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Homomorphic Encryption

Homomorphic encryption allows users to delegate computation
while ensuring secrecy.

pk

encrypted
grades

Untrusted DB
Student CT

Adam c1
Becky c2

...
...

Kevin ck

mean?

c

sk

ci = encryption of i th score c = encryption of mean

Validity: c decrypts to the correct mean.
Security: no adversary can obtain any info about scores.
Length efficiency: c is short.
Privacy: decrypted mean reveals nothing else about data.
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Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)
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Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.
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More generally: F-homomorphic signatures

F is a set of “admissible” functions on messages.
τ is a “tag” tying together data from the same set.

(like a filename)
prevents mixing of data from different sets

Given pk , admissible function f ∈ F , and signatures on data

m1, . . . ,mk ,

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk ), ω(f )),

where ω(f ) is an “encoding” or “digest” of the function f .
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Applications

What are F-homomorphic signatures good for?

F Application
Linear Mean
functions Linear least-squares fit (fixed x , variable y )

Fourier transforms

Polynomials Standard deviation & higher moments
(bounded Linear least-squares fit (variable x and y )
degree)
Arbitrary Non-linear estimators and regression
circuits Data mining (decision trees, SVM, etc.)
Subsets Message redaction
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State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear

[GM82], [B88], [P99], [KFM04], [CJL06],

functions

others [ZKMH07], [BFKW09],
[GKKR10], [BF11]

Polynomials

[BGN05], [GHV10]

(bounded

(quadratic) This work

degree)
Arbitrary

[G09], [DGHV10]

circuits
Subsets

[JMSW02], others

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}
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Application: Least Squares Fits
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Least squares fits — the basics

For a data set {(xi , yi)}ki=1, the degree d least squares fit is a
polynomial

f (x) = c0 + c1x + · · ·+ cdxd

that “best” approximates the y values.

U.S. population by year

1800 1900 2000
0

100M

200M

300M

Formula:

~c = (X tX )−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.
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Authenticating a least-squares fit (x-values only)

U.S. population by year

1800 1900 2000
0

100M

200M

300M

y = f (x)
= c0 + c1x + c2x2

Formula:

~c = (X tX )−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

If x values are fixed, then ~c is linear function of y values.

Census bureau stores signed population counts on server
using linearly homomorphic signature.
Server can authenticate coefficients of least-squares fit.
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Authenticating a least-squares fit (x and y values)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

Formula:

~c = (X tX )−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

United Nations stores signed data on server using
polynomially homomorphic signature.
Server can authenticate det(X tX ) and det(X tX ) · ~c.
User can compute least-squares fit from server’s values.
Linear fit can be computed using degree 3 polynomials.
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values.

However: det(X tX ) · cj are polynomial functions of x and y .
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Linearly Homomorphic Signatures
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Building block: GPV Signatures

Key idea: preimage sampleable trapdoor function

Public function φ : D → R with secret “trapdoor” φ−1

D R

x
y

“Hash and sign:” pk = φ, sk = φ−1, hash H : {0,1}∗ → R

Sign(m) := φ−1(H(m))

Verify(σ) : φ(σ)
?
= H(m)
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Verify(σ) : φ(σ)
?
= H(m)
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GPV Signatures, concretely

Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by basis.

D = short vectors in Zn,
with Gaussian distribution.
R = Zn/Λ (fix unique representatives)
Trapdoor function φ : v 7→ (v mod Λ)
i.e., move v into a fundamental
parallelepiped.
GPV: algorithm to sample short
vectors in φ−1(w) = Λ + w given a
“short” basis of Λ.
Sampling from Λ + w without short
basis is hard. (How hard depends on
Gaussian parameter.)

O

b1

b2
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Linearly Homomorphic Signatures: Key Idea #1

Idea: instead of hashing the messages to R = Zn/Λ,
let the message space be R itself.

New sign/verify algorithms: m ∈ Zn/Λ

Sign(m) := short vector in (Λ + m)

Verify(σ) := 1 iff σ is short, σ mod Λ = m

Homomorphic property: φ is a linear map, so adding signatures
corresponds to adding messages.

Suppose σ1, σ2 are signatures on m1,m2
⇒ σi short, σi mod Λ = mi .

For a,b ∈ Z, define signature on am1 + bm2 to be
σ := aσ1 + bσ2.

⇒ σ is short (if a,b small), σ mod Λ = am1 + bm2.
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Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

18.0, σ pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.
σ authenticates 18, but 18 is not the mean!
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Linearly Homomorphic Signatures: Key Idea #2

Use a second lattice to authenticate functions:

Λ2 ⊂ Zn distinct from Λ1 := Λ.
require Λ1 + Λ2 = Zn

Map φ2 : Zn → Zn/Λ2 given by φ2(v) := v mod Λ2.

“Encode” functions f as elements ω(f ) ∈ Zn/Λ2.
Sign functions by computing

Sign(f ) := short vector in (Λ2 + ω(f )).

If “encoding” ω(·) is linear, (i.e., ω(f ) + ω(g) = ω(f + g))
then signature is a linear operator on the space of functions.
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How do we encode functions?

Ingredients:
k := number of messages input to a function.
τ := “tag” that ties together messages in same data set.
Hash function H : {0,1}∗→ (Zn/Λ2)k maps τ 7→ (α1, . . . , αk ).

Observation:{
Linear functions

in k variables

}
generated by

{
“projections” πi :

πi(m1, . . . ,mk ) = mi

}k

i=1

Define “encoding” ω : F → Zn/Λ2 by

f =
∑

ciπi 7→ ω(f ) =
∑

ciαi = f (α1, . . . , αk ).

ci are small integers.
“encoding” ω(f ) much shorter than description of f .
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“Intersection method” binds messages to functions

Messages m ∈ Zn/Λ1.

Functions f =
∑

ciπi encoded as ω(f ) =
∑

ciαi ∈ Zn/Λ2.
(αi defined by tag τ .)

Pair (m, ω(f )) gives unique element of Zn/Λ1 ∩ Λ2.

O

m
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Signing a message-function pair

Pair (m, ω(f )) gives unique element of Zn/Λ1 ∩ Λ2.

O

CRT(m, ω(f ))
CRT(m, ω(f ))

= m mod Λ1

= ω(f ) mod Λ2

Sign(m) := short vector in (Λ1 ∩ Λ2) + CRT(m, ω(f ))

Verify(σ) := 1 iff (σ mod Λ1 = m) and (σ mod Λ2 = ω(f ))

and σ is short
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Linearly homomorphic signature scheme

KeyGen(n):
pk = Lattices Λ1,Λ2 ⊂ Zn, Gaussian parameter β
sk = short basis of Λ1 ∩ Λ2
H : {0,1}∗ → (Zn/Λ2)k , H(τ) = (α1, . . . , αk ).

Sign(τ,mi , πi): compute short vector σi in
Λ1 ∩ Λ2 + CRT(mi , αi).

πi = i th projection function

Evaluate(f =
∑

ciπi , (σ1, . . . , σk )): compute σ =
∑

ciσi .

Verify(τ, σ,m, f =
∑

ciπi): Accept if
1 σ mod Λ1 = m,
2 σ mod Λ2 = ω(f ) =

∑
ciαi ,

3 σ sufficiently short.
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Concrete example

Lattices:

Λ1

= pZn

Λ2

= Λ⊥q (A) =

Λ1 ∩ Λ2

= p · Λ⊥q (A)

p small prime {x ∈ Zn : A · x = 0 mod q} short basis is p · B
q 6= p prime, A ∈ Fn′×n

q

Can sample random Λ⊥q (A) with short basis B [A99,AP09].

Message space: Zn/pZn = Fn
p.

Admissible functions f =
∑

ciπi , ci ∈ Fp:
Fp-linear combinations of k vectors in Fn

p.

Signature scheme signs k vectors vi ∈ Fn
p and can authenticate

any Fp-linear combination of the vi .

Same functionality as network coding signatures
[BFKW09,GKKR10], except p can be small (even p = 2).
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Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f ) with
m∗ 6= f (messages with tag τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
tag τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f ), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk ), and m∗ 6= f (m1, . . . ,mk ).
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Security Theorem

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero vector in Λ2.

To implement system securely:
Choose Λ2 such that finding short vectors in Λ2 is hard!

Λ⊥q (A) has this property [MR04,GPV08].

Proof outline
1 Given a “challenge” Λ2, answer signature queries without a

basis of Λ1 ∩ Λ2.
2 Use adversary’s forgery to produce a short vector in Λ2.
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Security Proof, Part 1

Proof outline
1 Given a “challenge” Λ2, answer signature queries without a

basis of Λ1 ∩ Λ2.

Generate Λ1 with a short basis.
Adversary queries m1, . . . ,mk .
Choose random τ and simulate signature σi on (τ,mi , πi):

1 Use basis of Λ1 to compute short vectors σi ∈ Λ1 + mi ;
2 Set αi := σi mod Λ2 ∈ Zn/Λ2.
3 Program random oracle with H(τ) := (α1, . . . , αk ).

For certain parameter choices, αi are statistically close to
uniform in Zn/Λ2.
Simulation is indistinguishable from real system.
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Security Proof, Part 2

Proof outline
2 Use forgery to produce a short nonzero vector in Λ2.

Adversary outputs forgery (τ∗,m∗, σ∗, f =
∑

ciπi).
Suppose τ∗, σ1, . . . , σk answer query m1, . . . ,mk .
Compute σ :=

∑
ciσi = “real” sig on f (m1, . . . ,mk ).

Validity of forged σ∗ and authenticity of “real” σ means:
1 σ∗ mod Λ1 = m∗ 6= f (m1, . . . ,mk )

= σ mod Λ1

2 σ∗ mod Λ2 =
∑

ciαi

= σ mod Λ2

3 σ∗ is short

and σ is short

Conclusion: σ∗ − σ is (1) nonzero, (2) in Λ2, (3) short.

If τ∗ not obtained from a query, sign random messages mi
and perform same analysis.
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Privacy

Privacy property: derived signature on f (m1, . . . ,mk ) reveals
nothing about m1, . . . ,mk beyond value of f .

Specifically: given data sets

~m = (m1, . . . ,mk ), ~m′ = (m′1, . . . ,m
′
k )

and admissible function f with

f (~m) = f (~m′),

even unbounded adversary cannot distinguish derived
signature on f (~m) from derived signature on f (~m′).
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Privacy theorem

Theorem
Linearly homomorphic signatures are private.

Proof idea

Distribution of derived signature on f (~m) depends only on f
and f (~m), not on ~m.
If f (~m) = f (~m′), distributions of derived sigs are identical.

Key technical fact [BF11]: distribution of linear combination of
discrete Gaussian samples is also discrete Gaussian.

Sigs on mi sampled from discrete Gaussian distribution,
derived sigs are linear combinations.
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from Ideal Lattices
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Extending the system

Linearly homomorphic scheme: messages in Zn/Λ1, functions
“encoded” in Zn/Λ2, signatures are short vectors in Zn.

φi : Zn → Zn/Λi given by v 7→ (v mod Λi) is a linear map, so we
can add either before or after applying φi .

New idea: what if Zn has a ring structure and Λ1,Λ2 are ideals?

Then φ is a ring homomorphism, so we can add or multiply
either before or after applying φ.

Can authenticate polynomial functions on messages.
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Setup for polynomial system [G09]

Fix monic, irreducible F (x) ∈ Z[x ] of degree n.

R := Z[x ]/(F (x)) gives a ring structure on Zn:

(coordinates of vectors) ↔ (coefficients of polynomials mod F )

(a0, . . . ,an−1) ↔ a0 + a1x + · · ·+ an−1xn−1

Λ1 = prime ideal p ⊂ R of norm p.

Message space is R/p = Fp.

Admissible functions are polynomials f ∈ Fp[x1, . . . , xk ]
with small coefficients.

Λ2 = prime ideal q; polynomials “encoded” in R/q = Fq:

Hash function H : {0,1}∗→ Fk
q maps τ 7→ (α1, . . . , αk ).

“Encode” f by ω(f ) := f (α1, . . . , αk ).
(think of coefficients of f as small integers).
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The polynomial system, concretely

KeyGen(n):
F (x) ∈ Z[x ] degree n
⇒ ring structure on Zn ∼= R := Z[x ]/(F (x)).
pk = prime ideals p, q ⊂ R, Gaussian parameter β
sk = short basis of p ∩ q = p · q

— how to generate?

H : {0,1}∗ → Fk
q , H(τ) = (α1, . . . , αk ).

Sign(τ,mi , xi):
Compute short element σi in p · q + CRT(mi , αi ).

Evaluate(f , (σ1, . . . , σk )):
Output σ = f (σ1, . . . , σk ) ∈ R

— why is this short?

Verify(τ, σ,m, f ): Accept if
1 σ mod p = m,
2 σ mod q = f (α1, . . . , αk ),
3 σ sufficiently short

— how short?
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Products of short elements

Why is a product of short elements of R short?

[G09,G10]: parameter γF measures how much multiplication
in R increases length:

γF := sup
u,v∈R

‖u · v‖
‖u‖ · ‖v‖

.

Product of d elements of length < β has length < γd−1
F βd .

If β, γF ∈ poly(n) and d = O(1), then this is still considered
“short”.

Lots of F (x) have small γF :

e.g., cyclotomic polynomials Φ`(x), ` prime or ` = 2a3b.
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Generating ideals with a short basis

How to generate p, q with short basis of p · q?

Smart-Vercauteren: choose a random short u ∈ R,
repeat until u · R is a prime ideal (lattice) p.
Repeat to get a second prime ideal q = v · R.
uv · R = p · q, and

B := {uv , uv · x , uv · x2, . . . , uv · xn−1}.

spans p · q and consists of short elements:

‖uv · x i‖ ≤ ‖u‖ · ‖v‖ · γ2
F .
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Signature length

How short are derived signatures?

Define admissible function set F to be polynomials in
Fp[x1, . . . , xk ] of degree ≤ d with coefficients in [−y , y ].

Operation Length expansion
Evaluate degree-d monomial ` 7→ `d · γd−1

F
Multiply by coefficient in [−y , y ] ` 7→ ` · y
Sum of m monomials of length ` ` 7→ ` ·m

Signatures on original messages mi have length < β
⇒ signature on f (m1, . . . ,mk ) has length < βd · γd−1

F · y ·
(k+d

d

)
.

If β, γF , k , y ∈ poly(n) and d = O(1), then derived signature
length is poly(n). (p is exponential in n)

For fixed n, bit length of derived signatures is linear in d ,
logarithmic in k .
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Security of polynomial scheme

What is security based on?

Analysis of linearly homomorphic scheme also applies here:

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero element of q.

q is a principal prime ideal.
Producing a short generator of arbitrary principal q is a
classical problem in algorithmic number theory.

Distribution of Smart-Vercauteren q not well understood.
Want q in distribution that admits a worst-case reduction.
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Open questions

1 Construct private polynomially homomorphic signatures.
(i.e., that leak no information about original messages)

Linearly homomorphic signatures are private.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Work in progress.

3 Reduce security to worst-case problems on ideal lattices.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!
Thanks also to Chris Peikert for help with graphics.
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