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Network coding  [ACLY’00]
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Applies to online and offline (e.g. BitTorrent) applications



To transmit a file  F  do:
• Write F as a sequence of vectors
   v’1 , … , v’m    ∈   (Fp )

n

• Augment each vector:      
     

• Transmit    v1, …, vm   into the network.

Each intermediate node:      receives    w1,…,wt    ∈  (Fp)
n+m

• chooses random  constants   a1, …., at ∈  Fp

• forwards     a1w1 + … + atwt   to all its neighbors. 

Linear network coding  [LYC’03]
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used for decoding
v1    =  ( ---   v1’  ---  ,1,0, …,0,0,0,….,0  )   ∈ (Fp)n+m

v2    =  ( ---   v2’  ---  ,0,1, …,0,0,0,….,0  )

vi     =  ( ---   vi’   ---  ,0,0, …,0,1,0,….,0  )

vm   =  ( ---   vm’ ---  ,0,0, …,0,0,0,….,1  )



Decoding

Recipient receives vector:
  w  =  ( —   w’  —  ,  c1, …,cm  )  ∈  (Fp)

n+m

  Then     w’ =  c1v’1 + … + cmv’m     ∈  (Fp)
n

⇒  Recipient can recover   v’1, … ,v’m    from any m vectors 
that form a full rank system
• i.e. any basis of the subspace spanned by v1,…,vm

Benefits:    achieves channel capacity and is resilient to 
packet loss
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The pollution problem
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• Just one corrupt router can pollute the entire network!



Sign each basis vector vi:
• Received vectors are different from basis vectors

     ⇒  signatures useless.

Sign original file F;  then verify signature after decoding:

• Problem:    suppose t > m packets are received.
  Recipient must try        subsets until a subset
   containing only valid vectors is found.

Some non-solutions:
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Signatures for network coding
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σ3 = combine(a,σ1,  b,σ2)

•   Can obtain signatures on all vectors in span(v1,…,vm).

•   Hop-by-hop containment:
  every node can verify signature before forwarding vector.

•   Recipient drops all vectors with an invalid signature.

Linearly homomorphic signatures:



Related work

Early proposals:
  Krohn, Freedman, and Mazières (2004)
  Zhao, Kalker, Médard, and Han (2007)
  Charles, Jain, and Lauter (2006)

• All are one time signatures:    
 PK must be refreshed after every transmission.

• First two schemes generate large signatures:   
 m group elements per vector.
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Our contributions
(PKC 2009, joint with D. Boneh, J. Katz, B. Waters)

• Well-defined security model for network coding.
 Supports many-time use of a single PK.

• Two efficient schemes secure in our model:
First is more useful in practice; 

    Second has a weaker computational assumption.

• Lower bound on length of secure signatures.
Our schemes achieve the bound (asymptotically).
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Setup(1k,N) → p, PK, SK     

• Vectors to be signed live in (Fp)N.

Sign(SK,id,v∈(Fp)N) → σ
• id: identifier that binds together all vectors in a file. 

• To sign a vector space  V = span(v1,…,vn),
choose id and run:  Sign(SK, id, v1), … , Sign(SK, id, vn).

Verify(PK,id,v,σ) → {0,1}

• Checks if σ is a valid signature on v for identifier id.

Combine(PK,id,(a,σ1),(b,σ2)) → σ     (a,b ∈ Fp)

• If σ1, σ2 are sigs. for v, w, resp., both with identifier id
then σ should be a valid signature for av + bw.

Homomorphic network coding signatures
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Network coding security game

N
PK,p

idi, σi = (σi1,…,σim){ repeat

id*,v*,σ*

Adversary Challenger

Adversary wins if: 
Verify(PK,id*,v*,σ*) = 1 and

(1) id*≠ idi for all i, or
(2) id*= idi for some i, and v*∉ span(Fi)

  Fi = {vi1,…,vim} ∈ (Fp)N
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Setup(1k,N)

random idi
σij ←Sign
(SK,idi,vij)



Setup(1k,N) → groups G1,G2,GT of order p > 2k ;   pairing e ;
   hash function H : {0,1}* x {0,1}* → G1

• SK = random α ∈ Fp

• PK = (h,u):  h generates G2,  u := hα 

Sign(α,id,v = (v1,…,vm) ) → σ := 

Verify(h,u,id,v = (v1,…,vm),σ):
• compute γ1 = e(σ,h)
• compute γ2 = e
• output 1 if γ1 = γ2, else output 0.

The scheme
(model: BGLS aggregate signatures)
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The homomorphic property

• Given v = (v1,...,vm) and w = (w1,...,wm), we have

• Signature on av + bw is

• So the Combine algorithm should be

Combine(PK,id,(a,σ1),(b,σ2)) = 
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σ1 =

(
N∏

i=1

H(id, i)vi

)α

, σ2 =

(
N∏

i=1

H(id, i)wi

)α

(
N∏

i=1

H(id, i)avi+bwi

)α

= σa
1 · σb

2

σa
1 · σb
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Security of the signature scheme

Security is based on co-computational Diffie-Hellman 
problem (co-CDH):

• Given g ∈ G1, h ∈ G2, hx ∈ G2, compute gx ∈ G1.

Theorem:  the above signature scheme is secure in our 
networking coding security model, assuming 

• (1) co-CDH  is infeasible in (G1,G2) and 
• (2) the hash function H is modeled as a random oracle.

Proof idea (the interesting case):
• Adversary produces a forgery   (id*, v*, σ*)   where   

id* = idi    from ith query, but   v* ∉ span(Fi).

• Challenger uses linear independence to extract co-CDH 
solution.
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A lower bound on signature length

Theorem:
• If bit length of signatures on m-dimensional subspaces

of (Fp)N is  ≤ 
then there is an adversary that makes one query and wins 
the security game with probability 1/2.

• i.e., per-vector signature length must be (roughly) ≥ log2 p.

Our scheme achieves the lower bound (asymptotically) 
• Assuming “optimal” pairing-friendly elliptic curves are used

• 160-bit: Miyaji-Nakabyashi-Takano
• 224-bit: Freeman
• 256-bit: Barreto-Naehrig
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m log2 p− 4m/p− 1



More on the lower bound

Proof of the theorem (sketch)
• Number of m-dimensional subspaces of (Fp)N is ≈ pmN.
• If signatures are short, then many files have trivial 

signature (i.e., verifies for all vectors).
• Adversary chooses a random subspace V, obtains the 

signature σ, and produces a vector v ∉ V.
• With high probability σ is trivial and thus verifies on v.
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Further results
(joint with S. Agrawal, D. Boneh, X. Boyen)

What if multiple senders, each with their own PK/SK, 
want to send files via the network?

• Natural generalization of single-source security model 
can’t be satisfied.

Adversary that corrupts one sender can “frame” honest senders.

• Transmission can be secure if file ids are crypto-
graphically generated.

Add “IdTest” algorithm to allow recipient to verify ids.

• We construct a secure scheme based on the discrete log 
assumption.

Not very efficient.
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• Generalize (more efficient) pairing-based scheme to multi-
source setting.

• Prove lower bound for multi-source scheme.

• Authenticate vectors with entries in rings other than Fp.

e.g.          for small N;         for some d.

Open Problems
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