92013 Linked In Corporation All Rights Beserve

Using Naive Bayes to Detect Spammy Names in Social Networks

David Mandell Freeman LinkedIn Corporation

AlSec 2013
Berlin, Germany
4 November 2013

Social Networks: You're Supposed to be You

Terms of Service of popular social networks:

4. Registration and Account Security

Facebook users provide their real names and information,

e; (5) will use your real name

use the name your friends, family or co-workers usually call you when creating a Google+ profile. For example,

but you normally use Chuck Jones or Junior Jones eithe

But Not Everyone Follows the Rules...

Why Sign up with a Fake Name?

Malicious (human or automated):

- Scrapers/spammers
 - Dictionary of names
 - Random text generator
 - "Hack on the keyboard"
- SEO

Non-malicious human:

- Lazy/secretive
 - Just type something to get through registration
- Company name on personal page
- Phone number or email in name field

Downstream Effects

Who cares if I enter a fake name if I'm not actively spamming?

Mistyped search for "david":

Conclusion: Fake names degrade the value of the site to real people.

Detecting Social Network Spam: Prior Work

Clickstream patterns:

- Zhang-Paxson '11: analyze timing of clicks
- Wang et al '13: cluster based on timing and page label

Message activity and content:

- Benvenuto et al '10: statistics on URLs, spam words, hashtags
- Gao et al '10: scan content of Facebook wall posts

Social graph properties:

- Cao et al '12: random walk on graph
- Cao-Yang '13: propagate negative feedback through graph

Our Contribution

Naive Bayes classifier to detect spam names from name text only

- Features: n-grams of letters
- Extend feature set using phantom start/end chars
- Several methods to handle missing features

Advantages:

- Can detect spammers at registration time
 - activity history and social graph are empty
- Can classify names never seen before
 - large % of names are unique
- Detects automated and human abusers
- Detects malicious and non-malicious fakes

Multinomial Naive Bayes

- Supervised classification algorithm
- Assume features (usually words) chosen independently from multinomial distribution.
 - Feature random variable X, label random variable $Y \in \{0,1\}$
 - θ_{wy} = probability that word w appears in a sample from class y
 - f_w = multiplicity of word w in sample x

$$p(Y = 1 | X = \vec{x}) = \frac{1}{1 + \frac{p(Y = 0)}{p(Y = 1)}e^{-R(\vec{x})}}, \quad \text{where} \quad R(x) = \sum_{w} f_w \log\left(\frac{\theta_{w1}}{\theta_{w0}}\right)$$

- To get probability estimate, need class priors p(Y=y) and feature probabilities θ_{wy} .
- Use training data to estimate

$$\theta_{wy} = \frac{N_{w,y} + \alpha_{w,y}}{N_y + \sum_{w} \alpha_{w,y}}$$
 $(N = \text{count}, \alpha = \text{smoothing})$

• Interpret probability estimate as a score.

Features: *n*-grams of letters

• Basic feature set (*n*=3):

(Qwe, wel, els, lse, set, ets, tsu, sup, qwe, wel, ela, lar, are, reb, eba, bad)

 For better performance, consider first and last names independently:

(Qwe, wel, els, lse, set, ets, tsu, sup, qwe, wel, ela, lar, are, reb, eba, bad)

- Precompute *n*-gram frequencies for training set
 - Use entire Unicode alphabet
 - Ignore *n*-grams appearing only once in 60M accounts

	first/last	distinct	first/last combined			
$\mid n \mid$	n-grams	memory	n-grams	memory		
1	15,598	25 MB	8,235	24 MB		
2	136,952	52 MB	86,224	45 MB		
3	321,273	110 MB	252,626	108 MB		
4	1,177,675	354 MB	799,985	335 MB		
5	3,252,407	974 MB	2,289,191	803 MB		

Training and Test Data

Training data:

- Unbiased sample of 60M LinkedIn accounts
- Labels: 0 flagged as fake/abusive by Security team
 1 everyone else

Validation/test data:

- Sampled 200K accounts outside of training set
- Biased to contain roughly equal numbers of good/bad accounts

Evaluation metric: AUC

- Doesn't require setting a classification threshold
- Insensitive to bias in validation set

Adjusting the Smoothing Parameter

$$\theta_{wy} = \frac{N_{w,y} + \alpha_{w,y}}{N_y + \sum_{w} \alpha_{w,y}} \qquad (w = n\text{-gram}, y = \text{class})$$

- Smoothing parameter $\alpha_{w,y}$ biases towards uniform
 - prevent zero estimates in classes with no data
 - Laplace smoothing: $\alpha_{w,y} = \delta$ (often $\delta = 1$)
 - Interpolated smoothing: $\alpha_{w,y} = \delta/N_{w,y}$
- Tried $\delta \in (0.01, 0.1, 1, 10, 100)$ for both variants
- Little effect for $n \leq 3$
- Laplace smoothing works better for our dataset

AUC for various smoothing parameters

Using *n*-gram position

- Some n-grams are more or less likely to belong to spammers when at the start or end of a name
 - Capital letters, consonant clusters
 e.g.: 'zz' 13x more likely to be spammer if at start of name
- Insert "start-of-word" and "end-of-word" characters before parsing into n-grams:

(\^Qw,)Qwe, wel, els, lse, set, ets, tsu, sup, up\\$, \^qw, qwe, wel, ela, lar, are, reb, eba, bad, ad\\$)

AUC for algorithm with initial/terminal clusters

Missing Features

Long tail of names:

Even with 60M training examples, many features in validation set are not present in training set.

Missing features as a percentage of all features

• Explains lack of improvement from *n*=4 to *n*=5

Dealing with Missing Features (I)

n-gram	Qwe	wel	els	lse	set	ets	tsu	sup	qwe	wel	ela	lar	• • •
$\log(\theta_{w1}/\theta_{w0})^*$	1.4	-0.6	0.8	???	-0.7	-0.5	0.6	-2.7	???	-3.1	-1.5	2.5	•••
	•												

- Option 1: Ignore missing features
- Option 2: Compute parameter for "missing feature" feature (technique from NLP):
 - 1. Split data in two halves, $A \cup B$
 - 2. Label features that appear in only one half as "missing"

feature	\mathcal{A} freqs	\mathcal{B} freqs
\overline{v}	(8,3)	(3, 4)
w	(2, 1)	
x	(3, 2)	(7, 9)
y	(5,0)	(4, 3)
z		(0,3)
\overline{miss}	(2,	4)

- 3. Aggregate "missing feature" data to compute parameter
- Option 2 improves AUC for n=5 from 0.843 to 0.849
 - "missing feature" suggests spam

Dealing with Missing Features (II)

Option 3: Use (n-1)-grams when n-gram data is missing:

 Recursive iteration on (n-1)-grams improves AUC for n=5 from 0.849 to 0.854

Evaluating Performance

	"Full" Algorithm	"Lightweight" Algorithm
n	5	3
smoothing	Laplace, ∂=0.1	Laplace, ∂=0.1
initial/terminal n-grams	yes	yes
missing <i>n</i> -grams	recursive (n-1)-grams	fixed estimate
AUC on test set	0.852	0.803

Evaluating Performance

Precision-recall plots for name scoring algorithm

False Positives

Manual review of test set accts with label 1 and score < 0.05

- 59% of "false positives" were incorrectly labeled.
- Precision increases from 95% to 98%.

Patterns observed in false positives:

- Mixed-language names
- First/last name fields interchanged
- Strange (but readable)
 characters
- Non-name information

False Negatives

- Label 0 assigned to accounts marked as abusive for any reason — not just spam name
 - Many spammers use real-looking names!
 - 40% of spam accounts, 91% of good accounts have scores > 0.95
- Manually reviewed sample of accounts with label 0 and score > 0.65
 - 93% did not have spammy names
 - Extrapolating this false negative rate to the whole test set doubles recall.

Scoring Email Addresses

- Email usernames can also be scored using our algorithm
 - Short texts with even greater diversity than names.
 - Spammers make less effort to have non-spammy email address.
 - Lazy user may type in gibberish to get past registration screen.
- Scored emails alone and emails along with names
 - Emails help distinguish spammers in borderline cases

Precision-recall plots for name/email scores

Further Directions

Reduce false positive rate

- Mixed-language names: parse and score separately
- Switched name fields: score on alternate permutation; use weighted score.
- Unusual characters: map to a "reduced" character set.
- Non-name information: match to a list or improve UI.

Strengthen adversarial model

Continuous training

Other ideas?

- Work with the LinkedIn Security Data Science team!
 - full-time, internships, collaborations
- o email dfreeman@linkedin.com

Thank you!

