally, Construction 2.5.6 gener-

alizes examples of Brezing and Weng [19, §3, Example 5] and Murphy and Fitzpatrick [96,

Example 2.2.2 and §4.4].

We begin with a construction given by Brezing and Weng, who state the construction

for prime embedding degrees k; we observe that the construction extends readily to all odd

k. We choose K to be a cyclotomic field containing a fourth root of unity
√
−1, so we may

choose D = 1.

Construction 2.5.2 ([19]). Let k be odd, and let r(x) = Φ4k(x), so K = Q[x]/(r(x)) ∼=
Q(ζ4k). We choose ζk 7→ −x2 (so t(x) = 1−x2) and

√
−1 7→ xk. The Brezing-Weng method

(Theorem 2.5.1) then gives

q(x) =
1
4

(
(−x2 + 1)2 + (x2 + 1)2x2k

)
=

1
4

(
x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1

)
.

(2.9)

Since q(1) = 1, if q is irreducible then it represents primes. Computations with PARI [102]

show that q(x) is irreducible for odd k < 200, and we conjecture that q(x) is irreducible

for all odd k. We conclude that for odd k < 200 (and conjecturally for all odd k), (t, r, q)

represents a complete family of curves with embedding degree k and discriminant 1. The

ρ-value for this family is deg q/ deg Φ4k = (k + 2)/ϕ(k).

We next observe that if k is odd, then ζ2k = −ζk. Thus if we change the sign of the

polynomials representing ζk in Construction 2.5.2, the same construction can be used to

create families with embedding degree 2k and the same ρ-values.

Construction 2.5.3. Let k be odd. Changing the sign of ζk in Construction 2.5.2 gives

r(x) = Φ4k(x),

t(x) = x2 + 1,

q(x) =
1
4

(
x2k+4 − 2x2k+2 + x2k + x4 + 2x2 + 1

)
.
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Then (t, r, q) represents a potential family of pairing-friendly elliptic curves with embedding

degree 2k and discriminant 1. If x is odd, then q(x) is an integer. Since q(x) is the reverse

of the polynomial given in (2.9), q(x) is irreducible if and only if (2.9) is. Thus (t, r, q)

represents a family of curves for odd k < 200, and we conjecture for all k. The ρ-value

for this family is (k + 2)/ϕ(k); in terms of the embedding degree k′ = 2k the ρ-value is

(k′/2 + 2)/ϕ(k′).

With the same setup, using ζ4k =
√
ζ2k gives the following construction.

Construction 2.5.4. Let k be odd. Using ζ4k 7→ x in Construction 2.5.2 gives

r(x) = Φ4k(x),

t(x) = x+ 1,

q(x) =
1
4

(
x2k+2 − 2x2k+1 + x2k + x2 + 2x+ 1

)
.

Then (t, r, q) represents a potential family of pairing-friendly elliptic curves with embedding

degree 4k and discriminant 1. Since q(1) = 1, if q is irreducible then it represents primes.

Computations with PARI [102] show that q(x) is irreducible for odd k < 200, and we

conjecture that q(x) is irreducible for all odd k. Thus (t, r, q) represents a family of curves

for odd k < 200, and we conjecture for all k. The ρ-value for this family is (k+ 1)/ϕ(k); in

terms of the embedding degree k′ = 4k the ρ-value is (k′/2 + 2)/ϕ(k′).

We now consider families constructed by choosingK to be a cyclotomic field containing

a cube root of unity. Such fields contain
√
−3, so we may choose D = 3. Some constructions

of this form have been given by Barreto, Lynn, and Scott [8] and Brezing and Weng [19] for

certain values of k; we consider the construction for all k, and discover families in all cases

where k is not divisible by 18.

Construction 2.5.5. Let k be any positive integer, let ` = lcm(6, k), and let r(x) = Φ`(x).

We work in the field Q(ζk, ζ6), defined as K ∼= Q[x]/(Φ`(x)). In this field we have
√
−3 7→

2x`/6 − 1. Our goal is to use the relation x`/3 = x`/6 − 1 mod r(x) to minimize the degree

of y(x) = (ζk − 1)/
√
−3. The obvious choice is ζk 7→ x`/k; however, in many cases we can

do better by choosing ζk 7→ xa with a only slightly larger than `/6. Since x is a primitive

`th root of unity, for xa to be a primitive kth root of unity we need gcd(a, `) = `/k. The

exact choice depends on the congruence class of x modulo 6:
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• k ≡ 1 (mod 6), ` = 6k: Since 2k + 1 ≡ 3 (mod 6), x2k+1 is a primitive 2kth root

of unity. Since k is odd, −x2k+1 is a primitive kth root of unity. Thus we choose

ζk 7→ −x2k+1 ≡ −xk+1 + x mod r(x).

• k ≡ 2 (mod 6), ` = 3k: We have k + 1 ≡ 3 (mod 6), so we choose ζk 7→ xk+1 ≡
xk/2+1 − x mod r(x).

• k ≡ 3 (mod 6), ` = 2k: Since x2k/3 is a cube root of unity and 3 | k, we need to

multiply x2k/3 by a primitive kth root of unity. Since k is odd and x is a 2kth root

of unity, −x is a kth root of unity. Thus we choose ζk 7→ −x2k/3+1 ≡ −xk/3+1 + x

mod r(x).

• k ≡ 4 (mod 6), ` = 3k: Choose ζk 7→ x3.

• k ≡ 5 (mod 6), ` = 6k: We have k + 1 ≡ 0 (mod 6), so we choose ζk 7→ xk+1.

• k ≡ 0 (mod 6), ` = k: Choose ζk 7→ x.

If z(x) is the polynomial mapping to ζk, we compute y(x) by taking 1
3z(x)(1 − 2x`/6) and

adding ±2xr(x) to cancel out the leading term if k (mod 6) ∈ {1, 2, 3, 5}. We note that

for small values of k the resulting t(x) and y(x) are not completely reduced modulo r(x);

however, we find that further reduction leads to a q(x) that does not represent primes. Our

choices for ζk and y(x) give the following formulas for q(x), which are valid for all positive

k:

• k ≡ 1 (mod 6): q(x) = 1
3(x+ 1)2(x2k − xk + 1)− x2k+1.

• k ≡ 2 (mod 6): q(x) = 1
3(x− 1)2(xk − xk/2 + 1) + xk+1.

• k ≡ 3 (mod 6): q(x) = 1
3(x+ 1)2(x2k/3 − xk/3 + 1)− x2k/3+1.

• k ≡ 4 (mod 6): q(x) = 1
3(x3 − 1)2(xk − xk/2 + 1) + x3.

• k ≡ 5 (mod 6): q(x) = 1
3(x2 − x+ 1)(x2k − xk + 1) + xk+1.

• k ≡ 0 (mod 6): q(x) = 1
3(x− 1)2(xk/3 − xk/6 + 1) + x.

We see that we have deg q = `/3 + 2 in all cases except k ≡ 4 (mod 6), in which case

deg q = `/3 + 6. Thus for any k, we have constructed a potential family of pairing-friendly
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curves with embedding degree k and discriminant 3. The ρ-values of these families are

ρ = (`/3 + 6)/ϕ(`) if k ≡ 4 (mod 6), and (`/3 + 2)/ϕ(`) otherwise.

It remains to consider whether q(x) represents primes. We can check conditions (4)

and (5) of Definition 2.2.1 simultaneously: If k is even then q(1) = 1, if k ≡ 1 or 3

(mod 6) then q(−1) = 1, and if k ≡ 5 (mod 6) then q(−1) = 4 and q(2) is an odd integer.

Finally, computations with PARI [102] indicate that the appropriate q(x) is irreducible for

all k < 300, except when k is divisible by 18. We conjecture that these polynomials are

irreducible for all k not divisible by 18.

Next, we consider families obtained by choosing K to be a cyclotomic field containing

an eighth root of unity. Such fields contain
√
−2, so we may choose D = 2. Brezing and

Weng give an example of the construction with k = 18, while Murphy and Fitzpatrick [96]

give an example with k = 24. We describe the construction for any k divisible by 3.

Construction 2.5.6. Let k be a positive integer divisible by 3. We work in the field

Q(ζk, ζ8), defined as K ∼= Q[x]/(Φ`(x)), where ` = lcm(8, k). In this field, we have ζk 7→ x`/k

(so t(x) = x`/k +1), and
√
−2 = ζ8 + ζ3

8 7→ x`/8 +x3`/8. We choose y(x) to be a polynomial

mapping to (ζk − 1)/
√
−2 and compute the reduction of y(x) modulo Φ`(x). Since k is

a multiple of 3, we can use the relation x`/3 = x`/6 − 1 to compute y(x) modulo Φ`(x)

explicitly, for we have

ζk − 1√
−2

7→ 1
2
(1− x`/k)(x3`/8 + x`/8)

≡ 1
2
(1− x`/k)(x5`/24 + x`/8 − x`/24) mod Φ`(x).

We set y(x) equal to this last polynomial. If `
k + 5`

24 < ϕ(`) (a condition which holds

whenever 3 | k, k ≥ 18, and k has at most two prime factors greater than 3), then y(x) is

the minimal-degree representative of (ζk − 1)/
√
−2 modulo Φ`(x), and we may set

q(x) =
1
8

(
2(x`/k + 1)2 + (1− x`/k)2(x5`/24 + x`/8 − x`/24)2

)
.

The degree of q is thus
(

2`
k + 5`

12

)
. We observe that q(1) = 1 for any k; computations with

PARI show that q(x) is irreducible when 3 | k and k < 200, and we conjecture that q(x)

is irreducible for all such k. Thus for these values of k, (x`/k + 1,Φ`(x), q(x)) represents a

family of curves with embedding degree k. The ρ-value of this family is (5k
6 + 4)/ϕ(k) if k

is odd, and (5k
12 + 2)/ϕ(k) if k is even.
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Table 2.1: Families of pairing-friendly elliptic curves with k ∈ {15, 28, 44} and D = 2.

k ` t(x), q(x) ρ

15 120

t(x) = x28+x24−x16−x12−x8+1

q(x) = 1
8(2x56+4x52+x50+2x48+2x46−4x44+x42−6x40−4x36−x30

+12x28−2x26+14x24−x22+2x20−10x16−10x12+x10−8x8+2x6+x2+8)

7/4

28 56
t(x) = −x2

q(x) = 1
8(2(x2−1)2+x14(x2+1)2(x14+1)2)

23/12

44 88
t(x) = −x2

q(x) = 1
8(2(x2−1)2+x22(x2+1)2(x22+1)2)

7/4

Construction 2.5.6, while stated only for k divisible by 3, can be carried out for any

positive integer k, setting y(x) to be the minimal-degree representative for (ζk− 1)/
√
−2 in

K. However, unlike the case of Construction 2.5.5, the expressions for q(x) when k is not

divisible by 3 or when `
k + 5`

24 ≥ ϕ(`) become too complicated to enumerate explicitly in

general. Furthermore, in some cases the construction may not give a family of curves; for

example, if k = 20 the q(x) given by the construction never takes integer values. Potential

families for a few selected values of k are given in Table 2.1.

2.5.2 Sporadic families of Brezing-Weng curves

Brezing and Weng only consider cyclotomic polynomials r(x) for their constructions,

but in some cases using non-cyclotomic polynomials r(x) that define (perhaps trivial) ex-

tensions of cyclotomic fields may turn out to be even more effective. One method for

constructing such extensions is to substitute x 7→ u(x) in the cyclotomic polynomial Φ`(x),

where u(x) is some polynomial. If Φ`(u(x)) is irreducible, as is usually the case, going to

the extension field will give us no advantage, as we will just be substituting x 7→ u(x) in t,

r, and q. However, if Φ`(u(x)) factors, we may gain some advantage.

Galbraith, McKee and Valença [46] have analyzed the factorizations of Φ`(u(x)) when

u is quadratic and Φ` has degree 4. For ` = 8 there are no quadratic u such that Φ8(u(x))

factors. For ` = 5, 10, there is a one-dimensional family of such u, parametrized be the

rational points of a rank-one elliptic curve over Q. However, since Q(ζ5) = Q(ζ10) has no

quadratic imaginary subfields, we cannot use Theorem 2.5.1 to construct a complete family
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using such a factorization.

Finally, for ` = 12 there are two such u(x). Barreto and Naehrig constructed pairing-

friendly curves of prime order using one such factorization.

Example 2.5.7 (Barreto-Naehrig curves [9]). Galbraith, McKee and Valença [46] discov-

ered that if u(x) = 6x2, then Φ12(u(x)) = r(x)r(−x), where r(x) = 36x4 + 36x3 + 18x2 +

6x + 1. If we set K = Q[x]/(r(x)), then ζ12 7→ 6x2 in K, and using
√
−3 = 2ζ2

12 − 1 we

compute y(x) = 6x2 + 4x+ 1 and q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1. Since q(x) and r(x)

have the same degree and leading coefficient, r(x) is actually the number of points on the

elliptic curve to be constructed. Thus if q(x) and r(x) are both prime for some value of x,

then the elliptic curve constructed will have prime order.

A computer search for further factorizations of Φk(u(x)) for various values of k and

degrees of u found the following example.

Example 2.5.8. Let k = 8. If u(x) = 9x3 + 3x2 + 2x+ 1, then Φ8(u(x)) has an irreducible

factor r(x) = 9x4 + 12x3 + 8x2 + 4x + 1. Setting D = 1 and K = Q[x]/(r(x)), we choose

ζ8 7→ −u(x) and
√
−1 = ζ2

8 7→ −18x3−15x2−10x−4 mod r(x). Applying Theorem 2.5.1,

we compute

t(x) = −9x3 − 3x2 − 2x

q(x) =
1
4
(
81x6 + 54x5 + 45x4 + 12x3 + 13x2 + 6x+ 1

)
.

Since q(1) = 53 and q(−1) = 17 are distinct primes, q(x) represents primes. We conclude

that (t, r, q) represents a family of curves with embedding degree 8. The ρ-value for this

family is 3/2, which is worse than ρ = 5/4 given by Construction 2.5.5. However, curves

with D = 1 have an automorphism of order 4, and since k is a multiple of 4 we may take

advantage of this “quartic twist” to map points P ∈ E(Fq8) down to the field Fq2 , thus

speeding up the pairing computation (see [56, §5]).

Kachisa, Schaefer, and Scott [62], building on the work of Kachisa [61], give a different

strategy for constructing non-cyclotomic polynomials that define a cyclotomic field. Their

strategy is to choose elements β ∈ Q(ζ`) that can be written as an integer linear combination

of a power basis with small coefficients, and let r(x) be the minimal polynomial of β. Since

most elements of Q(ζ`) do not lie in a proper subfield, in most cases we have Q[x]/(r(x)) ∼=
Q(ζ`). We can then proceed as in the Brezing-Weng method.
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Which β and which kth root of unity modulo r(x) to choose are determined by com-

puter search; the resulting polynomial q(x) should have a degree low enough such that we

obtain an attractive ρ-value. In practice we find that most polynomials q(x) generated by

the construction have large denominators, so it is rare for these polynomials to take integer

values. Yet favorable polynomials do exist, as the following examples show. We give one

example below; others can be found in [62].

Example 2.5.9 ([62]). Let k = ` = 16. We set β = −2z5+z, which has minimal polynomial

r(x) = x8 + 48x4 + 625.

In Q[x]/(r(x)), we use ζ16 7→ 1
35(2x5 + 41x), so

t(x) =
1
35
(
2x5 + 41x+ 35

)
.

We use
√
−1 7→ −1

7(x4 + 24). We get y(x) = − 1
35(x5 + 5x4 + 38x+ 120) and

q(x) =
1

980
(
x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125

)
.

The polynomial q(x) is irreducible. We find that both q(x) and t(x) are integers if and only

if x ≡ ±25 (mod 70). In addition, gcd({q(±25+70n) : n ∈ Z}) = 1, so q represents primes.

Thus (t, r, q) represents a family of curves with embedding degree 16. The ρ-value of this

family is 5/4.

2.5.3 Scott-Barreto families

To employ the strategy of Scott and Barreto [113], we again take K to be an extension

of a cyclotomic field, but this time we do not assume that K contains an element
√
−D. If

we choose t(x) to be any polynomial and r(x) to be an irreducible factor of Φk(t(x) − 1),

then Q[x]/(r(x)) defines an extension of a cyclotomic field. We then search for an h(x) that

makes the right hand side of the CM equation

Dy2 = 4h(x)r(x)− (t(x)− 2)2

take the form of a linear factor times a perfect square. Below we give some examples of this

method that achieve ρ-values less than 2 with (nearly) arbitrary D. These examples are

due to Mike Scott, who found them by fixing k and executing a computer search through

the space of possible t(x) and h(x).
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Example 2.5.10. Let k = 4 . Take t(x) = x+1, r(x) = Φ4(x) = x2+1, h(x) = (x+13)/25.

Then the CM equation becomes

Dy2 =
4
25

(x+ 13)(x2 + 1)− (x− 1)2

=
1
25

(4x+ 3)(x+ 3)2.

If we substitute x = (Dz2 − 3)/4, the right hand side becomes D times a square, and we

find

q(x) =
1
25
(
x3 + 13x2 + 26x+ 13

)
.

The ρ-value for this family is 3/2. We observe that q(x) is an integer if and only if x ≡ 2

(mod 5), and since x = (Dz2 − 3)/4 we conclude that D ≡ 11 or 19 (mod 20).

Example 2.5.11. Let k = 6. Take t(x) = −4x2 + 4x + 2, r(x) = Φ6(t(x) − 1) = 16x4 −
32x3 + 12x2 + 4x+ 1, h(x) = x/4. Then the CM equation becomes

Dy2 = x(4x2 − 6x+ 1)2.

If we substitute x = Dz2, the right hand side becomes D times a square, and we find

q(x) = 4x5 − 8x4 + 3x3 − 3x2 +
17
4
x+ 1.

The ρ-value for this family is 5/4.

Setting D = 3 in Example 2.5.11 would be ideal in terms of performance, for curves

with D = 3 have sextic twists [9] that would allow both inputs to the pairing to be given

over Fq. Unfortunately, the polynomial r(3z2) factors into two degree-four polynomials in z,

so r(3z2) can never be prime. However, the construction does produce curves with ρ ≈ 5/4

for many other values of D.
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Chapter 3

New Constructions of

Pairing-Friendly Elliptic Curves

3.1 Elliptic curves with embedding degree 10.

In this section we use the framework of Chapter 2, and in particular the theory of

“sparse families” described in Section 2.4, to construct elliptic curves of prime order with

embedding degree 10. This result also appears in [37].

As in Chapter 2, we are looking for polynomials t(x), r(x), q(x) that parametrize the

trace, subgroup size, and field size (respectively) of elliptic curves with prescribed embedding

degree. Since we want the curves to have prime order, r(x) must be the full group size of

the curve, and the three polynomials must satisfy r(x) = q(x) + 1− t(x). Furthermore, the

CM equation

Dy2 = 4q(x)− (t(x))2 = 4r(x)− (t(x)− 2)2

must have an infinite number of solutions. As we showed in Proposition 2.4.5, this can only

happen if the right hand side f(x) = 4r(x)− (t(x)− 2)2 is quadratic or has a multiple root.

Since r(x) must be an irreducible factor of Φk(t(x) − 1), where Φk is the kth cyclotomic

polynomial, the following lemma suggests that a quadratic f(x) occurs naturally only in

the cases k = 3, 4, or 6.

Lemma 3.1.1. Fix k, let t(x) be a polynomial, and let r(x) be an irreducible factor of

Φk(t(x)− 1). Then the degree of r is a multiple of ϕ(k), where ϕ is the Euler phi function.



52

Proof. Suppose t(x) has degree d, so deg Φk(t(x)− 1) = dϕ(k). Let θ be a root of r(x) in

Q, and let ω = t(θ)−1. Then Φk(ω) = 0, so ω is a primitive kth root of unity. We thus have

the inclusion of fields Q(θ) ⊃ Q(ω) ⊃ Q. Since [Q(θ) : Q] = deg r(x) and [Q(ω) : Q] = ϕ(k),

we conclude that ϕ(k) divides deg r(x).

Our key observation is that since construction of a sparse family requires f(x) =

4r(x) − (t(x) − 2)2 to be quadratic (see Theorem 2.4.1) and Lemma 3.1.1 implies that

deg r(x) ≥ ϕ(k), if k > 6 we must choose r(x) and t(x) in such a way that the high-degree

terms of t(x)2 cancel out those of 4r(x). In particular, the degree of t(x) must be half the

degree of r(x). We have discovered that for k = 10 there is a choice of r(x) and t(x) such

that this is possible. The resulting construction of elliptic curves with embedding degree

10 solves an open problem posed by Boneh, Lynn, and Shacham [17, §4.5].

We begin by noting that in the case k = 10, Lemma 3.1.1 tells us that the smallest

possible degree of r(x) is ϕ(10) = 4. Thus to get the high-degree terms of t(x)2 to cancel out

those of 4r(x) in this smallest case we must choose t(x) to be quadratic, and furthermore

Φ10(t(x)− 1) must have a degree-4 factor.

It happens that for k ∈ {5, 8, 10, 12}, Galbraith, McKee, and Valença [46] have char-

acterized all quadratic t(x) such that Φk(t(x)− 1) factors into two irreducible quartic poly-

nomials. In the case k = 10 they show that there is an infinite set of t(x) such that this

factorization occurs, and that these t(x) are parametrized by the rational points of a cer-

tain rank-1 elliptic curve. By experimenting with some of the examples given by Galbraith,

McKee, and Valença, we discovered that t(x) = 10x2 + 5x+ 3 leads to a quadratic f(x).

Theorem 3.1.2. Fix a positive square-free integer D relatively prime to 15. Define t(x),

r(x), and q(x) by

t(x) = 10x2 + 5x+ 3

r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1

q(x) = 25x4 + 25x3 + 25x2 + 10x+ 3.

If the equation u2 − 15Dv2 = −20 has a solution with u ≡ 5 (mod 15), then (t, r, q) repre-

sents a sparse family of curves with embedding degree 10.

Proof. It is easy to verify that conditions (1)–(4) of Definition 2.2.3 (i) hold. Condition (5)

requires an infinite number of integer solutions to Dy2 = f(x), where f(x) = 4q(x)− t(x)2.
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The key observation is that for this choice of t and n,

f(x) = 4q(x)− t(x)2 = 15x2 + 10x+ 3.

Multiplying by 15 and completing the square transforms the equation we wish to solve into

D′y2 = (15x+ 5)2 + 20,

where D′ = 15D. Integer solutions to this equation correspond to integer solutions to

u2 −D′v2 = −20 with u ≡ 5 (mod 15). By Theorem 2.4.1, if one such solution exists then

an infinite number exist, so (t, r, q) represents a family of curves with embedding degree 10.

Since the solutions grow exponentially, this family is sparse (cf. Remark 2.4.3).

To use Theorem 3.1.2 to construct curves with embedding degree 10, we choose a D

and search for solutions to the equation u2− 15Dv2 = −20 that give prime values for q and

r. The following lemma, proposed by Mike Scott, speeds up this process by restricting the

values of D that we can use.

Lemma 3.1.3. Let q(x) be as in Theorem 3.1.2. If (x, y) is an integer solution to Dy2 =

15x2 + 10x+ 3 such that q(x) is prime, then D ≡ 43 or 67 (mod 120).

Proof. If x ≡ 0 or 2 (mod 3) then q(x) is divisible by 3, while if x is odd then q(x) is even.

Thus if q(x) is prime, then x ≡ 4 (mod 6).

To deduce the stated congruence for D, we consider the equation Dy2 = 15x2+10x+3

modulo 3, 5, and 8. To begin, we have Dy2 ≡ x ≡ 1 (mod 3), so D ≡ 1 (mod 3). Next,

we have Dy2 ≡ 3 (mod 5), so y2 ≡ 1 or 4 (mod 5) and D ≡ 2 or 3 (mod 5). Finally, since

x is even we see that Dy2 ≡ 3 (mod 8), and thus y2 ≡ 1 (mod 8) and D ≡ 3 (mod 8).

Combining these results via the Chinese remainder theorem, we conclude that D ≡ 43 or

67 (mod 120).

After reading an earlier version of this work [36], Mike Scott used Theorem 3.1.2 and

Lemma 3.1.3 to find examples of elliptic curves with embedding degree 10 via the following

algorithm.

Algorithm 3.1.4. Let (t, r, q) be as in Theorem 3.1.2. The following algorithm takes inputs

MaxD, MinBits, and MaxBits, and outputs pairs (D,x0) such that D < MaxD, the number

of bits in q(x0) is between MinBits and MaxBits, and q(x0) and r(x0) are both prime.
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1. Set D to be a positive integer such that D ≡ 43 or 67 (mod 120) and 15D is square

free.

2. Use the continued fraction algorithm [75] to compute a fundamental unit γ of the ring

of integers in Q(
√

15D). Set δ ← γ2 if γ has norm −1, δ ← γ otherwise.

3. Use the algorithm of Lagrange, Matthews [83], and Mollin [94, Chapter 5] to find

fundamental solutions (u, v) to the equation u2 − 15Dv2 = −20. (See also [105].)

4. For each fundamental solution (u, v) found in (3):

(a) If log2 u > (MaxBits + 11)/4, go to the next fundamental solution.

(b) If u ≡ ±5 (mod 15) and log2 u > (MinBits + 11)/4, then:

i. Set x0 ← (−5± u)/15.

ii. If q(x0) and r(x0) are prime, output (D,x0).

(c) Write δ(u+ v
√

15D) = u′ + v′
√

15D. Set u← u′, v ← v′, and return to step (a).

5. Increase D. If D < MaxD, return to step (1); otherwise terminate.

The bounds on log2 u in Step (4) can be explained as follows: since q(x) = 25x4+O(x3)

and x = (−5 ± u)/15, q(x) grows roughly like u4/2025. We conclude that log2 q(x) ≈
4 log2 u− 11, so we require u in the algorithm to satisfy

MinBits + 11
4

< log2 u <
MaxBits + 11

4
. (3.1)

In our description of Algorithm 3.1.4, the specific parameters of Theorem 3.1.2 have

allowed us to simplify the procedure described in the proof of Theorem 2.4.1. The require-

ment that 15D be square free implies that w = 1, and the fact that b = 10 is even allows

us to remove the factors of 2 in the congruence moduli of equations (2.4). Thus in Step

(4) we need only to find (u, v) with u2 − 15Dv2 = −20 and u ≡ ±5 (mod 15). Given this

requirement, we see that the only restriction on the unit δ = α + β
√

15D in Step (4c) is

that α 6= 0 (mod 3), which must be true since α2 − 15Dβ2 = 1. Thus our choice of δ = γ

or γ2 will always give new solutions (u, v) with u ≡ ±5 (mod 15); i.e., the parameter m of

Theorem 2.4.1 is equal to 1.

In practice the fundamental unit γ computed in Step 2 will usually be very large,

in which case we may skip Step (4c) altogether. For example, computations with PARI
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indicate that when D ≈ 109, γ has at least 100 bits 99.5% of the time and at least 200 bits

98.9% of the time.

Mike Scott ran Algorithm 3.1.4 with inputs MaxD = 2 · 109, MinBits = 148, and

MaxBits = 512; some sample output appears in Appendix A.1. For each (D,x0) output by

the algorithm, one may then use the CM method (see Section 1.2.4) to construct an elliptic

curve over Fq(x0) whose number of points is r(x0). Since r(x0) is prime, by Lemma 1.2.2

this curve has embedding degree 10.

Below are two examples of elliptic curves that Scott constructed in this manner.

Example 3.1.5. (A 234-bit curve.) Running Algorithm 3.1.4 with D = 1227652867 pro-

duces the output x0 = −164286669864814370, from which we compute the 234-bit primes

q = 18211650803969472064493264347375950045934254696657090420726230043203803

r = 18211650803969472064493264347375949776033155743952030750450033782306651.

The class number of Q(
√
−D) is 5328. The CM method produces the curve E over Fq given

by
y2 = x3 − 3x+ 15748668094913401184777964473522859086900831274922948973320684995903275.

Then E/Fq has r points and embedding degree 10.

Example 3.1.6. (A 252-bit curve.) Running Algorithm 3.1.4 with D = 1039452307 pro-

duces the output x0 = −4009700747060840276, from which we compute the 252-bit primes

q = 6462310997348816962203124910505252082673338846966431201635262694402825461643

r = 6462310997348816962203124910505252082512561846156628595562776459306292101261.

The class number of Q(
√
−D) is 4548. The CM method produces the curve E over Fq given

by

y2 = x3 − 3x+ 4946538166640251374274628820269694144249181776013154863288086212076808528141.

Then E/Fq has r points and embedding degree 10.

Ideally, the bit size of curves with embedding degree 10 should be chosen so that

the discrete logarithm in the finite field Fq10 is approximately of the same difficulty as the

discrete logarithm problem on an elliptic curve of prime order over Fq. Using the best

known discrete logarithm algorithms, this happens when q has between 220 and 250 bits

(see Table 1.1 and [13, Chapter 1]). The curves in Examples 3.1.5 and 3.1.6 have been
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selected so that their bit sizes are close to this range and the class numbers of Q(
√
−D) are

small enough for the CM method to be effective.

In practice, it appears that curves with small embedding degree, prime order, and small

CM discriminant D are quite rare. Luca and Shparlinski [80, 81] come to this conclusion

for curves with embedding degree 3, 4, or 6 (the MNT curves) through a heuristic analysis

of the MNT construction. Since our construction of curves with embedding degree 10 is

similar to the MNT construction (cf. Section 2.4.1), a similar analysis should hold for our

k = 10 curves. The experimental evidence supports this reasoning: Scott’s execution of

Algorithm 3.1.4 with MaxD = 2 · 109 found only 23 curves with prime orders between 148

and 512 bits [111]. Parameters for these curves can be found in Appendix A.1.

If we relax the condition on r(x0) in Step 4(b)ii of Algorithm 3.1.4 and allow r(x0) =

hr0 with r0 a large prime and h a small cofactor, then we may find a larger number of

suitable curves. Scott also ran this version of the algorithm and found 101 curves with r0

between 148 and 512 bits, h at most 16 bits, and D < 2 · 109 [111]. Some examples can be

found in Appendix A.1.

3.1.1 Comparison with prior state of the art

The problem that motivated Boneh, Lynn, and Shacham to seek prime-order elliptic

curves with embedding degree 10 is that of producing short digital signatures using their

algorithm [17] at a security level equivalent to the Digital Signature Algorithm (DSA) over a

2048-bit prime field. The standards for DSA [6, 30] require DSA signatures over a 2048-bit

field Fq to use a 224-bit prime-order subgroup of F×q . It follows that to obtain Boneh-

Lynn-Shacham (BLS) signatures at this security level we should work in an elliptic curve

subgroup whose order is a prime of at least 224 bits, and the Weil pairing should map this

subgroup to a finite field of at least 2048 bits. (This is also the recommended equivalence

between DSA and elliptic curve signatures [6, §5.6].) Since the ratio 2048/224 is between

9 and 10, for the most efficient implementation of BLS signatures at this security level we

should use curves of prime order with embedding degree 9 or 10.

Before our discovery of the family in Theorem 3.1.2, the smallest known ρ-value for

a family of elliptic curves with embedding degree 10 was 3/2. This family, which is due to
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Table 3.1: Elliptic curve parameters for Boneh-Lynn-Shacham signatures with security
equivalent to 2048-bit DSA.

Family Embedding Field size Subgroup size Extension field
degree k q (bits) r (bits) qk (bits)

Miyaji-Nakabayashi-Takano 6 342 342 2052
(Theorem 2.4.6)
Barreto-Lynn-Scott 7 299 224 2091
(Construction 2.5.5)
Brezing-Weng 8 280 224 2240
(Construction 2.5.5)
Brezing-Weng 9 299 224 2688
(Construction 2.5.5)
Brezing-Weng 10 336 224 3360
(Equation (3.2), page 57)
Barreto-Lynn-Scott 11 269 224 2957
(Construction 2.5.5)
Barreto-Naehrig 12 224 224 2688
(Example 2.5.7)
Freeman 10 234 234 2340
(Example 3.1.5)

Brezing and Weng [19, §3, Example 2], has CM discriminant 1 and (t, r, q) given by

t(x) = −x6 +x4−x2 +2, r(x) = Φ20(x), q(x) =
1
4
(x12−x10 +x8−5x6 +5x4−4x2 +4).

(3.2)

An elliptic curve in this family with a 224-bit prime-order subgroup would be defined over a

336-bit field Fq, and the pairing would map to a 3360-bit field. A BLS signature using such

a curve would attain the level of security equivalent to 2048-bit DSA, but the signatures

would be 336 bits long.

On the other hand, if we implement BLS signatures using the 234-bit prime-order

curve of Example 3.1.5, then the pairing maps to a 2340-bit field and signatures are 234

bits long, so the desired security is obtained with a shorter signature.

Table 3.1 shows these and several other possibilities for families of elliptic curves with

subgroups of at least 224 bits for which the pairing maps to a field of at least 2048 bits. The

size of a BLS signature using a curve from this table is the size of the finite field Fq. Note

that all of the choices in the table would provide shorter signatures than 2048-bit DSA,

which produces signatures of 448 bits.
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We observe that Barreto-Naehrig curves of prime order with embedding degree 12 can

also produce short BLS signatures at this security level. Since the pairing on a 224-bit

Barreto-Naehrig curve maps to a larger field than does the pairing on the curve in Example

3.1.5, the public and private keys will be larger and the signature verification may take

longer if the Barreto-Naehrig curve is used. However, compression techniques such as those

of [9, §3] may be used to reduce these sizes and the complexity of the pairing computation.

3.2 More discriminants in cyclotomic families

In this section we describe an extension to the constructions of “complete families” that

we described in Section 2.5. The “cyclotomic” and “sporadic” constructions we described

in that section have in common that we first fix a (small) square-free CM discriminant, and

then compute the corresponding complete family of curves, all with the same discriminant.

We refer to such constructions as basic constructions.

Some users, however, might prefer more flexibility with regard to the CM discriminant

D. For example, one might view curves with D = 3 suspiciously, as these curves have the

unusual property of having an automorphism group of order 6, and the extra structure may

be used to aid a future (as yet unknown) discrete logarithm attack. This is an example of

the “hard-line” position on security articulated by Koblitz [67]:

All parameters for a cryptosystem must always be chosen with the maximal
possible degree of randomness, because any extra structure or deviation from
randomness might some day be used to attack the system.

Users taking this viewpoint will want families of pairing-friendly elliptic curves with variable

CM discriminant D.

Our main result in this section is Theorem 3.2.1, which, given a family of curves with

fixed discriminant, allows us to build a family of curves with variable CM discriminant

and the same ρ-value. Thus, combining a basic construction with Theorem 3.2.1 yields a

general method for constructing families of curves with variable CM discriminant and ρ < 2.

Previous constructions with variable discriminant required either ρ ≥ 2 (cf. Section 2.3) or

k ≤ 6 (cf. Section 2.5.3). Note that D is by definition square free, so curves with different

CM discriminants D are not isogenous.

After presenting our main result, we give examples of variable-discriminant families for

any embedding degree k satisfying gcd(k, 24) ∈ {1, 2, 3, 6, 12}. In particular, Constructions
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3.2.2 and 3.2.6 combine Theorem 3.2.1 with the method of Brezing and Weng to give new

families of curves for k ≡ 3 (mod 4) and k ≡ 2 (mod 8), respectively. When k is not

divisible by 3, these families have ρ-value smaller than that of any other known variable-

discriminant complete family. Furthermore, the families with k ≡ 10 (mod 24) have ρ-

value smaller than any other known complete family, with fixed (in advance) or variable

discriminant.

Recall that a triple of polynomials (t, r, q) is said to represent a potential family of

elliptic curves with embedding degree k if it satisfies conditions (2)–(5) of Definition 2.2.3

(i); in particular, q may not represent primes (or be a power of a p(x) that represents

primes). Our result says that if the polynomials in a potential family have a certain form,

we may obtain families with (nearly) arbitrary discriminant. In particular, this allows us

to make D a parameter input at the time of curve construction rather than at the time the

polynomials t, r, q are computed. We will then see that in many cases the potential families

are actual families in the sense of Definition 2.2.3.

Theorem 3.2.1. Suppose (t, r, q) represents a potential family of elliptic curves with em-

bedding degree k and discriminant D. Let K ∼= Q[x]/(r(x)), and let y(x) 7→ (ζk − 1)/
√
−D

in K as in Theorem 2.5.1. Suppose t, r, and q are even polynomials and y is an odd poly-

nomial. Define r′, q′ to be the polynomials such that r(x) = r′(x2) and q(x) = q′(x2). Then

for any integer α such that r′(αx2) is irreducible, there exists a potential family of curves

with embedding degree k, discriminant αD, and ρ-value equal to ρ(t, r, q).

Proof. We begin by defining polynomials t′, y′ such that t(x) = t′(x2) and y(x) = x ·y′(x2).

Let σ be a root of r(x), so K = Q(σ). Let τ = σ/
√
α, so τ is a root of r′(αx2). If r′(αx2)

is irreducible, we may define L to be the number field Q(τ) ∼= Q[x]/(r′(αx2)). Then any

element of K that can be expressed as an even polynomial g(σ2) is also an element of L.

In particular, since t(x) is even and t′(σ2)− 1 = ζk in K, we have ζk = t′(ατ2)− 1 in L.

Now let β be the element y′(σ2) ∈ K; then β = y′(ατ2) in L. From the definition of

y(x) we have −Dy(σ)2 = −Dσ2y′(σ2)2 = (ζk − 1)2 in K, so

−Dσ2y′(ατ2)2 = (ζk − 1)2

in L. Substituting σ2 = ατ2 gives

−Dατ2y′(ατ2)2 = (ζk − 1)2,
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so we conclude that

τy′(ατ2) =
ζk − 1√
−αD

in L.

A straightforward computation now shows that

q′(αx2) =
1
4
(
t′(αx2)2 + αD(xy′(αx2))2

)
.

Since r′(αx2) is irreducible by hypothesis, it satisfies condition (2) of Definition 2.2.3 (i).

Thus by Theorem 2.5.1, the triple

(t′(αx2), r′(αx2), q′(αx2))

represents a potential family of curves with embedding degree k and discriminant αD. The

ρ-value for this family is 2 deg q′/2 deg r′ = deg q/ deg r.

Theorem 3.2.1 tells us that if t, r, q are even polynomials and
√
−D mod r(x) is an odd

polynomial, then the substitution x2 7→ αx2 usually gives a potential family of curves with

discriminant αD. In practice, if r(x) is irreducible then r′(αx2) is nearly always irreducible,

and the difficult part in obtaining true families is ensuring that q′(αx2) represents primes.

Our first application of Theorem 3.2.1 is to the following construction, which improves

on Construction 2.5.2 for certain odd values of k.

Construction 3.2.2. Let k be odd, D = 1, and K = Q[x]/(Φ4k(x)). If we take ζk 7→
(−1)(k+1)/2xk+1, so t(x) = 1 + (−1)(k+1)/2xk+1, then using

√
−1 7→ xk we have

ζk − 1√
−1
7→ (1− (−1)(k+1)/2xk+1)xk ≡ (−1)(k+1)/2x+ xk mod Φ4k(x)

(since x2k ≡ −1 mod Φ4k(x)). We may then compute

q(x) =
1
4

(
x2k+2 + x2k + 4(−1)(k+1)/2xk+1 + x2 + 1

)
.

Then (t(x),Φ4k(x), q(x)) represents a complete potential family of curves with embedding

degree k and discriminant 1. The ρ-value for this family is deg q/ deg Φ4k = (k+1)/ϕ(k).

When k ≡ 1 (mod 4) (i.e., when the middle term of q(x) is negative), q(x) has a factor

(x2−1)2, and thus we do not have a family of curves. We conjecture that q(x) is irreducible

whenever k ≡ 3 (mod 4), and computations show that the conjecture holds for k < 200. In
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addition, q(x) is an integer whenever x is odd. Unfortunately, we find that q(x) is always

even when x is odd, so q fails condition (5) of Definition 2.2.1 and thus does not represent

primes.

But all is not lost! We note that t, r, q of Construction 3.2.2 are even polynomials

and
√
−1 is an odd polynomial, so we may apply Theorem 3.2.1 to make the substitution

x2 7→ αx2 in t, r, q. After making this substitution, we may find that the new q(x) does

indeed represent primes and thus we get a true family of curves. However, to get even a

potential family, we must first show that r(x) is irreducible. We will first need an algebraic

lemma.

Lemma 3.2.3. Let K = Q(θ) be a number field, and let r(x) be the minimal polynomial of

θ. Then for α ∈ K, the polynomial r(αx2) is irreducible if and only if αθ is not a square

in K.

Proof. The proof follows exactly the proof of [46, Lemma 1]. We observe that the argument

holds regardless of whether K is Galois.

Corollary 3.2.4. Let k be odd, and let α be an non-square integer not dividing k. Then

Φk(αx2) is irreducible.

Proof. Since ζk is a square in Q(ζk), by Lemma 3.2.3 Φk(αx2) is irreducible if and only

if α is not a square in Q(ζk); a sufficient condition for this to occur is α is a non-square

integer not dividing k.

Theorem 3.2.1 and Corollary 3.2.4 combine to tell us that Construction 3.2.2 leads to

potential families of curves with discriminant α for any non-square α - k, and it remains

only to check that the new q, which we denote as

qα(x) =
1
4

(
αk+1x2k+2 + αkx2k + 4(−α)(k+1)/2xk+1 + αx2 + 1

)
,

represents primes. If k ≡ 1 (mod 4) then qα(x) always factors, but for k ≡ 3 (mod 4) qα(x)

is likely to be irreducible.

Other than by checking each value of α and k individually, we have no way of showing

that qα(x) represents primes. However, if α ≡ 3 (mod 4) and x is odd, qα(x) is an odd

integer, so qα may represent primes. In practice it appears that, for various k and α both

congruent to 3 (mod 4), qα(x) does indeed represent primes. We cannot prove this result,

but we give one such example below.
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Example 3.2.5. Let k = 11, α = 19. Applying Theorem 3.2.1 to Construction 3.2.2 with

these parameters gives the family

t(x) = 196x12 + 1,

r(x) = Φ11(−19x2),

q(x) =
1
4
(
1912x24 + 1911x22 + 4 · 196x12 + 19x2 + 1

)
.

This family has embedding degree 11. When x0 = 14593 we find that q(x0) is a 265-bit

prime and r(x0) is a 222-bit prime. The unique curve with CM by the ring of integers in

Q(
√
−19) has j-invariant −884736 [118, §A.3]; an equation over Fq(x0) is given by

y2 = x3 + 12x+ 662488133154657423799930884337392831511233568367903219370289497229757469273982875\

949203830805705576929372735107939.

As in the derivation of Construction 2.5.3 from Construction 2.5.2, we may use the

fact that if k is odd then ζ2k = −ζk to derive an analogous construction for embedding

degrees that are twice an odd number.

Construction 3.2.6. Let k be odd. Changing the sign of ζk in Construction 3.2.2 gives

t(x) = 1− (−1)(k+1)/2xk+1,

r(x) = Φ4k(x),

q(x) =
1
4

(
x2k+2 + x2k − 4(−1)(k+1)/2xk+1 + x2 + 1

)
.

Then (t, r, q) represents a potential family of pairing-friendly elliptic curves with embedding

degree 2k, discriminant 1, and ρ-value (k + 1)/ϕ(k). In terms of the embedding degree

k′ = 2k, the ρ-value is thus (k′/2 + 1)/ϕ(k′).

If k ≡ 3 (mod 4) then q(x) has a factor of (x2 − 1)2, and if k ≡ 1 (mod 4) then

q(x) takes integer values when x is odd, and these values are always even. Substituting

x2 7→ αx2, we get

qα(x) =
1
4

(
αk+1x2k+2 + αkx2k − 4(−α)(k+1)/2xk+1 + αx2 + 1

)
.

As in Construction 3.2.2, qα(x) is even for α ≡ 1 (mod 4), so we must choose α ≡ 3 (mod 4)

if we want qα(x) to represent primes. We illustrate with an example.
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Example 3.2.7. Let k = 13 and α = 251 (the largest prime factor of 2008). Applying

Theorem 3.2.1 to Construction 3.2.6 with these parameters gives the family

t(x) = 2517x14 + 1,

r(x) = Φ13(−251x2),

q(x) =
1
4
(
25114x28 + 25113x26 + 4 · 2517x14 + 251x2 + 1

)
.

This family has embedding degree 26. When x0 = 3255 we find that q(x0) is a 437-bit

prime and r(x0) is a 376-bit prime. We computed the Hilbert class polynomial for the ring

of integers of Q(
√
−251) in MAGMA [18] and found a root j0 ∈ Fq(x0). The curve with

j-invariant j0 is given by

y2 = x3 + x+ 8771654111207839181461299134630845125799169816034899811646308950254534117469969\

458312266776406054404171478315795953474442753849998.

To conclude this section, we note that Constructions 2.5.2 and 2.5.3 satisfy the condi-

tions of Theorem 3.2.1. We make the substitution x2 7→ αx2, where α is odd, and obtain a

potential family of pairing-friendly curves. The discriminant of a curve in this family is α.

We also note that Construction 2.5.6 satisfies the conditions of Theorem 3.2.1 when k

is not divisible by 8. If k is not divisible by 4 we may choose any odd α; if k is divisible by

4 we must choose α ≡ 1 (mod 4). Since D = 2 in Construction 2.5.6, the discriminant of a

curve in the resulting potential family can be any square-free positive integer congruent to

2 mod 4 (if 4 - k) or 2 mod 8 (if 4 | k). We can do the same for the cases presented in Table

2.1; an analysis shows that we can take any α for k = 15 and α ≡ 3 (mod 4) for k = 28 or

44.

3.2.1 Algorithm for generating variable-discriminant families

By combining the substitution x2 7→ αx2 from Theorem 3.2.1 (for some appropriate α)

with one of the basic constructions 2.5.2, 2.5.3, 2.5.6, 3.2.2 or 3.2.6, we can generate a family

of pairing-friendly curves with variable discriminant D for any k satisfying gcd(k, 24) ∈
{1, 2, 3, 6, 12}. We now give step-by-step instructions for this procedure.

1. Select an embedding degree k with gcd(k, 24) ∈ {1, 2, 3, 6, 12}.
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2. Select a basic construction from the following list. (Some values of k may offer more

than one possibility.)

• Construction 2.5.2, if k is odd.

• Construction 2.5.3, if k ≡ 2 (mod 4).

• Construction 2.5.6, if 3 | k.

• Construction 3.2.2, if k ≡ 3 (mod 4).

• Construction 3.2.6, if k ≡ 2 (mod 8).

3. Use the selected basic construction to compute polynomials t(x), r(x), q(x) that

represent a family of elliptic curves with embedding degree k.

4. Let t′, r′, q′ be polynomials such that t(x) = t′(x2), r(x) = r′(x2), and q(x) = q′(x2).

5. Select a square-free positive integer α - k such that after the substitution x2 7→ αx2,

the resulting polynomial q′(αx2) represents primes. This condition requires α to have

the following form:

• α odd for Constructions 2.5.2, 2.5.3, and 2.5.6 with 4 - k.

• α ≡ 1 (mod 4) for Construction 2.5.6 with 4 | k.

• α ≡ 3 (mod 4) for Constructions 3.2.2 and 3.2.6.

6. Let D = 2α if Construction 2.5.6 was used, and let D = α otherwise.

Then (t′(αx2), r′(αx2), q′(αx2)) represents a family of elliptic curves with embedding degree

k and discriminant D. In particular, for values of α and x such that q′(αx2) is prime, there

is an elliptic curve over Fq′(αx2) with a subgroup of order r′(αx2) and embedding degree

k. If the class number of Q(
√
−D) is less than 105, the equation for this curve can be

computed by the CM method.

One setting where this procedure may be useful is if some degree of randomness is

desired in the CM discriminant of a pairing-friendly elliptic curve. One can carry out Steps

(1)–(4), compute an integer a such that r′(a) has slightly fewer than the minimum number

of bits necessary for the desired security level in the elliptic curve subgroup, and then choose

α randomly in [1, a] subject to the constraints of Step (5). One then expects that there

should be values of x such that q′(αx2) is prime and r′(αx2) is a (near-)prime of the desired
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bit length. These values of x and α can then be used to generate a pairing-friendly curve

via the CM method.

Note that the Cocks-Pinch method (Theorem 2.3.1) can be used to generate elliptic

curves with arbitrary CM discriminant for any embedding degree k. However, the ρ-values

of such curves will always be around 2. The advantage of the procedure outlined in this

section is that we can vary the CM discriminant and obtain ρ-values strictly less than 2,

for many values of k.
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Chapter 4

Constructing Pairing-Friendly

Abelian Varieties

4.1 Introduction

In Chapters 2 and 3 we addressed the Motivating Problem of page 4 in the case g = 1

by describing constructions of pairing-friendly elliptic curves. In this chapter we consider the

same problem for arbitrary g, and give two methods that produce pairing-friendly abelian

varieties of arbitrary dimension.

In contrast to the case of elliptic curves, very little is known about pairing-friendly

ordinary abelian varieties of dimension g ≥ 2. While there are several existence results

[46, 57], until very recently there were no explicit constructions of such varieties. In [38] we

presented a method for constructing ordinary, absolutely simple abelian surfaces (g = 2),

and there is a construction due to Kawazoe and Takahashi [64] that produces pairing-

friendly ordinary abelian surfaces that are simple over Fq but are Fq-isogenous to a product

of two isomorphic elliptic curves.

Our first main result, Algorithm 4.2.6, generalizes to arbitrary dimension the method

of Cocks and Pinch (Theorem 2.3.1) for producing pairing-friendly elliptic curves. The

algorithm produces q-Weil numbers π that correspond (in the sense of Honda-Tate theory

[122]) to ordinary, absolutely simple abelian varieties having arbitrary embedding degree

with respect to a subgroup of (nearly) arbitrary order r. The method works by fixing a CM

field K of degree 2g and a primitive CM type Φ on K and using a type norm to construct
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a q-Weil number π ∈ K that satisfies the conditions of Corollary 1.2.3. It follows that the

q-Weil number π is the Frobenius element of a pairing-friendly ordinary abelian variety A of

dimension g. If the CM field K is suitably small, CM methods can then be used to produce

A explicitly (see Section 1.2.4). In the case g = 2 this method supersedes our result of [38].

This work is joint with Peter Stevenhagen and Marco Streng of Universiteit Leiden (the

Netherlands) and appears in [42].

Section 4.3 provides some explicit examples of pairing-friendly abelian varieties con-

structed by Algorithm 4.2.6. We find that on inputs of cryptographic size, the ρ-values of

the varieties produced are very close to 2gĝ, where 2ĝ is the degree of the reflex field of K.

(If K is Galois then ĝ = g, but in general we expect ĝ to be much larger than g.) This

experimental observation agrees with a heuristic analysis of the algorithm’s output.

In dimension g = 2 the construction of [38] and that of Algorithm 4.2.6 both lead

to ordinary, absolutely simple abelian varieties with ρ ≈ 8. The construction of Kawazoe

and Takahashi produces ordinary abelian surfaces with ρ-values between 3 and 4; however,

these varieties are not absolutely simple, and thus the construction can be interpreted as

producing pairing-friendly elliptic curves over some extension field of Fq. Since all of the

constructions of pairing-friendly elliptic curves can produce curves with ρ ≤ 2, in order to

make higher-dimensional pairing-friendly abelian varieties appealing to the practitioner we

must produce examples with smaller ρ-values.

In Section 4.4 we demonstrate the first constructions of pairing-friendly ordinary

abelian varieties of dimension g ≥ 2 that are absolutely simple and have ρ-values sig-

nificantly less than 2gĝ. Our second main result, Algorithm 4.4.9, uses the techniques of

Section 4.2 to abstract and generalize the method of Brezing and Weng (Theorem 2.5.1) for

constructing pairing-friendly elliptic curves. The key idea is to parametrize the subgroup

order r and the Frobenius element π as polynomials of a single variable r(x) ∈ Q[x] and

π(x) ∈ K[x]. We then extend the type norm to polynomials and construct the polynomial

π(x) as the extended type norm of an element ξ ∈ K̂[x] that is chosen to have specified

residues modulo factors of r(x) in K̂[x]. As in the Brezing-Weng method, we compute

parameters for individual varieties by finding an x0 for which q(x0) = π(x0)π(x0) is prime

and r(x0) has a large prime factor. Once such an x0 is found, we can use CM methods to

construct the abelian variety whose Frobenius element is given by π(x0).

In Section 4.5 we discuss how to select the parameters in this algorithm to produce

the optimal output, and we provide a number of examples of families of ordinary abelian
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varieties produced by our method. These include several families of abelian surfaces (g = 2)

with ρ ≤ 7, including one with embedding degree 5 and ρ ≈ 4, which could be a practical

choice for certain security levels. We also demonstrate a family of three-dimensional abelian

varieties with ρ ≈ 12. We conclude by discussing avenues for further research in this area.

4.2 Weil numbers yielding prescribed embedding degrees

Let Fq be the field of q elements, A a g-dimensional simple abelian variety over Fq, and

K = Q(π) ⊂ EndFq(A)⊗Q the number field generated by the Frobenius endomorphism π

of A. As we described in Section 1.2.1, π is a q-Weil number in K: an algebraic integer with

the property that all of its embeddings in Q have complex absolute value
√
q. By Honda-

Tate theory [122], all q-Weil numbers arise as Frobenius elements of abelian varieties over

Fq.

The q-Weil number π determines the embedding degree of A with respect to a subgroup

of prime order r. As we saw in Corollary 1.2.3, if K = Q(π) equals EndFq(A)⊗Q and there

is an integer k for which r - qk and

NK/Q(π − 1) ≡ 0 (mod r), (4.1)

Φk(ππ) ≡ 0 (mod r), (4.2)

then A has embedding degree k with respect to r. Thus, we can prove the existence of an

abelian variety A with embedding degree k by exhibiting a q-Weil number π ∈ K with these

properties. The following lemma states what we need.

Lemma 4.2.1. Let π be a q-Weil number and Fq be the field of q elements. Then there

exists a unique isogeny class of simple abelian varieties A/Fq with Frobenius π. If K = Q(π)

is totally imaginary of degree 2g and q is prime, then such A have dimension g, and K is

the full endomorphism algebra EndFq(A)⊗Q. If furthermore q is unramified in K, then A

is ordinary.

Proof. The main theorem of [122] yields existence and uniqueness, and shows that E =

EndFq(A)⊗Q is a central simple algebra over K = Q(π) satisfying

2 · dim(A) = [E : K]
1
2 [K : Q].

For K totally imaginary of degree 2g and q prime, Waterhouse [128, Theorem 6.1] shows

that we have E = K and dim(A) = g. By [128, Proposition 7.1], A is ordinary if and only
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if π + π is prime to q = ππ in OK . Thus if A is not ordinary, the ideals (π) and (π) have a

common divisor p ⊂ OK with p2 | q, so q ramifies in K.

Example 4.2.2. Our general construction is motivated by the case where K is a Galois CM

field of degree 2g, with cyclic Galois group generated by σ. Here σg is complex conjugation,

so we can construct an element π ∈ OK satisfying πσg(π) = ππ ∈ Z by choosing any ξ ∈ OK
and letting

π =
g∏
i=1

σi(ξ).

For such π, we have ππ = NK/Q(ξ) ∈ Z. If NK/Q(ξ) is a prime q, then π is a q-Weil number

in K.

Now we wish to impose the conditions (4.1) and (4.2) on π. Let r be a rational prime

that splits completely in K, and r a prime of OK over r. For i = 1, . . . , 2g, put ri = σ−i(r);

then the factorization of r in OK is rOK =
∏2g
i=1 ri. If αi ∈ Fr = OK/ri is the residue class

of ξ modulo ri, then σi(ξ) modulo r is also αi, so the residue class of π modulo r is
∏g
i=1 αi.

Furthermore, the residue class of ππ modulo r is
∏2g
i=1 αi. If we choose ξ to satisfy

g∏
i=1

αi = 1 ∈ Fr, (4.3)

we find π ≡ 1 (mod r) and thus NK/Q(π − 1) ≡ 0 (mod r). By choosing ξ such that in

addition

ζ =
2g∏
i=1

αi =
2g∏

i=g+1

αi (4.4)

is a primitive k-th root of unity in F×r , we guarantee that ππ = NK/Q(ξ) is a primitive k-th

root of unity modulo r. Thus we can try to find a suitable Weil number π by picking residue

classes αi ∈ F×r for i = 1, . . . , 2g meeting the two conditions (4.3) and (4.4), computing

some “small” lift ξ ∈ OK with (ξ mod ri) = αi, and testing whether ξ has prime norm.

As numbers of moderate size have a high probability of being prime by the prime number

theorem, a small number of choices (αi)i should suffice. There are (r− 1)2g−2ϕ(k) possible

choices for (αi)
2g
i=1, where ϕ is the Euler phi function, so for g > 1 and large r we are very

likely to succeed. For g = 1, there are only a few choices (α1, α2) = (1, ζ), but one can

try various lifts and thus recover the Cocks-Pinch algorithm (Theorem 2.3.1) for finding

pairing-friendly elliptic curves.
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For arbitrary CM fields K, the appropriate generalization of the map

ξ 7→
g∏
i=1

σi(ξ)

in Example 4.2.2 is provided by the type norm. A CM type of a CM field K of degree

2g is a set Φ = {φ1, . . . , φg} of embeddings of K into its normal closure L such that

Φ ∪ Φ = {φ1, . . . , φg, φ1, . . . , φg} is the complete set of embeddings of K into L. The type

norm NΦ : K → L with respect to Φ is the map

NΦ : x 7→
g∏
i=1

φi(x),

which clearly satisfies

NΦ(x)NΦ(x) = NK/Q(x) ∈ Q. (4.5)

If K is not Galois, the type norm NΦ does not map K to itself, but to its reflex field K̂

with respect to Φ. To end up in K, we can however take the type norm with respect to the

reflex type Ψ, which we will define now (cf. [115, Section 8]).

Let G be the Galois group of L/Q, and H the subgroup fixing K. Then the 2g left

cosets of H in G can be viewed as the embeddings of K in L, and this makes the CM type

Φ into a set of g left cosets of H for which we have G/H = Φ∪Φ. Let S be the union of the

left cosets in Φ, and put Ŝ = {σ−1 : σ ∈ S}. Let Ĥ = {γ ∈ G : γS = S} be the stabilizer of

S in G. Then Ĥ defines a subfield K̂ of L, and as we have Ĥ = {γ ∈ G : Ŝγ = Ŝ} we can

interpret Ŝ as a union of left cosets of Ĥ inside G. These cosets define a set of embeddings

Ψ of K̂ into L. We call K̂ the reflex field of (K,Φ) and we call Ψ the reflex type.

Lemma 4.2.3. The field K̂ is a CM field, and Ψ is a CM type of K̂. The field K̂ is

generated over Q by the sums
∑

φ∈Φ φ(x) for x ∈ K. The type norm NΦ maps K to K̂.

Proof. The first two statements are proved in [115, Chapter II, Proposition 28] (though

the definition of Ĥ differs from ours, because Shimura lets G act from the right). For the

last statement, notice that for γ ∈ Ĥ, we have γS = S, so γ
∏
φ∈Φ φ(x) =

∏
φ∈Φ φ(x).

A CM type Φ of K is induced from a CM subfield K ′ ⊂ K if it is of the form

Φ = {φ : φ|K′ ∈ Φ′} for some CM type Φ′ of K ′. In other words, Φ is induced from K ′ if

and only if S as above is a union of left cosets of Gal(L/K ′). We call Φ primitive if it is not

induced from a strict subfield of K. Notice that the reflex type Ψ is primitive by definition
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of K̂, and that (K,Φ) is induced from the reflex of its reflex. In particular, if Φ is primitive,

then the reflex of its reflex is (K,Φ) itself. For K Galois and Φ primitive we have K̂ = K,

and the reflex type of Φ is Ψ = {φ−1 : φ ∈ Φ}.
For CM fields K of degree 2 or 4 with primitive CM types, the reflex field K̂ has the

same degree as K. This fails to be so for g ≥ 3; a proof of this fact appears in [42]. For

a “generic” CM field K the degree of L is 2gg!, and K̂ is a field of degree 2g generated by∑
σ

√
σ(η), with σ ranging over Gal(K0/Q).

From (4.5) and Lemma 4.2.3, we see that for every ξ ∈ O bK , the element π = NΨ(ξ)

is an element of OK that satisfies ππ ∈ Z. To make π satisfy the conditions of Corollary

1.2.3, we need to impose conditions modulo r on ξ in K̂. The following proposition allows

us to index the factors of r in K̂ in a way that will be useful for our construction.

Proposition 4.2.4. Let (K,Φ) be a CM type, and let r be a prime that splits completely in

K, and therefore in its normal closure L and in the reflex field K̂ with respect to Φ. Pick

a prime R over r in L, and for each ψ ∈ Ψ write rψ = ψ−1(R), i.e., the inverse image of

R under the embedding ψ : K̂ → L. Then the complete factorization of r in O bK is

rO bK =
∏
ψ∈Ψ

rψrψ.

Proof. Let G = Gal(L/Q) and H = Gal(L/K̂). For each ψ ∈ Ψ, let ψ′ ∈ G be a

representative of the left coset of H in G that induces the embedding ψ on K̂. Then for

each ψ ∈ Ψ we have rψ = ψ′−1(R) ∩ O bK . Since H fixes K̂, it follows that σψ′−1(R) is a

prime of L over rψ for every σ ∈ H, and thus

rψOL =
∏
σ∈H

σψ′−1(R).

If we denote by Ψ the set {ψ : ψ ∈ Ψ}, then Ψ∪Ψ is a complete set of coset representatives

of H in G. It follows that G = {σψ′, σψ′ : ψ ∈ Ψ, σ ∈ H}, and thus

rOL =
∏
ψ∈Ψ

∏
σ∈H

σψ′−1(R)σψ′−1(R) =
∏
ψ∈Ψ

(rψOL)(rψOL).

The statement follows by taking the intersection of both sides with O bK .

We can now generalize the argument of Example 4.2.2 to arbitrary CM fields K.
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Theorem 4.2.5. Let (K,Φ) be a CM type and (K̂,Ψ) its reflex. Let r ≡ 1 (mod k) be a

prime that splits completely in K, and write its factorization in O bK as in Proposition 4.2.4.

Given ξ ∈ O bK , write (ξ mod rψ) = αψ ∈ Fr and (ξ mod rψ) = βψ ∈ Fr for ψ ∈ Ψ. Suppose

that ∏
ψ∈Ψ

αψ = 1 and
∏
ψ∈Ψ

βψ = ζ (4.6)

for some primitive k-th root of unity ζ ∈ F×r . Let π = NΨ(ξ) ∈ OK . Then

1. ππ ∈ Z,

2. NK/Q(π − 1) ≡ 0 (mod r), and

3. Φk(ππ) ≡ 0 (mod r).

Proof. Statement (1) follows from the fact that ππ = N bK/Q(ξ). Next, let R ⊂ OL be

the prime over r underlying the factorization of Proposition 4.2.4. Since ψ(rψ) ⊂ R for all

ψ ∈ Ψ, the conditions (4.6) imply that π − 1 ∈ OK and Φk(ππ) ∈ Z are both elements of

R. Statements (2) and (3) now follow.

If the element π in Theorem 4.2.5 generates K and NK/Q(π) is a prime q that is un-

ramified in K, then by Lemma 4.2.1 π is a q-Weil number corresponding to an g-dimensional

ordinary abelian variety A over Fq with endomorphism algebra K and Frobenius element π.

By Corollary 1.2.3, A has embedding degree k with respect to r. This leads to the following

algorithm.

Algorithm 4.2.6.

Input: a CM field K of degree 2g ≥ 4, a primitive CM type Φ of K, a positive integer

k, and a prime r ≡ 1 (mod k) that splits completely in K.

Output: a prime q and a q-Weil number π ∈ K corresponding to a g-dimensional

ordinary, simple abelian variety A/Fq that has embedding degree k with respect to r.

1. Compute a Galois closure L of K and the reflex (K̂,Ψ) of (K,Φ). Set ĝ ← 1
2 deg K̂

and write Ψ = {ψ1, ψ2, . . . , ψbg}.
2. Fix a prime R | r of OL, and compute the factorization of r in O bK as in Proposition

4.2.4.

3. Compute a primitive k-th root of unity ζ ∈ F×r .
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4. Choose random α1, . . . , αbg−1, β1, . . . , βbg−1 ∈ F×r .

5. Set αbg ←∏bg−1
i=1 α

−1
i ∈ F×r and βbg ← ζ

∏bg−1
i=1 β

−1
i ∈ F×r .

6. Compute ξ ∈ O bK such that (ξ mod rψi
) = αi and (ξ mod rψi

) = βi for i = 1, 2, . . . , ĝ.

7. Set q ← N bK/Q(ξ). If q is not prime, go to Step (4).

8. Set π ← NΨ(ξ). If q is not unramified in K, or π does not generate K, go to Step (4).

9. Return q and π.

Remark 4.2.7. We require g ≥ 2 in Algorithm 4.2.6, as the case g = 1 is already covered

by Example 4.2.2, and requires a slight adaptation.

The condition that r be prime is for simplicity of presentation only; the algorithm

easily extends to square-free values of r that are given as products of splitting primes. Such

r are required, for example, by the cryptosystem of Boneh, Goh, and Nissim [16]. An

example with an r of this form appears as Example 4.3.9 below.

Theorem 4.2.8. If the field K is fixed, then the heuristic expected run time of Algorithm

4.2.6 is polynomial in log r.

Proof. The algorithm consists of a precomputation for the fieldK in Steps (1)–(3), followed

by a loop in Steps (4)–(7) that is performed until an element ξ ∈ K̂ is found that has prime

norm q, and we also find in Step (8) that q is unramified in K and the type norm π = NΨ(ξ)

generates K.

The primality condition in Step (7) is the “true” condition that becomes harder to

achieve with increasing r, whereas the conditions in Step (8), which are necessary to guar-

antee correctness of the output, are so extremely likely to be fulfilled (especially in cryp-

tographic applications where K is small and r is large) that they will hardly ever fail in

practice and only influence the run time by a constant factor.

As ξ is computed in Step (6) as the lift to O bK of an element ξ ∈ O bK/rO bK ∼= (Fr)2bg,
its norm can be bounded by a constant multiple of r2bg. Heuristically, q = N bK/Q(ξ) behaves

as a random number, so by the prime number theorem it will be prime with probability

at least (2ĝ log r)−1, and we expect that we need to repeat the loop in Steps (4)–(7) about

2ĝ log r times before finding an element ξ with prime norm q. As each of the steps is

polynomial in log r, so is the expected run time up to Step (7), and we are done if we show
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that the conditions in Step (8) are met with some positive probability if K is fixed and r is

sufficiently large.

For q being unramified in K, one simply notes that only finitely many primes ramify in

the field K (which is fixed) and that q tends to infinity with r, since r divides NK/Q(π−1) ≤
(
√
q + 1)2g.

Finally, we show that π generates K with probability tending to 1 as r tends to infinity.

To show that K = Q(π), it suffices to show that any automorphism φ of L that fixes π also

fixes K. Let φ be an automorphism of L. Then the set φ ◦Ψ is a CM type of K̂. Suppose

that the following condition holds:

for every vector ~v ∈ {0, 1}bg that is not all 0 or 1, we have
bg∏
i=1

(αi/βi)vi 6= 1. (4.7)

Choose ~v ∈ {0, 1}bg such that vi = 0 if φ ◦ Ψ contains ψi and vi = 1 otherwise. Since

αi is (ψi(ξ) mod R) and βi is (ψi(ξ) mod R), it follows that (π/φ(π) mod R) is equal to∏bg
i=1(αi/βi)

vi . By the assumption (4.7), if this expression is 1 then ~v = ~0 or ~v = ~1, so

φ ◦Ψ = Ψ or φ ◦Ψ = Ψ. By definition of the reflex, these conditions imply that either φ or

φ is trivial on K, which is equivalent to φ acting trivially on the maximal real subfield K0.

It follows that φ either is trivial on K or acts on K by complex conjugation. If the latter

holds, then φ(π) = π implies that π is real and q = π2, so q ramifies in K.

We conclude that if (4.7) holds and q is unramified in K, then φ(π) = π implies that

φ is trivial on K, and thus K = Q(π). The set of 2bg − 2 (dependent) conditions in (4.7) on

the 2ĝ − 2 independent random variables αi, βi, 1 ≤ i ≤ ĝ − 1, is satisfied with probability

at least 1− (2bg− 2)/(r− 1). Since the probability that q is unramified tends to 1 as r tends

to infinity, it follows that K = Q(π) with probability tending to 1 as r tends to infinity.

4.3 Performance of Algorithm 4.2.6 and examples

Step (6) of Algorithm 4.2.6 uses the Chinese remainder theorem to determine an

element ξ ∈ O bK with the specified residues αi and βi modulo primes over r. In practice, for

given r, one lifts a standard basis of O bK/rO bK ∼= (Fr)2bg to O bK . Multiplying those lifts by

integer representatives for the elements αi and βi of Fr, one quickly obtains lifts ξ. We also

choose, independently of r, a Z-basis of O bK consisting of elements that are “small” with

respect to all absolute values of K̂. We translate ξ by multiples of r to lie in rF , where F is
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the fundamental parallelotope in K̂ ⊗R consisting of those elements that have coordinates

in (−1
2 ,

1
2 ] with respect to our chosen basis.

If we denote the maximum on F ∩ K̂ of all complex absolute values of K̂ by M bK , we

have q = N bK/Q(ξ) ≤ (rM bK)2bg. For the ρ-value ρ = g log q/ log r (see page 11), we find

ρ ≤ 2gĝ(1 + logM bK/ log r), (4.8)

which is approximately 2gĝ if r gets large with respect to M bK . We would like ρ to be small,

but this is not what one obtains by lifting random admissible choices of ξ.

Theorem 4.3.1. If the field K is fixed and r is large, we expect that

1. the output q of Algorithm 4.2.6 yields ρ ≈ 2gĝ, and

2. an optimal choice of ξ ∈ O bK satisfying the conditions of Theorem 4.2.5 yields ρ ≈ 2g.

The proof of Theorem 4.3.1 is due to Peter Stevenhagen and Marco Streng, and appears

in [42]. The idea is as follows: let Hr,k be the subset of the parallelotope rF ⊂ K̂ ⊗ R

consisting of those ξ ∈ rF ∩ O bK that satisfy the two congruence conditions (4.6) for a

given embedding degree k. To prove (1), one shows heuristically that a random ξ ∈ Hr,k

has N bK/Q(ξ) ≈ r2bg. To prove (2), one shows that the smallest value of M for which the

expected number of ξ ∈ Hr,k with N bK/Q(ξ) ≤M is at least 1 is M ≈ r2.

Open Problem 4.3.2. Find an efficient algorithm to compute an element ξ ∈ O bK satis-

fying the conditions of Theorem 4.2.5 for which ρ ≈ 2g.

4.3.1 Examples demonstrating the distribution of ρ-values

For very small values of r we are able to do a brute-force search for the smallest q by

testing all possible values of α1, . . . , αbg−1, β1, . . . , βbg−1 in Step (4) of Algorithm 4.2.6. We

performed two such searches, one in dimension 2 and one in dimension 3. The experimental

results support the conclusions of Theorem 4.3.1, that ρ ≈ 2g is possible with a smart choice

in the algorithm, and that ρ ≈ 2gĝ is achieved with a randomized algorithm.

Example 4.3.3. Take K = Q(ζ5), and let Φ = {φ1, φ2} be the CM type of K defined by

φn(ζ5) = e2πin/5. We ran Algorithm 4.2.6 with r = 1021 and k = 2, and tested all possible

values of α1, β1. The total number of primes q found was 125578, and the distribution of the

corresponding ρ-values appears in Figure 4.1. The smallest q found was q = 2023621, giving
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Figure 4.1: Distribution of ρ-values for pairing-friendly abelian surfaces with CM field Q(ζ5)
and embedding degree 2 with respect to r = 1021.
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Figure 4.2: Distribution of ρ-values for pairing-friendly abelian surfaces with CM field Q(ζ7)
and embedding degree 4 with respect to r = 29.
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a ρ-value of 4.19. The curve over Fq for which the Jacobian has this ρ-value is y2 = x5 +18,

and the number of points on its Jacobian is 4092747290896.

Example 4.3.4. Take K = Q(ζ7), and let Φ = {φ1, φ2, φ3} be the CM type of K defined

by φi(ζ7) = e2πi/7. We ran Algorithm 4.2.6 with r = 29 and k = 4, and tested all possible

values of α1, α2, β1, β2. The total number of primes q found was 162643, and the distribution

of the corresponding ρ-values appears in Figure 4.2. The smallest q found was q = 911,

giving a ρ-value of 6.07. The curve over Fq for which the Jacobian has this ρ-value is

y2 = x7 + 34, and the number of points on its Jacobian is 778417333.

Example 4.3.5. Take K = Q(ζ5), and let Φ = {φ1, φ2} be the CM type of K defined by

φi(ζ5) = e2πi/5. We ran Algorithm 4.2.6 with r = 2160 + 685 and k = 10, and tested 220

random values of α1, β1. The total number of primes q found was 7108. Of these primes,

6509 (91.6%) produced ρ-values between 7.9 and 8.0, while 592 (8.3%) had ρ-values between

7.8 and 7.9. The smallest q found had 623 binary digits, giving a ρ-value of 7.78.
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4.3.2 Examples of cryptographic size

We implemented Algorithm 4.2.6 in MAGMA [18] and used it to compute examples

of q-Weil numbers π corresponding to pairing-friendly abelian varieties of dimension 2 and

3. We then used CM methods (Section 1.2.4) to find curves whose Jacobians are in the

specified isogeny class. We chose the subgroup size r so that the discrete logarithm problem

in A[r] is expected to take roughly 280 steps. The embedding degree k is chosen so that

rk/g ≈ 1024; this would be the ideal embedding degree for the 80-bit security level if we

could construct varieties over Fq with #A(Fq) ≈ r.

Example 4.3.6. Let η =
√
−2 +

√
2 and let K be the degree-4 Galois CM field Q(η). Let

Φ = {φ1, φ2} be the CM type of K such that Im(φi(η)) > 0. We ran Algorithm 4.2.6 with

CM type (K,Φ), r = 2160 − 1679, and k = 13. The algorithm output the following field

size:

q = 31346057808293157913762344531005275715544680219641338497449500238872300350617165 \

40892530853973205578151445285706963588204818794198739264123849002104890399459807 \

463132732477154651517666755702167 (640 bits)

There is a single Fq-isomorphism class of curves over Fq whose Jacobians have CM by OK .

It has been computed in [124], and the desired twist turns out to be

C : y2 = x5 + 3x4 − 2x3 − 6x2 + 3x+ 1.

The number of points on Jac(C) is

n = 98257534012085645468742020244740953209785833076897404114476588803802898841721765552063 \

92181154361818788939054993090072546074938823597526095237976730990371957700656600973040 \

04394777376859846749722986780002585907720332533316840460187492286611405819671581730435 \

14025181652565119992502811164589910192157242874099206924648559421700563468599496922882 \

48425215869986332558945448705570388799388.

The ρ-value of Jac(C) is 7.99.

Example 4.3.7. Let η =
√
−30 + 2

√
5 and let K be the degree-4 non-Galois CM field

Q(η). The reflex field K̂ is Q(ω) where ω =
√
−15 + 2

√
55. Let Φ be the CM type of K

such that Im(φi(η)) > 0. We ran Algorithm 4.2.6 with the CM type (K,Φ), subgroup size

r = 2160 − 1445, and embedding degree k = 13. The algorithm output the following field

size:
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q = 11091654887169512971365407040293599579976378158973405181635081379157078302130927 \

51652003623786192531077127388944453303584091334492452752693094089192986541533819 \

35518866167783400231181308345981461 (645 bits)

The Igusa class polynomials forK can be found in the preprint version of [131]. We used the

roots of the Igusa class polynomials mod q to construct curves over Fq with CM by OK . As

K is non-Galois with class number 4 and the real quadratic subfield Q(
√

5) has class number

1, there are 8 isomorphism classes of curves in 2 isogeny classes [132, Theorem 3.1]. We

found a curve C in the correct isogeny class with equation y2 = x5 +a3x
3 +a2x

2 +a1x+a0,

with

a3 = 37909827361040902434390338072754918705969566622865244598340785379492062293493023 \

07887220632471591953460261515915189503199574055791975955834407879578484212700263 \

2600401437108457032108586548189769

a2 = 18960350992731066141619447121681062843951822341216980089632110294900985267348927 \

56700435114431697785479098782721806327279074708206429263751983109351250831853735 \

1901282000421070182572671506056432

a1 = 69337488142924022910219499907432470174331183248226721112535199929650663260487281 \

50177351432967251207037416196614255668796808046612641767922273749125366541534440 \

5882465731376523304907041006464504

a0 = 31678142561939596895646021753607012342277658384169880961095701825776704126204818 \

48230687778916790603969757571449880417861689471274167016388608712966941178120424 \

3813332617272038494020178561119564.

The number of points on Jac(C) is

n = 12302480813607134152353875076989454869931477616234328922193695444353667807283567991245 \

52289361933877359068792458700186290529504684796804568944080681730157602604572147127022 \

31288523317856392212671114502267687283901115567591891650298458993321887124003665048523 \

38670650751419620560388032480624660152147036520126818089716832434307572624148525008152 \

014578663376649053009947066525621705214049680.

The ρ-value of Jac(C) is 8.06.

Example 4.3.8. Let K be the degree-6 Galois CM field Q(ζ7), and let Φ = {φ1, φ2, φ3} be

the CM type of K such that φn(ζ7) = e2πin/7. We used the CM type (K,Φ) to construct a

curve C whose Jacobian has embedding degree 17 with respect to r = 2180− 7427. There is
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a unique isomorphism class of curves in characteristic zero whose Jacobians are absolutely

simple and have CM by K; these curves are given by y2 = x7 + a. Algorithm 4.2.6 output

the following field size:

q = 15755841381197715359178780201436879305777694686713746395506787614025008121759749726349 \

37716254216816917600718698808129260457040637146802812702044068612772692590771889662051 \

56107806823000096120874915612017184924206843204621759232946263357637192516979877402638 \

9116897144108553148110927632874029911153126048408269857121431033499 (1077 bits)

The equation of the curve C is y2 = x7 + 10. The number of points on Jac(C) is

n = 39113330703213383903291899165497846707299640282288010371282813488147953692153947662664 \

87252485974936142264723108321714842103685916400288716182633388935114532835166693330040 \

95545943359012561774771305526500666604924329553188177699453004555405726433521561627622 \

61074129109013127264412235930234914768887070866275495725369523589290159648017286825332 \

13398119756438341220383130961697054012739531362817955056695544923703260402101558162169 \

27334291487286073498459048447037839938917664864068332436643506359136501666836695077326 \

30537433609708703129108678808307517651131971076118265117524469717302805274201967349144 \

38426064159106519721205811641961761227684605183281919001353935798297520311078638711448 \

72379208464128289504401132185462240908777732195011292231019924327946350840874929691801 \

70242401172090383352813864799888248813047134539470026093689167970134943800805899022427 \

48586135077158852852001496833282132349040089907306348248919793635627911951010657055098 \

159756792889062169576019083.

The ρ-value of Jac(C) is 17.95.

We now give an example of an abelian surface that is pairing-friendly with respect

to a subgroup whose order is a composite number that is presumed to be infeasible to

factor, such as an RSA modulus. Such abelian varieties are required by a number of recent

protocols, such as that of Boneh, Goh, and Nissim [16].

Example 4.3.9. Let K = Q(ζ5). We chose two random 512-bit primes congruent to 1 mod

5,

r1 = 11856688933122306712531807066122238396666465588837749557506570490684144303902813825873 \

551794459259674597557027194217311490745735797836341219374437395610371,

r2 = 12720953704024996851715009787852970500057783698336479473144274622632461124945698973258 \

268824071286151997260549018351088484741838683144715708710336086192081,

and set r = r1r2. Let Φ = {φ1, φ2} be the CM type of K defined by φi(ζ5) = e2πi/5. We

used the CM type (K,Φ) to construct a curve C whose Jacobian has embedding degree 1



80

with respect to both r1 and r2. We ran Steps (4) and (5) of Algorithm 4.2.6 for each of r1

and r2, and combined the results modulo r in Step (6). This modified algorithm output the

field size

q = 15305870577409851876289113028580329836078659930030429240512042343301192834799149144442 \

05306727371204456305652250167850021083923658534356683194226231182780831326634187879416 \

14495184031267778964109279448921867740552536616129070354304897783659358739595010718915 \

11146756371547330497981734382713426984316028382805897839962496228320101227973555854647 \

04554474469541725082042374935237802651609518636715018641122747524291521644233591146378 \

21859901176790037660028389832831432899097670590996223027686315569096715314736656223931 \

38848795403328584885953767830463466707630016817038498835683349061661845613859738852134 \

27603587984874905102613761371339797676153245430645356358443376449483800403438204439384 \

97999747999642923717047286744973592275821382124862960329786730977712064192699696139914 \

72611814580568512892181187433399835721051418647509430657062758455801139095565029007635 \

61654955366276645120027000222514570745405077437252734979546811837118564070384613823416 \

73373892312213000882840101747935749506434009093189986194415920812391819415999263220759 \

88344370056780822915422219851064871656382428710473985632013468597037008267717153955643 \

03077731549586343097747519834757426072073294857723485730686405890330436472056117598460 \

965761440398702915841156471.

The equation of the curve C is y2 = x5 + 28. The number of points on Jac(C) is
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n = 23426967413242059247761153665964776744834615410460936438247712371139176779262109902343 \

74199228669946259573580828630039461086239081758575972695514513501880938293759655771000 \

63557748135352030958817498075184361976515996532475545598013859366239488124051490416908 \

07197701631795107093955658774342786795748251615267429157991498155496214084045191716469 \

76970479540238108699403959831678960851175582125601082139717626477826223494860015367625 \

51018060002193033486345228533304541181543073080060002257000118924771917522668699506852 \

80211971443390391133709527548886526781982040577981692822714539832289447164851702844518 \

43675394526166292951549872324453544592887310125013912081318734787687611705379403953381 \

27191045522603846760357931345750847663744006141917559577776487260810446699143120851673 \

67650444175441439248739417258405308071477992158269569064050918195806831131736611334068 \

26793505413004914302505400187694284836431267557256905937124880333750425162092460939049 \

04823630958425417016704530700021038475717172406795956478848017560677371756405280083827 \

87070537789039367675543110155225625432813106707791816836762696392716470468386982839056 \

39440768910521299108713033705739336945623822130494225319387819507884687628708566597708 \

23452516277500963561146187047154220550264158094911389255264315934811555192211653883871 \

47202380799184327442648223962981017246785201886759972836210773619439190635498840177350 \

73259157156590091401405973221768447687160494186295805136343979195503950558230675736028 \

87493467631705907346526136661681326539596752964487343469859379452406909751260794319284 \

50609221863699233336318985374682067799984596582222298162876618083032232912006554059107 \

86234846406764378119680190499456944355330181893097194548299189618101149716283202893173 \

58807609635336499282858169888345621547048291219905664160755827821020870544135024839927 \

35197766499406080615409150165541292039209288664492553128573355471420463912134790016237 \

89045806297512566841579964497156228403175362962460208369693051398201036430968071092461 \

54853557162447730706464011975932984974033845629329589249269354959681568506544793514123 \

31092842389371579848475340984602697256929155207876918949319999183071820307875931857439 \

79182235710850090048451467152159707810997200119677538431361879863477670186660694786125 \

40180449212407589196775928923992491827764840704078650446001037562327609820674522122652 \

06769176746883461365765760684425625326171954731006096130092390185607970843024674869657 \

77145788751364904946926792070410169096691133613925296.

The ρ-value of Jac(C) with respect to r = r1r2 is 7.98.

We conclude with an example of an 8-dimensional pairing-friendly abelian variety

found using our algorithms. Since CM methods are not developed in dimension 8, we

started with a single CM abelian variety A in characteristic zero and applied our algorithm

to different CM types until we found a prime q for which the reduction has the specified em-

bedding degree. To speed up the search, we used a small (i.e., non-cryptographic) subgroup
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size r.

Example 4.3.10. Let K = Q(ζ17). We set r = 1021 and k = 10 and ran Algorithm

4.2.6 repeatedly with different CM types for K. Given the output, we tested the Jacobians

of twists of y2 = x17 + 1 for the specified number of points. We found that the curve

y2 = x17 + 30 has embedding degree 10 with respect to r over the field Fq of order

q = 6869603508322434614854908535545208978038819437.

The CM type producing this q was

Φ = {φ1, φ3, φ5, φ6, φ8, φ10, φ13, φ15},

where φn(ζ17) = e2πin/17. The number of points on Jac(C) is

n = 49596767669734690396483294297242049264137991259883991466325815369473583352878357078415 \

33722240256546576887632756868758737467860743626339670941664308267473521789465058669390 \

78241397009939647628736463907607851411770208766581896025805693515312873934071230292821 \

34867798307132054329986633233201819182828117339688977152736243690105873530954449413613 \

08898131394201910207237.

The ρ-value of Jac(C) is 121.9.

Even if we could improve on the ρ-value of Example 4.3.10, abelian varieties of dimen-

sion 8 would be of limited use in cryptographic applications, as index calculus attacks can

solve the discrete logarithm problem in time O(q16/9) [49]. If ρ ≈ 1 then this is equivalent

to O(r2/9), which is much faster than the best time of O(r1/2) in dimensions 1 and 2.

4.4 A generalized Brezing-Weng method

Algorithm 4.2.6 can be viewed as a generalization to arbitrary dimension of the Cocks-

Pinch method (Theorem 2.3.1) for constructing pairing-friendly ordinary elliptic curves. In

the elliptic curve case, the Brezing-Weng method (Theorem 2.5.1) generalizes the Cocks-

Pinch method by parametrizing the trace t, subgroup size r, and field size q as polynomials

t(x), r(x), q(x) that produce valid curve parameters for many different inputs x. The

advantage of such “families” is that the ρ-values produced are often smaller than those

produced by the Cocks-Pinch method.



83

In this section, we show how the techniques of Section 4.2 can be used to view the

Brezing-Weng construction from a new perspective that admits a generalization to higher

dimensions. In dimension g the resulting abelian varieties have ρ-values strictly less than

2gĝ, which is the best value we expect to obtain from Algorithm 4.2.6.

For convenience, we reproduce the Brezing-Weng algorithm here.

Algorithm 4.4.1 ([19]).

Input: a positive integer k and a positive square-free integer D.

Output: polynomials r(x), and q(x) such that for any x0 for which q(x0) is prime,

there is an ordinary elliptic curve E over Fq(x0) such that End(E) ⊗ Q ∼= Q(
√
−D) and E

has embedding degree k with respect to r(x0).

1. Find an irreducible polynomial r(x) ∈ Z[x] such that L = Q[x]/(r(x)) is a number

field containing
√
−D and the cyclotomic field Q(ζk).

2. Choose a primitive kth root of unity ζ ∈ L.

3. Let t(x) ∈ Q[x] be a polynomial mapping to ζ + 1 in L.

4. Let y(x) ∈ Q[x] be a polynomial mapping to (ζ − 1)/
√
−D in L.

5. Set q(x)← (t(x)2 +Dy(x)2)/4. Return r(x) and q(x).

Remark 4.4.2. In this chapter we will always use K to denote a CM field, and L to denote

a field containing K and some primitive kth root of unity. This notation differs slightly

from that of Chapter 2.

Our new perspective on the Brezing-Weng method starts with the fact that since

L = Q[x]/(r(x)) contains K = Q(
√
−D), the polynomial r(x) splits into two irreducible

factors when viewed as an element of K[x]. We thus have r(x) = r1(x)r1(x) in K[x], and

L ∼= K[x]/(r1(x)) ∼= K[x]/(r1(x)). Without loss of generality, we may assume that the map

implied in Steps (3) and (4) of Algorithm 4.4.1 sends x to a root of r1(x).

If we compute t(x) and y(x) as in Theorem 4.4.1 and let π(x) = 1
2(t(x) + y(x)

√
−D),

then π(x) ≡ ζ mod r1(x). In addition, we see that π(x) = 1
2(t(x) − y(x)

√
−D) ≡ 1 mod

r1(x), or equivalently, π(x) ≡ 1 mod r1(x). We thus see that π(x) satisfies conditions

analogous to those of Corollary 1.2.3:

(π(x)− 1)(π(x)− 1) ≡ 0 mod r(x),

Φk(π(x)π(x)) ≡ 0 mod r(x).
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The expression π(x)π(x) gives the q(x) of the algorithm, so we conclude that for any x0 ∈ Q

for which q(x0) is a prime integer, π(x0) ∈ K is the Frobenius endomorphism of the elliptic

curve E specified in the algorithm’s description.

Algorithm 4.2.6 fixes a prime subgroup size r and uses the type norm from K̂ to

construct a Frobenius element π ∈ K that has specified residues modulo certain primes

over r in OK . To apply these ideas to the Brezing-Weng construction, we extend the type

norm to a multiplicative map Nφ on polynomials in K[x].

Definition 4.4.3. Let K be a CM field and Φ be a CM type of K, and let L be the normal

closure of K. Define the extended type norm Nφ : K[x]→ L[x] by

NΦ(ξ) =
∏
φ∈Φ

φ(ξ),

where φ(ξ) is obtained by applying φ to the coefficients of ξ.

If degK = 2g, then NΦ(ξ) is a polynomial of degree g times the degree of ξ.

Lemma 4.4.4. Let ξ ∈ K[x], and let Φ be a CM type of K. Then NΦ(ξ) ∈ K̂[x], where K̂

is the reflex field of (K,Φ).

Proof. Let L be the normal closure of K, and let σ ∈ Gal(L/K̂). Then by definition of

the reflex type, σ permutes the elements of Φ, so σ(
∏
φ∈Φ φ(ξ)) =

∏
φ∈Φ φ(ξ). (Cf. Lemma

4.2.3.)

Remark 4.4.5. In a similar manner, for any extension of number fields L/K we can extend

the norm NL/K to polynomials f ∈ L[x] by setting NL/K(f) =
∏
φ φ(f), where φ ranges

over the set of embeddings of L in its normal closure that fix K. An argument analogous

to the proof of Lemma 4.4.4 then shows that the image of NL/K is contained in K[x].

To generalize the Brezing-Weng construction, we let K be a CM field of degree 2g

with primitive CM type Φ. Let (K̂,Ψ) be the reflex CM type, and let deg K̂ = 2ĝ. Let

L = Q[x]/(r(x)) be a number field containing K̂ and Q(ζk). In the case where K = K̂ is a

quadratic imaginary field, the Brezing-Weng method constructs directly a polynomial π(x)

parametrizing Frobenius elements by prescribing the residues of π(x) modulo each factor of

r(x) in K[x]. To generalize this construction along the lines of Algorithm 4.2.6, we construct

π(x) as the extended type norm NΨ of an element ξ ∈ K̂[x] with prescribed residues modulo

factors of r(x) in K̂[x]. The following proposition is an analogue of Proposition 4.2.4 that

allows us to index the factors of r(x) in K̂[x] in a way that will be useful for our construction.
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Proposition 4.4.6. Let K̂ be a CM field and Ψ be a CM type on K̂. Let r(x) ∈ Q[x] be

irreducible, and assume that L = Q[x]/(r(x)) is Galois and contains K̂. Let G = Gal(L/Q)

and H = Gal(L/K̂). For each ψ ∈ Ψ let ψ′ ∈ G be a representative of the left coset of H

that induces the embedding ψ on K̂.

Fix a root γ ∈ L of r(x). For each ψ ∈ Ψ, define

rψ(x) = N
L/ bK(x− ψ′−1(γ)), rψ(x) = N

L/ bK(x− ψ′−1(γ)).

Then for each ψ ∈ Ψ, rψ and rψ are irreducible elements of K̂[x], and the complete factor-

ization of r(x) in K̂[x] is given by

r(x) =
∏
ψ∈Ψ

rψ(x)rψ(x). (4.9)

Proof. The fact that rψ and rψ are in K̂[x] follows from Remark 4.4.5. Since L is Galois,

any root δ ∈ L of rψ(x) is also a root of r(x), and thus L = Q(δ) = K̂(δ). It follows that

the minimal polynomial of δ over K̂ has degree [L : K̂], which by construction is the degree

of rψ(x). Therefore rψ(x) is the minimal polynomial of δ over K̂ and is thus irreducible.

The proof for ψ is analogous.

Since the elements of H induce the complete set of embeddings of K̂ in L, we have

rψ(x) =
∏
σ∈H

(x− σψ′−1(γ)), rψ(x) =
∏
σ∈H

(x− σψ′−1(γ)).

If we let Ψ′ = {ψ′ : ψ ∈ Ψ} and Ψ′ = {ψ′ : ψ ∈ Ψ}, then the set of roots of the right hand

side of (4.9) is exactly {τ(γ) : τ ∈ H(Ψ′ ∪ Ψ′)−1}. Since Ψ′ ∪ Ψ′ is a complete set of left

coset representatives of H in G, its inverse is a complete set of right coset representatives of

H in G, and thus H(Ψ′ ∪Ψ′)−1 = G. We conclude that {τ(γ) : τ ∈ H(Ψ′ ∪Ψ′)−1} consists

of precisely the roots of r(x) in L.

We now obtain an analogue of Theorem 4.2.5:

Theorem 4.4.7. Let (K,Φ) be a CM type and (K̂,Ψ) its reflex. Let r(x) ∈ Q[x] be

an irreducible (not necessarily monic) polynomial such that L = Q[x]/(r(x)) is a Galois

extension of Q containing K̂ and the cyclotomic field Q(ζk).

Let γ ∈ L be a root of r(x), and write the factorization of r(x) in K̂[x] as in Proposition

4.4.6. Given ξ ∈ K̂[x], for each ψ ∈ Ψ suppose αψ, βψ ∈ Q[x] satisfy

ξ ≡ αψ mod rψ(x) and ξ ≡ βψ mod rψ(x). (4.10)
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Suppose that ∏
ψ∈Ψ

αψ(γ) = 1 and
∏
ψ∈Ψ

βψ(γ) = ζ, (4.11)

where ζ ∈ L is a primitive kth root of unity. Then π(x) = NΨ(ξ) ∈ K[x] satisfies

1. π(x)π(x) ∈ Q[x],

2. NK/Q(π(x)− 1) ≡ 0 mod r(x), and

3. Φk(π(x)π(x)) ≡ 0 mod r(x).

Proof. Statement (1) follows from Remark 4.4.5 and the fact that π(x)π(x) = N bK/Qξ.
Next, (4.10) implies that ξ − αψ = frψ for some f ∈ K̂[x], so ψ′−1(γ) ∈ L is a root of

ξ − αψ ∈ K̂[x]. Applying ψ′ to this expression and using the fact that αψ ∈ Q[x], we

see that γ is a root of ψ(ξ) − αψ ∈ L[x]. It follows that (ψ(ξ))(γ) = αψ(γ), and by the

same reasoning, (ψ(ξ))(γ) = βψ(γ). Now since π(γ) =
∏
ψ∈Ψ(ψ(ξ))(γ) by definition of the

extended type norm, we conclude from (4.11) that π(γ) = 1 and π(γ) = ζ, from which

statements (2) and (3) follow.

If π(x) and r(x) are as in Theorem 4.4.7, then by Corollary 1.2.3 for any x0 ∈ Q for

which q = π(x0)π(x0) is a prime, the algebraic integer π(x0) ∈ OK is the Frobenius element

of an abelian variety over Fq that has embedding degree k with respect to r(x0). We can

thus view π(x) as defining a one-parameter “family” of pairing-friendly Frobenius elements.

The following definition formalizes this concept, generalizing Definition 2.2.3.

Definition 4.4.8. Let K be a CM field of degree 2g, let π(x) ∈ K[x], and let r(x) ∈ Q[x].

We say that (π, r) represents a family of g-dimensional abelian varieties with embedding

degree k if:

1. q(x) = π(x)π(x) is in Q[x].

2. q(x) represents primes (in the sense of Definition 2.2.1).

3. r(x) is non-constant, irreducible, and integer-valued, and has positive leading coeffi-

cient.

4. NK/Q(π(x)− 1) ≡ 0 mod r(x).

5. Φk(q(x)) ≡ 0 mod r(x), where Φk is the kth cyclotomic polynomial.
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With our setup, we can now adapt Algorithm 4.2.6 to our new context.

Algorithm 4.4.9.

Input: a primitive CM type (K,Φ); its reflex type (K̂,Ψ); a positive integer k; a

polynomial r(x) ∈ Q[x], satisfying condition (3) of Definition 4.4.8, such that Q[x]/(r(x))

is a Galois number field containing K and the cyclotomic field Q(ζk); and a non-empty set

Σ ⊂ Q[x].

Output: a polynomial π(x) ∈ K[x] such that if q(x) = π(x)π(x) represents primes

(in the sense of Definition 2.2.1), then (π, r) represents a family of abelian varieties with

embedding degree k (in the sense of Definition 4.4.8).

1. Set ĝ ← 1
2 deg K̂ and write Ψ = {ψ1, ψ2, . . . , ψbg}. Set L← Q[x]/(r(x)).

2. Let γ ∈ L be a root of r(x). Compute the factorization of r(x) in K̂[x] as in Proposition

4.4.6.

3. Choose a primitive kth root of unity ζ ∈ L.

4. Choose polynomials α1, . . . , αbg−1, β1, . . . , βbg−1 ∈ Q[x] from Σ.

5. Compute αbg ∈ Q[x] such that
∏bg
i=1 αi(γ) = 1, and compute βbg ∈ Q[x] such that∏bg

i=1 βi(γ) = ζ.

6. Use the Chinese remainder theorem to compute ξ ∈ K̂[x] such that ξ ≡ αi mod rψi
(x)

and ξ ≡ βi mod rψi
(x) for i = 1, 2, . . . , ĝ.

7. Set π(x)← NΨ(ξ), and return π(x).

We note that if K is a quadratic imaginary field, then Step (4) is empty and setting

q(x) = π(x)π(x) and t(x) = π(x) + π(x) recovers the Brezing-Weng algorithm. In this case

the polynomial r(x) splits into two factors in K[x] regardless of whether L is Galois, so we

do not need the Galois hypothesis on L.

Given the output π(x) of Algorithm 4.4.9, we can use Algorithm 2.2.4 to find an x0

for which q(x0) = π(x0)π(x0) is prime and r(x0) has a large prime factor. By Proposition

2.2.5, we expect that such an x0 can be found in time that is linear in the degrees of π and

r and quadratic in the desired bit size of x0. By Lemma 4.2.1, in order for π(x0) to be the

Frobenius element of an ordinary, simple abelian variety of dimension g, we need to confirm
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that π(x0) generates K over Q and q(x0) is unramified in K. An analysis along the lines

of Theorem 4.2.8 shows that these two conditions are satisfied with very high probability.

Once the conditions are checked, we can then use the CM methods described in Section

1.2.4 to construct an explicit abelian variety A over Fq(x0) with embedding degree k.

4.5 Parameter selection in Algorithm 4.4.9 and examples

The primary advantage of Algorithm 4.4.9 over Algorithm 4.2.6 is that the former

leads to pairing-friendly abelian varieties with smaller ρ-values than the latter. Recall that

the ρ-value of a g-dimensional abelian variety over Fq with respect to a subgroup of order

r is ρ = g log q/ log r. If q = q(x) and r = r(x) are parametrized as polynomials, then for

large x the ρ-value approaches g deg q/ deg r. This motivates the definition of a ρ-value for

a family of pairing-friendly abelian varieties.

Definition 4.5.1. Suppose (π, r) represents a family of g-dimensional abelian varieties

with embedding degree k, and let q(x) = π(x)π(x). The ρ-value of the family represented

by (π, r), denoted ρ(π, r), is

ρ(π, r) = lim
x→∞

g log q(x)
log r(x)

=
g deg q(x)
deg r(x)

.

The key feature of Algorithm 4.4.9 is that the polynomial ξ constructed by the Chinese

remainder theorem in Step (6) can always be chosen to have degree strictly less than deg r,

and thus deg π ≤ ĝ(deg r − 1). We thus obtain

ρ(π, r) = 2gĝ
deg ξ
deg r

≤ 2gĝ
deg r − 1

deg r
.

This asymptotic ρ-value is an improvement over the ρ-values produced by Algorithm 4.2.6,

which by Theorem 4.3.1 gives expected ρ-values very close to ρ ≈ 2gĝ for varieties of

cryptographic size.

To improve the ρ-values further one would try to choose the inputs to Algorithm 4.4.9

in some clever manner so that the π produced has degree significantly less than ĝ deg r.

These choices include the ζ of Step (3), the αi and βi of Step (4) (which are chosen from

the input Σ), and the input polynomial r(x).

In Section 2.5 we saw a number of methods for computing an optimal π in the case of

elliptic curves, where there are only ζ and r(x) to consider. In higher dimensions we search
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for a π(x) of low degree by following the model of Brezing and Weng described in Section

2.5.1. We let r(x) be a cyclotomic polynomial Φ` such that k | ` and L ∼= Q(ζ`) contains the

specified CM field K. Since L is abelian, in this case the CM field K must also be abelian,

and thus equal to the reflex field K̂. We choose the αi, βi all to be polynomials that reduce

to roots of unity (of any order) in L. Since r(x) is the `th cyclotomic polynomial, x is a

primitive `th root of unity in Q[x]/(rψ(x)) for all ψ ∈ Ψ. Thus if we choose αi, βi as

(α1, . . . , αg) ∈ {(xa1 , . . . , xag) : 0 ≤ ai < `,
∑g

i=1 ai = 0} , (4.12)

(β1, . . . , βg) ∈
{

(xb1 , . . . , xbg) : 0 ≤ bi < `, gcd(`,
∑g

i=1 bi) = `/k
}
, (4.13)

then
∏
αi = x

P
ai ≡ 1 mod r(x), and

∏
βi = x

P
bi is a primitive kth root of unity mod

r(x).

4.5.1 Dimension 2

For given CM type (K,Φ), embedding degree k, and cyclotomic polynomial r(x) =

Φ`(x), our implementation of Algorithm 4.4.9 searches through all αi, βi satisfying (4.12)

and (4.13) and returns the ξ of smallest degree. We illustrate with a detailed example for

g = 2 that produces ρ-values around 4, thus answering (in one case) Open Problem 4.3.2.

Example 4.5.2 (g = 2, k = 5, ρ = 4). Let K = Q(ζ5), k = 5, and

r(x) = Φ5(x) = x4 + x3 + x2 + x+ 1.

We choose the CM type Φ = {φ1, φ2} where φ1 is the identity and φ2 : ζ5 7→ ζ3
5 . Then

Ψ = {ψ1, ψ2}, where ψ1 is the identity and ψ2 : ζ5 7→ ζ2
5 . If we use the root γ = ζ5 to factor

r(x) in K[x] as in Proposition 4.4.6, we obtain

r(x) = r1(x)r2(x)r1(x)r2(x) = (x− ζ5)(x− ζ3
5 )(x− ζ4

5 )(x− ζ2
5 ).

We choose

α1 = x, α2 = x3, β1 = x, β2 = x4

and use the Chinese remainder theorem to compute

ξ(x) = 1
5(−2ζ3

5 − 4ζ2
5 − ζ5 − 3)x2 + 1

5(−ζ3
5 − 2ζ2

5 + 2ζ5 + 1)x

+ 1
5(−2ζ3

5 − 4ζ2
5 − ζ5 − 3).
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Taking the extended type norm NΦ(ξ) gives

π(x) = 1
5(−ζ3

5 + ζ2
5 + ζ5 − 1)x4 + 1

5(ζ3
5 + 2ζ5 − 3)x3 + 1

5(3ζ2
5 + 4ζ5 − 2)x2

+ 1
5(ζ3

5 + 2ζ5 − 3)x+ 1
5(−ζ3

5 + ζ2
5 + ζ5 − 1), (4.14)

and we compute

q(x) = π(x)π(x) = 1
5

(
x8 + 2x7 + 8x6 + 9x5 + 15x4 + 9x3 + 8x2 + 2x+ 1

)
.

Since q(x) is irreducible and q(1) = 11 and q(−4) = 11941 are distinct primes, q(x) repre-

sents primes as in Definition 2.2.1, and thus (π, r) represents a family of abelian surfaces

with embedding degree 5.

Let us construct an example abelian surface in this family. We input y0 = 254 to

Algorithm 2.2.4. Using a = 5 and b = 1 in Step (1), the algorithm outputs h = 5 and

x0 = 90071992547410826. We then compute

r(x0) = 5 · 13164036458570178131583285920762360050673837342185838700280879526651

q(x0) = 8664592794128243859387924867522176371767802804679368822415066481255932972638124680359 \

56767095752602707670039813934558567516584668847561 (449 bits).

Then r(x0) is 5 times a 224-bit prime r0. The Frobenius element π(x0) ∈ Q(ζ5) can be

computed from (4.14), and the number of points n is

NK/Q(π(x0)− 1) = 750751682880590880758711726029628178972094394801060386139877155309970053724 \

325739795315304263728043006622715158418852616320709984510863881685818554792 \

291764148781436936054052813749689440867929088179317241437357723407745744526 \

071772162827435691962393142167332744537571805.

Over any field F there is a single F-isomorphism class of abelian surfaces whose ring of

F-endomorphisms is isomorphic to Z[ζ5]. If char F is prime to 10, then this abelian surface

is isomorphic (over F) to the Jacobian of C : y2 = x5 + 1. Over F we must find the twist of

C that is in the correct F-isogeny class; i.e., has a Jacobian with the correct number of F-

rational points. By choosing a random point P on each twist and seeing whether [n]P = O,

we find that the correct curve over F = Fq(x0) is

C : y2 = x5 + 5.

The ρ-value of Jac(C) with respect to the subgroup of order r0 is 4.02.
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Table 4.1: Quartic CM fields K contained in cyclotomic fields Q(ζ`) with ϕ(`) ≤ 16.

K `

Q(ζ5) 5, 10, 15, 20, 30, 40, 60

Q(
√
−13 + 2

√
13) 13, 26

Q(
√
−2 +

√
2) 16, 32, 48

Q(
√
−5 +

√
5) 40

Q(
√
−6 + 3

√
2) 48

Q(
√
−30 + 6

√
5) 60

Remark 4.5.3. The abelian surface A = Jac(C) computed in Example 4.5.2 has the

property that the bit size of the field Fqk in which pairings on A take their values is roughly

ρk/g = 10 times the bit size of the prime-order subgroup A[r]. It follows that A is suitable

for applications with security level equivalent to a 112-bit symmetric-key system (cf. Table

1.1 and Section 3.1.1). In addition, since the curve C has a degree-10 twist, we expect that

twisting methods such as those developed for elliptic curves [97] can be used to increase the

speed of pairing computation on the Jacobian and reduce the size of the input.

We ran Algorithm 4.4.9 for all degree-4 CM fields K that are primitive (i.e., do not

contain a quadratic imaginary subfield) and are contained in a cyclotomic field Q(ζ`) with

ϕ(`) ≤ 16. Such fields are necessarily Galois cyclic. These fields, and the corresponding

values of `, appear in Table 4.1. We let the inputs to the algorithm range over all such K

and ` and embedding degrees k dividing `. Given an η such that K = Q(η), we let Φ be the

CM type that consists of embeddings φi such that φi(η) all have positive imaginary part.

We tested all choices of αi, βi satisfying (4.12) and (4.13), and computed the ξ of smallest

degree that produces a q(x) that represents primes in the sense of Definition 2.2.1. Some

examples appear below.

Example 4.5.4 (g = 2, k = 10, ρ = 6). Let K = Q(ζ5), k = 10, r(x) = Φ10(x) =

x4 − x3 + x2 − x+ 1. Algorithm 4.2.6 outputs

π(x) = 1
25

(ζ35 − ζ25 − ζ5 + 1)x6 + 1
25

(−6ζ35 + 5ζ25 + 3ζ5 − 2)x5 + 1
5
(2ζ35 − ζ25 − 2)x4 + 1

5
(−2ζ35

− ζ5 + 4)x3 + 1
5
(3ζ35 − 2ζ25 − 2)x2 + 1

25
(−4ζ35 − ζ25 − ζ5 + 11)x+ 1

25
(4ζ35 − 5ζ25 − 2ζ5 − 2).

The ρ-value of this family is 6. On input y0 = 240, Algorithm 2.2.4 outputs h = 5 and
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x0 = 5497558154509. We find that A is the Jacobian of the genus 2 curve

C : y2 = x5 + 15.

Then r(x0) is 5 times a 168-bit prime r0. The ρ-value of A with respect to r0 is within

10−10 of 6.

Example 4.5.5 (g = 2, k = 16, ρ = 7). Let K = Q(η), where η =
√
−2 +

√
2. Let k = 16

and r(x) = Φ16(x) = x8 + 1. Algorithm 4.4.9 outputs

π(x) = 1
64

(−η2 − 2)x14 + 1
32

(−η2 − 3η − 2)x13 + 1
64

(η2 − 4η − 16)x12 + 1
16

(−2η3 + η2 − 6η

+ 5)x11 + 1
64

(−8η3 + η2 − 28η)x10 + 1
32

(4η3 − η2 + 7η − 2)x9 + 1
64

(8η3 − η2 + 16η

− 34)x8 + 1
8
(−η3 − 2η + 4)x7 + 1

64
(−8η3 − η2 − 16η − 2)x6 + 1

32
(4η3 − η2 + 13η − 2)x5

+ 1
64

(8η3 + η2 + 28η − 16)x4 + 1
16

(η2 + 2η + 5)x3 + 1
64

(η2 + 4η)x2 + 1
32

(−η2 − η − 2)x

+ 1
64

(−η2 − 2).

The ρ-value of this family is 7. The single Q-isomorphism class of genus 2 curves whose

Jacobians have CM by OK is given by van Wamelen [124]. On input y0 = 218, Algorithm

2.2.4 outputs h = 2 and x0 = 1083939. We find A to be the Jacobian of the genus 2 curve

C : y2 = x5 + 3x4 − 2x3 − 6x2 + 3x+ 1.

Then r(x0) is 2 times a 160-bit prime r0. The ρ-value of A with respect to r0 is 6.91.

Example 4.5.6 (g = 2, k = 13, ρ = 20/3). Let K = Q(η), where η =
√
−13 + 2

√
13. Let

k = 13 and let

r(x) = Φ13(x) = x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Algorithm 4.4.9 outputs

π(x) = 1
4056

(−19η3 + 183η2 − 377η + 2301)x20 + 1
338

(−2η3 + 7η2 − 39η + 78)x19 + 1
4056

(23η3

+ 177η2 + 481η + 2535)x18 + 1
1352

(7η3 + 49η2 + 65η + 767)x17 + 1
2028

(19η3 + 141η2

+ 221η + 1755)x16 + 1
1352

(η3 + 97η2 − 65η + 1183)x15 + 1
2028

(31η3 + 192η2 + 377η

+ 2496)x14 + 1
1352

(13η3 + 173η2 + 195η + 2587)x13 + 1
26

(3η2 − 2η + 39)x12 + 1
52

(η3 + 8η2

+ 11η + 104)x11 + 1
312

(5η3 + 33η2 + 55η + 507)x10 + 1
78

(2η3 + 9η2 + 28η + 117)x9

+ 1
312

(5η3 + 33η2 + 55η + 507)x8 + 1
4056

(97η3 + 441η2 + 1235η + 5811)x7 + 1
338

(2η3

+ 32η2 + 13η + 429)x6 + 1
2028

(8η3 + 165η2 + 52η + 2535)x5 + 1
1352

(19η3 + 81η2 + 273η

+ 923)x4 + 1
338

(−η3 + 9η2 − 26η + 130)x3 + 1
4056

(23η3 + 99η2 + 325η + 1521)x2

+ 1
2028

(8η3 + 3η2 + 130η + 39)x+ 1
338

(−η2 − 13).
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Table 4.2: Best ρ-values for families of abelian surfaces.
k CM field K r(x) ρ-value k CM field K r(x) ρ-value
6 Q(

√
−6 + 3

√
2) Φ48(x) 7.5 30 Q(ζ5) Φ60(x) 7

8 Q(
√
−5 +

√
5) Φ40(x) 7.5 32 Q(

√
−2 +

√
2) Φ32(x) 7.5

15 Q(ζ5) Φ15(x) 7 40 Q(ζ5) Φ40(x) 6.5
20 Q(ζ5) Φ20(x) 6 60 Q(ζ5) Φ60(x) 7

The ρ-value of this family is 20/3. The single Q-isomorphism class of genus 2 curves whose

Jacobians have CM by OK is given by van Wamelen [124]. On input y0 = 7 ·215, Algorithm

2.2.4 outputs h = 13 and x0 = 3127658. We find A to be the Jacobian of the genus 2 curve

C : y2 = x5 + 104x4 + 5408x3 + 140608x2 + 1687296x+ 7311616.

Then r(x0) is 13 times a 256-bit prime r0. The ρ-value of A with respect to r0 is 6.74.

Some additional families we obtained for g = 2 are summarized in Table 4.2. The π(x)

produced by Algorithm 4.4.9 and example varieties of cryptographic size can be found in

Appendix A.2.

We restrict to r(x) of degree at most 16 because as the degree of r(x) grows it becomes

increasingly unlikely that we will find families with ρ-values significantly less than 8. For

the same reason, we expect that non-Galois quartic CM fields K will not provide greatly

improved ρ-values, as we must work in a field L that contains the compositum of the Galois

closure of K and the cyclotomic field Q(ζk), so if k ≥ 3 then L must have degree at least

16 over Q.

4.5.2 Dimension 3

In dimension g = 3, we applied the procedure described in Section 4.5.1 to the degree-

6 Galois CM field Q(ζ7). The family we discovered produces three-dimensional ordinary

abelian varieties with ρ-values better than the best examples produced by Algorithm 4.2.6,

which have ρ ≈ 18.

Example 4.5.7 (g = 3, k = 7, ρ = 12). Let K = Q(ζ7), k = 7, and

r(x) = Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

Algorithm 4.4.9 outputs
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π(x) = 1
49

(−2ζ57 − 2ζ37 − 2ζ27 + 6ζ7)x12 + 1
49

(−7ζ57 + 4ζ47 − 4ζ37 + 2ζ27 + 13ζ7 − 1)x11 + 1
49

(−9ζ57

+ 10ζ47 − 2ζ37 + ζ27 + 23ζ7 + 5)x10 + 1
49

(−16ζ57 + 9ζ47 − 13ζ37 − 2ζ27 + 45ζ7 − 2)x9

+ 1
49

(−22ζ57 + 6ζ47 − 19ζ37 + 3ζ27 + 39ζ7 − 7)x8 + 1
49

(−7ζ57 + 13ζ47 − 2ζ37 − 2ζ27 + 28ζ7

+ 12)x7 + 1
7
(−2ζ57 + ζ47 − 2ζ37 + ζ27 + 3ζ7 − 1)x6 + 1

49
(−12ζ57 − 7ζ47 − 26ζ37 − 12ζ27 + 8ζ7)x5

+ 1
49

(−7ζ57 + 3ζ47 − 10ζ37 + 5ζ27 + 8ζ7 − 6)x4 + 1
49

(2ζ57 + 4ζ47 + 2ζ37 − ζ27 + 5ζ7 + 9)x3

+ 1
49

(−5ζ57 − 2ζ47 − 8ζ37 + 2ζ27 − 3ζ7 − 5)x2 + 1
49

(ζ57 + ζ47 − 2ζ37 − 3ζ27 + 3ζ7)x+ 1
49

(ζ47

+ 2ζ37 + 2ζ27 + 2)

The ρ-value of this family is 12. The single Q-isomorphism class of genus 3 curves whose

Jacobians have CM by OK is given by y2 = x7 + 1. On input y0 = 228, Algorithm 2.2.4

outputs h = 7 and x0 = 1879056152. We find A to be the Jacobian of the genus 3 curve

C : y2 = x7 + 16.

Then r(x0) is 7 times a 183-bit prime r0. The ρ-value of A with respect to r0 is 12.10.

We also ran our algorithm for the degree-6 CM field Q(ζ9) and found families with ρ-

values of 15 for k = 9 and k = 18. The π(x) output by the algorithm and example varieties

of cryptographic size can be found in Appendix A.3. Abelian varieties with CM by Q(ζ9)

are Jacobians of Picard curves of the form y3 = x4 + ax [70]. Since these curves are not

hyperelliptic, by Proposition 1.2.5 for any q-Weil number π ∈ Z[ζ9] there is a curve C/Fq
whose Jacobian has Frobenius element either π or −π. In the second case the abelian variety

over Fq with Frobenius element π is the quadratic twist of Jac(C), and is not isomorphic

over Fq to a Jacobian.

Future Directions

Algorithm 4.4.9 improves on the best known ρ-values of pairing-friendly ordinary

abelian varieties of dimension g ≥ 2 for many different choices of CM field K and embedding

degree k. However, to make ordinary abelian varieties of dimension g ≥ 2 competitive with

elliptic curves in terms of performance, we must construct varieties with ρ ≤ 2, with the

ultimate goal of producing ρ-values close to 1. Achieving this goal is the most important

problem for further work.

Our construction leaves a great deal of room for searching for better parameters. One

direction would be to choose various Galois CM fields K and let L = K(ζk). Another

approach would be to fix K and L and use the approach of Kachisa, Schaefer, and Scott
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[62] to search systematically through polynomials r(x) such that L ∼= Q[x]/(r(x)). In the

case where g ≥ 2, one could also increase the size of the input Σ, which is the set from which

we choose the residues αi, βi of ξ modulo factors of r(x) in K̂[x]. In practice we find that

when we use elements of Σ with large coefficients, the q(x) computed have coefficients with

large denominators and are thus unlikely to take integer values. However, even restricting

Σ to contain only polynomials with small coefficients leaves many possible choices for αi

and βi, and a program that searches systematically through these choices should have a

good chance of finding improved ρ-values.
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Chapter 5

Implementing the Genus 2 CM

Method via the Chinese

Remainder Theorem

5.1 Introduction

In this chapter we study the genus 2 case of the complex multiplication methods

discussed in Section 1.2.4. These methods are used not only to construct the pairing-friendly

abelian varieties discussed in previous chapters, but also to construct abelian varieties in

any situation where a specified number of points is desired. CM methods are especially

relevant in genus 2, as Schoof-like point-counting methods are currently too slow to be

applicable to abelian surfaces over prime fields of 128 bits or larger [11], and thus Jacobians

of random curves cannot be used for applications requiring medium to high security levels.

The genus 2 CM method constructs genus 2 curves whose Jacobians have CM by the

ring of integers OK of a given quartic CM field K. The central part of the procedure is

computing the Igusa class polynomials for K. These polynomials are defined as follows.

Definition 5.1.1. Given a genus 2 curve C over any field, let (j1(C), j2(C), j3(C)) be the

absolute Igusa invariants of C (see [124, p. 313] or [54, §5.2] for definitions†). For a given

primitive quartic CM field K, let CK be a set consisting of one representative from each C-
†We observe that Goren and Lauter’s definition of the third invariant in terms of modular forms [54,

p. 472] is incorrect: the coefficient of ψ4χ
−4
10 χ

3
12 should be 2−3 · 32 instead of 22 · 3.
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isomorphism class of genus 2 curves C/C such that End(Jac(C)) ∼= OK . Then for i = 1, 2, 3,

the ith Igusa class polynomial for K is

Hi(x) =
∏
C∈CK

(x− ji(C)).

The fact that CK is finite follows from [115, Chapter II, Proposition 17]. It follows

from Definition 5.1.1 that given the Igusa class polynomials for K, we can construct genus

2 curves with CM by OK by applying Mestre’s algorithm [88] to triples of roots of the

polynomials. We also note that since any CM abelian variety in characteristic zero is

defined over Q [115, Chapter III, Proposition 26], the group Gal(Q/Q) permutes the set of

triples (j1(C), j2(C), j3(C)) and thus the Hi(x) have rational coefficients.

In this chapter we study the implementation of Eisenträger and Lauter’s Chinese

remainder theorem algorithm for computing the Igusa class polynomials [34]. The funda-

mental theorem underlying the algorithm is the following:

Theorem 5.1.2 ([34, Theorem 2]). Let K be a primitive quartic CM field. Let p be a

rational prime that splits completely in K and splits completely into principal ideals in

K̂, the reflex field of K. For i = 1, 2, 3, let Hi,p(x) be the reduction mod p of the Igusa

class polynomial Hi(x). Let Cp,K be a set consisting of one representative from each Fp-

isomorphism class of genus 2 curves C/Fp such that End(Jac(C)) ∼= OK . Then Hi,p(x) is

well-defined (i.e., p does not divide the denominator of any coefficient of Hi(x)), and

Hi,p(x) =
∏

C∈Cp,K

(x− ji(C)). (5.1)

Eisenträger and Lauter used this theorem to give an algorithm that takes as input a

primitive quartic CM field K and an integer λ that is a multiple of the denominators of all

coefficients of the Hi(x), and produces the Igusa class polynomials of K. The basic outline

of the algorithm is as follows:

1. Define S to be a set of small primes with splitting behavior as in Theorem 5.1.2, such

that the product of all the primes is larger than λ times any coefficient of Hi(x).

2. For each prime p in S:
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(a) For each triple (j1, j2, j3) ∈ F3
p of Igusa invariants, construct a genus 2 curve C

over Fp corresponding to that triple.

(b) Find the subset of curves C from (2a) for which the endomorphism ring of Jac(C)

is the full ring of integers OK .

(c) Use equation (5.1) to construct the Igusa class polynomials mod p from the

triples collected in Step (2b).

3. Use the bound λ on denominators and either the Chinese remainder theorem or the

Explicit CRT [12] to construct the Igusa polynomials either with rational coefficients

or modulo a prime of cryptographic size, respectively.

It is a result of Igusa (see [22, §1]) that the set of curves computed in Step (1) consists

of one curve from each Fp-isomorphism class of genus 2 curves over Fp. We note that at

present there is no effective way of computing the bounds on the coefficients of Step (1),

and thus we cannot prove that the output is correct. However, heuristically we expect the

case where the output is incorrect to be exceedingly rare.

Our main contribution is to provide an efficient probabilistic algorithm for Step (2b)

of the Eisenträger-Lauter CRT algorithm: determining whether the endomorphism ring of

a Jacobian of a genus 2 curve over a small prime field is the ring of integers in a given

quartic CM field K. Using this algorithm, we have implemented a probabilistic version of

the full CRT algorithm (Algorithm 5.7.1) in MAGMA [18] and used it to compute Igusa

class polynomials for several fields K with small discriminant.

It was previously believed that determining endomorphism rings would be the bottle-

neck in the genus 2 CRT algorithm. Our results are surprising in the sense that we find that

the time taken to determine the endomorphism rings using our probabilistic algorithms is

negligible compared with the time needed to compute p3 genus 2 curves via Mestre’s algo-

rithm for each small prime p. For example, for K = Q(i
√

13 + 2
√

13) and p = 157, the

largest prime for which endomorphism rings are computed for this K, our (unoptimized)

MAGMA program takes about 52 minutes to loop through 1573 curves and find 243 curves

whose Jacobians have Frobenius element in OK . Our probabilistic algorithm (also imple-

mented in MAGMA) applied to these 243 curves then takes 16.5 seconds to find the single

curve whose Jacobian has endomorphism ring isomorphic to OK .

In Step (2) of the Eisenträger-Lauter algorithm we have fixed a small prime p and a

CM field K. We compute a representative of each Fp-isomorphism class of genus 2 curves
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over Fp, and we wish to determine which of these p3 curves have End(Jac(C)) isomorphic to

OK . At a high level, our algorithm that determines endomorphism rings works as follows.

Let C be a genus 2 curve over a finite field Fp, and let J be its Jacobian; we assume J

is ordinary. Let K be a primitive quartic CM field. The first test is whether End(J), the

endomorphism ring of J , is some order inOK . This computation is outlined in [34, Section 5]

and described in more detail in Section 5.2 below. If End(J) is an order in OK , we compute

a set of possible elements π ∈ OK that could represent the Frobenius endomorphism of J .

If π represents the Frobenius endomorphism, then its complex conjugate π represents the

Verschiebung endomorphism (i.e., the dual of the Frobenius endomorphism).

We next determine a set {αi} of elements of OK such that Z[π, π, {αi}] = OK . It

follows that End(J) = OK if and only if each αi is an endomorphism of J . In Section 5.3

we describe such a set {αi} in which each element has one of two forms: either αi = πk−1
`

for some positive integer k and prime `, or αi = hi(π)
`d

for some cubic polynomial hi with

integer coefficients and some prime power `d. In Section 5.4 we show how to determine

whether an element of the first form is an endomorphism; this is equivalent to determining

the field of definition of the `-torsion points of J . In Section 5.5 we show how to determine

whether an element of the second form is an endomorphism; this is equivalent to computing

the action of Frobenius on a basis of J [`d]. The main results are Algorithms 5.4.3 and 5.5.1,

two very efficient probabilistic algorithms which check fields of definition and compute the

action of Frobenius, respectively. The running times of these algorithms depend primarily

on the sizes of the fields over which the points of J [`d] are defined. Section 5.6 provides

upper bounds for these sizes in terms of the prime ` and the size of the base field p.

A detailed statement of the Eisenträger-Lauter CRT algorithm, incorporating the al-

gorithms of Sections 5.2, 5.4, and 5.5, appears in Section 5.7. Section 5.8 describes various

ways in which we have modified our MAGMA implementation to improve the algorithm’s

performance. Finally, in Section 5.9 we give examples of our algorithm run on several small

quartic CM fields.

The material in this chapter is joint work with Kristin Lauter of Microsoft Research

(USA) and has also appeared in [40].
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5.2 Computing zeta functions and the Frobenius element

To execute the Eisenträger-Lauter CRT algorithm, we fix a primitive quartic CM field

K and choose various small primes p. We compute a representative of each Fp-isomorphism

class of genus 2 curves over Fp, and we wish to determine which of these p3 curves have

End(Jac(C)) isomorphic to OK . To make this determination, the first step is to determine

whether the endomorphism ring is even an order in OK . Our hypotheses on p (see Theorem

5.1.2) imply that this can be accomplished by computing the characteristic polynomial of

Frobenius, to see if the Frobenius element corresponds to an algebraic integer π ∈ K. This

in turn is equivalent to determining the zeta function of C, which can be computed by

finding the number of points on the curve and its Jacobian, n = #C(Fp) and m = #J(Fp).

For a given field K there are several possibilities for the pairs (n,m), as described in [34,

Proposition 4].

In this section we give an explicit algorithm that determines whether End(J) is an

order in OK and if so, gives a set S ⊂ OK of possibilities for the Frobenius endomorphism

of J . The main point is to find the possible Frobenius elements by finding generators of

certain principal ideals (Step (2) below) with absolute value equal to
√
p (Step (4a) below).

We will assume throughout that J is ordinary.

Recall that a number field K is a CM field if it is an imaginary quadratic extension

of a totally real field. We denote by K0 the real quadratic subfield of K. A CM field is

primitive if it has no proper CM subfields. We will assume unless otherwise noted that K is

a primitive quartic CM field not isomorphic to Q(ζ5). This implies that K is either Galois

cyclic or non-Galois, and that the only roots of unity in K are ±1. We denote by K̂ the

reflex field of K (see page 70 for a definition, and observe that the reflex field is the same

for all CM types Φ on K). If K is Galois cyclic, then K̂ = K; if K is non-Galois, then K̂

is another primitive quartic CM field [115, p. 64].

Algorithm 5.2.1. Let K be a primitive quartic CM field not isomorphic to Q(ζ5) and let

K̂ be the reflex field of K. The following algorithm takes as input the field K, a prime p

that splits completely in K and splits completely into principal ideals in K̂, and a curve C

defined over the finite field Fp. The algorithm returns true or false according to whether

End(J) is an order in OK , where J = Jac(C). If the answer is true, the algorithm also

outputs a set S ⊂ OK that consists of the Aut(K/Q)-orbit of the Frobenius endomorphism

of J .
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1. Compute the decomposition p = p1p2p3p4 in OK , using e.g. [26, Algorithm 6.2.9].

Renumber so that p2 = p1 and p3 = p4.

2. Compute generators α1 and α2 for the principal ideals p1p3 and p2p3, respectively,

using e.g. [26, Algorithm 6.5.10].

3. Compute a fundamental unit u of K0 with |u| > 1, using e.g. [26, Algorithm 5.7.1].

4. For i← 1, 2, do the following:

(a) If |αi| <
√
p, set αi ← αiu until |αi| =

√
p. If |αi| >

√
p, set αi ← αiu

−1 until

|αi| =
√
p.

(b) Compute the characteristic polynomial hi(x) of αi over Q, using e.g. [26, Propo-

sition 4.3.4].

(c) If K is Galois and h1(x) = h2(−x), set α2 ← −α2 and h2(x)← h2(−x).

(d) Set (ni,+1,mi,+1)← (p+ 1− h′i(0)
p , hi(1)).

(e) Set (ni,−1,mi,−1)← (p+ 1 + h′i(0)
p , hi(−1)).

5. Determine whether the Frobenius endomorphism of J has characteristic polynomial

equal to hi(±x) for some i:

(a) Choose a random point P ∈ J(Fp) and compute Qj,τ = [mi,τ ]P for i ∈ {1, 2},
τ ∈ {±1}. If none of Qi,τ is the identity, return false. Otherwise, optionally

repeat with another random point P .

(b) If J passes a certain fixed number of trials of Step (5a), compute #C(Fp). If

#C(Fp) 6= ni,τ for all i ∈ {1, 2}, τ ∈ {±1}, return false.

(c) If #C(Fp) = ni,τ , compute #J(Fp), using e.g. Baby-Step Giant-Step [26, Algo-

rithm 5.4.1]. If #J 6= mi,τ for the same i, τ , return false.

6. If K is Galois, output S = {τα1, τα1, τα2, τα2}. If K is not Galois, output S =

{ταi, ταi}, using the i determined in Step (5c).

7. Return true.

Proof. The proof of [34, Proposition 4] shows that the ideals p1p3 and p2p3 are principal and

the Frobenius endomorphism of J corresponds to a generator of one of these ideals or their
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complex conjugates. Furthermore, this generator must have complex absolute value
√
p.

The generators determined in Step (2) are unique up to unit multiple, so Step (4a) ensures

that the absolute values are
√
p, thus making each αi unique up to complex conjugation

and sign. (Here we use the fact that the only roots of unity in K are ±1.)

If the Frobenius element corresponds to αi or αi, then hi(x) is the characteristic

polynomial of Frobenius, so we can determine this case by checking whether #C(Fp) = ni,+1

and #J(Fp) = mi,+1. Similarly, if the Frobenius element corresponds to −αi or −αi, then

hi(−x) is the characteristic polynomial of Frobenius, so we can determine this case by

checking whether #C(Fp) = ni,−1 and #J(Fp) = mi,−1.

If K is Galois (with Galois group C4), then the ideal (α2) is equal to (α1)σ for some

σ generating the Galois group. Since complex absolute value squared is the same as the

norm from K to its real quadratic subfield K0, |α1| =
√
p implies that |ασ1 | =

√
p. Since

ασ1 and α2 both generate (α2) and have absolute value
√
p, we deduce that ασ1 = ±α2 or

±α2. Step (4c) ensures that this sign is positive, so α1 and α2 have the same characteristic

polynomial hi(x), and thus the Frobenius element could be any of the elements output by

Step (6). Since Aut(K/Q) is generated by σ and σ2 is complex conjugation, we have output

the Aut(K/Q)-orbit of the Frobenius element.

IfK is not Galois, then the Frobenius element must be either αi or αi. Since Aut(K/Q)

in this case consists of only the identity and complex conjugation, Step (6) outputs the

Aut(K/Q)-orbit of the Frobenius element.

5.3 Constructing a generating set for OK

Given the Jacobian J of a genus 2 curve over Fp and a primitive quartic CM field K,

Algorithm 5.2.1 allows us to determine whether there is some π ∈ OK that represents the

Frobenius endomorphism of J . Since the complex conjugate π represents the Verschiebung

endomorphism, if Algorithm 5.2.1 outputs true then we have

Z[π, π] ⊆ End(J) ⊆ OK . (5.2)

From this point on we assume we are given an ordinary Jacobian J/Fp and its Frobenius

element π ∈ OK . Then we know that (5.2) holds, and we wish to determine whether

End(J) = OK .

Let B be a Z-module basis for OK , and consider the collection of elements {α ∈ B\Z}.
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Since this collection generates OK over Z[π, π], it suffices to determine whether or not

each element of the collection is an endomorphism of J . Assuming K satisfies some mild

hypotheses, Eisenträger and Lauter give one example of a basis B that suffices to determine

the endomorphism ring [34, Lemma 6]. However, the method given in [34] lacks an efficient

procedure for testing whether a given α ∈ B is an endomorphism of J .

In this section, we derive from an arbitrary basis B a set of generators for OK over

Z[π, π] that are convenient in the sense that there is an efficient probabilistic algorithm

(Algorithm 5.4.3 or Algorithm 5.5.1) for determining whether an element of the set is an

endomorphism of J . Our findings are summarized in Proposition 5.3.7.

We begin by observing that since K = Q(π), any α ∈ OK can be expressed as a poly-

nomial f ∈ Q[π]. Since π satisfies a polynomial of degree 4 (the characteristic polynomial

of Frobenius), f can be taken to have degree 3. Using linear algebra, we may thus write

α =
a0 + a1π + a2π

2 + a3π
3

n
(5.3)

for some integers a0, a1, a2, a3, n. We assume that a0, a1, a2, a3 have no common factor with

n, so that n is the smallest positive integer such that nα ∈ Z[π].

The following lemma shows that each α ∈ B \ Z can be replaced with a collection of

elements that generate the same ring, each with a power of a single prime in the denominator

of the expression (5.3).

Lemma 5.3.1. Let A ⊂ B be commutative rings with 1, with [B : A] finite. Suppose α ∈ B,

and let n be the smallest positive integer such that nα ∈ A. Suppose n factors into primes

as `d11 · · · `dr
r . Then

A[α] = A
[
n

`
d1
1

α, . . . , n

`dr
r
α
]
.

Proof. Clearly the ring on the right is contained in the ring on the left, so we must show

that α is contained in the ring on the right. Since the set of integers n

`
d1
1

, . . . , n

`dr
r

has greatest

common divisor 1, there exist integers ci such that

c1
n

`d11

+ · · ·+ cr
n

`dr
r

= 1. (5.4)

Multiplying this identity by α gives the desired result.

The next lemma shows that only primes dividing the index [OK : Z[π]] appear in the

denominators.
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Lemma 5.3.2. Let α be an element of OK , and suppose n is the smallest positive integer

such that nα ∈ Z[π]. Then n divides the index [OK : Z[π]].

Proof. Let N = [OK : Z[π]]. By definition, N is the size of the abelian group OK/Z[π].

Thus we can write any α ∈ OK as α = a + b with b ∈ Z[π] and N · a ∈ Z[π]. This shows

that OK is contained in 1
NZ[π]. We may thus write α = f(π)/N for a unique polynomial

f with integer coefficients and degree at most 3. Furthermore, since nα is the smallest

positive multiple of α in Z[π], we may write α = g(π)/n for a unique polynomial g with

integer coefficients and degree at most 3, such that n has no factor in common with all the

coefficients of g. We thus have n · f(π) = N · g(π). If we let d be the gcd of the coefficients

of f and e be the gcd of the coefficients of g, then we have n ·d = N · e. Since gcd(n, e) = 1,

we conclude that n divides N .

We now know that each α ∈ B\Z can be replaced with a collection of elements { n
`
di
i

α},
and the only `i appearing are divisors of the index [OK : Z[π]]. The following lemma and

corollary show that for any ` which divides [OK : Z[π]] exactly (i.e., ` | [OK : Z[π]] and

`2 - [OK : Z[π]]), the element n
`α can be replaced by an element of the form πk−1

` . This

replacement is useful since by [34, Fact 10], determining whether an element of the form
πk−1
` is an endomorphism is equivalent to testing the field of definition of the `-torsion.

Lemma 5.3.3. Let A ⊂ B ⊂ C be abelian groups, with [C : A] finite. Let ` be a prime,

and suppose ` divides [C : A] exactly. Suppose there is some β ∈ B such that β 6∈ A and

`β ∈ A. Then for any α ∈ C such that `α ∈ A, α ∈ B.

Proof. The hypotheses on [C : A] imply that the `-primary part of C/A (denoted (C/A)`)

is isomorphic to Z/`Z, so (B/A)` is either trivial or Z/`Z. The conditions on β imply that

β has order ` in B/A, so (B/A)` ∼= Z/`Z ∼= (C/A)`, with the isomorphism induced by the

inclusion map B ↪→ C. Since α is in the `-primary part of C/A, α must also be in the

`-primary part of B/A, so α ∈ B.

Corollary 5.3.4. Let k be a positive integer. Suppose ` divides [OK : Z[π]] exactly and

β = πk−1
` 6∈ Z[π]. Then πk−1

` is an endomorphism of J if and only if every α ∈ OK \ Z[π]

with `α ∈ Z[π] is also an endomorphism.

Proof. The result follows directly from Lemma 5.3.3, with A = Z[π], B = End(J), and

C = OK .
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Furthermore, if p = ππ does not divide [OK : Z[π, π]], then any element αi with

denominator `i = p may be ignored due to the following corollary.

Corollary 5.3.5. Let π ∈ OK correspond to the Frobenius endomorphism of an ordinary

abelian surface over Fp, and suppose p - [OK : Z[π, π]]. Then for any α ∈ OK such that

pα ∈ Z[π], α ∈ Z[π, π].

Proof. Since π is a Frobenius element, it satisfies a characteristic polynomial of the form

π4 + s1π
3 + s2π

2 + s1pπ + p2 = 0.

Using ππ = p and dividing this equation by π gives

π3 + s1π
2 + s2π + s1p+ pπ = 0. (5.5)

From this equation we see that pπ ∈ Z[π], so either [Z[π, π] : Z[π]] = p or π ∈ Z[π]. If

π ∈ Z[π] then p divides the coefficients of all the terms on the left hand side of (5.5),

which it does not, so we deduce that π 6∈ Z[π] and [Z[π, π] : Z[π]] = p. The hypothesis

p - [OK : Z[π, π]] now implies that p divides [OK : Z[π]] exactly, so we may apply Lemma

5.3.3 with ` = p, A = Z[π], B = Z[π, π], C = OK , and β = π.

Thus any α satisfying the conditions of the corollary is automatically an endomor-

phism. We now show that if p > 3, then the condition p - [OK : Z[π, π]] is automatically

satisfied.

Proposition 5.3.6. Suppose p > 3 and that π ∈ OK corresponds to the Frobenius endo-

morphism of an ordinary abelian surface A over Fp. Then p - [OK : Z[π, π]].

Proof. Let ∆(R) denote the discriminant of a Z-module R. Christophe Ritzenthaler

pointed out to us that this proposition follows from [59, Proposition 9.4], which shows

that

∆(Z[π, π]) = ±NormK/Q(π − π) ∆(Z[π + π]).

Alternatively, it is shown in [76, Proposition 7.4] that any prime that divides the index

[OK : Z[π, π]] must divide either [OK0 : Z[π + π]] or ∆(OK0
[π])

∆(OK) , and, using [59, Theorem

1.3], that the second quantity is prime to p if the abelian surface is ordinary. The same

proposition also shows that ∆(Z[π + π]) < 16p, and since

∆(Z[π + π])
∆(OK0)

= [OK0 : Z[π + π]]2,
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we conclude that if p divides [OK : Z[π, π]] then p2 divides [OK0 : Z[π + π]]2, and thus

p2 ≤ ∆(Z[π + π])
∆(OK0)

<
16p
5

(since a real quadratic field has discriminant at least 5), which implies p ≤ 3.

The following proposition summarizes the results of this section.

Proposition 5.3.7. Suppose {αi} generates OK as a Z-algebra. Let ni be the smallest

positive integer such that niαi ∈ Z[π], and write the prime factorization of ni as ni =∏
j `
dij

ij . For each (i, j) with `ij 6= p, let kij be the smallest integer such that πkij−1 ∈ `ijOK .

Suppose p > 3. Then the following set generates OK over Z[π, π]:{
ni

`
dij

ij

αi : `2ij | [OK : Z[π]] or
πkij − 1
`ij

∈ Z[π]

} ⋃
{
πkij − 1
`ij

: `2ij - [OK : Z[π]], `ij 6= p, and
πkij − 1
`ij

6∈ Z[π]
}
.

The test of whether πkij−1
`ij

is in Z[π] is required to apply Corollary 5.3.4. In practice

we find that this condition always holds, even for small primes `ij , and thus the second set

in the union has one element for each `ij dividing [OK : Z[π]] exactly.

Remark 5.3.8. Proposition 5.3.7 shows that if p > 3 and the index [OK : Z[π, π]] is square-

free, then OK can be generated over Z[π, π] by a collection of elements of the form πk−1
` .

This answers a question raised by Eisenträger and Lauter [34, Remark 5].

In our application, π ∈ OK is only determined up to an automorphism of K, but

Proposition 5.3.7 can still be used to determine a generating set for OK .

Corollary 5.3.9. Let S ⊂ OK be the set given in Proposition 5.3.7. Let σ be an element

of Aut(K/Q). Then the set {βσ : β ∈ S} generates OK over Z[πσ, πσ].

Proof. By Proposition 5.3.7, the set {π, π} ∪ S generates OK as a Z-algebra. Since OK
is mapped to itself by Aut(K/Q), the set {πσ, πσ} ∪ {βσ : β ∈ S} also generates OK as a

Z-algebra. The statement follows immediately.
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5.4 Determining fields of definition

In this section, we consider the problem of determining the field of definition of the

n-torsion points of the Jacobian J of a genus 2 curve over Fp. By [34, Fact 10], the n-torsion

points of J are defined over Fpk if and only if (πk−1)/n is an endomorphism of J , where π is

the Frobenius endomorphism of J . Thus determining the field of definition of the `-torsion

points allows us to determine whether some of the elements given by Proposition 5.3.7 are

endomorphisms.

Algorithm 5.4.1. The following algorithm takes as input a primitive quartic CM field K,

an element π ∈ OK with ππ = p, and an integer n with gcd(n, p) = 1, and outputs the

smallest integer k such that πk − 1 ∈ nOK . If J is the Jacobian of a genus 2 curve over Fp
with Frobenius πσ for some σ ∈ Aut(K/Q) and End(J) = OK , this integer k is such that

the n-torsion points of J are defined over Fpk .

1. Compute a Z-basis B = (1, δ, γ, κ) of OK , using [120] or [26, Algorithm 6.1.8], and

write π = (a, b, c, d) in this basis. Set k ← 1.

2. Let B̄ be the reduction of the elements of B modulo n. Let (a1, b1, c1, d1) = (a, b, c, d)

(mod n).

3. Compute πk ≡ (ak, bk, ck, dk) (mod n) with respect to B̄.

4. If (ak, bk, ck, dk) ≡ (1, 0, 0, 0) (mod n), output k. Otherwise set k ← k + 1 and go to

Step (3).

Proof. The set B̄ is a Z/nZ-basis of OK/nOK , so if πk ≡ (1, 0, 0, 0) (mod n), then πk−1 ∈
nOK (since the first element of B̄ is 1). Since nOK is mapped to itself by Aut(K/Q), we

have (πσ)k − 1 ∈ nOK . If End(J) = OK , then (πσ)k−1
n ∈ OK = End(J), so by [34, Fact 10],

J [n] ⊂ J(Fpk).

Remark 5.4.2. Since J [n] =
⊕
J [`d] for prime powers `d dividing n, we may speed up

Algorithm 5.4.1 by factoring n and computing k(`d) for each prime power factor `d; then

k(n) = lcm(k(`d)). Furthermore, we will see in Propositions 5.6.2 and 5.6.3 below that for a

fixed `d, the possible values of k are very limited. Thus we may speed up the algorithm even

further by precomputing these possible values and testing each one, rather than increasing

the value of k by 1 until the correct value is found.
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Eisenträger and Lauter [34] computed endomorphism rings in several examples by

determining the group structure of J(Fpk) to decide whether J [n] ⊂ J(Fpk). This is an

exponential-time algorithm that is efficient only for very small k. Eisenträger and Lauter

also suggested that the algorithm of Gaudry and Harley [50] could be used to determine the

field of definition of the n-torsion points. One of the primary purposes of this chapter is to

present an efficient probabilistic algorithm to test the field of definition of J [n]. Below we

describe the various methods of testing the field of definition of the n-torsion of J . Since

J [n] =
⊕
J [`d] as `d ranges over maximal prime-power divisors of n, it suffices to consider

each prime-power factor separately. We thus assume in what follows that n = `d is a prime

power.

5.4.1 The brute force method

The simplest method of determining the field of definition of the n-torsion is to com-

pute the abelian group structure of J(Fpk). The MAGMA syntax for this computation is

straightforward, and the program returns a group structure of the form

J(Fpk) ∼=
Z
a1Z
× · · · × Z

ajZ
,

with j ≤ 4 and a1 | · · · | aj . The n-torsion of J is contained in J(Fpk) if and only if j = 4

and n divides a1.

While this method is easy to implement, if k is too large it may take too long to

compute the group structure (via Baby-Step Giant-Step or similar algorithms), or even

worse we may not even be able to factor # Jac(C)(Fpk). In practice, computing group

structure in MAGMA seems to be feasible for group sizes up to roughly 2200, which means

pk should be no more than roughly 2100, and thus k will have to be very small. Thus the

brute force method is very limited in scope; however, it has the advantage that in the small

cases it can handle it runs fairly quickly and always outputs the right answer.

5.4.2 The Gaudry-Harley-Schost method

Gaudry and Harley [50] define a Schoof-Pila-like algorithm for counting points on

genus 2 curves. The curves input to this algorithm are assumed to have a degree 5 model

over Fp, so we can write elements of the Jacobian as pairs of affine points minus twice

the Weierstrass point at infinity. An intermediate step in the algorithm is to construct a
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polynomial R(x) ∈ Fp[x] with the following property: if P1 and P2 are points on C such

that D = [P1] + [P2]− 2[∞] is an n-torsion point of J , then the x-coordinates of P1 and P2

are roots of R. The field of definition of the x-coordinates is at most a degree-two extension

of the field of definition of D. Thus in many cases the field of definition of the n-torsion

points can be determined from the factorization of R(x).

Gaudry has implemented the algorithm in MAGMA [18] and NTL [116]; the algorithm

involves taking two resultants of pairs of two-variable polynomials of degree roughly n2. The

algorithm uses the clever trick of computing a two-variable resultant by computing many

single-variable resultants and interpolating the result. The interpolation only works if the

field of definition of J has at least 4n2 − 8n + 4 elements, so we must base-extend J until

the field of definition is large enough. Since R(x) has coefficients in Fp, this base extension

has no effect on the result of the computation.

Gaudry and Harley’s analysis of the algorithm gives a running time of Õ(n6) field

multiplications if fast polynomial arithmetic is used, and O(n8) otherwise. Due to its large

space requirements, the algorithm has only succeeded at handling inputs of size n ≤ 19 [52].

5.4.3 A probabilistic method

As usual, we let J be the Jacobian of a genus 2 curve over Fp, and ` 6= p be a prime.

Let H be the `-primary part of J(Fpk). Then H has the structure

H ∼=
Z

`α1Z
× Z
`α2Z

× Z
`α3Z

× Z
`α4Z

,

with α1 ≤ α2 ≤ α3 ≤ α4. Our test rests on the following observations:

• If the `d-torsion points of J are defined over Fpk , then α1 ≥ d, and the number of

`d-torsion points in H is `4d.

• If the `d-torsion points of J are not defined over Fpk , then α1 < d, and the number of

`d-torsion points in H is at most `4d−1.

We thus make the following calculation: write #J(Fpk) = `sm with ` - m. Choose a random

point P ∈ J . Then [m]P ∈ H, and we test whether [`dm]P = O in J . If the `d-torsion

points of J are defined over Fpk , then [`dm]P = O with probability ρ = `4d−s, while if the

`d-torsion points of J are not defined over Fpk then [`dm]P = O with probability at most

ρ/`. If we perform the test enough times, we can determine which probability distribution
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we are observing and thus conclude, with a high degree of certainty, whether the `d-torsion

points are defined over Fpk .

This method is very effective in practice, and can be implemented for large k: while

computing the group structure of J(Fpk) for large k may be infeasible, it is much easier

to compute points on J(Fpk) and to do arithmetic on those points. We now give a formal

description of the algorithm and determine its probability of success.

Algorithm 5.4.3. The following algorithm takes as input the Jacobian J of a genus 2

curve defined over a finite field Fq, a prime power `d with gcd(`, q) = 1, and a real number

ε ∈ (0, 1). If J [`d] ⊂ J(Fq), then the algorithm outputs true with probability at least 1− ε.
If J [`d] 6⊂ J(Fq), then the algorithm outputs false with probability at least 1− ε.

1. Compute #J(Fq) = `sm, where ` - m. If s < 4d output false.

2. Set ρ← `4d−s, N ← d
√
−2 log ε
ρ ( 2`

`−1)e, B ← ρN
(
`+1
2`

)
.

3. Repeat N times:

(a) Choose a random point Pi ∈ J(Fq).

(b) Compute Qi ← [`dm]Pi

4. If at least B of the Qi are the identity element O of J , output true; otherwise output

false.

Proof. As observed above, if J [`d] ⊂ J(Fq), then Qi = O with probability ρ, while if

J [`d] 6⊂ J(Fq), then Qi = O with probability at most ρ/`. Thus all we have to do is

compute enough Qi to distinguish the two probability distributions. To figure out how

many “enough” is, we use the Chernoff bound [106, Chapter 8, Proposition 5.3]. The

version of the bound we use is as follows: If N weighted coins are flipped and µ is the

expected number of heads, then for any δ ∈ (0, 1] we have

Pr[#heads < (1− δ)µ] < e−µ
2δ2/2

Pr[#heads > (1 + δ)µ] < e−µ
2δ2/2.

(5.6)

In our case we are given two different probability distributions for the coin flip and wish

to tell them apart. If the `d-torsion points of J are defined over Fq, then the probability

that Qi = O is ρ = `4d/`s. Thus the expected number of Qi equal to O is µ1 = ρN . If
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the `d-torsion points are not defined over Fq, then the expected number of Qi equal to O

is at most µ2 = ρN/`. Thus if we set B = ρN( `+1
2` ) to be the midpoint of [µ2, µ1], we will

deduce that J [`d] ⊂ J(Fq) if the number of Qi equal to O is at least B, and J [`d] 6⊂ J(Fq)

otherwise.

We thus wish to find an N such that this deduction is correct with probability at least

1− ε, i.e., an N such that

Pr[#{Qi : Qi = O} < B] < ε if J [`d] ⊂ J(Fq),

Pr[#{Qi : Qi = O} > B] < ε if J [`d] 6⊂ J(Fq).

Substituting our choice of B into the Chernoff bound (5.6) gives

Pr[#{Qi : Qi = O} < B] < e−2µ2
1( `−1

4`
)2 if J [`d] ⊂ J(Fq),

Pr[#{Qi : Qi = O} > B] < e−2µ2
2( `−1

4
)2 if J [`d] 6⊂ J(Fq).

From these equations, we see that we wish to have 2µ2
1(
`−1
4` )2 > − log ε and 2µ2

2(
`−1
4 )2 >

− log ε. The two left sides are equal since µ2 = µ1/`. We thus substitute µ1 = ρN into the

relation 2µ2
1(
`−1
4` )2 > − log ε, and find that

N >

√
−2 log ε
ρ

(
2`
`− 1

)
.

Thus this value of N suffices to give the desired success probabilities.

Remark 5.4.4. If s = 4d the algorithm can be simplified considerably. In this case, if

J [`d] ⊂ J(Fq) then the `-primary part H of J(Fq) is isomorphic to (Z/`dZ)4, and if not

then it contains a point of order greater than `d. Thus if J [`d] ⊂ J(F ) then Qi will always be

the identity, and the algorithm will always return true. On the other hand, if J [`d] 6⊂ J(Fq),

we may abort the algorithm and return false as soon as we find a point Qi 6= O, for in this

case we have found a point in H of too large order, and thus the `d-torsion points are not

defined over Fq. If J [`d] 6⊂ J(Fq), then the probability that a random point in H has order

≤ `d is at most 1/`, so we must conduct at least N = d− log ε
log ` e trials to ensure a success

probability of at least 1− ε. Thus in this case the method may require many fewer trials.

Remark 5.4.5. Note that while #J(Fq) may be very large, in our application where J is

defined over a small prime field it is easy to compute #J(Fq) from the zeta function of the

curve of which J is the Jacobian. Furthermore, while it is probably impossible to factor

#J(Fq) completely in a reasonable amount of time, it is easy to determine the highest power

of ` that divides #J(Fq).
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Proposition 5.4.6. Let J be the Jacobian of a genus 2 curve over Fp. Assume that the

zeta function of J/Fp is known, so that the cost to compute #J(Fpk) = `sm is negligible.

Then the expected number of operations in Fp necessary to execute Algorithm 5.4.3 on inputs

J/Fpk , `d, and ε (ignoring log log p factors) is

O(k2 log k(log2 p)`s−4d(− log ε)1/2).

Proof. We must compare the cost of the two actions of Step (3), repeated N times. Choos-

ing a random point on J(Fq) is equivalent to computing a constant number of square roots

in Fq, and taking a square root requires O(log q) field operations in Fq (see [127, Algorithm

14.15 and Corollary 14.16]). The order of J(Fq) is roughly q2, so multiplying a point on

J(Fq) by an integer using a binary expansion takes O(log q) point additions on J(Fq). Each

point addition takes a constant number of field operations in Fq, so we see that the each

trial requires O(log q) = O(k log p) field operations in Fq. If fast multiplication techniques

are used, then the number of field operations in Fp needed to perform one field operation

in Fq (ignoring log log p factors) is

O(log q log log q) = O(k log k log p),

so each trial takes O(k2 log k log2 p) field operations in Fp. The number of trials is

O(`s−4d
√
− log ε),

which gives a total of

O(k2 log k(log2 p)`s−4d(− log ε)1/2)

field operations in Fp.

5.5 Computing the action of Frobenius

As in the previous section, we consider a genus 2 curve C over Fp with Jacobian J ,

and assume that the endomorphism ring of J is an order in the ring of integers OK of a

primitive quartic CM field K. We let π represent the Frobenius endomorphism, and we

look at elements α ∈ OK such that `dα ∈ Z[π] for some prime power `d. We wish to devise

a test that, given such an α, determines whether α is an endomorphism of J .

Since π satisfies a quartic polynomial with integer coefficients, we can write α as

α =
a0 + a1π + a2π

2 + a3π
3

`d
(5.7)
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for some integers a0, a1, a2, a3. Expressing α in this form is useful because of the following

fact proved by Eisenträger and Lauter [34, Corollary 9]: α is an endomorphism if and only

if T = a0 + a1π + a2π
2 + a3π

3 acts as zero on the `d-torsion. Thus we need a method for

determining whether T acts as zero on the `d-torsion. Since T is a linear operator, it suffices

to check whether T (Qi) is zero for each Qi in some set whose points span the full `d-torsion.

Below we describe three different ways to compute such a spanning set.

5.5.1 The brute force method

The most straightforward way to compute a spanning set for the `d-torsion is to use

group structure algorithms to compute a basis of J [`d]. This method was used in [34] to

compute the class polynomials in one example. The methods of Section 5.4 determine a k

for which J [`d] ⊂ J(Fpk). The computation of the group structure of J(Fpk) gives generators

for the group; multiplying these generators by appropriate integers gives generators for the

`d-torsion. It is then straightforward to compute the action of T on each generator gi for

1 ≤ i ≤ 4. If T (gi) = O for all i, then α is an endomorphism; otherwise α is not an

endomorphism.

This method of computing a spanning set has the same drawback as the brute-force

method of computing fields of definition: since the best algorithm for computing group

structure runs in time exponential in k log p, the method becomes prohibitively slow as k

increases. Thus the method is only effective when `d is very small.

5.5.2 A probabilistic method

The method of Section 5.5.1 for computing generators of J [`d] becomes prohibitively

slow as the field of definition of the `d-torsion points becomes large. However, we can get

around this obstacle by randomly choosing many points Qi of exact order `d, so that it is

highly probable that the set {Qi} spans J [`d].

Recall that we wish to test whether the operator T = a0 + a1π + a2π
2 + a3π

3 acts as

zero on the `d-torsion. To perform the test, we determine the field Fpk over which we expect

the `d-torsion to be defined. (See Section 5.4.) We pick a random point P ∈ J(Fpk) and

multiply P by an appropriate integer to get a point Q whose order is a power of `. If Q has

order `d, we act on Q by the operator T and test whether we get the identity of J ; otherwise

we try again with a new P . (See Section 5.5.3 for another method of randomly choosing
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`d-torsion points.) We repeat the test until it is overwhelmingly likely that the points Q

span the `d-torsion. If the set of Q spans the `d-torsion, then α is an endomorphism if and

only if T acts as zero on all the Q.

Algorithm 5.5.1. The following algorithm takes as input the Jacobian J of a genus 2

curve over Fp with CM by K; a prime power q = pk; a prime power `d with ` 6= p; an

element α ∈ OK such that `dα ∈ Z[π], where π ∈ OK corresponds to the p-power Frobenius

endomorphism of J ; and a real number ε > 0. The algorithm outputs true or false.

Suppose J [`d] ⊂ J(Fq). If α is an endomorphism of J , then the algorithm outputs

true. If α is not an endomorphism of J , then the algorithm outputs false with probability

at least 1− ε.

1. Compute a0, a1, a2, a3 such that α satisfies equation (5.7).

2. Set N to be

N ←

 d 1
d−log` 2 (− log` ε+ 3d)e if `d > 2

max{d−2 log2 εe+ 6, 16} if `d = 2.

3. Compute #J(Fq) = `sm, where ` - m.

4. Set i← 1.

5. Choose a random point Pi ∈ J(Fq). Set Qi ← [m]Pi. Repeat until [`d]Qi = O and

[`d−1]Qi 6= O.

6. Compute

[a0]Qi + [a1] Frobp(Qi) + [a2] Frobp2(Qi) + [a3] Frobp3(Qi) (5.8)

in J(Fq). If the result is nonzero output false.

7. If i < N , set i← i+ 1 and go to Step (5).

8. Output true.

Proof. By [34, Corollary 9], α is an endomorphism of J if and only if the expression (5.8) is

O for all `d-torsion points Q. Furthermore, it suffices to check this expression only on a basis

of the `d-torsion. Step (5) repeats until we find a point Qi of exact order `d; the assumption

J [`d] ⊂ J(Fq) guarantees that we can find such a point. The algorithm computes a total

of N such points Qi. Thus if the set of Qi span J [`d], then the algorithm will output true
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or false correctly, according to whether α ∈ End(J). We must therefore compute a lower

bound for the probability that the set of Qi computed span J [`d].

To compute this bound, we will compute an upper bound for the probability that N

points of exact order `d do not span J [`d]. We will make repeated use of the following

inequality, which can be proved easily: if `, d, n, and m are positive integers with ` > 1

and n > m, then
`md − `m(d−1)

`nd − `n(d−1)
<

1
`(n−m)d

.

Next we observe that in any group of the form (Z/`dZ)r, there are `rd−`r(d−1) elements

of exact order `d. The probability that a set of N elements does not span a 4-dimensional

space is the sum of the probabilities that all the elements span a j-dimensional subspace,

for j = 1, 2, 3. We consider each case:

• j = 1: All of the Qi are in the space spanned by Q1, and Q1 can be any element. The

probability of this happening is(
`d − `d−1

`4d − `4(d−1)

)N−1

<

(
1
`3d

)N−1

.

• j = 2: Q1 can be any element, one of the Qi must be independent of Q1, and the

remaining N − 2 elements must be in the same 2-dimensional subspace. There are

N − 1 ways to choose the second element, so the total probability is

(N − 1)
(

1− `d − `d−1

`4d − `4(d−1)

)(
`2d − `2(d−1)

`4d − `4(d−1)

)N−2

< N

(
1
`2d

)N−2

.

• j = 3: Q1 can be any element, and there must be two more linearly independent

elements; there are
(
N−1

2

)
ways of choosing these elements. The remaining N − 3

elements must all be in the same 3-dimensional subspace, so the total probability is

(N − 1)(N − 2)
2

(
1− `d − `d−1

`4d − `4(d−1)

)(
1− `2d − `2(d−1)

`4d − `4(d−1)

)(
`3d − `3(d−1)

`4d − `4(d−1)

)N−3

<
N2

2

(
1
`d

)N−3

.

Summing these three cases, we see that the total probability that the Qi do not span J [`d]

is bounded above by

N2

(
1
`d

)N−3

. (5.9)
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Since 2N ≥ N2 for N ≥ 4, we have

N2

(
1
`d

)N−3

≤ `−dN+3d+N log` 2.

(Note that N ≥ 4 must always hold if we want to have a spanning set of J [`].) Setting this

last expression less than ε and taking logs, we find

N ≥ 1
d− log` 2

(− log` ε+ 3d) . (5.10)

Thus if the number of trials N is greater than or equal to the right hand side of (5.10),

then the probability of success is at least 1− ε.
The right hand side of expression (5.10) is undefined if ` = 2, d = 1, so we must make

a different estimate. Since 2N/2 ≥ N2 for N ≥ 16, the estimate (5.9) bounds the probability

of Qi not spanning J [`d] by
N2

2N−3
≤ 1

2N/2−3
.

Setting the right hand side less than ε and taking logs gives

N ≥ −2 log2 ε+ 6. (5.11)

Thus if the number of trials N is greater than or equal to the maximum of 16 and the right

hand side of (5.11), then the probability of success is at least 1− ε.

Corollary 5.5.2. Let J , q, `d, α, and ε be as in Algorithm 5.5.1. Suppose π ∈ OK is such

that πσ corresponds to the Frobenius endomorphism of J for some σ ∈ Aut(K/Q). Suppose

J [`d] ⊂ J(Fq), and suppose Algorithm 5.5.1 is run with inputs J , q, `d, α, ε. If ασ is an

endomorphism of J , then the algorithm outputs true. If ασ is not an endomorphism of J ,

then the algorithm outputs false with probability at least 1− ε.

Proof. If we write α in the form (5.7), then we have

ασ =
a0 + a1π

σ + a2(πσ)2 + a3(πσ)3

`d
.

Step (6) of the algorithm determines whether the numerator of this expression acts as zero

on `d-torsion points. By [34, Corollary 9], this action is identically zero if and only if ασ

is an endomorphism of J . The statement now follows from the correctness of Algorithm

5.5.1.
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Remark 5.5.3. Since Qi is an `d-torsion point in Step (6), we may speed up the compu-

tation of the expression (5.8) by replacing each aj with a small representative of aj modulo

`d. We may also rewrite the expression (5.8) as

[a0]Qi + Frobp([a1]Qi + Frobp([a2]Qi + Frobp([a3]Qi)))

to reduce the number of Frobp operations from 6 to 3.

Remark 5.5.4. Algorithm 5.5.1 assumes that the `d-torsion points of J are defined over Fq,

so with enough trials we are almost certain to get a spanning set of points Qi. However, if

the `d-torsion points are not defined over Fq, then the points Qi will span a proper subspace

of J [`d]. If α is an endomorphism then T will act as zero on all of the Qi and Algorithm

5.5.1 will output true. However, if α is not an endomorphism then T may still act as zero

on all of the Qi (in which case it must have nonzero action on the `d-torsion points that are

not defined over Fq), and the algorithm will incorrectly output true. Thus to test whether

α is an endomorphism, we must combine Algorithm 5.5.1 with a method of checking the

field of definition of the `d-torsion points, such as the probabilistic method of Algorithm

5.4.3.

Proposition 5.5.5. Let J be the Jacobian of a genus 2 curve over Fp. Assume that the zeta

function of J/Fp is known, so that the cost to compute #J(Fpk) = `sm is negligible. Then

the expected number of operations in Fp necessary to execute Algorithm 5.5.1 on inputs J ,

q = pk, `d, and ε (ignoring log log p factors) is

O(k2 log k(log2 p)`s−4d(− log ε)).

Proof. Let q = pk. In the proof of Proposition 5.4.6, we computed that the cost of

computing a random point on J(Fq) is O(log q) operations in Fq, and the cost of a point

multiplication on J(Fq) is O(log q) operations in Fq. The chance that a random point in the

`-primary part of J(Fq) has exact order ` is `4d−`4d−4

`s , so the expected number of random

points necessary to find one point of exact order `d is O(`s−4d). The cost of computing the

p-power Frobenius action is proportional to the cost of raising an element of Fq to the pth

power, which is O(log p) Fq-operations.

We conclude that the expected cost of a single trial with a random point is

O(log q + log q + log p)`s−4dM(q)
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operations in Fp, where M(q) is the number of field operations in Fp needed to perform one

field operation in Fq. If fast multiplication techniques are used, then

M(q) = O(log q log log q) = O(k log k log p)

(ignoring log log p factors), so each trial takes

O(k2 log k(log2 p)`s−4d)

field operations in Fp. The number of points of exact order `d computed is O(− log ε).

Putting this all together gives a total of

O(k2 log k(log2 p)`s−4d(− log ε))

field operations in Fp.

5.5.3 The Couveignes method

Recall that to test whether an element α ∈ OK of the form (5.7) is an endomorphism

of J , we determine whether the operator T = a0 + a1π + a2π
2 + a3π

3 acts as zero on

all elements of a set {Qi} that spans J [`d]. Algorithm 5.5.1 computes a spanning set by

choosing random points Pi in J(Fpk), multiplying by an appropriate m to get points Qi in

the `-primary part of J(Fpk) (denoted J(Fpk)`), and keeping only those Qi whose order is

exactly `d. If J(Fpk)` is much larger than J [`], the orders of most of the Qi will be too

large, and it will take many trials to find the required number of points of order exactly `d.

To reduce the number of trials required, we would like to find a function from J(Fpk)` to

J [`d] that sends most of the Qi to points of exact order `d.

One way to compute such a function is as follows: compute the order `ti of each Qi;

if ti ≥ d send Qi 7→ [`ti−d]Qi, otherwise send Qi 7→ O. In most cases the image has order

`d. However, since the multiplier `ti−d will be different for each Qi, this function does not

define a group homomorphism, and thus the image of a set of points uniformly distributed

in J(Fpk)` will not be uniformly distributed in J [`d].

Couveignes [28] has described a map that has the properties we want and is a group

homomorphism. The idea is the following: if πk− 1 ∈ `d End(J), then there is an endomor-

phism φ such that `dφ = πk − 1. Since πk − 1 acts as zero on J(Fpk), the image of φ on

J(Fpk) must consist of `d-torsion points. Furthermore, the kernel of φ contains `dJ(Fpk),
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since φ(`dP ) = (πk − 1)(P ) = 0 if P is defined over Fpk . Thus we have a map

φ : J(Fpk)/`dJ(Fpk)→ J [`d].

Couveignes then uses the non-degeneracy of the Frey-Rück pairing (see [110]) to show that

φ is a bijection. Thus for any Qi not in `J(Fpk), φ(Qi) has order exactly `d. Since φ is

a surjective group homomorphism, the image of a set of points uniformly distributed in

J(Fpk) will be uniformly distributed in J [`d]. The chance that Qi ∈ `J(Fpk) is 1/`4, so

applying φ to the Qi will very quickly give a spanning set of J [`d].

However, there is one important caveat: we may not be able to compute φ. The

only endomorphisms we can compute are those involving the action of Frobenius and scalar

multiplication; namely, endomorphisms in Z[π]. Thus we need to take k to be the smallest

integer such that πk−1 ∈ `dZ[π]. We can then use the characteristic polynomial of Frobenius

to write φ = πk−1
`d

= M(π), where M is a polynomial of degree 3. Furthermore, since we

are applying φ only to points Qi ∈ J(Fpk)`, we may reduce the coefficients of M modulo `s

and get the same action on the Qi.

We have implemented the map φ in MAGMA and tested it on the examples that

appear in Section 5.9. In our examples, the smallest k for which πk − 1 ∈ `dZ[π] is usually

equal to `k0, where k0 is the integer output by Algorithm 5.4.1. We found that the cost

of choosing random points over a field of degree ` times as large far outweighs the benefit

of having to reject fewer of the points Qi, so this technique does not help to speed up

Algorithm 5.5.1.

5.6 Bounding the field of definition of the `d-torsion points

The running times of Algorithms 5.4.3 and 5.5.1 depend primarily on the size of the

field Fpk over which the `d-torsion points of J are defined. In this section, we bound the

size of k in terms of `d and p. We also show that to determine the field of definition of the

`d-torsion points of J for d > 1, it suffices to determine the field of definition of the `-torsion

points of J . This result allows us to work over much smaller fields in Algorithm 5.4.3, thus

saving us a great deal of computation.

By Lemma 5.3.2, the prime powers `d input to Algorithms 5.4.3 and 5.5.1 divide the

index [OK : Z[π, π]]. Thus a bound on this index gives a bound on the `d that appear.
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Proposition 5.6.1. Let K be a primitive quartic CM field with discriminant ∆ = ∆(OK).

Suppose π ∈ OK corresponds to the Frobenius endomorphism of the Jacobian of a genus 2

curve defined over Fp. Then

[OK : Z[π, π]] ≤ 16p2

√
∆
.

Proof. We showed in the proof of Corollary 5.3.5 that [Z[π, π] : Z[π]] = p. Combining this

result with the formula

[OK : Z[π]] = [OK : Z[π, π]][Z[π, π] : Z[π]],

we see that it suffices to show that [OK : Z[π]] ≤ 16p3/
√

∆. (Note that ∆ > 0 by [59,

Proposition 9.4].) Next, recall that

[OK : Z[π]] =

√
∆(Z[π])
∆(OK)

.

It thus suffices to show that
√

∆(Z[π]) ≤ 16p3. By definition,√
∆(Z[π]) =

∏
i<j

|αi − αj | , (5.12)

where αi are the possible embeddings of π into C. Since π represents an action of Frobenius,

it is a p-Weil number, and thus all of the αi lie on the circle |z| = √p. The product (5.12)

takes its maximum value subject to this constraint when the αi are equally spaced around

the circle, which happens when the αi are
√
p times primitive eighth roots of unity. The

maximum product is thus p3
√

∆(Q(ζ8)) = 16p3.

Proposition 5.6.1 also follows directly from [76, Proposition 7.4], where it is proved in

a different manner that
√

∆(Z[π, π]) ≤ 16p2.

The next two propositions give tight bounds on the degree k of the extension field of

Fp over which the `d-torsion points of J are defined. The first considers the case d = 1, and

the second shows that as d is increased to d+ 1, k grows by a factor of `.

Proposition 5.6.2. Let J be the Jacobian of a genus 2 curve over Fp, and suppose that

End(J) is isomorphic to the ring of integers OK of a primitive quartic CM field K. Let

` 6= p be a prime number, and suppose Fpk is the smallest field over which the points of J [`]

are defined. If ` is unramified in K, then k divides one of the following:

• `− 1, if ` splits completely in K;
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• `2 − 1, if ` splits into two or three prime ideals in K;

• `3 − `2 + `− 1, if ` is inert in K.

If ` ramifies in K, then k divides one of the following:

• `3− `2, if there is a prime over ` of ramification degree 3, or if ` is totally ramified in

K and ` ≤ 3;

• `2 − `, in all other cases where ` factors into four prime ideals in K (counting multi-

plicities);

• `3 − `, if ` factors into two or three prime ideals in K (counting multiplicities).

Proof. Let π ∈ OK correspond to the Frobenius endomorphism. By [34, Fact 10], the

`-torsion points of J are defined over Fpk if and only if πk − 1 ∈ `OK . We observe that by

the Chinese remainder theorem, this condition is satisfied if and only if πk ≡ 1 (mod pei
i )

for all primes pi | `OK , where ei is the ramification degree of pi. Next, we note that the

condition ` 6= p implies that π 6∈ pi for all i. To see why this is true, suppose the contrary:

π ∈ pi. Since ππ = p, we have p ∈ pi, contradicting the fact that pi is a prime over ` 6= p.

From these observations we deduce that k is the least common multiple of the mul-

tiplicative orders of π mod each pei
i , and thus k must divide the least common multiple

of

#(OK/pei
i OK)× = `fi(ei−1)(`fi − 1),

where fi is the inertia degree of pi. We now consider the various possibilities for the splitting

of ` in OK .

First, suppose ` is unramified, so ei = 1 for all i.

• If ` splits completely, then the inertia degrees of all the pi are 1, so k | `− 1.

• If ` splits into two or three ideals, then at least one pi has fi = 2 and all have fi ≤ 2,

so k | `2 − 1.

• If ` is inert, then there is a single pi with fi = 4, and k divides `4 − 1. We will return

to this case below to get a better bound.

Now suppose ` ramifies; there are six possibilities for the splitting of ` in OK .

• If `OK = p3q, then p and q have inertia degree 1, so k divides `2(`− 1).
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• If `OK = p4, then OK/p ∼= F`, and thus we have π`−1 = 1 + τ for some τ ∈ p. There

are now two subcases:

– If ` ≥ 5, then (1+ τ)` ∈ 1+ p4, so π`(`−1) ≡ 1 (mod p4). Thus k divides `(`− 1).

– If ` = 2 or 3, then (1+ τ)` ≡ 1+ τ ` (mod p4), so we must raise the expression to

the `th power again to get rid of the τ ` term. Thus π`
2(`−1) ≡ 1 (mod p4), and

k divides `2(`− 1).

• If `OK = p2q2 or p2qr, then all of the primes in question have inertia degree 1, so k

divides `(`− 1).

• If `OK = p2q, then p has inertia degree 1 and q has inertia degree 2, so k divides

lcm(`(`− 1), `2 − 1) = `(`2 − 1).

• If `OK = p2, then OK/p ∼= F`2 , and thus we have π`
2−1 = 1 + τ for some τ ∈ p. Then

(1 + τ)` ∈ 1 + p2, so π`(`
2−1) ≡ 1 (mod p2). Thus k divides `(`2 − 1).

Thus far we have used only the fact that π is an algebraic integer, and we have not

used the property that it represents the action of Frobenius. To get a better bound in

the case where ` is inert in K, we recall that since π is the Frobenius endomorphism, we

have ππ = p, and K = Q(π). Since ` is inert, reduction modulo ` gives an injective group

homomorphism

φ : Aut
(
K/Q

)
→ Aut

(
(OK/`OK)/(Z/`Z)

)
.

Furthermore, the target group is isomorphic to Gal(F`4/F`). This group is cyclic of order

4 and is generated by the `th-power Frobenius automorphism. Since complex conjugation

has order 2 in Aut(K/Q), its image under φ must be the map α 7→ α`
2
. Thus π ≡ π`

2

(mod `), and π`
2+1 ≡ p (mod `). Since p must reduce to an element of F×` , p has order

dividing `− 1, so π must have order dividing (`2 + 1)(`− 1).

The following proposition shows that in the cases we need for our application, the field

of definition of the `d-torsion points is determined completely by the field of definition of

the `-torsion points.

Proposition 5.6.3. Let A be an ordinary abelian variety defined over a finite field F , and

let ` be a prime number not equal to the characteristic of F . Let d be a positive integer,

and let F ′ be the extension field of F of degree `d−1. If the `-torsion points of A are defined
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over F , then the `d-torsion points of A are defined over F ′. If End(A) is integrally closed,

then the converse also holds.

Proof. Let R = End(A), and let π ∈ R be the Frobenius endomorphism of F . By [34, Fact

10], for any positive integers t and k, the `t-torsion points of A are defined over the degree-k

extension of F if and only if πk−1
`t ∈ R, i.e., πk ≡ 1 (mod `tR). To prove the proposition, it

suffices to show that

π ≡ 1 (mod `R) ⇔ π`
d−1 ≡ 1 (mod `dR),

with (⇐) holding when R is integrally closed.

First suppose that πk ≡ 1 (mod `tR), with t ≥ 1. Then we can write πk = 1 + `ty for

some y ∈ R. Then

πk` = 1 + `(`ty) +
(
`

2

)
(`ty)2 + · · ·+ (`ty)`,

so πk` ≡ 1 (mod `t+1R). We conclude that if the points of A[`t] are defined over the degree-

k extension of F , then the points of A[`t+1] are defined over the degree-k` extension of F .

If A[`] ⊂ A(F ), then by induction A[`d] ⊂ A(F ′).

Now suppose that πk` ≡ 1 (mod `tR), with t ≥ 2. Since A is ordinary, R is an order

in a number ring. Thus if R is integrally closed then it is a Dedekind domain, and we may

write `R =
∏

pei
i uniquely for prime ideals pi ⊂ R. By the Chinese remainder theorem,

πk ≡ 1 (mod `tR) if and only if πk ≡ 1 (mod peit
i ) for each i, so we may consider the

problem locally at each pi. Localizing and completing the ring R at the prime pi gives a

complete local ring Rv with maximal ideal pi and valuation v satisfying v(`) = ei.

By hypothesis, we may write πk` = 1+y for some y ∈ peit
i . We can define the `th-root

function on Rv to be

(1 + y)1/` = exp
(

1
`

log(1 + y)
)
.

By [98, Proposition II.5.5], if y ∈ peit
i then log(1 + y) ∈ peit

i . Since v(`) = ei, we have

v(1
` log(1+y)) ≥ ei(t−1), so by the same proposition (1+y)1/` converges and is in 1+p

ei(t−1)
i

whenever (t − 1)(` − 1) > 1. Thus if (t − 1)(` − 1) > 1 then πk ≡ 1 (mod p
ei(t−1)
i ). We

conclude that if t > 2 or ` > 2 and the points of A[`t] are defined over the degree-k`

extension of F , then the points of A[`t−1] are defined over the degree-k extension of F . If

A[`d] ⊂ A(F ′), then by descending induction A[`] ⊂ A(F ) if ` is odd, and A[4] ⊂ A(F2) if

` = 2, where F2 is the quadratic extension of F .
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It remains to show that if A[4] ⊂ A(F2), then A[2] ⊂ A(F ). This is equivalent to

showing that if π2 − 1 ∈ 4R then π − 1 ∈ 2R. We prove the contrapositive: suppose

π − 1 6∈ 2R. Then there is some prime p over 2 such that vp(π − 1) < vp(2). Since

π+1 = (π− 1)+2 and vp(π− 1) < vp(2), we must also have vp(π+1) < vp(2). Multiplying

the two expressions gives vp(π2 − 1) < vp(4), so π2 − 1 cannot be contained in 4R. We

conclude that π2 − 1 ∈ 4R implies π − 1 ∈ 2R.

Corollary 5.6.4. Let J be the Jacobian of a genus 2 curve over Fp, with p > 3, and suppose

that End(J) is isomorphic to the ring of integers OK of the primitive quartic CM field K.

Let π ∈ OK correspond to the Frobenius endomorphism of J , and let `d be a prime power

dividing [OK : Z[π, π]]. Suppose Fpk is the smallest field over which the points of J [`d] are

defined. Then k < 3p6.

Proof. We have ` 6= p by Proposition 5.3.6. By Proposition 5.6.2, the points of J [`] are

defined over a field F of degree less than `3 over Fp. By Proposition 5.6.3, the points of

J [`d] are defined over a field L of degree `d−1 over F . Since degrees of extensions multiply,

we get

k = [L : Fp] < `d+2 ≤ `3d.

By Proposition 5.6.1, `d ≤ 16√
∆
p2, where ∆ is the discriminant of the quartic CM field K.

Lemma 5.6.5 below shows that any primitive quartic CM field has ∆ ≥ 125, so `d ≤ 16√
125
p2.

Since k < `3d, we conclude that k < 3p6.

Lemma 5.6.5. Suppose K is a primitive quartic CM field. Then ∆(K) ≥ 125.

Proof. Since ∆(Q(ζ5)) = 125, it suffices to show that no smaller discriminant can occur.

The fact that ∆(K) > 0 follows from [59, Proposition 9.4]. Now suppose ∆(K) < 125.

Since ∆(K0)2 | ∆(K), we must have K0 = Q(
√

2) or Q(
√

5), as these are the only two

real quadratic fields with discriminant less than 12. Since Q(
√

2) has class number 1, by

[98, Proposition VI.6.9] Q(
√

2) has no unramified quadratic extensions, so ∆(K) is strictly

greater than ∆(K0)2. Thus if K0 = Q(
√

2) then ∆(K) ≥ 128.

We deduce that K0 = Q(
√

5) and K must be of the form Q(i
√
a+ b

√
5), with a, b,

and a2 − 5b2 positive integers. Since K is primitive, a2 − 5b2 is not a square in Q and its

square-free part divides ∆(K)/∆(K0)2. It thus suffices to show that the square-free part of

a2 − 5b2 is at least 5; this follows from the fact that 2 and 3 are inert in Q(
√

5), so there

are no integer solutions to a2 − 5b2 = 2 or 3.
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5.7 Computing Igusa class polynomials

This section combines the results of all of the previous sections into a full-fledged

probabilistic version of Eisenträger and Lauter’s CRT algorithm to compute Igusa class

polynomials for primitive quartic CM fields [34, Theorem 1].

Algorithm 5.7.1. The following algorithm takes as input a primitive quartic CM field K

not isomorphic to Q(ζ5), three integers λ1, λ2, λ3 which are multiples of the denominators of

the three Igusa class polynomials for K, and a real number ε > 0, and outputs three poly-

nomials H1,H2,H3 ∈ Q[x]. Heuristically, the polynomials Hi(x) output by the algorithm

are with high probability the Igusa class polynomials for K.

1. (Initialization.)

(a) Let D be the degree of the Igusa class polynomials for K. (See [132, Theorem

3.1] for the case where the real quadratic subfield K0 has class number 1, and

[51, preprint version, Corollary 3.1] for the general case.)

(b) Compute an integral basis B for OK , using e.g. [26, Algorithm 6.1.8].

(c) Set p← 3, B ← 1, H1,H2,H3 ← 0, F1, F2, F3 ← 0.

2. Set p← NextPrime(p) until p splits completely in K and p splits into principal ideals

in K̂ (the reflex field of K).

3. (Finding the curves.) Set T1, T2, T3 ← {}. For each (j1, j2, j3) ∈ F3
p, do the following:

(a) Compute a curve C/Fp with Igusa invariants (j1, j2, j3), using the algorithms of

Mestre [88] and Cardona-Quer [22].

(b) Run Algorithm 5.2.1 with inputs K, p,C.

i. If the algorithm outputs false, go to the next triple (j1, j2, j3).

ii. If the algorithm outputs true, let π be one of the possible Frobenius elements

it outputs.

(c) For each prime ` dividing [OK : Z[π, π]], do the following:

i. Run Algorithm 5.4.1 with inputs K, `, π. Let the output be k.

ii. Run Algorithm 5.4.3 with inputs Jac(C), Fpk , `, and ε. If the output is

false, go to the next triple (j1, j2, j3).
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iii. If `2 divides [OK : Z[π, π]] or πk−1
` ∈ Z[π], then for each α ∈ B \ Z written

in the form (5.3) with denominator n, do the following:

A. Let d be the largest integer such that `d | n. If d = 0, go to the next α.

B. Set k′ ← k`d−1.

C. Run Algorithm 5.5.1 with inputs Jac(C), pk
′
, `d, n

`d
α, ε.

D. If Algorithm 5.5.1 outputs false, go to the next triple (j1, j2, j3). Oth-

erwise go to the next α.

(d) Adjoin j1, j2, j3 to the sets T1, T2, T3, respectively (counting multiplicities).

4. If the size of each set T1, T2, T3 is not equal to D, go to Step (2).

5. (Computing the Igusa class polynomials.) For i ∈ {1, 2, 3}, do the following:

(a) Compute Fi,p(x) = λi
∏
j∈Ti

(x− j) in Fp[x].

(b) Use the Chinese remainder theorem to compute F ′
i (x) ∈ Z[x] such that F ′

i (x) ≡
Fi(x) (mod B), F ′

i (x) ≡ Fi,p(x) (mod p), and the coefficients of F ′
i (x) are in the

interval [−pB/2, pB/2].

(c) If F ′
i (x) = Fi(x), output Hi(x) = λ−1

i Fi(x). If Hi(x) has been output for all i,

terminate the algorithm.

(d) Set Fi(x)← F ′
i (x).

6. Set B ← pB, and return to Step (2).

Proof. In view of [34, Theorem 1], it suffices to prove that Step (3c) correctly determines

the set of curves with End(Jac(C)) = OK . It follows from Section 5.3 that End(Jac(C)) =

OK if and only if each of the elements of the generating set listed in Proposition 5.3.7 is an

endomorphism.

By Algorithm 5.2.1, the π computed in Step (3b) is such that πσ is the Frobenius

element of Jac(C) for some σ ∈ Aut(K/Q). By Corollary 5.3.9, End(Jac(C)) = OK if and

only if βσ is an endomorphism for each β in the generating set of Proposition 5.3.7. Since

elements of Aut(K/Q) preserve OK as a set, [OK : Z[πσ, πσ]] = [OK : Z[π, π]].

For each ` dividing [OK : Z[π, π]], Steps (3(c)i) and (3(c)ii) test probabilistically

whether (πσ)k−1
` is an endomorphism for an appropriate k. By Corollary 5.3.4, for any such

` dividing [OK : Z[π, π]] exactly, this suffices to determine whether n
`α

σ is an endomorphism

for each α ∈ B \ Z.
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By Corollary 5.5.2, if `2 divides [OK : Z[π, π]] then Step (3(c)iii) tests probabilistically

whether n
`d
ασ is an endomorphism. The input uses the field Fpk′ because Proposition 5.6.3

implies that if the `-torsion points are defined over Fpk , then the `d-torsion points are defined

over Fpk′ .

The “heuristic” part of the statement refers to the termination procedure in Step

(5), which differs from the corresponding step in [34, Theorem 1]. After the nth prime

pn we use the Chinese remainder theorem to compute integer polynomials Fi(x) that, by

Theorem 5.1.2, are the Igusa class polynomials for K modulo Bn =
∏n
j=1 pj . If for some i

the Fi(x) agree for the nth and (n+1)th primes, then with high probability the coefficients

of λiHi(x) ∈ Z[x] are less than Bn+1, and thus Fi(x) is equal to Hi(x) itself. This conclusion

is justified by the fact that if an integer m has the property that it is the same modulo Bn

and modulo Bn+1, thenm = an+rnBn = an+1+rn+1Bn+1, with an = an+1 < Bn. It follows

that pn+1 divides rn. Since the probability of this happening for a random number rn is

1/pn+1, the probability that all coefficients would simultaneously satisfy this congruence is

(1/pn+1)D, so heuristically we expect that ri+1 is actually zero for each coefficient.

Remark 5.7.2. The λi input into the algorithm can be taken to be products of primes

bounded in [54], raised to a power that will be made explicit in forthcoming work. In

practice, the power can be taken to be a small multiple of 6.

Our version of the algorithm minimizes the amount of computation by terminating

the algorithm in Step (5c) as soon as the polynomials agree modulo two consecutive primes.

Since we check after every prime pi whether the algorithm is finished, we do not need to know

in advance the number of primes pi that we will need to use. Thus the only bounds that

need to be computed in advance are the bounds λi on the denominators of the coefficients

of the Igusa class polynomials. In particular, we do not need to have a bound on either the

numerators or the absolute values of the coefficients.

5.8 Implementation notes

Our most significant observation is that in practice, the running time of the probabilis-

tic CRT algorithm is dominated by generating p3 curves for each small p. Steps (3a) and

(3b) of Algorithm 5.7.1 generate a list of curves C for which End(Jac(C)) is an order in OK .

Algorithms 5.4.3 and 5.5.1 determine which endomorphism rings are equal to OK . Data
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comparing the relative speeds of these two parts of the algorithm appear in Section 5.9.

This section describes a number of ways to speed up Algorithm 5.7.1, which are reflected

in the running times that appear in Section 5.9.

1. If p and k are large, then the extra time required to do arithmetic on J(Fpk) can slow

down Algorithms 5.4.3 and 5.5.1 considerably. Since for various ` dividing the index

[OK : Z[π, π]], the extension degrees k depend only on the prime p and the CM field

K and not on the curve C, these extension degrees may be computed in advance (via

Algorithm 5.4.1) before generating any curves. We set some bound N and tell the

program that if the extension degree k for some ` is such that pk > N , we should

skip that p and go on to the next prime. For example, if K = Q(i
√

13 + 2
√

13) and

p = 53 (see Example 5.9.2), we have [OK : Z[π, π]] = 32 · 43, and the 43-torsion of

a Jacobian J with End(J) = OK will be defined over Fp924 , a field of over 5000 bits

that is far too large for our current implementation to handle efficiently.

2. In a similar vein, since the speed of Algorithms 5.4.3 and 5.5.1 is determined by the

size of the fields Fpk , for optimum performance one should perform these calculations

in order of increasing k, so that as the fields get larger there are fewer curves to check.

3. Algorithms 5.4.3 and 5.5.1 take a single curve as input. In Algorithm 5.7.1 those

algorithms are executed with the same field K and many different curves, so any

parameter that only depends on the field K and the prime p can be precomputed and

stored for repeated reference. For example, the representation α = (a0 +a1π+a2π
2 +

a3π
3)/n and the extension degrees k in Step (3(c)i) can be computed only once. In

addition, all of the curves that pass Step (3b) have one of a small number of given

zeta functions. Since #J(Fpk) is determined by the zeta function, this number can

also be computed in advance.

4. If Fpk is small enough, it may be faster to check fields of definition using the brute

force method of Section 5.4.1, rather than Algorithm 5.4.3. If ` is small (as must be

the case for k to be small), then we often find that #J(Fpk) = `sm with s� 4d, and

thus the number of random points needed in Algorithms 5.4.3 and 5.5.1 will be very

large. While computing the group structure is an exponential-time computation, we

find that if the group has size at most 2200, MAGMA can compute the group structure

fairly quickly.
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5. If Step (5c) has already output Hi(x) for some i, the roots of this polynomial mod p

can be used as the possible values of ji in Step (3). This will greatly speed up the

calculation of the Fi,p for the remaining primes: if one Hi has been output then only

p2D curves need to be computed (instead of p3), and if two Hi have been output then

only pD2 curves need to be computed.

6. In practice, for small primes p (p < 800 in our MAGMA implementation), computing

#C(Fp) (Step (5b) of Algorithm 5.2.1) is more efficient than choosing a random point

on J(Fp) and determining whether it is killed by one of the potential group orders

(Step (5a) of Algorithm 5.2.1), so these two steps should be switched for maximum

speed. However, as p grows, the order of the steps as presented will be the fastest.

7. Finally, we note that Algorithm 5.7.1 can easily be parallelized. One could assign to

each processor a different prime p for which to compute curves, with a central processor

combining the results via the Chinese remainder theorem. Or some processors could

compute curves, some could run Algorithm 5.4.3, and some could run Algorithm

5.5.1. These two algorithms could even themselves be parallelized, with each processor

computing a different random point on the Jacobian, and the central processor tallying

which ones pass or fail the appropriate test.

5.9 Examples

This section describes the performance of Algorithm 5.7.1 on three quartic CM fields:

Q(i
√

2 +
√

2), Q(i
√

13 + 2
√

13), and Q(i
√

29 + 2
√

29). These fields are all Galois and have

class number 1, so the density of primes with the desired splitting behavior is maximal. The

Igusa polynomials are linear; they have integral coefficients for the first two fields, and have

denominators dividing 512 for the last. In all three examples, as p grows the running time

of the algorithm becomes dominated by the computation of p3 curves for each p, whereas it

was previously suspected that the endomorphism ring computation would be the slow step

in the CRT algorithm. A fast implementation in C to produce the curves from their Igusa

invariants and to test the numbers of points would thus significantly improve the running

time of the CRT algorithm.

Details of the algorithms’ execution are given below. The algorithms were run on

a 2.39 GHz AMD Opteron with 4 GB of RAM. The table headings have the following
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meaning:

• p: Size of prime field over which curves were generated.

• `d: Prime powers appearing in the denominators n of elements α input into Algorithms

5.4.3 and 5.5.1, when written in the form (5.3).

• k: Degrees of extension fields over which `d-torsion points are expected to be defined.

These are listed in the same order as the corresponding `d.

• Curves: Time taken to generate p3 curves and determine which have CM by K (cf.

Algorithm 5.2.1).

• #Curves: Number of curves computed with CM by K.

• 5.4.3 & 5.5.1: Time taken to run Algorithms 5.4.3 and 5.5.1 to find the single curve

whose Jacobian has endomorphism ring equal to OK .

Example 5.9.1. We ran Algorithm 5.7.1 with K = Q(i
√

2 +
√

2) and λ1, λ2, λ3 = 1. The

results appear in Table 5.1. The last column of the table shows the intermediate polynomials

Fi(x) computed via the Chinese remainder theorem in Step (5b). The algorithm output the

Fi(x) listed for p = 151 as the Igusa class polynomials of K.

The total time of this run was 3162 seconds, or about 53 minutes. We observe that the

polynomials F2 and F3 agree for p = 103 and p = 113. We deduce that these polynomials

are the correct Igusa polynomials, and following note (5) of Section 5.8, we use their roots

for the values of j2 and j3 for p = 151. Thus instead of computing 1513 ≈ 222 curves, we

need to compute only 151 curves, out of which we can easily choose the right one. As a

result, the computation for p = 151 takes practically no time at all. The same phenomenon

also appears for the last prime in Examples 5.9.2 and 5.9.3.

Example 5.9.2. We ran Algorithm 5.7.1 with K = Q(i
√

13 + 2
√

13) and λ1, λ2, λ3 = 1.

The results appear in Table 5.2. The algorithm output the following Igusa class polynomials:

x− 1836660096, x− 28343520 x− 9762768.

The total time of this run was 6969 seconds, or about 116 minutes. In this example

we skip some primes because Algorithms 5.4.3 and 5.5.1 would need to compute in fields

which are too large to be practical. In particular, for p = 29, 53, 107, 139, the algorithms
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Table 5.1: Results for Algorithm 5.7.1 run with K = Q(i
√

2 +
√

2) and λ1, λ2, λ3 = 1.
p `d k Curves #Curves 5.4.3 & 5.5.1 Fi(x)

7 2,4 2,4 0.5 sec 7 0.3 sec
x+ 2
x+ 5
x+ 6

(mod 7)

17 4,8 2,4 4 sec 39 0.2 sec
x− 54
x+ 19
x− 8

(mod 119)

23 2,4,7 2,4,3 9 sec 49 2.3 sec
x+ 1017
x+ 852
x+ 111

(mod 2737)

71 2,4 2,4 255 sec 7 0.7 sec
x− 75619
x+ 28222
x− 46418

(mod 194327)

97 4,8 2,4 680 sec 39 0.3 sec
x− 8237353
x+ 9355918
x+ 9086951

(mod 18849719)

103 2,4,17 2,4,16 829 sec 119 17.6 sec
x+ 104860961
x− 28343520
x− 9762768

(mod 1941521057)

113 7,8,32 6,4,16 1334 sec 1281 28.8 sec
x− 1836660096
x− 28343520
x− 9762768

(mod 219391879441)

151 2,4,7,17 2,4,6,16 0.2 sec 1 –
x− 1836660096
x− 28343520
x− 9762768

(mod 33128173795591)

would run over extension fields of degree 264, 924, 308, 162, all of which have well over 1000

bits. Skipping these primes has no effect on the ultimate outcome of the algorithm.

Example 5.9.3. We ran Algorithm 5.7.1 with K = Q(i
√

29 + 2
√

29) and λ1, λ2, λ3 = 512.

The results appear in Table 5.3. The algorithm output the following Igusa class polynomials:

x− 2614061544410821165056
512 , x+ 586040972673024

56 , x+ 203047103102976
56 .

The total time of this run was 56585 seconds, or about 15 hours, 43 minutes. In this

example we again skip some primes because the fields input to Algorithms 5.4.3 and 5.5.1

would be too large. We also note that for p = 7, OK = Z[π, π], so any curve over F7 that has

a correct zeta function already has CM by all of OK , and we do not need to run Algorithms

5.4.3 and 5.5.1.
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Table 5.2: Results for Algorithm 5.7.1 with K = Q(i
√

13 + 2
√

13) and λ1, λ2, λ3 = 1.
p `d k Curves #Curves 5.4.3 & 5.5.1
29 3,23 2,264 – – –
53 3,43 2,924 – – –
61 3 2 167 sec 9 0.2 sec
79 27 18 376 sec 81 8.1 sec
107 9,43 6,308 – – –
113 3,53 1,52 1118 sec 159 137.2 sec
131 9,53 6,52 1872 sec 477 127.4 sec
139 9,243 6,162 – – –
157 9,81 6,54 3147 sec 243 16.5 sec
191 3,4,8 2,2,4 0.2 sec 1 –

Remark 5.9.4. The data in Examples 5.9.1, 5.9.2, and 5.9.3 suggest that odd primes

dividing the index [OK : Z[π, π]] always split in OK0 , the ring of integers of K0. In fact the

factorization of the index [OK : Z[π, π]] was given in [34, Proposition 5] for primitive quartic

CM fields K when K0 has class number 1. We write π = c1 + c2
√
d+ (c3 + c4

√
d)η, where

the ci are rational numbers with only powers of 2 in the denominators and η = i
√
a+ b

√
d

with a, b, d ∈ Z, d > 0 and square-free. Then the index is, up to powers of 2, the product of

c2 with (c23 − c24d), where c2 is the index of Z[π + π] in OK0 up to a power of 2. If a prime

divides (c23−c24d) exactly, then the prime splits in K0. Thus primes different from 2 dividing

the index [OK : Z[π, π]] exactly either split in K0 or divide the index [OK0 : Z[π + π]]. So

except possibly for primes dividing c2, no odd primes dividing the index [OK : Z[π, π]]

exactly are inert or totally ramified in K. If K is Galois, then this is enough to ensure that

the extension degree k determined by Proposition 5.6.2 is at most `2. This agrees with the

data in our examples, all of which considered Galois fields.

In practice, if a prime ` is inert or totally ramified in K, it would almost certainly be

skipped anyway, since Proposition 5.6.2 shows that the `-torsion may be defined over an

extension field of degree k ∼ `3, which is too large to be practical (cf. Note (1) of Section

5.8). The theoretical running times of Algorithms 5.4.3 and 5.5.1, given by Propositions

5.4.6 and 5.5.5 respectively, improve if inert or ramified primes ` are not considered. The

slow step of both algorithms is computing a random point on J(Fpk), which takes roughly

O(k2 log k(log p)2) operations in Fp. Since the bound on ` given by Proposition 5.6.1 is p2, if

k is bounded by `2 instead of `3, this step would run in O(p8 log3 p) instead of O(p12 log3 p)
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Table 5.3: Results for Algorithm 5.7.1 with K = Q(i
√

29 + 2
√

29) and λ1, λ2, λ3 = 512.
p `d k Curves #Curves 5.4.3 & 5.5.1
7 – – 0.3 sec 1 –
23 13 84 9 sec 15 70.7 sec
53 7 6 105 sec 7 0.5 sec
59 4,5,8 2,12,4 164 sec 322 6.4 sec
83 3,5 4,24 431 sec 77 9.8 sec
103 67 1122 – – –
107 7,13 6,42 963 sec 105 69.3 sec
139 7,25 2,60 2189 sec 259 62.1 sec
181 9,27 6,18 84 min 161 3.6 sec
197 5,109 24,5940 – – –
199 25 60 106 min 37 1355.3 sec
223 4,8,23 2,4,22 174 min 1058 35.1 sec
227 109 1485 – – –
233 5,7,13 8,3,28 193 min 735 141.6 sec
239 7,109 6,297 – – –
257 3,7,13 4,6,84 286 min 1155 382.8 sec
277 5,7,23 24,6,22 0.3 sec 1 –

time.
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Appendix A

Parameters for Pairing-Friendly

Abelian Varieties

A.1 Elliptic curves with embedding degree 10

In this section we give results of the execution of Algorithm 3.1.4 with inputs

MinBits = 148, MaxBits = 512, MaxD = 2 · 109.

Mike Scott implemented the computations in C++/NTL [116] and recorded the data [111].

A.1.1 Curves of prime order

Scott’s search found 23 curves of prime order over fields of size between 149 and 491

bits. Below we give the field size p, the group size r, and the CM discriminant D for each

curve. A curve equation can be determined by computing the Hilbert class polynomial for

the ring of integers of Q(
√
−D) and finding a curve E/Fp whose j-invariant is a root of the

class polynomial mod p.

p = 149 bits, r = 149 bits,
D = 1666603
p = 503189899097385532598615948567975432740967203
r = 503189899097385532598571084778608176410973351

p = 167 bits, r = 167 bits,
D = 1744734787
p = 122422753977607994982409086499580592436601185116163
r = 122422753977607994982409064370617311016660704117271
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p = 171 bits, r = 171 bits,
D = 185395987
p = 2083326357803400732502230568736017478475832590830203
r = 2083326357803400732502230477449077387279857998559851

p = 171 bits, r = 171 bits,
D = 190795843
p = 2887834593705647033580742041459784997141562959984683
r = 2887834593705647033580741933982632193289394044378051

p = 172 bits, r = 172 bits,
D = 1141200763
p = 3590763702973812504360796554304334129856335904471043
r = 3590763702973812504360796434458371277971959142005761

p = 180 bits, r = 180 bits,
D = 990757243
p = 1122293530976362393523272676815272452781072693342838723
r = 1122293530976362393523272674696505329214764008749287671

p = 188 bits, r = 188 bits,
D = 648666907
p = 284980960902604464050497768248655074807567725439635139163
r = 284980960902604464050497768214892316572932660953073087771

p = 193 bits, r = 193 bits,
D = 1649528323
p = 10276457192485052926515801660118541136204219447539307223723
r = 10276457192485052926515801659915795411785823359612422215171

p = 196 bits, r = 196 bits,
D = 579003643
p = 61099963271083128746073769567944870354270161646150914794603
r = 61099963271083128746073769567450502219087145916434839626301

p = 234 bits, r = 234 bits,
D = 1227652867
p = 18211650803969472064493264347375950045934254696657090420726230043203803
r = 18211650803969472064493264347375949776033155743952030750450033782306651

p = 252 bits, r = 252 bits,
D = 1039452307
p = 6462310997348816962203124910505252082673338846966431201635262694402825461643
r = 6462310997348816962203124910505252082512561846156628595562776459306292101261

p = 264 bits, r = 264 bits,
D = 838990723
p = 2266583877336174248954828778866366915045677650514207126236707822637021357924
1243
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r = 2266583877336174248954828778866366915044725477446464465443703904128748041224
6011

p = 273 bits, r = 273 bits,
D = 1683538387
p = 9947942326664232376099280584264295214470696885466482930742141225735418341352
714723
r = 9947942326664232376099280584264295214470497406722485839840304615365831963407
761671

p = 291 bits, r = 291 bits,
D = 296281483
p = 3799903926819770584524954763142080064763100623954389070885803606052033300857
169141842683
r = 3799903926819770584524954763142080064763100500667667534140077965397493307634
688343579051

p = 301 bits, r = 301 bits,
D = 126139963
p = 2295906612971330793819480760277602114548272284485806266835306695945869447204
270532747317643
r = 2295906612971330793819480760277602114548272281455356390680724399984801494716
906367418265011

p = 309 bits, r = 309 bits,
D = 944184187
p = 5221197099379961267781663903488686786483742323803025548549776778806185421770
49221041059499163
r = 5221197099379961267781663903488686786483742323346026769585107715970441739161
39398869610147771

p = 315 bits, r = 315 bits,
D = 1487526043
p = 3866992284418719041347983674133717559523718678797919412050841166455734551346
5115369973641873883
r = 3866992284418719041347983674133717559523718678758590072954341113311859781255
8823488880436227701

p = 331 bits, r = 331 bits,
D = 1431850363
p = 3194192423086417601436539945152712618198781172719622448104297431370955345097
650741456242416736232203
r = 3194192423086417601436539945152712618198781172719509413730355936607591046300
070761686891259023380851

p = 366 bits, r = 366 bits,
D = 33555283
p = 1354768560298799684139093162837261769646247750412289972544131164370133270217
65763013460844983529908792964617763
r = 1354768560298799684139093162837261769646247750412289972311342113055532163255
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39360593097745238140316627358904871

p = 380 bits, r = 380 bits,
D = 267410467
p = 2339204943579542056151779470368870295763871924382713042046576405133768299391
477817017385592283876844743840240842883
r = 2339204943579542056151779470368870295763871924382713042043517513214409563986
371399004288311722525198894651108516951

p = 404 bits, r = 404 bits,
D = 426205003
p = 2597706591591198405996032563515859958371389023433202635888464161379700952080
8077669674239894701170912925422614734360995883
r = 2597706591591198405996032563515859958371389023433202635888463142025671854986
7090743012661920976463852165330259074440000451

p = 415 bits, r = 415 bits,
D = 79434787
p = 5514924090277076006137230618597461392564019339043825049125419095783967700266
9147456448802521736258505173722211451602905634963
r = 5514924090277076006137230618597461392564019339043825049125419048816216677774
5731179928896816225900920099065339403740237043071

p = 491 bits, r = 491 bits,
D = 20056963
p = 3422670730140745611063008390984886199083153138113027016016808029034489036281
589838430444475052147319044685739437275217228117724161830578064094716523
r = 3422670730140745611063008390984886199083153138113027016016808029034489036164
582646683257488544781114697550790739462160878161058595302756050379234621

A.1.2 Curves with small cofactors

If we relax the condition of r being prime in Algorithm 3.1.4 and allow a “cofactor” h

such that #E(Fq) = hr, we find many more suitable curves. Below we give parameters for

all curves found by Scott with subgroup sizes between 148 and 512 bits and cofactors less

than 100. In addition to the field size p, the subgroup size r, and the CM discriminant D,

we give the cofactor h as well as the ρ-value log q/ log r. Equations for the curves can again

be constructed via the CM method.

p = 156 bits,
r = 152 bits
D = 1163411323
p = 46491799279065281262949845565372377478096005643
r = 4226527207187752842086310393293720919304143751
h = 11
rho = 1.022824553
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p = 173 bits,
r = 168 bits
D = 26906587
p = 10138978787899014979556710182668437938887966202371323
r = 327063831867710160630861612299465986114696409316341
h = 31
rho = 1.02952336

p = 178 bits,
r = 174 bits
D = 776358547
p = 249780845441118230976458804143017684580147331902502683
r = 22707349585556202816041709376677826345225287399591391
h = 11
rho = 1.019890545

p = 191 bits,
r = 188 bits
D = 125434987
p = 2302786396545700640267130213442885812764589522451036711123
r = 209344217867790967297011837576991918136381336797313337661
h = 11
rho = 1.018490355

p = 198 bits,
r = 193 bits
D = 1464898147
p = 207996980122469265501634927384037072390157655791953255691043
r = 6709580003950621467794675076874998021665222373884114537081
h = 31
rho = 1.025790194

p = 200 bits,
r = 195 bits
D = 119064067
p = 924570000037739879129633918438761462867977388441529697158443
r = 29824838710894834810633352207639947471175907455080071883331
h = 31
rho = 1.025504446

p = 202 bits,
r = 198 bits
D = 744549043
p = 3449357194062223679948590120941515953738570688614483618428523
r = 313577926732929425449871829176163769518688591712698359927511
h = 11
rho = 1.017503473

p = 207 bits,
r = 202 bits
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D = 448871083
p = 137031017855675817387778232371363032752988715283991332977952203
r = 4420355414699219915734781689398052280751064640028692983014221
h = 31
rho = 1.024591482

p = 206 bits,
r = 203 bits
D = 164930707
p = 85329001180125284730411332555603275938544233454665921565241803
r = 7757181925465934975491939323234981927173223552660334356513241
h = 11
rho = 1.017102936

p = 219 bits,
r = 216 bits
D = 40319947
p = 837560881553094601656898126335293801745314988531201407758920596923
r = 76141898323008600150627102394117451943478921237940702343764319361
h = 11
rho = 1.016050657

p = 233 bits,
r = 227 bits
D = 1651027
p = 9864054284671734266547148769747226053832768336180415355821151502376483
r = 161705807945438266664707356881102063199948811046090068924437131475941
h = 61
rho = 1.026174508

p = 239 bits,
r = 235 bits
D = 1600012003
p = 447171559055497502385048769148266703338701827010046072982567143631364283
r = 40651959914136136580458979013478791091025825243672251775637104184579841
h = 11
rho = 1.014748707

p = 257 bits,
r = 254 bits
D = 546540763
p = 2062788121713387297069689367776270007602550698170513561749517476676130997847
63
r = 1875261928830352088245172152523881825084970102461130238894243334439547141051
1
h = 11
rho = 1.013653479

p = 261 bits,
r = 258 bits
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D = 1874162947
p = 3091701852274731464061284916573302514227505246398656211391303573339957213242
563
r = 2810638047522483149146622651430275012930898726559765394195428324625634832050
61
h = 11
rho = 1.013446207

p = 288 bits,
r = 283 bits
D = 131545147
p = 2505599572590219629537321870173155631004078127016113277041767364024177321643
86483115483
r = 8082579266420063321088135065074695583884121969143217032374357632380849197164
283969771
h = 31
rho = 1.017564536

p = 292 bits,
r = 286 bits
D = 646182403
p = 7404707569865514308061323755615540853577368914336780475316695443041139047073
971836925163
r = 1213886486863199066895298976330416533373339138071403188021098895767921769573
93361142111
h = 61
rho = 1.020739349

p = 303 bits,
r = 299 bits
D = 46195603
p = 1617236167366554381642365517953905247071558836026242105110302503283020071347
3422635764905483
r = 5216890862472756069814082315980339506682447855554660019612457442177096658999
47504458831021
h = 31
rho = 1.016622879

p = 350 bits,
r = 346 bits
D = 1073269963
p = 1502350023383639723385357529354982766471102956845724615448825737420718964992
472747493168392511848802347723
r = 1365772748530581566713961390322711605882820869859749579935004743045093880634
99077709249619225709885654311
h = 11
rho = 1.010000374

p = 423 bits,
r = 420 bits
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D = 57667387
p = 1953902619039024799944980318911451435506493631046574006219161845845462017097
9645740800898070801638548999046997998642389239186443
r = 1776275108217295272677254835374046759551357846405976369290147131783093275474
919693954438061919954548589818917467978601908655751
h = 11
rho = 1.008248687

p = 444 bits,
r = 440 bits
D = 1607123107
p = 2855016011415369269978748558244776181428735542065753952674014405191070317040
2528952046925926212430140747061540536752185756007120500723
r = 2595469101286699336344316871131614710389759583696139956976376731990910609130
072939173476788939185257200190933150489230416327590750061
h = 11
rho = 1.007864659

p = 447 bits,
r = 441 bits
D = 1817751043
p = 2539184042402334433762107652909933121839744999744747431237518650296046787450
16212253759596816479215985760212421554524984805830355452883
r = 3576315552679344272904376975929483270196823943302461170757068521543279001553
517561957648098009100642298696873078639216201681270002281
h = 71
rho = 1.013966129

p = 475 bits,
r = 471 bits
D = 979125307
p = 5633658922340774148141720951841893143660810560749703229595185820377818141966
0975778630631263022704709935860464465151482184559035892069814412243
r = 5121508111218885589219746319856266494237100509772457481450168927616198267723
124993217938487764161482592053282429637136443612356285630777992251
h = 11
rho = 1.007348791

p = 476 bits,
r = 473 bits
D = 65006443
p = 1690481690806419763378275426356214819764443825447811570898028710317441328911
38707647707700190727551832804056035598601806961044383111070615427603
r = 1536801537096745239434795842142013472513130750407101428089117009379492109716
6304730765126839016510565041656664336961206271812456711656513850141
h = 11
rho = 1.007324126
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A.2 Families of pairing-friendly abelian surfaces

Below we give data and example curves for all of the families of abelian surfaces with

ρ < 8 that we found using Algorithm 4.4.9. For each family we give the following data:

• the embedding degree k,

• the CM field K and polynomial r(x) input into Algorithm 4.4.9,

• the π(x) output by the algorithm, and

• the ρ-value of the family (π, r).

We also give an example curve in each family. We used Algorithm 2.2.4 to find a value x0

for which q(x0) = π(x0)π(x0) is prime and r(x0) has a large prime factor. Since we are

looking for varieties with prime-order subgroups of at least 160 bits, we input the value

y0 = 2b160/ deg rc+1 into Algorithm 2.2.4. Given the output, we then used CM methods to

construct a curve over Fq(x0) whose Jacobian has the specified number of points. We give

our results in the following format:

• The values x0 and h output by Algorithm 2.2.4, as well as the values of a and b used

in Step (1) of that algorithm,

• a genus 2 curve C over Fq(x0) whose Jacobian has CM by K,

• the number of Fq(x0)-rational points on Jac(C),

• the bit size of the prime-order subgroup of Jac(C) (i.e., of r(x0)/h), and

• the ρ-value of Jac(C) with respect to r(x0)/h.

In all cases except the k = 6 example, we started with a curve defined over Q whose

Jacobian has CM by K and found the appropriate twist of the curve’s reduction modulo

q(x0). Equations for these curves are given by van Wamelen [124]. The remaining case uses

a CM field K for which there are no curves over Q with CM by K. In this case we used

the database maintained by David Kohel [69] to compute the absolute Igusa invariants of

C, and then constructed C via Mestre’s algorithm [88].

We note that some of van Wamelen’s curve equations are non-monic and/or of degree

6. Monic, degree-5 models of these curves can easily be obtained by a change of variables;

we chose to keep van Wamelen’s equations in order to minimize the size of the coefficients.
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For completeness, we repeat here the examples that appear in Section 4.5. Note that

the values of π(x) below may differ from those in the examples of Section 4.5 due to different

choices of αi and βi in Algorithm 4.4.9. In most cases these will be a permutation of the

earlier choices and the q(x) obtained will be the same.

The MAGMA notation K.1 indicates a root of the polynomial defining the number

field K.

Embedding degree 5
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^4 + x^3 + x^2 + x + 1
pi(x) = 1/5*(-2*zeta_5^2 - zeta_5 - 2)*x^4 + 1/5*(-2*zeta_5^3 - zeta_5^2 -

2*zeta_5 - 5)*x^3 + 1/5*(-zeta_5^3 - 4*zeta_5^2 - 4*zeta_5 - 6)*x^2 +
1/5*(-2*zeta_5^3 - zeta_5^2 - 2*zeta_5 - 5)*x + 1/5*(-2*zeta_5^2 - zeta_5 -
2)

rho-value 4

a = 5 b = 1 h = 5
x0 = 10995116291056
C = Hyperelliptic Curve defined by y^2 = x^5 + 5 over
GF(4271974113170158352922565429523480161162274995258808768382589143894437821741\
2350245394857724760697377581)
#Jac(C) = 182497628235959609266207886820153866793595155746736415067063102859215\
7865839328215546950380612794246312062400499119897003331070295500581706041284897\
362019684550729676049506454942440045788093700846840308060655
172 bit subgroup
rho = 4.027

* * * * * * * * * * * * *

Embedding degree 6
CM field K = Number Field with defining polynomial x^4 + 12*x^2 + 18 over the
Rational Field
r(x) = x^16 - x^8 + 1
pi(x) = 1/576*(-K.1^2 - 6)*x^30 + 1/96*K.1*x^29 + 1/288*(-2*K.1^2 -

21)*x^28 + 1/144*(-K.1^3 - 9*K.1)*x^27 + 1/288*(K.1^2 + 6)*x^26 +
1/288*(-K.1^3 - 9*K.1)*x^25 + 1/96*(K.1^2 + 6)*x^24 + 1/288*(K.1^3 +
9*K.1)*x^23 + 1/192*(K.1^2 + 6)*x^22 + 1/288*(2*K.1^3 + 15*K.1)*x^21
+ 1/288*(2*K.1^3 + 15*K.1)*x^19 + 1/192*(-K.1^2 - 6)*x^18 +
1/288*(K.1^3 + 9*K.1)*x^17 + 1/96*(-K.1^2 - 6)*x^16 +
1/288*(-5*K.1^3 - 57*K.1)*x^15 + 1/192*(-K.1^2 - 6)*x^14 +
1/288*(-10*K.1^3 - 63*K.1)*x^13 + 1/96*(-2*K.1^3 - 13*K.1)*x^11 +
1/192*(K.1^2 + 6)*x^10 + 1/96*(K.1^3 + 13*K.1)*x^9 + 1/96*(K.1^2 -
42)*x^8 + 1/96*(-K.1^3 - 13*K.1)*x^7 + 1/288*(K.1^2 + 6)*x^6 +
1/48*(K.1^3 + 7*K.1)*x^5 + 1/288*(-2*K.1^2 - 21)*x^4 +
1/288*(8*K.1^3 + 45*K.1)*x^3 + 1/576*(-K.1^2 - 6)*x^2 + 1/72*(K.1^3
+ 12*K.1)*x + 1

rho-value 15/2
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a = 8 b = 0 h = 1
x0 = 19728
C = Hyperelliptic Curve defined by y^2 = x^5 +

104476561097897042684174178777913757127480611874140125951762119695005347022\
689037615756963898957612831252226186830021116323303398849607118538655278405\
724072152533241220032460772424008286264157903569767495876175783726705983001\
57209423260265552363163357973*x^3 + 246668188228028038893281869877032092006\
897632953427495712421544478972179857819407146128038795884795921201167932509\
677650696198593765200679575491798462406897341389831787348799779921428437163\
56704761017061259227798876997057734309102996883788275930382898921*x^2 +
256471144458030134474403365368509112960523939625723433197784865400604669687\
243648142595453858692192576662774819603049915763053817358113477707921095969\
796011818910552751436236487983479546199989671534206637033276549051201745790\
72483838524402093949726278018*x + 74730560656145474320378392122708975055549\
904324925363657022729152018620506996835469497296554172288467105729863232839\
794388703131283609452223570789975704946810922352537819876174253735529674419\
18363427334534096246293725512302509521725888683185636143153803 over

GF(2750496620499129720252485580903561684169489374849236519442995528958496591300\
1692113042934991731677065609567131389847124725576638776032113179784371373115571\
9997218945562572182640487393890532391901547290863755777806010350864473419536329\
42051315952537054161)
#Jac(C) = 756523165937713361724114475138729043120398921470617643364304030580212\
5674249871678278460099412586036105471111615849908291730698624635883286149262350\
3504229880398287175019406123330510484765806412871017125490685774246737404684064\
8923655212225775355386138903636080508237406221645557917136992466421582893883191\
0611259968114190007806904634847252361780147182309951438188841814605596231171265\
6769589180406640514598547662799973240478472462918895939601394504360891236694788\
8389519721703413476765061113255768898325632
229 bit subgroup
rho = 7.376

* * * * * * * * * * * * *

Embedding degree 8
CM field K = Number Field with defining polynomial x^4 + 10*x^2 + 20 over the
Rational Field
r(x) = x^16 - x^12 + x^8 - x^4 + 1
pi(x) = 1/200*(-K.1^3 - K.1^2 - 10*K.1 + 5)*x^30 + 1/400*(-5*K.1^3 -

6*K.1^2 - 20*K.1 + 10)*x^29 + 1/200*(-9*K.1^3 - 11*K.1^2 - 60*K.1
- 95)*x^28 + 1/200*(-9*K.1^3 - 7*K.1^2 - 30*K.1 - 25)*x^27 +
1/100*(2*K.1^3 - 7*K.1^2 + 15*K.1 - 55)*x^26 + 1/200*(-2*K.1^3 +
17*K.1^2 - 20*K.1 + 75)*x^25 + 1/400*(19*K.1^3 + 46*K.1^2 +
100*K.1 + 290)*x^24 + 1/200*(16*K.1^3 - 7*K.1^2 + 70*K.1 - 45)*x^23
+ 1/400*(7*K.1^3 + 4*K.1^2 + 40*K.1 + 120)*x^22 + 1/80*(5*K.1^3 -
6*K.1^2 + 36*K.1 - 6)*x^21 + 1/100*(-3*K.1^3 - 8*K.1^2 - 25*K.1 -
75)*x^20 + 1/20*(-2*K.1^3 + 2*K.1^2 - 7*K.1 + 12)*x^19 + 1/80*(K.1^3
- 2*K.1^2 - 30)*x^18 + 1/40*(-K.1^3 + 8*K.1^2 - 10*K.1 + 28)*x^17 +
1/80*(K.1^3 + 10*K.1^2 + 16*K.1 + 62)*x^16 + 1/40*(3*K.1^3 -
2*K.1^2 + 10*K.1 - 24)*x^15 + 1/80*(3*K.1^3 + 10*K.1^2 + 24*K.1 +
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70)*x^14 + 1/40*(3*K.1^3 - 8*K.1^2 + 18*K.1 - 28)*x^13 +
1/80*(-K.1^3 - 2*K.1^2 - 8*K.1 - 22)*x^12 + 1/20*(-K.1^3 + 2*K.1^2
- 3*K.1 + 12)*x^11 + 1/400*(-7*K.1^3 - 32*K.1^2 - 60*K.1 - 140)*x^10
+ 1/400*(-15*K.1^3 + 34*K.1^2 - 80*K.1 + 90)*x^9 + 1/400*(7*K.1^3 -
12*K.1^2 + 80*K.1 - 80)*x^8 + 1/200*(K.1^3 - 7*K.1^2 - 20*K.1 -
45)*x^7 + 1/400*(3*K.1^3 + 22*K.1^2 + 20*K.1 + 130)*x^6 +
1/200*(8*K.1^3 - 13*K.1^2 + 50*K.1 - 65)*x^5 + 1/200*(-3*K.1^3 -
2*K.1^2 - 30*K.1 - 10)*x^4 + 1/200*(-4*K.1^3 - 7*K.1^2 - 20*K.1 -
25)*x^3 + 1/200*(-4*K.1^3 - 3*K.1^2 - 20*K.1 - 15)*x^2 +
1/80*(-K.1^3 + 2*K.1^2 - 8*K.1 + 10)*x + 1/400*(3*K.1^3 - 2*K.1^2
+ 20*K.1 + 10)

rho-value 15/2

a = 20 b = 17 h = 1
x0 = 53197
C = Hyperelliptic Curve defined by y^2 = -4*x^5 + 30*x^3 - 45*x + 22 over

GF(183204227400473854636631436072536959205840312075941767966633188337034061\
0994644959345275510791219546049134961531239136171259222769655474765924144283516\
6076984821850896013592891179326737600501841828855305170012317302516960456953947\
9039431979971869384014771885909666685245653261793271)
#Jac(C) = 335637889374045351052081645066599050488196011356113649757477564960257\
9313159888238562393418558925893829742614311080003844152666172028867863797598224\
6233132719727286669079943527366438298311901517812261157014500120685479258427131\
7626396028654262644092667862786091029519033211541636233994307942135704697581530\
6794924213384255834028498210109072763403899173414799205603381603000620823452763\
6835928824802821218842177253141091110052792555465502407597719579359658810265352\
0040459572849887780840378738039041791571093067528124746449813565209906084027924\
06104700868004667796
252 bit subgroup
rho = 7.439

* * * * * * * * * * * * *

Embedding degree 10
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^4 - x^3 + x^2 - x + 1
pi(x) = 1/25*(2*zeta_5^2 + zeta_5 + 2)*x^6 + 1/25*(2*zeta_5^3 - 9*zeta_5^2 -

3*zeta_5 - 5)*x^5 + 1/5*(-zeta_5^3 + 2*zeta_5^2 - 2)*x^4 + 1/5*(zeta_5^3 -
zeta_5^2 + zeta_5 + 5)*x^3 + 1/5*(-2*zeta_5^3 + 3*zeta_5^2 - 2)*x^2 +
1/25*(-3*zeta_5^2 + zeta_5 + 12)*x + 1/25*(-3*zeta_5^3 + 6*zeta_5^2 +
2*zeta_5)

rho-value 6

a = 5 b = -1 h = 5
x0 = 10995116288754
C = Hyperelliptic Curve defined by y^2 = x^5 + 2 over
GF(2497398870216720358966543601195425675423665402711767589110074453233429403352\
1458782242579882183246444513999204200096562072084590259096569757625132773095701\
)
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#Jac(C) = 623700111695975125922504842885296097742566778967316583412995008821862\
3191220324453348980029083834130125525267271471600298129362349593015347618526647\
3085613568997471487027760908319704934255193972241765427536712074627429936631084\
1826673876688442709071645633638506380891594440744121362259645233390880880774439\
221
172 bit subgroup
rho = 6.000

* * * * * * * * * * * * *

Embedding degree 13
CM field K = Number Field with defining polynomial x^4 + 26*x^2 + 117 over the
Rational Field
r(x) = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x +

1
pi(x) = 1/4056*(-19*K.1^3 + 183*K.1^2 - 377*K.1 + 2301)*x^20 +

1/338*(-2*K.1^3 + 7*K.1^2 - 39*K.1 + 78)*x^19 + 1/4056*(23*K.1^3 +
177*K.1^2 + 481*K.1 + 2535)*x^18 + 1/1352*(7*K.1^3 + 49*K.1^2 +
65*K.1 + 767)*x^17 + 1/2028*(19*K.1^3 + 141*K.1^2 + 221*K.1 +
1755)*x^16 + 1/1352*(K.1^3 + 97*K.1^2 - 65*K.1 + 1183)*x^15 +
1/2028*(31*K.1^3 + 192*K.1^2 + 377*K.1 + 2496)*x^14 +
1/1352*(13*K.1^3 + 173*K.1^2 + 195*K.1 + 2587)*x^13 + 1/26*(3*K.1^2
- 2*K.1 + 39)*x^12 + 1/52*(K.1^3 + 8*K.1^2 + 11*K.1 + 104)*x^11 +
1/312*(5*K.1^3 + 33*K.1^2 + 55*K.1 + 507)*x^10 + 1/78*(2*K.1^3 +
9*K.1^2 + 28*K.1 + 117)*x^9 + 1/312*(5*K.1^3 + 33*K.1^2 + 55*K.1 +
507)*x^8 + 1/4056*(97*K.1^3 + 441*K.1^2 + 1235*K.1 + 5811)*x^7 +
1/338*(2*K.1^3 + 32*K.1^2 + 13*K.1 + 429)*x^6 + 1/2028*(8*K.1^3 +
165*K.1^2 + 52*K.1 + 2535)*x^5 + 1/1352*(19*K.1^3 + 81*K.1^2 +
273*K.1 + 923)*x^4 + 1/338*(-K.1^3 + 9*K.1^2 - 26*K.1 + 130)*x^3 +
1/4056*(23*K.1^3 + 99*K.1^2 + 325*K.1 + 1521)*x^2 + 1/2028*(8*K.1^3
+ 3*K.1^2 + 130*K.1 + 39)*x + 1/338*(-K.1^2 - 13)

rho-value 20/3

a = 13 b = 1 h = 13
x0 = 240254
C = Hyperelliptic Curve defined by y^2 = -11*x^6 - 2*x^5 - x^4 + 4*x^3 + 7*x^2 -

6*x + 1 over
GF(2002799636412049837164981845555106197370218303245028155833464686136635859226\
1685959968568186991846522433743098568705390919516922109395585349377301506246701\
850103759541416747667085567685515616608822513018723014744943)
#Jac(C) = 401120638361223902394555489275643787423393512561030549417337796317288\
8758719196645384506951446346172784296775561818738811020891136096984373628663248\
1994302326454759156331191760557733522433402438698889627892472799235159998972160\
6585763649635474062479775930161927004562415887010164546137132021499856693757081\
4349877688244545783294460252315909251955395715203652016278788929546869396576395\
21234405613839808733519287646817357040636464
212 bit subgroup
rho = 6.754

* * * * * * * * * * * * *



147

Embedding degree 15
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
pi(x) = 1/25*(zeta_5^3 - zeta_5^2 - zeta_5 + 1)*x^14 + 1/25*(-zeta_5^3 -

zeta_5^2 + 2)*x^13 + 1/25*(-4*zeta_5^3 + 5*zeta_5^2 + 7*zeta_5 - 3)*x^12 +
1/25*(4*zeta_5^3 + 4*zeta_5^2 + 5*zeta_5 - 8)*x^11 + 1/25*(6*zeta_5^3 -
6*zeta_5^2 - 6*zeta_5 + 1)*x^10 + 1/25*(-4*zeta_5^3 + 4*zeta_5^2 + 4*zeta_5
- 4)*x^9 + 1/25*(-11*zeta_5^3 + 4*zeta_5^2 - 5*zeta_5 - 8)*x^8 +
1/25*(zeta_5^3 - 5*zeta_5^2 - 3*zeta_5 + 7)*x^7 + 1/25*(4*zeta_5^3 +
4*zeta_5^2 + 10*zeta_5 - 13)*x^6 + 1/25*(zeta_5^3 + 4*zeta_5^2 - zeta_5 -
4)*x^5 + 1/25*(6*zeta_5^3 - zeta_5^2 + 4*zeta_5 + 11)*x^4 +
1/25*(-6*zeta_5^3 - zeta_5^2 - 13)*x^3 + 1/25*(-4*zeta_5^3 - 3*zeta_5 +
12)*x^2 + 1/25*(4*zeta_5^3 - zeta_5^2 - 3)*x + 1/25*(zeta_5^3 - zeta_5^2 -
zeta_5 + 1)

rho-value 7

a = 5 b = -1 h = 1
x0 = 10486759
C = Hyperelliptic Curve defined by y^2 = x^5 + 1 over
GF(3027234587378952134543882421765560418784985527734675952435585748958972474354\
2473270142066335343669964683388983102454279236242642695011994589036282659389988\
3068954820877181053781299029288485982281)
#Jac(C) = 916414924702341458616104139313541697541032783722029646025587378301253\
5698319792749215982470949341516977668227591233266892738681969954529491185508689\
0491823996938980260224326031121942356402075276529770997521314028055391891237569\
1609265263759434804565077776228869494970249379432566572611667826468222560652864\
2111259469370832428216535657604907700794445999179896545137196667449050217875314\
6880
188 bit subgroup
rho = 6.925

* * * * * * * * * * * * *

Embedding degree 16
CM field K = Number Field with defining polynomial x^4 + 4*x^2 + 2 over the
Rational Field
r(x) = x^8 + 1
pi(x) = 1/64*(-K.1^2 - 2)*x^14 + 1/32*(-K.1^2 + 3*K.1 - 2)*x^13 +

1/64*(K.1^2 + 4*K.1 - 16)*x^12 + 1/16*(2*K.1^3 + K.1^2 + 6*K.1 +
5)*x^11 + 1/64*(8*K.1^3 + K.1^2 + 28*K.1)*x^10 + 1/32*(-4*K.1^3 - K.1^2
- 7*K.1 - 2)*x^9 + 1/64*(-8*K.1^3 - K.1^2 - 16*K.1 - 34)*x^8 +
1/8*(K.1^3 + 2*K.1 + 4)*x^7 + 1/64*(8*K.1^3 - K.1^2 + 16*K.1 - 2)*x^6 +
1/32*(-4*K.1^3 - K.1^2 - 13*K.1 - 2)*x^5 + 1/64*(-8*K.1^3 + K.1^2 -
28*K.1 - 16)*x^4 + 1/16*(K.1^2 - 2*K.1 + 5)*x^3 + 1/64*(K.1^2 -
4*K.1)*x^2 + 1/32*(-K.1^2 + K.1 - 2)*x + 1/64*(-K.1^2 - 2)

rho-value 7

a = 4 b = 3 h = 2
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x0 = 8392747
C = Hyperelliptic Curve defined by y^2 = -x^5 + 3*x^4 + 2*x^3 - 6*x^2 - 3*x + 1

over
GF(3613981589624080293547127629913834115688319997095252947781027398590165644291\
2388642874221168785104192255608129174893110606527002839942594930765104541658993\
298502578195396246141241671098576321)
#Jac(C) = 130608629301417943032635457294774732934647600264450099739539692981433\
2002855193632191143886784591621594315352518511974817281176052563661195906834932\
0463447494022387161045037338508295113916955639553608161902832362972058788273989\
3786556341085551311055538006474556446452509656079566004240882048933376325778234\
4643083614619291171862494394434216428309036864555986077240717252116454842368
184 bit subgroup
rho = 6.918

* * * * * * * * * * * * *

Embedding degree 20
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^8 - x^6 + x^4 - x^2 + 1
pi(x) = 1/25*(2*zeta_5^3 + 2*zeta_5^2 + 1)*x^12 + 1/25*(-2*zeta_5^3 - 9*zeta_5^2

- zeta_5 - 3)*x^11 + 1/25*(-5*zeta_5^3 + 3*zeta_5^2 - zeta_5 - 2)*x^10 +
1/5*(zeta_5 + 1)*x^9 + 1/5*(zeta_5^3 + zeta_5^2 - zeta_5 - 1)*x^8 +
1/5*(-zeta_5^2 - zeta_5)*x^7 + 1/5*(zeta_5^2 + zeta_5 + 3)*x^6 +
1/5*(zeta_5^3 + 2*zeta_5^2 + 3*zeta_5 + 1)*x^5 + 1/5*(2*zeta_5^3 + zeta_5^2
+ 2*zeta_5)*x^4 + 1/5*(zeta_5^3 + 2)*x^3 + 1/25*(-3*zeta_5^3 + 2*zeta_5^2 +
6)*x^2 + 1/25*(-2*zeta_5^3 + zeta_5^2 - zeta_5 - 3)*x + 1/25*(-2*zeta_5^2 -
zeta_5 - 2)

rho-value 6

a = 5 b = 2 h = 5
x0 = 10490607
C = Hyperelliptic Curve defined by y^2 = x^5 + 10 over
GF(2525251316400542183250325605065948648876452426655850438437774758507322207801\
0180517226792727915877794336312301648054314085827449303412564338440988302898960\
757875722701)
#Jac(C) = 637689421098267120689322982380550360241785159377354239792730910693245\
9410140350213854337105698241010003899920951139340742250366234190808359151556493\
3132820589218333553985719070980238712654538240301484711588419289346837909821841\
5501498921413203628711767748990943844373625736065843179114229909058804624321699\
104948755046639315754039581
185 bit subgroup
rho = 6.000

* * * * * * * * * * * * *

Embedding degree 30
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
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pi(x) = 1/25*(-4*zeta_5^3 - 6*zeta_5^2 - 6*zeta_5 - 9)*x^28 + 1/25*(-8*zeta_5^3
- 4*zeta_5^2 - 8*zeta_5 - 5)*x^26 + 1/5*(zeta_5^3 + 2*zeta_5^2 + zeta_5 +
2)*x^24 + 1/25*(13*zeta_5^3 + 13*zeta_5^2 + 10*zeta_5 + 9)*x^22 +
1/25*(-zeta_5^3 - 5*zeta_5^2 - 7*zeta_5 - 12)*x^20 + 1/25*(-11*zeta_5^3 -
4*zeta_5^2 - 9*zeta_5 - 1)*x^18 + 1/25*(-2*zeta_5^3 - zeta_5^2 -
2*zeta_5)*x^16 + 1/5*(-2*zeta_5^3 - 3*zeta_5^2 - 3*zeta_5 - 4)*x^14 +
1/25*(2*zeta_5^3 + 2*zeta_5^2 + 1)*x^12 + 1/25*(11*zeta_5^3 + 15*zeta_5^2 +
12*zeta_5 + 17)*x^10 + 1/25*(zeta_5^3 + 4*zeta_5^2 - zeta_5 + 1)*x^8 +
1/25*(-8*zeta_5^3 - 9*zeta_5^2 - 13*zeta_5 - 15)*x^6 + 1/5*(zeta_5^3 +
2*zeta_5^2 + zeta_5 + 2)*x^4 + 1/25*(-7*zeta_5^3 - 7*zeta_5^2 - 10*zeta_5 -
11)*x^2 + 1/25*(-zeta_5^3 - 2*zeta_5 - 2)

rho-value 7

a = 5 b = 2 h = 1
x0 = 56837
C = Hyperelliptic Curve defined by y^2 = x^5 + 34 over
GF(1598920562615405290257578999086083203958328461341314570831241049337222591230\
6522723912749529496920583792695409070025011641212282578661612335006721744818179\
6884030777095691366540913032101983656114366886849757450354778606898208995471085\
87653569060420961792532978607961)
#Jac(C) = 255654696555436418949156634723325034303093081493929693617857293998947\
7410106466002722812377336380042958793971460375537329262668851194903518609841989\
6083666019428005680404683897262666485195499753885069557400226876401241106119893\
9289012478547689778045569335985260195045375311747244803036622931595661768164990\
9030825665956769545623119342751968634647665201801954211812037475922802353544730\
1983575072401586903159387276577283205757668179815416344141832520672824461458674\
3902374123108114393231231743404950740013242056723528984764986527051
254 bit subgroup
rho = 6.972

* * * * * * * * * * * * *

Embedding degree 32
CM field K = Number Field with defining polynomial x^4 + 4*x^2 + 2 over the
Rational Field
r(x) = x^16 + 1
pi(x) = 1/64*(-K.1^2 - 4*K.1 - 10)*x^26 + 1/32*(-K.1^2 - 2*K.1 - 2)*x^25 +

1/64*(-K.1^2 - 2*K.1 - 10)*x^24 + 1/8*x^23 + 1/32*(-4*K.1^3 + K.1^2 -
13*K.1 + 1)*x^22 + 1/16*(-2*K.1^3 + K.1^2 - 7*K.1 + 3)*x^21 +
1/32*(K.1^2 + K.1 + 1)*x^20 + 1/64*(8*K.1^3 - K.1^2 + 14*K.1 - 2)*x^18
+ 1/32*(4*K.1^3 - K.1^2 + 8*K.1 - 2)*x^17 + 1/64*(-K.1^2 - 34)*x^16 +
1/2*x^15 + 1/8*(-K.1^3 - 2*K.1)*x^14 + 1/8*(-K.1^3 - 2*K.1)*x^13 +
1/64*(8*K.1^3 - K.1^2 + 28*K.1 - 10)*x^10 + 1/32*(4*K.1^3 - K.1^2 +
14*K.1 - 2)*x^9 + 1/64*(-K.1^2 - 2*K.1 - 10)*x^8 + 1/8*x^7 + 1/32*(K.1^2
+ 3*K.1 + 1)*x^6 + 1/16*(K.1^2 + K.1 + 3)*x^5 + 1/32*(K.1^2 + K.1 +
1)*x^4 + 1/64*(-K.1^2 - 2*K.1 - 2)*x^2 + 1/32*(-K.1^2 - 2)*x +
1/64*(-K.1^2 - 2)

rho-value 13/2

a = 4 b = 3 h = 2
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x0 = 31403
C = Hyperelliptic Curve defined by y^2 = -x^5 + 3*x^4 + 2*x^3 - 6*x^2 - 3*x + 1

over GF(1664851597763743785809567185642170908394691765637708591644330574889\
4230040170761346342804777327019777627503178525272912300889628687043173375704186\
9315808385428579603317148665491127754095775571485453444259315254900284462662017\
92234849)
#Jac(C) = 277173084257649053259107230415305745357938414314646328504067266310855\
1339378074089119899168516637577451826178699856139902294401899952734716291383807\
1710617301709329178688841085580190603054648671219175084724991172035893384310297\
4502284089213250217341346744989810567063268377590076111056903197402720102373272\
0039199980779504605773773322613451717920311823473893087686072225626636979807373\
9252751557810156456030590968444260512872460254823603877287331989336327815895449\
6
239 bit subgroup
rho = 6.482

* * * * * * * * * * * * *

Embedding degree 40
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^16 - x^12 + x^8 - x^4 + 1
pi(x) = 1/25*(-2*zeta_5^2 - zeta_5 - 2)*x^26 + 1/25*(10*zeta_5^3 - zeta_5^2 +

2*zeta_5 - 1)*x^25 + 1/25*(15*zeta_5^3 + 3*zeta_5^2 - zeta_5 + 3)*x^24 +
1/25*(3*zeta_5^3 + 4*zeta_5^2 + 3*zeta_5 + 5)*x^22 + 1/25*(-zeta_5^3 +
2*zeta_5^2 - 6*zeta_5)*x^21 + 1/25*(-2*zeta_5^3 - 6*zeta_5^2 + 3*zeta_5 -
5)*x^20 + 1/5*(-zeta_5^3 - zeta_5^2 - zeta_5 - 1)*x^18 + 1/5*(zeta_5^3 +
zeta_5 + 1)*x^17 + 1/5*zeta_5^2*x^16 + 1/5*(zeta_5^3 + zeta_5^2 + zeta_5 +
1)*x^14 + 1/5*(-2*zeta_5^3 - 2*zeta_5^2 - 3*zeta_5 - 1)*x^13 + 1/5*(zeta_5^3
+ zeta_5^2 + 2*zeta_5)*x^12 + 1/5*(-zeta_5^3 - zeta_5^2 - zeta_5 - 1)*x^10 +
1/5*(2*zeta_5^3 + 2*zeta_5^2 + 2*zeta_5 + 2)*x^9 + 1/5*(-zeta_5^3 - zeta_5^2
- zeta_5 - 1)*x^8 + 1/25*(5*zeta_5^3 + 3*zeta_5^2 + 4*zeta_5 + 3)*x^6 +
1/25*(-10*zeta_5^3 - 6*zeta_5^2 - 8*zeta_5 - 6)*x^5 + 1/25*(5*zeta_5^3 +
3*zeta_5^2 + 4*zeta_5 + 3)*x^4 + 1/25*(-2*zeta_5^3 - zeta_5^2 -
2*zeta_5)*x^2 + 1/25*(4*zeta_5^3 + 2*zeta_5^2 + 4*zeta_5)*x +
1/25*(-2*zeta_5^3 - zeta_5^2 - 2*zeta_5)

rho-value 13/2

a = 5 b = 1 h = 1
x0 = 16041
C = Hyperelliptic Curve defined by y^2 = x^5 + 2 over
GF(3760860834940343169364857935779971772124691800989494242247286941150574352189\
4881882636782558511380682170367358882897604014410592496600452900281405303544654\
72887517962485279348704094722957573064729660661552378055407081)
#Jac(C) = 141440742197881751492516910094691120550840483164868017907339830937420\
9872909674387816310397435680916137583036471208831843008941137580494645193130377\
9733762737269036957045405865712110388043423380796601714363799182562609684067128\
3522485604346179708511992588939442568486055865527585397459063883973880966868105\
4708451111309230109206909214248093126443038548656208456502812190290196457328851\
3693683018500272875105832169869341897165160173805
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225 bit subgroup
rho = 6.438

* * * * * * * * * * * * *

Embedding degree 60
CM field K = Number Field with defining polynomial x^4 + x^3 + x^2 + x + 1 over
the Rational Field
r(x) = x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
pi(x) = 1/25*(2*zeta_5^3 + zeta_5^2 + 2*zeta_5)*x^28 + 1/25*(2*zeta_5^2 +

6*zeta_5 + 2)*x^27 + 1/25*(-8*zeta_5^3 - 7*zeta_5^2 + 3*zeta_5 - 3)*x^26 +
1/25*(-11*zeta_5^3 - 10*zeta_5^2 - 2*zeta_5 - 7)*x^25 + 1/25*(-8*zeta_5^3 -
2*zeta_5^2 - 2*zeta_5 - 3)*x^24 + 1/25*(-zeta_5^3 + zeta_5^2 + zeta_5 -
1)*x^23 + 1/25*(10*zeta_5^3 + 8*zeta_5^2 + 9*zeta_5 + 8)*x^22 +
1/25*(4*zeta_5^3 + 2*zeta_5^2 + 4*zeta_5)*x^21 + 1/25*(6*zeta_5^3 +
5*zeta_5^2 + 2*zeta_5 + 2)*x^20 + 1/5*(zeta_5^3 + zeta_5^2)*x^19 +
1/25*(-7*zeta_5^3 - zeta_5^2 - 2*zeta_5)*x^18 + 1/25*(-7*zeta_5^2 - 6*zeta_5
- 2)*x^17 + 1/25*(3*zeta_5^3 + 7*zeta_5^2 - 8*zeta_5 - 2)*x^16 +
1/25*(zeta_5^3 + 5*zeta_5^2 + 2*zeta_5 + 7)*x^15 + 1/25*(-2*zeta_5^3 -
8*zeta_5^2 - 3*zeta_5 - 7)*x^14 + 1/25*(-4*zeta_5^3 - 11*zeta_5^2 + 4*zeta_5
+ 1)*x^13 + 1/25*(-5*zeta_5^3 + 2*zeta_5^2 + zeta_5 - 3)*x^12 +
1/25*(zeta_5^3 - 2*zeta_5^2 - 4*zeta_5)*x^11 + 1/25*(-zeta_5^3 + 3*zeta_5 -
2)*x^10 + 1/5*x^9 + 1/25*(7*zeta_5^3 + 6*zeta_5^2 + 2*zeta_5 + 5)*x^8 +
1/25*(2*zeta_5^2 + zeta_5 - 3)*x^7 + 1/25*(-3*zeta_5^3 - 2*zeta_5^2 -
2*zeta_5 + 2)*x^6 + 1/25*(4*zeta_5^3 + 3*zeta_5 - 2)*x^5 + 1/25*(2*zeta_5^3
+ 3*zeta_5^2 - 2*zeta_5 + 2)*x^4 + 1/25*(-zeta_5^3 + zeta_5^2 - 4*zeta_5 -
1)*x^3 + 1/25*(-2*zeta_5^2 - zeta_5 - 2)*x^2 + 1/25*(-zeta_5^3 - 3*zeta_5^2
- zeta_5)*x + 1/25*(zeta_5^3 + 2*zeta_5 + 2)

rho-value 7

a = 5 b = -1 h = 1
x0 = 26384
C = Hyperelliptic Curve defined by y^2 = x^5 + 19 over
GF(3149188484721621964796486022253819821139243385693502691124803449486277615940\
8547665866206106457648797755314058533294191181549246559953907518405359190690741\
8225000996027587846162771683448843957296712151953046893097979147086067379599646\
879100194341)
#Jac(C) = 991738811230326541919783262997413512347437837670926947929510933411367\
1279844639358965569634204308223510745432047771237664827005930164333780311225382\
1709398198579528788855942663473293646288136130646629490467450138253427991596319\
4273888129071482019382417085399598206225390520796185481710671225431624125209763\
7078082024179159111360116738167261919561111885256915153017321127578854244325381\
3349297779038364733424454347588895927409232815025455098150214579773036847177667\
277282977807292132420696955
236 bit subgroup
rho = 6.941
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A.3 Families of three-dimensional pairing-friendly abelian

varieties

Below we give data for two families of 3-dimensional abelian varieties with CM by

Q(ζ9) and ρ-values of 15. The output of Algorithms 4.4.9 and 2.2.4 are given in the same

format as in Appendix A.2; see page 142 for details.

By [70, Lemma 1], if q is prime to 6 an abelian variety over Fq with CM by K = Q(ζ9)

is isomorphic over Fq to the Jacobian of the curve y3 = x4 + x. By Proposition 1.2.5, given

a q-Weil number π ∈ Z[ζ9], there is a curve C/Fq of the form y3 = x4 + ax such that either

π or −π is the Frobenius element of Jac(C). Since [(0, 0) − (∞)] is a point of order 3 in

Jac(C), we can easily determine which case occurs in the examples below by checking the

values mod 3 of n± = NK/Q(±π − 1). In the first example (k = 9) we find that n+ ≡ 0

(mod 3) and n− ≡ 1 (mod 3) so the Frobenius element is π; in the second example (k = 18)

we find that n+ ≡ 1 (mod 3) and n− ≡ 0 (mod 3) so the Frobenius element is −π. We can

then determine which twist of y3 = x4 + x over Fq has # Jac(C) = n+ or n−, respectively.

Embedding degree 9
CM field K = Cyclotomic Field of order 9 and degree 6
r(x) = x^6 + x^3 + 1
pi(x) = 1/81*(zeta_9^5 - 2*zeta_9^4 - 2*zeta_9^3 - zeta_9^2 - 4)*x^15 +

1/81*(-3*zeta_9^5 + zeta_9^4 - zeta_9 - 3)*x^14 + 1/81*(-6*zeta_9^5 +
zeta_9^4 - 3*zeta_9^3 - 3*zeta_9^2 - zeta_9 - 3)*x^13 + 1/81*(2*zeta_9^5 -
9*zeta_9^4 - 10*zeta_9^3 - 5*zeta_9^2 - 5*zeta_9 - 14)*x^12 +
1/81*(-15*zeta_9^5 + 5*zeta_9^4 - 3*zeta_9^3 - 8*zeta_9 - 18)*x^11 +
1/81*(-12*zeta_9^5 + 2*zeta_9^4 - 15*zeta_9^3 - 12*zeta_9^2 - 5*zeta_9 -
33)*x^10 + 1/81*(-27*zeta_9^5 - 10*zeta_9^4 - 18*zeta_9^3 - 9*zeta_9^2 -
28*zeta_9 - 18)*x^9 + 1/9*(-2*zeta_9^5 + zeta_9^4 - 3*zeta_9^3 - 2*zeta_9^2
- 3*zeta_9 - 4)*x^8 + 1/9*(-3*zeta_9^5 - 2*zeta_9^3 - zeta_9^2 - 3*zeta_9 -
5)*x^7 + 1/81*(-28*zeta_9^5 - 7*zeta_9^4 - 16*zeta_9^3 - 8*zeta_9^2 -
27*zeta_9 - 41)*x^6 + 1/81*(-15*zeta_9^5 + 8*zeta_9^4 - 27*zeta_9^3 -
18*zeta_9^2 - 26*zeta_9 - 33)*x^5 + 1/81*(-21*zeta_9^5 - zeta_9^4 -
15*zeta_9^3 - 6*zeta_9^2 - 26*zeta_9 - 15)*x^4 + 1/81*(-2*zeta_9^5 -
8*zeta_9^3 - 4*zeta_9^2 + 5*zeta_9 - 31)*x^3 + 1/81*(-3*zeta_9^5 +
4*zeta_9^4 + 3*zeta_9^3 + 9*zeta_9^2 + 8*zeta_9 - 18)*x^2 +
1/81*(12*zeta_9^5 - 2*zeta_9^4 - 3*zeta_9^3 + 3*zeta_9^2 + 5*zeta_9 - 12)*x
+ 1/81*(zeta_9^4 + zeta_9)

rho-value 15

a = 3 b = 1 h = 3
x0 = 6442469677
C = Curve over GF(5411965965472066839922072740950229859614601820299652310481643\
9807593118362387287422209459616380287295291857749830563342780857846557125279485\
6636522682009938032818864282346142490372157334576712493997877437770455684381125\
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1867528028581567237369453938317223182287742184856237794911271878334597959)
defined by y^3 = x^4 + 2*x
#Jac(C) = 158513103958975947104509214404450115776805031373143139657494070947164\
4358879260331704494530059508631290232158818206129010673908101762561163308150481\
7172525293555463492928364243107034373734190057132097661435583189293405357922525\
3235263819609592055046975906239644708284424762429565028860828751087185473279610\
0189612424333037872865433261862163736673891757175530831510488277142622287411886\
0706647174839579704562637732387810875232440579717811601079605382283308667547083\
5268196048210380424215214668809059614249441622197966529618934373035303345972364\
3823047293459684463121106151940943661238294037710831997877984549750101778835086\
6896604781798435995472473426147594330723061875781699553369891609734570393208289\
6325477272447429395256817627065894743050078631584466406240901585343308585108221\
5677451953180977575951189570214478893460261850755439067251286745964724359125190\
17131238207054459
195 bit subgroup
rho = 14.99

* * * * * * * * * * * * *

Embedding degree 18
CM field K = Cyclotomic Field of order 9 and degree 6
r(x) = x^6 - x^3 + 1
pi(x) = 1/243*(4*zeta_9^5 + 3*zeta_9^4 + 6*zeta_9^3 + 2*zeta_9^2 + 6)*x^15 +

1/81*(3*zeta_9^5 + 2*zeta_9^4 + 6*zeta_9^3 + zeta_9^2 + 5)*x^14 +
1/81*(-7*zeta_9^5 - 7*zeta_9^4 - 6*zeta_9^2 + 8*zeta_9 - 2)*x^13 +
1/243*(-28*zeta_9^5 + 9*zeta_9^4 + 9*zeta_9^3 - 5*zeta_9^2 + 18*zeta_9 +
18)*x^12 + 1/81*(2*zeta_9^5 + 8*zeta_9^4 - 8*zeta_9^3 - 4*zeta_9^2 -
3*zeta_9 + 10)*x^11 + 1/81*(-35*zeta_9^4 - 3*zeta_9^3 - 19*zeta_9^2 +
4)*x^10 + 1/243*(31*zeta_9^5 + 57*zeta_9^4 + 36*zeta_9^3 - 61*zeta_9^2 -
24*zeta_9 + 33)*x^9 + 1/27*(-8*zeta_9^5 + 2*zeta_9^4 + 8*zeta_9^3 -
6*zeta_9^2 + 2*zeta_9 - 1)*x^8 + 1/27*(-2*zeta_9^5 + zeta_9^4 + zeta_9^3 +
zeta_9^2 - 2*zeta_9 - 2)*x^7 + 1/243*(58*zeta_9^5 - 87*zeta_9^4 -
57*zeta_9^3 + 65*zeta_9^2 - 36*zeta_9 - 3)*x^6 + 1/81*(5*zeta_9^4 -
9*zeta_9^3 + 19*zeta_9^2 + 12*zeta_9 - 1)*x^5 + 1/81*(8*zeta_9^5 +
17*zeta_9^4 - 3*zeta_9^3 + 9*zeta_9^2 + 14*zeta_9 + 4)*x^4 +
1/243*(-zeta_9^5 + 45*zeta_9^4 + 18*zeta_9^3 + 13*zeta_9^2 + 27*zeta_9)*x^3
+ 1/81*(5*zeta_9^5 - 4*zeta_9^4 - 2*zeta_9^3 + 5*zeta_9^2 - 6*zeta_9 -
2)*x^2 + 1/81*(3*zeta_9^5 - 5*zeta_9^4 + 2*zeta_9^2 - 6*zeta_9 - 2)*x +
1/243*(4*zeta_9^5 - 6*zeta_9^4 + 2*zeta_9^2 - 6*zeta_9 - 3)

rho-value 15

a = 3 b = 2 h = 3
x0 = 6442452833
C = Curve over GF(1803847164672279252116736628206644909012632819172715343440478\
9629680516833507569794304719400461682609945311117711529337496755342079312011191\
2977954658950872974361582176623477727845287058476848968153037996271739108822323\
9245365290526176873361887067690718512149103362129934078705813530008358589)
defined by y^3 = x^4 + x
#twist(Jac(C)) =

586947442120567664480765591768931793342691172633703092510624822614403\
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4555375419497491021522353415537679029375939821709740077807013420358081221766454\
5565837118635807461843497339419358028698719477930106962116699615548581233454430\
8019176352884159529940059294509569768089871029776850328685028330027525807463309\
0607979139134256769246810446819892950082064276820972030205407392134204652083503\
0762887477010056762328378105958447816744551696846427591828967014643595736491439\
3405063584790494103131782324037592633742418058644762691194812058694813687754798\
1793843790746076965506682756687970380776892580816225284939775021714423299232272\
4394079402155123816875166386391566968478341535361650547554823939889883514675239\
2119398609941126791684475341124828129623899713981545557480652412493402740498993\
4696842518970115441521217524589045074649666038811456235294471152238813765406935\
140676645411723
195 bit subgroup
rho = 14.97
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[20] R. Bröker. “A p-adic algorithm to compute the Hilbert class polynomial.” To appear

in Mathematics of Computation. Available at http://research.microsoft.com/

∼reinierb/padicj.pdf.
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