Constructing Pairing-Friendly Genus 2 Curves with Ordinary Jacobians

David Freeman

University of California, Berkeley, USA

First International Conference on Pairing-Based Cryptography

Tokyo, Japan 3 July 2007

Outline

- Pairings on Abelian Varieties
 - Pairings in Cryptography
 - Pairing-Friendly Abelian Varieties
- The Genus 2 CM Method
 - Complex Multiplication
 - Constructing Curves from Igusa Invariants
- Constructing Pairing-Friendly Genus 2 Curves
 - Constraints on the parameters
 - The Algorithm
 - Extending the Algorithm

Outline

- Pairings on Abelian Varieties
 - Pairings in Cryptography
 - Pairing-Friendly Abelian Varieties
- 2 The Genus 2 CM Method
 - Complex Multiplication
 - Constructing Curves from Igusa Invariants
- Constructing Pairing-Friendly Genus 2 Curves
 - Constraints on the parameters
 - The Algorithm
 - Extending the Algorithm

Pairings on Abelian Varieties

- Let A be a abelian variety defined over a finite field \mathbb{F}_q .
 - e.g., elliptic curve, or Jacobian of a hyperelliptic curve.
- For any integer r the Weil pairing e_r is a bilinear map sending pairs of points of order r to r-th roots of unity in $\overline{\mathbb{F}}_q$:

$$e_r : A[r] \times A[r] \rightarrow \mu_r$$
.

- The Tate pairing is analogous.
- These pairings have been used in many cryptographic constructions, described in this conference and elsewhere.

Making Pairings Practical

- For pairing-based cryptosystems to be practical and secure, we require:
 - the discrete logarithm in the order-r subgroup of $A(\mathbb{F}_q)$ to be computationally infeasible;
 - 2 the discrete logarithm in μ_r to be computationally infeasible;
 - **3** the pairing to be easily computable (i.e., μ_r lies in a low-degree extension of \mathbb{F}_q).
- To optimize applications, we want to choose A so that the two discrete log problems are of about equal difficulty.
- The embedding degree quantifies this concept.

Embedding Degrees

- Let r be a prime number.
- Let A be an abelian variety over \mathbb{F}_q with $r \mid \#A(\mathbb{F}_q)$.
- Let k be the smallest integer such that $\mu_r \subset \mathbb{F}_{q^k}^{\times}$ (i.e., such that $r \mid q^k 1$).
 - ullet The Weil pairing can be used to embed $A(\mathbb{F}_q)[r]$ into $\mathbb{F}_{q^k}^{ imes}$.
 - k is the embedding degree of A (with respect to r).
- Equivalently, k is the order of q in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - For "random" curves, $k \sim r$.
 - If r is large ($\sim 2^{160}$), random A will have embedding degree too large to be practical.

The Problem

- The problem: find primes q and abelian varieties A/\mathbb{F}_q having
 - a subgroup of large prime order r, and
 - prescribed (small) embedding degree with respect to r.
 - In practice, want $r > 2^{160}$ and $k \le 50$.
- We call such varieties "pairing-friendly."
- Want to be able to control the number of bits of q to construct varieties for various applications.

Previous Results

- Pairing-friendly elliptic curves well-studied. (See survey article by F.-Scott-Teske.)
- Two-dimensional abelian varieties (abelian surfaces) are more mysterious.
 - Can be described as Jacobians of genus 2 curves.
- Rubin-Silverberg: supersingular abelian surfaces have k < 12.
 - Description made more explicit by Cardona-Nart.
 - Supersingular abelian surfaces easy to construct.
- Galbraith-McKee-Valença, Hitt: Demonstrated existence of non-supersingular abelian surfaces with small embedding degree.
 - Unable to construct surfaces explicitly.

The Main Result: Our Algorithm

- Input: a prime r and an embedding degree k.
 - e.g., r = 2011 = NextPrime(2007), k = 10.
- Output: a prime q and a genus 2 curve C over \mathbb{F}_q .
 - e.g., q = 27185091709621, $C: y^2 = x^5 + 18$.
- If $A = \operatorname{Jac}(C) = \operatorname{Pic}^0(C)$ is the Jacobian of C, then
 - A is ordinary.
 - In this case, equivalent to $q \equiv 1 \pmod{5}$.
 - $A(F_q)$ has a subgroup of order r.

$$\#A(\mathbb{F}_q) = 739028832225496605008350416 \equiv 0 \pmod{r}$$

- 3 A has embedding degree k with respect to r.
 - $q^{10} \equiv 1 \pmod{r}$

Outline

- Pairings on Abelian Varieties
 - Pairings in Cryptography
 - Pairing-Friendly Abelian Varieties
- The Genus 2 CM Method
 - Complex Multiplication
 - Constructing Curves from Igusa Invariants
- 3 Constructing Pairing-Friendly Genus 2 Curves
 - Constraints on the parameters
 - The Algorithm
 - Extending the Algorithm

Frobenius Endomorphism and CM fields

- Let A be an abelian surface over \mathbb{F}_q .
- The Frobenius endomorphism of A is a root of a polynomial

$$h(x) = x^4 - sx^3 + tx^2 - sqx + q^2$$

(the "characteristic polynomial of Frobenius").

- A is ordinary $\Leftrightarrow \gcd(t, q) = 1$.
- If h(x) is irreducible, $K = \mathbb{Q}[x]/(h(x))$ is a degree-4 number field, called a *CM field*. (We say *A* has *CM by K*.)
- Any such K can be written as

$$K = \mathbb{Q}\left(\sqrt{-a + b\sqrt{d}}\right),$$

for some a, b, d > 0 with $a^2 - b^2 d > 0$.

From Frobenius to Genus 2 Curve

- Pairing-friendly property of A is determined by properties of h(x) modulo r.
- Problem: given an h(x) with pairing-friendly properties, construct an abelian surface A with characteristic polynomial of Frobenius h(x).
- Equivalently: construct a genus 2 curve C whose Jacobian has CM by $K = \mathbb{Q}[x]/(h(x))$.
- Solution: Igusa invariants and Igusa class polynomials.

Genus 2 Invariant Theory

- Igusa invariants: triple of numbers (j_1, j_2, j_3) that classify a genus 2 curve C up to isomorphism.
 - Analogous to j-invariant of elliptic curve.
- Igusa class polynomials for K: polynomials $H_1, H_2, H_3 \in \mathbb{Q}[x]$ whose roots are the Igusa invariants of genus 2 curves (over \mathbb{C}) whose Jacobians have CM by K.
 - Analogous to Hilbert class polynomial for elliptic curve.
- Fact: Igusa invariants of curves over \mathbb{F}_q whose Jacobians have CM by K are roots mod q of Igusa class polynomials for K.

Constructing Genus 2 Curves

- To construct curve C/\mathbb{F}_q whose Jacobian has CM by K: compute Igusa class polynomials for K, take triples of roots mod q as Igusa invariants for C.
 - Mestre: algorithm to construct C from its Igusa invariants.
- Major obstacle: Igusa class polynomials can only be computed for very small CM fields K.
- Solution: Fix K in advance, construct h(x) such that $K \cong \mathbb{Q}[x]/h(x)$.

Outline

- Pairings on Abelian Varieties
 - Pairings in Cryptography
 - Pairing-Friendly Abelian Varieties
- 2 The Genus 2 CM Method
 - Complex Multiplication
 - Constructing Curves from Igusa Invariants
- Constructing Pairing-Friendly Genus 2 Curves
 - Constraints on the parameters
 - The Algorithm
 - Extending the Algorithm

Determining the CM Field

- Given $K = \mathbb{Q}\left(\sqrt{-a+b\sqrt{d}}\right)$, want to compute $h(x) = x^4 sx^3 + tx^2 sqx + q^2$ with $K \cong \mathbb{Q}[x]/(h(x))$.
- The field $\mathbb{Q}[x]/(h(x))$ is isomorphic to $\mathbb{Q}(\eta)$, where

$$\eta = \sqrt{\left(\frac{s^2}{2} - t - 2q\right) + s\sqrt{\frac{s^2}{4} - t + 2q}}.$$

(Apply the quadratic formula twice.)

• To guarantee $\mathbb{Q}(\eta) = K$, set

$$-a = \frac{s^2}{2} - t - 2q$$

$$b = s$$

$$d = \frac{s^2}{4} - t + 2q$$

Adding Degrees of Freedom

- Problem: once we impose conditions on s, t, q to make A
 pairing-friendly, we don't have enough degrees of freedom
 to find a solution.
- Solution: use the isomorphism

$$\mathbb{Q}\left(\sqrt{-a+b\sqrt{d}}\right)\cong\mathbb{Q}\left(\sqrt{(u+v\sqrt{d})^2(-aw^2+b\sqrt{dw^4})}\right).$$

Now we have

$$\frac{s^2}{2} - t - 2q = -w^2(au^2 + adv^2 + 2bduv)$$
 (1)

$$s = bu^2 + bdv^2 + 2auv (2)$$

$$\frac{s^2}{4} - t + 2q = dw^4. (3)$$

with 6 degrees of freedom (q, s, t, u, v, w).

Making A Pairing-Friendly

 To guarantee that A has embedding degree k with respect to a subgroup of order r, we require:

$$q^2 - s(q+1) + t + 1 \equiv 0 \pmod{r}$$
 (4)

$$\Phi_k(q) \equiv 0 \pmod{r} \tag{5}$$

where Φ_k is the *k*th cyclotomic polynomial.

- (1)-(5) give 5 equations in 6 variables.
- We find solutions mod r to all 5, and choose different lifts to integers until the value of q is prime.

The Algorithm

- Fix prime subgroup size r, embedding degree k, and CM field $K = \mathbb{Q}(\sqrt{-a + b\sqrt{d}})$.
- **2** Fix $v' \in \mathbb{F}_r$, and find solutions $q', s', t', u', w' \in \mathbb{F}_r$ to equations (1)-(5).
 - If no solutions, choose different v'.
- **1** Let $u_0, v_0, w_0 \in \mathbb{Z}$ be representatives for u', v', w' in [0, r).
- Ohoose small integers i_1 , i_2 , i_3 , let $u = u_0 + i_1 r$, $v = v_0 + i_2 r$, $w = w_0 + i_3 r$.
- Solve equations (1)-(3) in integers for q, s, t.
 - If no integer solutions or if q not prime, choose different i_1, i_2, i_3 .
- **1** Return q and $h(x) = x^4 sx^3 + tx^2 sqx + q^2$.

The Final Result

- Given q and h(x) output by the algorithm, can use Igusa class polynomials to construct curve C/\mathbb{F}_q whose Jacobian has characteristic polynomial of Frobenius h(x).
- Theorem: Jac(C) has embedding degree k with respect to r.

Extending the Algorithm

- Group of *r*-torsion points on an abelian surface *A* is $\cong (\mathbb{Z}/r\mathbb{Z})^4$.
- Our algorithm gives A with
 - one dimension of *r*-torsion defined over \mathbb{F}_q ,
 - one dimension of *r*-torsion defined over \mathbb{F}_{q^k} ,
 - other two dimensions uncontrolled.
- Future applications may require 3 or 4 linearly independent points with small embedding degree.
- Modify algorithm: add one more constraint on q, s, t; produce A with 4 dimensions of r-torsion defined over \mathbb{F}_{q^k} .

Composite-Order Groups

- Algorithm can also be modified to produce A that is pairing-friendly with respect to composite-order $r = r_1 r_2$.
 - See Dan Boneh's talk yesterday.
- Solve equations (1)-(5) modulo r_1 and r_2 independently; combine via Chinese remainder theorem.

Improving the ρ -value

• For abelian variety A of dimension g over \mathbb{F}_q , define a parameter

$$\rho = \frac{\log q^g}{\log r}.$$

- Since $\#A \approx q^g$, ρ measures ratio of pairing-friendly subgroup size to entire group size (in bits).
 - Want ρ small for maximum efficiency. (Minimum is 1.)
- Our algorithm produces ρ -values around 8.
 - $\rho = 8.13$ in the example above.
- Major open problem: produce pairing-friendly ordinary abelian surfaces with $\rho \le 2$.
 - Find genus 2 analogues of Miyaji-Nakabayashi-Takano or Brezing-Weng methods.

