
©
20

13
 L

in
ke

dI
n

C
or

po
ra

tio
n.

 A
ll

R
ig

ht
s

R
es

er
ve

d.

1

Using Naive Bayes to
Detect Spammy Names in

Social Networks

David Mandell Freeman
LinkedIn Corporation

AISec 2013
Berlin, Germany

4 November 2013

Social Networks:
You’re Supposed to be You

Terms of Service of popular social networks:

But Not Everyone Follows the Rules...

Why Sign up with a Fake Name?

• Malicious (human or automated):
o Scrapers/spammers

• Dictionary of names
• Random text generator
• “Hack on the keyboard”

o SEO

• Non-malicious human:
o Lazy/secretive

• Just type something to get through registration
o Company name on personal page
o Phone number or email in name field

Downstream Effects

Who cares if I enter a fake name if I’m not
actively spamming?

Conclusion: Fake names degrade the value of the site to real people.

Mistyped search for “david”:

Detecting Social Network Spam:
Prior Work

• Clickstream patterns:
o Zhang-Paxson ’11: analyze timing of clicks
o Wang et al ’13: cluster based on timing and page label

• Message activity and content:
o Benvenuto et al ’10: statistics on URLs, spam words,

hashtags
o Gao et al ’10: scan content of Facebook wall posts

• Social graph properties:
o Cao et al ’12: random walk on graph
o Cao-Yang ’13: propagate negative feedback through

graph

Our Contribution

• Naive Bayes classifier to detect spam names
from name text only

o Features: n-grams of letters
o Extend feature set using phantom start/end chars
o Several methods to handle missing features

• Advantages:
o Can detect spammers at registration time

 – activity history and social graph are empty
o Can classify names never seen before

 – large % of names are unique
o Detects automated and human abusers
o Detects malicious and non-malicious fakes

• Supervised classification algorithm
• Assume features (usually words) chosen independently from

multinomial distribution.
• Feature random variable X, label random variable Y ∈ {0,1}
• = probability that word w appears in a sample from class y
• fw = multiplicity of word w in sample x

• To get probability estimate, need class priors
and feature probabilities .

• Use training data to estimate

• Interpret probability estimate as a score.

p(Y = y)

✓wy =

Nw,y + ↵w,y

Ny +
P

w ↵w,y
(N = count, ↵ = smoothing)

Multinomial Naive Bayes

✓wy

p(Y = 1|X = ~x) =

1

1 +

p(Y=0)
p(Y=1)e

�R(~x)
, where R(x) =

X

w

f

w

log

✓
✓

w1

✓

w0

◆

✓wy

first/last distinct first/last combined

n n-grams memory n-grams memory

1 15,598 25 MB 8,235 24 MB

2 136,952 52 MB 86,224 45 MB

3 321,273 110 MB 252,626 108 MB

4 1,177,675 354 MB 799,985 335 MB

5 3,252,407 974 MB 2,289,191 803 MB

Features: n-grams of letters

• Basic feature set (n=3):
(Qwe, wel, els, lse, set, ets, tsu, sup, qwe, wel, ela, lar, are, reb, eba, bad)

• For better performance, consider first and last names
independently:
(Qwe, wel, els, lse, set, ets, tsu, sup, qwe, wel, ela, lar, are, reb, eba, bad)

• Precompute n-gram frequencies for training set
o Use entire Unicode alphabet
o Ignore n-grams appearing only once in 60M accounts

Training and Test Data

• Training data:
o Unbiased sample of 60M LinkedIn accounts
o Labels: 0 – flagged as fake/abusive by Security team

 1 – everyone else

• Validation/test data:
o Sampled 200K accounts outside of training set
o Biased to contain roughly equal numbers of good/bad accounts

• Evaluation metric: AUC
o Doesn’t require setting a

classification threshold
o Insensitive to bias in

validation set

1 2 3 4 5

0.
70

0.
74

0.
78

0.
82

AUC for basic algorithm

Length of n-grams

A
U
C

first+last name n-grams combined
first+last name n-grams distinct

• Smoothing parameter biases towards uniform
 – prevent zero estimates in classes with no data
o Laplace smoothing:
o Interpolated smoothing:

• Tried
for both variants

• Little effect for n ≤ 3
• Laplace smoothing works

better for our dataset

3 4 5

0.
78

0.
79

0.
80

0.
81

0.
82

AUC for various smoothing parameters

Length of n-grams

A
U
C

Laplace smoothing
interpolated smoothing

∂=0.01
∂=0.1
∂=1
∂=10

↵w,y

↵w,y = �/Nw,y

Adjusting the Smoothing Parameter

✓wy =
Nw,y + ↵w,y

Ny +
P

w ↵w,y
(w = n-gram, y = class)

↵w,y = � (often � = 1)

� 2 (0.01, 0.1, 1, 10, 100)

Using n-gram position

• Some n-grams are more or less likely to belong to spammers
when at the start or end of a name
• Capital letters, consonant clusters

 e.g.: ‘zz’ 13x more likely to be spammer if at start of name

• Insert “start-of-word” and
“end-of-word” characters
before parsing into n-grams:
(\^Qw, Qwe, wel, els, lse, set, ets,
 tsu, sup, up\$, \^qw, qwe, wel,
 ela, lar, are, reb, eba, bad,
 ad\$)

1 2 3 4 5

0.
70

0.
74

0.
78

0.
82

AUC for algorithm with initial/terminal clusters

Length of n-grams

A
U
C

basic algorithm
with initial/terminal clusters

Missing Features

• Long tail of names:
Even with 60M training examples, many features in validation set are
not present in training set.

• Explains lack of improvement from n=4 to n=5

1 2 3 4 5

good accounts
spam accounts

Missing features as a percentage of all features

length of n-grams

pc
t

0
2

4
6

8
10

• Option 1: Ignore missing features

• Option 2: Compute parameter for “missing
feature” feature (technique from NLP):

1. Split data in two halves,
2. Label features that appear in only one half
 as “missing”
3. Aggregate “missing feature” data to compute parameter

• Option 2 improves AUC for n=5 from 0.843 to 0.849
– “missing feature” suggests spam

n-gram Qwe wel els lse set ets tsu sup qwe wel ela lar · · ·
log(✓w1/✓w0)

⇤
1.4 �0.6 0.8 ??? �0.7 �0.5 0.6 �2.7 ??? �3.1 �1.5 2.5 · · ·

feature A freqs B freqs
v (8, 3) (3, 4)
w (2, 1)
x (3, 2) (7, 9)
y (5, 0) (4, 3)
z (0, 3)

miss (2, 4)

A [B

Dealing with Missing Features (I)

*not real data

• Recursive iteration on (n–1)-grams improves AUC for n=5 from
0.849 to 0.854

qw we
??? �0.9

q w
�0.4 0.5

Dealing with Missing Features (II)

n-gram Qwe wel els lse set ets tsu sup qwe wel ela lar · · ·
log(✓w1/✓w0) 1.4 �0.6 0.8 ??? �0.7 �0.5 0.6 �2.7 ??? �3.1 �1.5 2.5 · · ·

Option 3: Use (n–1)-grams when n-gram data is missing:

ls se
�0.6 �1.2

Iterate recursively:

Evaluating Performance

“Full” Algorithm “Lightweight”
Algorithm

n 5 3

smoothing Laplace, ∂=0.1 Laplace, ∂=0.1

initial/terminal
n-grams yes yes

missing n-grams recursive (n–1)-grams fixed estimate

AUC on test set 0.852 0.803

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Precision-recall plots for name scoring algorithm

Recall

P
re
ci
si
on

Full algorithm
Lightweight algorithm

Evaluating Performance

Score cutoff ≈0.1 for
full algorithm, ≈0.5 for
lightweight algorithm

Dashed lines:
test set corrected for
mislabeled samples

False Positives

Manual review of test set accts with label 1 and score < 0.05
o 59% of “false positives” were incorrectly labeled.
o Precision increases from 95% to 98%.

Patterns observed in false positives:

o Mixed-language names

o First/last name fields
interchanged

o Strange (but readable)
characters

o Non-name information

• Label 0 assigned to accounts marked as abusive for any
reason — not just spam name
o Many spammers use real-looking names!
o 40% of spam accounts, 91% of good accounts have scores > 0.95

• Manually reviewed sample
of accounts with label 0
and score > 0.65
o 93% did not have spammy

names
o Extrapolating this false

negative rate to the whole
test set doubles recall.

Histogram of scores for "full" algorithm

Score

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20
00
0

40
00
0

60
00
0

80
00
0

good accounts
spam accounts

False Negatives

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Precision-recall plots for name/email scores

Recall

P
re
ci
si
on

Names only
Emails only
Names and emails

Scoring Email Addresses

• Email usernames can also be scored using our algorithm
o Short texts with even greater diversity than names.
o Spammers make less effort to have non-spammy email address.
o Lazy user may type in gibberish to get past registration screen.

• Scored emails alone
and emails along with
names
o Emails help distinguish

spammers in border-
line cases

Further Directions

• Reduce false positive rate
o Mixed-language names: parse and score separately
o Switched name fields: score on alternate permutation; use weighted

score.
o Unusual characters: map to a “reduced” character set.
o Non-name information: match to a list or improve UI.

• Strengthen adversarial model
o Continuous training

• Other ideas?
o Work with the LinkedIn Security Data Science team!

— full-time, internships, collaborations
o email dfreeman@linkedin.com

mailto:dfreeman@linkedin.com
mailto:dfreeman@linkedin.com

©
20

13
 L

in
ke

dI
n

C
or

po
ra

tio
n.

 A
ll

R
ig

ht
s

R
es

er
ve

d.

©2013 LinkedIn Corporation. All Rights Reserved.
22

Thank you!

©
20

13
 L

in
ke

dI
n

C
or

po
ra

tio
n.

 A
ll

R
ig

ht
s

R
es

er
ve

d.

23

