
Switch Scheduling via Randomized Edge Coloring
�

Gagan Aggarwal† Rajeev Motwani‡ Devavrat Shah§ An Zhu¶

Abstract

The essence of an Internet router is an n � n switch which
routes packets from input to output ports. Such a switch can
be viewed as a bipartite graph with the input and output
ports as the two vertex sets. Packets arriving at input port
i and destined for output port j can be modeled as an edge
from i to j. Current switch scheduling algorithms view the
routing of packets at each time step as a selection of a bipar-
tite matching. We take the view that the switch scheduling
problem across a sequence of time-steps is an instance of
the edge coloring problem for a bipartite multigraph. Im-
plementation considerations lead us to seek edge coloring
algorithms for bipartite multigraphs that are fast, decentral-
ized, and online. We present a randomized algorithm which
has the desired properties, and uses only a near-optimal
∆ � o � ∆ � colors on dense bipartite graphs arising in the
context of switch scheduling. This algorithm extends to non-
bipartite graphs as well. It leads to a novel switch schedul-
ing algorithm which, for stochastic online edge arrivals, is
stable, i.e., the queue length at each input port is bounded at
all times. We note that this is the first decentralized switch
scheduling algorithm that is also guaranteed to be stable.

1 Introduction

We present the first known switch scheduling algorithm
which is both stable and implementable, in the sense that
our solution is fast, decentralized and uses minimal inter-
chip communication. The key ingredient of our scheduler is

�
All authors are affiliated with the Department of Computer Science at

Stanford University.
†Supported in part by a Stanford Graduate Fellowship and NSF Grant

EIA-0137761. E-mail gagan@cs.stanford.edu.
‡Supported in part by NSF Grant IIS-0118173 and EIA-0137761,

an SNRC Grant, and grants from Microsoft and Veritas. E-mail
rajeev@cs.stanford.edu.

§Supported in part by a grant from the Stanford Networking Research
Center, NSF grant ANI-9985446 and AFOSR grant F49620-01-1-0365.
E-mail: devavrat@cs.stanford.edu.

¶Supported in part by a GRPW fellowship from Bell Labs,
Lucent Technologies, and NSF Grant EIA-0137761. E-mail
anzhu@cs.stanford.edu.

a simple, randomized algorithm for near-optimal edge col-
oring of a dense multigraph. Before we can describe our
results in greater detail, it will be necessary to provide some
background.

Switch Scheduling. In the recent past, the input-queued
(IQ) switch architecture [3] has become dominant in high-
speed network switching. Figure 1 shows the logical struc-
ture of an n � n IQ switch with n input and n output ports.
The main function of the switch is to route packets ar-
riving at the input ports to the appropriate output ports.
Packets arriving at input i and destined for output j are
buffered in a virtual output queue denoted by VOQi j. Let
Ai j � t ���	� 0
 1 � be a random variable indicating the arrival
of a new packet in VOQi j at time t. We assume that Ai j � t � ’s
are i.i.d. Bernoulli1 with parameter λi j � Pr
 Ai j � t � � 1 � . The
line-rates at all the ports are normalized to 1, i.e., each input
can receive at most one packet per time slot and an out-
put can transmit at most one packet per time slot. The in-
coming traffic is called admissible if � j
 ∑n

i � 1 λi j � 1 and
� i
 ∑n

j � 1 λi j � 1. Let λ � � maxi � j � ∑k λik
 ∑l λl j � � 1 �
In an input-queued switch, packets are switched from in-

put to output ports via a crossbar fabric, which imposes the
constraint that in any time slot, at most one packet may be
removed from each input’s VOQs and at most one packet
may be sent to each output. Thus a scheduling algorithm
is needed to find a schedule (a matching between input and
output ports) to transfer packets at each time step. A good
scheduling algorithm should have the following two prop-
erties:
(i) Stability: A scheduling algorithm is said to be stable if
the length of each queue VOQi j stays bounded under ad-
missible network traffic.
(ii) Implementability: Current hardware technology im-
poses some constraints on the scheduling algorithm. First,
for high-speed switches (running at Gigabit/second speeds)
the inter-arrival time of packets is of the order of nanosec-
onds. This implies that an algorithm cannot take more than
a few on-chip operation-cycles per time step to come up
with a transfer schedule, i.e., the algorithm should be sim-
ple and not involve complex computations. Second, due to

1All results in this paper can be easily generalized to any regenerative
traffic model. We omit the details.

1

cost and hardware constraints, it is not possible to maintain
the state of switch (e.g., queue-lengths) on chip along with
the scheduling algorithm’s logic module. This implies that
information about the switch state needs to be communi-
cated to the scheduling module from other chips. Again,
cost considerations and time constraints imply that only a
few bits of information per queue can be communicated to
the scheduling algorithm. Essentially, this leads to a need
for a decentralized algorithm that operates in an online fash-
ion.

switching fabric

Matching, M

Scheduler

Output 1

Output N

Input 1

Input N

VOQ1N

VOQ11

VOQN1

VOQNN

Figure 1. Logical structure of an input-queued
packet switch

Previous Work on Switch Scheduling. McKeown,
Anantharan, and Walrand [10] gave a stable switch schedul-
ing algorithm which involves finding a maximum weight
matching with respect to an appropriate weighted bipartite
graph at each time step. This algorithm is impractical in that
it requires Ω � n3 � work per time step and, in any case, im-
plementing such a complex algorithm on chip is infeasible.
Subsequently, several other stable algorithms, such as those
of Tassiulas [15] and Giaccone, Prabhakar, and Shah [7],
have been proposed. While simpler than maximum weight
matching, they still require centralized control. In commer-
cial switches, only simple scheduling algorithms such as iS-
LIP [11] are implemented. In the implemented version of
iSLIP, only a constant number of cycles are used to produce
a scheduling decision. Essentially, iSLIP computes a max-
imal matching at each step using a decentralized approach.
Unfortunately iSLIP and its variants are unstable. It has
been an open question to find an algorithm which is both
stable and implementable.

Relating Edge Coloring and Switch Scheduling. Let
G � � U
 V
 E � be a bipartite multigraph, with � U � � � V � � n.
We will refer to the n nodes in U as inputs, and the n nodes
in V as outputs. Let ∆ be the maximum degree in G, and
define ∆i j as the number of edges between input i and out-
put j, for 1 � i
 j � n; since we allow multigraphs, ∆i j may
exceed 1. An edge coloring is an assignment of colors to the
edges in E such that adjacent edges receive distinct colors.
The minimum number of colors in any valid edge coloring,
χ � � G � , is called the chromatic index of the graph.

It is well-known that bipartite edge coloring has a di-
rect application to switch scheduling, and to other similar
scheduling problems arising in applications such as radio-
hop networks [17] and optical networks [16]. Consider the
bipartite multigraph between input and output ports, where
each edge � i
 j � denotes a distinct packet from VOQi j; note
that the multiplicity of an edge is the number of packets in
the queue VOQi j. A valid switch schedule at each time step
connects each input i to at most one output j, such that no
two inputs are connected the same output. Thus, the pack-
ets transferred in any one time step have to form a matching.
Recall that the edges in any color class of an edge coloring
form a matching. Thus, a switch scheduler can be viewed as
performing an edge coloring of the multigraph – the color
of an edge is the time slot at which the corresponding packet
is transferred. The number of colors in the edge coloring is
equivalent to the number of time slots taken to schedule the
packet load by a corresponding switch schedule.

Our algorithm performs online edge coloring. Each edge
is assigned a color as soon as it arrives; i.e., the color of an
edge does not depend on future edge arrivals. This mini-
mizes the amount of state maintained, and reduces the de-
lay at the switch. However, the same color may be assigned
to edges arriving at different time steps. Thus, we have to
wait till all edges assigned a single color have arrived before
transferring them together in a single time step; in other
words, we perform batch-scheduling. We assign colors to
packets as they arrive over a span of B � O � n2 � time steps
(which we will call a batch), while storing them in virtual
output queues. Our edge coloring algorithm uses CB colors.
Then, for the next CB time slots (which is also the dura-
tion of the next batch), the packets from the previous batch
are scheduled according to their assigned colors (with an
appropriate mapping of colors to time slots), while simul-
taneously coloring and storing the packets arriving in the
present batch. Thus, on average, a packet gets delayed by
the duration of a batch. Instead of coloring packets as they
arrive, we can also use an offline edge coloring algorithm
to color the packets after accumulating all the packets in
a batch. Assuming computing speed barely keeps up with
the arrival rate of packets, the delay involved in this case
would be more than twice the duration of a single batch.
Let G be the graph obtained by accumulating all the packets
which arrive during a batch. We will show that this switch
scheduling is stable iff the edge coloring algorithm used as
a subroutine colors a bipartite graph of maximum degree ∆
using at most ∆ � o � ∆ � colors. Thereafter, we will present
and analyze an edge coloring algorithm which achieves this
goal.

Previous Work on Edge Coloring. For the case of gen-
eral graphs, determining χ � � G � is NP-complete [6]. Vizing’s
Theorem [18] states that any graph with maximum degree
∆ can be edge colored with at most ∆ � 1 colors and the re-

2

sult is constructive. It is obvious that at least ∆ colors are
needed in all cases. The algorithm due to Vizing is com-
plex and not suitable for switch scheduling. For bipartite
multigraphs, there exist edge coloring algorithms using ∆
colors in O � � E � log∆ � � O � n∆ log∆ � time [4]. All such al-
gorithms are inherently centralized and take ω � 1 � time per
packet, rendering them ineffective for switch scheduling.
Panconesi and Srinivasan [13] presented an offline but dis-
tributed algorithm which edge colors a graph using 1 � 58∆
colors. While this algorithm can be adapted to online edge
coloring, the number of colors used is too high to yield a
stable scheduler, which must use at most ∆ � o � ∆ � colors.

Grable and Panconesi [8] proposed an edge coloring
algorithm using � 1 � ε � ∆ colors, for any constant ε � 0,
but operating in O � loglogn � rounds, provided ∆ is smaller
than any positive power of n. When the degree of the
graph cannot be bounded from above, they obtain similar
guarantees with an algorithm running in O � log∆ loglogn �
rounds. Dubhashi, Grable and Panconesi [9] proposed an
alternate algorithm that uses ∆ � ∆ � logs n colors, when-
ever ∆ � Ω � logk n � , for constants s
 k � 0, but operating in
O � logn � rounds. Both algorithms operate in ω � 1 � rounds,
and hence require ω � 1 � time per packet, which makes them
virtually impossible to implement in a network switch. Fur-
ther, the guarantee provided by the first algorithm of using
at most � 1 � ε � ∆ colors is too weak to guarantee stability for
all admissible traffic.

Thus, none of the existing edge coloring algorithms can
color a graph with ∆ � o � ∆ � colors, using O � 1 � operations
per edge, which is necessary to achieve a fast, stable, and
implementable switch scheduler.

Main Results and Roadmap. We present a fast, decen-
tralized, randomized edge coloring algorithm for bipartite
multigraphs, based on which we obtain a new stable switch
scheduling algorithm. Our analysis establishes that the edge
coloring algorithm uses at most ∆ � o � ∆ � colors with high
probability, provided the input graph is dense, i.e., it has
∆ � ω � n2 � . While this may seem like a strong condition,
note that it is a reasonable model for the heavy load gen-
erated in Internet routers and may indeed be the only inter-
esting case in that scenario. The condition ∆ � ω � n2 � im-
plies that we do batch-scheduling for batches of size O � n2 � ,
which imposes an average delay of O � n2 � per packet. We
would like to note that the best average delay bounds known
for switch scheduling algorithm for an input-queued switch
is Θ � n2 � [14]. Thus, in the application to switch scheduling,
the requirement that ∆ � ω � n2 � is not restrictive. Further,
since our algorithm is of independent interest for edge col-
oring, we relax this condition as stated in Theorem 4 and
discussed in Section 6.

Our algorithm is online in the context of switch schedul-
ing — instead of assuming an adversarial arrival order, the
edge arrival order is assumed to obey certain stochastic

models. We note that our algorithm can be applied to adver-
sarial arrival patterns as well; packets in a batch are accu-
mulated and the edge order is randomized before applying
our algorithm. Our randomized algorithm has the additional
feature of being decentralized – the choice of the color for
an edge e � � i
 j � only involves examining the colors given
to edges incident to nodes i and j only, which in turn implies
a running time of O � 1 � per vertex per time step.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the switch scheduling and edge coloring
algorithms, and state their performance guarantees which
will be derived in the rest of the paper. Section 3 provides
details of the proof of stability of the switch scheduling al-
gorithm obtained by using our edge coloring algorithm as
a subroutine. Section 4 outlines the analysis of the edge
coloring algorithm, with some of the more intricate proofs
being deferred to the appendix. Then we show that the edge
coloring algorithm generalizes to the case of non-bipartite
graphs as well; we sketch the analysis in Section 5. In Sec-
tion 6, we show that constraints on the degree of the graph
can be relaxed while maintaining the performance guaran-
tee of the edge-coloring algorithm. Finally, we conclude
with some general remarks in Section 7.

2 The Switch Scheduling Algorithm

We first describe a switch scheduling algorithm, called
SWITCH-SCHED, which uses an online edge coloring algo-
rithm, called EDGE-COLOR, to obtain a schedule of packet
transfers. This algorithm performs batch-scheduling of
packets. Let tk denote the time at which the kth batch ends.
The packets arriving at any time t, for tk � 1 � t � tk, are col-
ored by the online edge coloring subroutine EDGE-COLOR.
By a suitable mapping of colors to time slots, the colors
assigned to the packets define a transfer schedule and the
packets are transferred according to this schedule during the
interval � tk
 tk � 1 � , while the packets in the � k � 1 � st batch are
accumulated.

Algorithm SWITCH-SCHED(EDGE-COLOR)

1. Let t0 � 0 and t1 � n2, where n is the number of input
ports in the switch. Initialize the current batch number
k � 1, and current time t � 1.

2. Repeat forever:

(a) While the current time t � tk (the current batch
has not ended), do the following:

(i) If in the current time step t, a packet arrives
at input i destined for output j, add an edge
� i
 j � in the bipartite graph Gk, and color this
edge using the online edge coloring algo-
rithm EDGE-COLOR.

3

(ii) Transfer all packets corresponding to edges
colored t in the graph Gk � 1. (Note that these
edges will form a matching and thus result
in a valid schedule.)

(iii) Go to the next time step, t � t � 1.

(b) Let ∆ � Gk � be the maximum degree of graph Gk

formed by the packets arriving in the kth batch,
and let κ � Gk � be the number of colors used by
EDGE-COLOR to color Gk. Define tk � 1 � tk �
κ � Gk � , and do a one-to-one mapping of the colors
of Gk to time slots in � tk
 tk � 1 � .

As noted before, an offline edge coloring algorithm can
also be used, in which case the edge coloring would be per-
formed at the end of each batch, once Gk is known fully.
This would cost an additional latency equal to the running
time of the offline edge coloring algorithm.

Assuming that we have a suitable edge coloring algo-
rithm, the following theorem guarantees the stability of Al-
gorithm SWITCH-SCHED. Note that ∆ � Gk � , the maximum
number of packets accumulated in one batch at any input
port, represents the maximum queue size.

Theorem 1. Suppose that Algorithm EDGE-COLOR can
edge-color a bipartite multigraph with maximum degree ∆
using at most ∆ � o � ∆ � colors with high probability. Then,
Algorithm SWITCH-SCHED(EDGE-COLOR) is stable, i.e.,
under Bernoulli i.i.d. arrival process with λ � � 1, we have
∆ � Gk � � ∞ with a high probability for all k � �

.

The conclusion of Theorem 1, that queue-sizes are finite
with a high probability, remains true under a large class of
arrival processes; for example, it is true for any regenera-
tive arrival process. We defer the proof of Theorem 1 to
Section 3.

It remains to specify the online edge coloring algorithm,
EDGE-COLOR. Consider first a GREEDY algorithm for on-
line edge coloring of a bipartite multigraph G. Assume,
without loss of generality, that G is ∆-regular; otherwise,
add dummy edges to make the graph regular (see also Cole
et al. [4]). We start with an initial pool of colors � 1
 � � �
 A � .
As the edges arrive in some arbitrary order, we color each
edge with the smallest free color, where a free color is one
which has not been used at any adjacent edge. Clearly,
GREEDY succeeds if and only if A � 2∆ � 1. In fact, Bar-
Noy, Motwani, and Naor [2] show that no online algo-
rithm (deterministic or randomized) can do better for sparse
graphs. Our goal is to reduce the number of colors used to
∆ � o � ∆ � so as to guarantee stability. We next describe a
natural randomized variant of this algorithm.

Algorithm RAND-COLOR

1. Let 1
 � � �
 ∆ be the initial pool of available
colors.

2. At each input, independently select a ran-
dom permutation of the ∆ incident edges.

3. For s � 1 to ∆ do
For each input i:

(a) Pick the sth edge e in the random per-
mutation associated with input i.

(b) Select a color for e uniformly at ran-
dom from its current set of free colors.

(c) If no free color is available for e, leave
the edge uncolored. This edge will be
colored in Step 4.

4. Let r be the maximum number of uncol-
ored edges at any vertex. Color the remain-
ing edges using the GREEDY algorithm with
2r � 1 fresh colors.

Under adversarial arrival patterns, the randomization done
in Step 2 is necessary, as discussed in Appendix A. Since
packet arrivals at a switch follow Bernoulli i.i.d. processes,
when RAND-COLOR is used as a subroutine for SWITCH-
SCHED, we do not need to perform Step 2. We can use the
actual arrival order itself, since that order is itself random
enough for the performance guarantees of RAND-COLOR

to hold. Furthermore, we can perform the GREEDY color-
ing performed in Step 4 in Step 3(c) itself by assigning the
edge e the minimum available color from a fresh set of col-
ors, say 1 �
 2 � � � �
 i �
 � � � . Thus, algorithm RAND-COLOR can
operate online as a subroutine within algorithm SWITCH-
SCHED, and can color edges as they arrive.

Theorem 2 characterizes the performance of RAND-
COLOR; its proof is sketched in Section 4. Note that
throughout this paper, “high probability” is used to denote
probability at least 1 � o � 1

n2∆2 � , unless specified otherwise.

Theorem 2. For a bipartite multigraph G with n vertices
and maximum degree ∆ � ω � n2 � , Algorithm RAND-COLOR

uses at most ∆ � o � ∆ � colors with a high probability.

For the case of general (non-bipartite) graphs, a simi-
lar result holds. The straightforward extension of RAND-
COLOR to general graphs, denoted RAND-COLOR-G, is as
follows: Start with ∆ colors for each vertex. At each round,
each vertex (instead of just the input vertices) picks an edge
at random from the remaining edges, and colors it with a
random free color. This process continues until all the edges
have been considered. The edges that are not colored at the
end are colored using the simple GREEDY algorithm. The
proof technique for Theorem 3 below is similar to that for
Theorem 2, as described in Section 5.

Theorem 3. For a general multigraph G with n vertices and
maximum degree ∆ � ω � n2 � , Algorithm RAND-COLOR-G
uses at most ∆ � o � ∆ � colors with a high probability.

4

In contrast to the condition ∆ � ω � n2 � , consider the fol-
lowing two conditions:

∆i j � Ω �
�

∆ �
 � i
 j s � t � ∆i j �� 0 (1)

∆ � ω � log4 n � (2)

We state the following theorem and discuss it briefly in Sec-
tion 6.

Theorem 4. The algorithm RAND-COLOR (resp. RAND-
COLOR-G) edge-colors a bipartite graph G (resp. general
graph G) satisfying conditions (1) and (2) with ∆ � o � ∆ �
colors with a high probability.

3 Proof of Theorem 1: Analysis of SWITCH-
SCHED

Recall that Gk is the bipartite multigraph formed in kth

batch, ∆ � Gk � is the max-degree of Gk and κ � Gk � is the num-
ber of colors used by Algorithm EDGE-COLOR to color Gk.

Note that ∆ � Gk � forms an irreducible Markov chain (on
space

�
). We will show that for some ε � 0 and constant C,

E
 ∆ � Gk � 1 � � ∆ � Gk � � ∆ � Gk � � C � � � ε∆ � Gk � (3)

Then, from (3) above, by applying Foster’s criteria [1], we
will obtain that with high probability,

E
∆ � Gk � � � ∞ � ∆ � Gk � � ∞

thus proving Theorem 1.

We will prove (3) now. Let 0 � δ � � 1 � λ � � , and let ε be
such that λ � � 1 � δ � 2 � � 1 � ε � . Then,

1. From the assumption on the performance of algorithm
EDGE-COLOR, we know that there exists a constant C
(depending only on n), s.t. if ∆ � Gk � �

C, then

κ � Gk � � ∆ � Gk � � o � ∆ � Gk � � � � 1 � δ � ∆ � Gk � � (4)

2. Next we bound ∆ � Gk � 1 � . Let ∆ � Gk � �
C as above.

Given κ � Gk � , the graph Gk � 1 is made by packets ar-
riving during the time period of length κ � Gk � . Since
the arrival process of packets arriving at any input or
destined for any output is a Bernoulli i.i.d. process of

rate at most λ � , with probability 1 � o � 1
n2 � κ2 � Gk ����� ,

∆ � Gk � 1 � � λ � κ � Gk � � O �
	 λ � κ � Gk � log � nκ � Gk � � �
� � 1 � δ � λ � κ � Gk � (5)

Furthermore, since at most one packet can arrive for
any input in one time step, and there are n inputs, we
always have

∆ � Gk � 1 � � nκ � Gk �
� 2n∆ � Gk � (6)

The last inequality follows from the fact that κ � Gk � �
2∆ � Gk � .

3. From (4), (5) and (6) we obtain

E
 ∆ � Gk � 1 � � ∆ � Gk � � ∆ � Gk � � C �
� � � 1 � δ � 2λ � � 1 � ∆ � Gk � � o � 1

n2∆2 � Gk �
� 2n∆ � Gk �

� � ε∆ � Gk � � o � 1
n∆ � Gk � �� � ε∆ � Gk �

This proves (3) and hence Theorem 1.

4 Proof of Theorem 2: Analysis of RAND-
COLOR

We start with an outline of the proof of Theorem 2; the
details are in Sections 4.2, 4.3 and 4.4, followed by a dis-
cussion in Section 7.

4.1 Proof Outline for Theorem 2

The algorithm runs in ∆ stages. At each stage, n edges,
one at each input, are considered for coloring. Thus, as
time progresses, the number of edges in the graph keeps
growing. We will show that the graph grows “regularly”,
in the sense that the intermediate graphs are “similar” to
the final graph. Thus, the vertices are well-informed about
the graph structure when they pick colors for edges incident
to them even in the earlier stages, which leaves sufficiently
many free colors for the later stages. For the purpose of
analysis, we divide these ∆ stages into 1

ε epochs, each of

length ε∆, where ε � log2 � n∆ ��
∆

. The analysis considers the
algorithm’s behavior over each of these epochs.

Consider a fixed input-output pair � i
 j � . Let Li � t � be the
colors used by edges incident to input i by time t, and R j � t �
be colors used by edges incident to output j by time t. Let
Ci j � t � denote the number of common colors of i and j, i.e.,
the colors used by both input i and output j at time t. Thus,
Ci j � t � � � Li � t ��� R j � t � � � At any stage t, the number of edges
incident to input i is t. Let Ek � a
 b � denote the number of
edges between input-output pair � a
 b � at the end of the kth

epoch, i.e., at the end of stage t � kε, and let Ek � �
 b � repre-
sent the number of edges incident to output b at the end of
the kth epoch. Note that Ek � �
 b � � ∑n

a � 1 Ek � a
 b � .
The following lemma guarantees that at all stages, the

number of selected edges incident to each node is highly
concentrated around the mean value.

Lemma 1. At the end of the kth epoch, for any input-output
pair � a
 b � ,

Pr ���Ek � a � b ��� kε∆ab ����� 10log � n∆ � kε∆ab ��� 1
n5∆5 (7)

In addition,
Pr � �Ek � � b �!� kε∆ �"� � 10log � n∆ � kε∆ � � 1

n5∆5 (8)

5

Note that kε∆ab is the mean value of Ek � a
 b � , while
kε∆ is the mean value of Ek � �
 b � . The proof of this
lemma follows from a straightforward application of Cher-
noff bounds. We omit the proof due to lack of space.

For a given fixed input-output pair � i
 j � , define C � k ����
Ci j � kε � � The following lemma lets us bound the number of
common colors in terms of a recurrence. We give the proof
of this lemma in Section 4.2.

Lemma 2. The increase in the number of common colors
for an input-output pair � i
 j � in the � k � 1 � st epoch is

�C � k � 1 ��� C � k � � � pi jε∆ � ε∆ � 1 � pi j � α � � kε∆ � C � k ���
∆ � kε∆ ��

O � � kε∆ log � n∆ ��� �
with probability 1 � o � 1

n5∆5 � , where pi j �� ∆i j
∆ , and α � � 0
 1 �

is a constant.

In the expression on the right side of the inequality, the
first term gives the increase in the number of common colors
due to edges of type � i
 j � added in the � k � 1 � st epoch, the
second term gives the increase due to new edges incident to
i or j but not on both, while the third term is the error term.

Note that at any given stage, since we begin with the
same palette of colors at each node, if the number of com-
mon colors for an input-output pair � i
 j � is large, then there
are more free colors available for an edge � i
 j � arriving in
the later stages. Conversely, if the number of common col-
ors between any pair of input-output pairs is at least ∆ � c
when the algorithm halts, then there are at most c uncolored
edges at each vertex. Thus, one needs to show that when
the algorithm halts at Step 3, the number of common colors
between any two vertices is large. We state the following
lemma whose proof can be found in Section 4.3.

Lemma 3. When RAND-COLOR halts in Step 3, the num-
ber of edges remaining to be colored at any vertex is o � ∆ �
with a high probability.

Lemma 3 implies that using the GREEDY algorithm in
Step 4, these remaining edges can be colored using an addi-
tional o � ∆ � fresh colors. Thus, the algorithm uses a total of
∆ � o � ∆ � colors with a high probability. This completes the
proof of Theorem 2.

4.2 Proof of Lemma 2

Our goal is to obtain a lower bound on the increase in the
number of common colors between a pair of input-output
nodes � i
 j � in the � k � 1 � st epoch, given the number of com-
mon colors C � k � at the end of kth epoch. The common col-
ors between � i
 j � increase when: (a) an edge between � i
 j �
is added; (b) an edge � i
 j � � , j � �� j, is added and it chooses a

color already used by j before; or, (c) an edge � i �
 j � , i � �� i,
is added and it chooses a color already used by i before.

The number of edges added at input i in the epoch is

ε∆ �� δ. The number of edges added at output j in the
� k � 1 � st epoch will be δ 	 O � 	 log � n∆ � � k � 1 � ε∆ � (from
Lemma 1). Further, ε∆i j 	 O � 	 log � n∆ � � k � 1 � ε∆i j � edges
are added between input i and output j. Thus, in the � k � 1 � st
epoch: (a) edges of type � i
 j � number δi j �� ε∆i j; (b) edges
incident to input i number δ; and, (c) edges incident to out-
put j number δ; all with error of at most O � 	 log � n∆ � ∆ � (as
k � 1 � 1 � ε) with a high probability. We denote this error
in the number of trials as:

E1 � O �
	 log � n∆ � ∆ � � (9)

We give the basic argument neglecting this error and later
show that it does not violate our claims.

We now estimate the increase in Ci j during an epoch —
the δi j edges of type � i
 j � increase the number of common
colors by the same number. The remaining δ � δi j edges in-
cident on i and an equal number of edges incident on j may
or may not increase the number of common colors. Given
C � k � � Ci j � kε � , we would like to obtain a lower bound on
the probability, pC � k � , of each of these remaining edges
increasing the number of common colors in the � k � 1 � st
epoch. Since the colors picked by these edges are indepen-
dent Bernoulli trials, in order to apply Chernoff bounds, we
just need a lower bound on the mean increase in Ci j due to
trials in the � k � 1 � st epoch.

Let pin
C � k � denote the probability that an edge arriving

at input i (not incident to j) increases the number of com-
mon colors between input i and output j. This probability
can vary depending on the output to which the edge is inci-
dent. We let pin

C � k � be the average probability of increasing
C � k � over all choices of the output. Let the edge be inci-
dent to output ol(ol �� j), for 1 � l � n with probability po

l .
We would like to note that by Lemma 1, the value of po

l is
the same for all epochs (with possible error of order 1 �

�
∆

which is negligible with respect to the error bound we are
trying to prove).

Similarly, let edges arriving at output j be incident to
input im (im �� i), for 1 � m � n, with probability pi

m. De-
fine pout

C � k � as the average probability for increasing com-
mon colors by edges arriving at output j. Let pC � k � �
pin

C � k � � pout
C � k � . We claim the following lower bound on

pC � k � . Some intuition for this lemma is provided in Sec-
tion 4.4; the detailed proof can be found in Appendix B.

Lemma 4. pC � k ��
 α kδ � C � k �
∆ � kδ �

Let µ � � 1 � pi j � ε∆pC � k � be the mean increase in the
number of common colors due to the independent Bernoulli
trials corresponding to the edges incident to i or j (but not
of type � i
 j �). Then Lemma 4 implies that

6

µ
 � 1 � pi j � ε∆α
kδ � C � k �

∆ � kδ
�

By Chernoff bounds, we obtain that with probability at least
1 � O � 1

n5∆5 � , the increase in common colors between pair

� i
 j � due to such edges is at least µ � O � 	 log � n∆ � µ � � Thus,
gathering the net increase in the number of common colors
in the � k � 1 � st epoch, we get�C � k � 1 ��� C � k � � � δi j � � 1 � pi j � δα

kδ � C � k �
∆ � kδ� O � � log � n∆ � δ � (10)

Note that in (10) above, the error term is O � 	 log � n∆ � δ � .
Our aim is to show that the overall error is bounded by

E �� O � 	 log � n∆ � ∆ � � Thus the error in (10) is negligible
compared to E.

In estimating the change in the number of common col-
ors during an epoch, we had neglected some error terms.
We now show that they contribute an error of at most E.

- Number of trials: This was error E1 as in (9), which
is O � E � .

- Error in pC � k � : In the expression for pC � k � ,
α kδ � C � k �

∆ � kδ , the numerator could have possible devia-

tion of O � 	 log � n∆ � ∆ � , while the denominator is al-
ways Ω � ε∆ � . This leads to a possible error in pC � k �
of O �

�
log � n∆ � ∆

ε∆ � . Over ε∆ trials, this can contribute an
error of O 	 log � n∆ � ∆, which is again O � E � .

- Change in pC � k � during an epoch: During the � k �
1 � st epoch, pC � k � was considered to be fixed. But

in reality, the expression kδ � C � k �
∆ � kδ will change during

the course of an epoch. The denominator always de-
creases, thereby increasing pC � k � , and can thus be ne-
glected for a lower bound. However, the numerator
can decrease. It decreases iff C � k � 1 � � C � k �
 ε∆,
in which case pC � � � is large enough. Hence, such a
change in pC � k � does not violate our claims about the
increase in Ci j during the � k � 1 � st epoch.

From (10) and the preceding discussion,

� C � k � 1 � � C � k � �
 δi j � � 1 � pi j � δα
kδ � C � k �

∆ � kδ
� O � 	 log � n∆ � ∆ � � (11)

Note that the estimate in the number of trials and the
estimate for pC � k � fail with probability O � 1

n5∆5 � . Thus,

by union bound, the result (11) holds with probability

1 � O � 1
n5∆5 � . This proves Lemma 2.

4.3 Proof of Lemma 3

From Lemma 2, for a particular pair � i
 j � ,
C � k � 1 ��� C � k � � δi j � � 1 � pi j � δα

kδ � C � k �
∆ � kδ

� O � � log � n∆ � ∆ �

with probability at least 1 � 1
n5∆5 . From the union bound,

we can conclude that for n2 pairs of input-outputs and all
1
ε epochs, the desired change will happen with probability
at least 1 � 1

n3∆3 . The only problem is that the error term

adds up over 1
ε epochs to give a weak O � ∆ � error bound.

To remedy this, we use the Azuma-Hoeffding inequality for
martingales [12] to establish that the total error is o � ∆ � .

Let Z denote the number of common colors between a
pair � i
 j � of interest at the end of Step 3 in RAND-COLOR.
We want to show that Z is concentrated sharply around its
mean. Define the conditional expectation of Z with respect
to information C � k � , as Zk � E
 Z � C � k � � . By definition, the
Zk’s form a martingale. We would like to bound the dif-
ference � Zk � 1 � Zk � . For simplicity, assume that the C � k � ’s
are evolving exactly as their high probability lower bound
and Z is the mean for this lower bound. From Lemma 2,
we note that � C � k � 1 � � C � k � � deviates from its mean by at
most O � 	 ∆ log � n∆ � � with probability 1 � o � 1

n5∆5 � . Thus,

C � k � 1 � is within O � 	 ∆ log � n∆ � � of E
C � k � 1 � � C � k � � , the
expected value of C � k � 1 � given C � k � , with probability
1 � o � 1

n5∆5 � . The form of pC � k � in Lemma 3 suggests that
if C � k � 1 � is far from the mean, then pC � k � will be such
that it will push C � k � 1 � back towards mean. This implies
that Zk, the expected value of Z given C � k � , and Zk � 1, the
expected value of Z given C � k � 1 � will differ by at most	 ∆ log � n∆ � with probability 1 � o � 1

n5∆5 � . With the remain-
ing probability, it can change at most by O � ∆ � and hence
in expectation it contributes a change of O � 1

n5∆4 � . Thus,

we see that � Zk � 1 � Zk � � 	 ∆ log � n∆ � � Then by applying
Azuma-Hoeffding inequality for martingales [12], we get

Pr
 � Z � E
 Z � �
 λ � � exp

�
�

λ2

2∆ log � n∆ �
ε � �

Setting λ � 5log � n∆ �
�

∆, we obtain that

Pr � �Z � E � Z � ��� 5log � n∆ ��� ∆ � � exp � � 5log � n∆ � ��� 1
n5∆5 (12)

Thus Z, the number of common colors at the end of Step 3,
is within O � log � n∆ �

�
∆ � of its mean with a high probability.

Now we move on to estimating the mean of Z.
From Lemma 2, and assuming that C � k � is evolving ex-

actly as its high probability lower bound,

C � k � 1 � � C � k �
ε∆ � pi j � � 1 � pi j � α � kδ � C � k �

∆ � kδ �
with an error of O � 	 ∆ log � n∆ � � . On the scale of ε∆, this
error does not show up. Let x � s � � C � s∆ � ε � � ∆ for s �
 0
 1 � .
Then, we can rewrite the above expression as

x � s � ε � � x � s �
ε � pi j � � 1 � pi j � α s � x � s �

1 � s
�

7

Since ε � log2 � n∆ � ∆ � 1 � 2 � 0 as ∆ � ∞, we get

dx � s �
ds

� pi j � � 1 � pi j � α s � x � s �
1 � s

�

With x � 0 � � 0 as the initial condition, we get the following
solution of this differential equation.

x � s � � 1 �
pi j � α � 1 � pi j �
1 � α � 1 � pi j � � 1 � s �

�
1 � pi j

1 � α � 1 � pi j � � 1 � s � α � 1 � pi j � �
Thus, x � 1 � � 1. This evaluation of the discrete differential
equation happens with granularity ε∆. Therefore, the mean
of Z will be at least x � 1 � ∆ � ε∆.

Combining our knowledge about the mean of Z and the
concentration of Z around its mean, we get that with high
probability,

Z
 ∆ � O � ε∆ � � O �
	 log � n∆ � ∆ � � ∆ � o � ∆ � � (13)

The last equality follows from the fact the ε � o � 1 � . Then,
by applying the union bound to the n2 input-output pairs, we
assert that all of them will obey the above lower bound with
high probability too. This proves that the proposed random-
ized algorithm for coloring a bipartite graph will use at most
∆ � O � log2 � n∆ �

�
∆ � colors with probability 1 � o � 1

n∆ � .

4.4 Intuition for Lemma 4

We sketch the main idea behind the proof of Lemma 4
via an example. When i (respectively j) does not choose an
edge for j (respectively i), it chooses an edge of type � i
 j � � ,
with j � �� j (respectively � i �
 j � , with i � �� i). Conditioned
on the selection of the edge � i
 j � � by i, pin

C � k � depends on
colors not used by i and j � , and on how many of these col-
ors are used by j. Denote the set of colors used by j, but
not used by i and j � as A � j; ī; j̄ � � , and the colors not used
by i and j as A � ī; j̄ � � . Then, conditioned on the selection
of edge � i
 j � � , we have pin

C � k � � A � j; ī; j̄ � � � A � ī; j̄ � � . Simi-
larly, conditioned on the selection of edge � i �
 j � , we have
pout

C � k � � A � i
 ī � ; j̄ � � A � ī � ; j̄ � . Recall that δ is the number of
edges picked by an input in each epoch. Let us ignore lower
order terms for the moment. Then, kδ is the number of col-
ors which have already been used at any vertex by the end of
the kth epoch. Thus, A � ī
 j̄ � � � A � ī �
 j̄ � � ∆ � 2kδ � C � k � �
∆ � kδ, which is precisely the term in the denominator of
the right side of the inequality in Lemma 4.

Now consider the term kδ � C � k � in the numerator. Here,
kδ is the total number of colors used at output j (respec-
tively at input i), while C � k � colors have been used both at
i and j. Thus, A � j; ī � � A � i
 j̄ � � kδ � C � k � . Out of these
kδ � C � k � colors, we have to subtract the colors used at j �

(respectively at i �) in order to calculate A � j; ī; j̄ � � (respec-
tively A � i; ī � ; j̄ �). We establish Lemma 4 by showing that
Di j � A � j; ī; j̄ � � � A � i
 ī � ; j̄ � is always larger than a constant
fraction of kδ � C � k � . This is achieved by showing that there

is a positive “drift” for
Di j

kδ � C � k � if it is smaller than some
constant. The reason for the positive “drift” (or a conserva-
tion law) is as follows. If A � j; ī; j̄ � � and A � i; ī � ; j̄ � are both
really small, then the color chosen for the edge � i
 j � � will
be such that it will, with high probability, increase the pool
A � j̄; i; ī � � . Similarly, the color chosen for edge � i �
 j � will
increase the pool A � ī; j; j̄ � � with high probability. Thus, in
each epoch, sufficiently many such events will occur giving
us lower bound in Lemma 4.

This idea can be extended to the case of general graphs
(not necessarily bipartite) by choosing Di j appropriately,
taking into account all possible edges which could be se-
lected by input i and output j. Next we sketch the proof of
Theorem 3, which addresses the case of general graphs.

5 Proof Sketch for Theorem 3

To prove Theorem 3, we need to prove lemmas similar
to the ones shown for the proof of Theorem 2. We would
like to note that unlike algorithm RAND-COLOR, algorithm
RAND-COLOR-G runs for only ∆ � 2 stages, since in the case
of general graphs, an edge gets selected in a stage if either of
its end-points gets selected; thus the probability of an edge
getting selected in any stage is twice that in RAND-COLOR.

As in the proof of Theorem 2, we have to bound the num-
ber of common colors Ci j for any pair of vertices i and j at
the end of Step 3. Lemma 1 is about the regularity of the
graph’s growth and it holds for a general graph too under al-
gorithm RAND-COLOR-G. A result analogous to Lemma 3
would imply Theorem 3. The crux of the proof of Lemma 3
is Lemma 2. For the proof of Lemma 2, we consider pairs of
input-output vertices, but the fact that the graph is bipartite
is not used in the proof. Hence the same argument can be
applied to any arbitrary pair of vertices. Thus, a result anal-
ogous to Lemma 2 is true for the case of general graphs too,
which in turn implies Lemma 3 for this case. The details of
the proof will be given in the full version of the paper.

6 Proof sketch of Theorem 4

Theorem 4 follows from the proofs of Theorems 2 and 3
when we inspect the reason behind the constraint ∆ �
ω � n2 � . We would like to summarize these reasons as fol-
lows (which are mainly in the proof of Lemma 3).

(a) Constraint on ε: The error term introduced in
Lemma 1 is O � 	 log � n∆ � ∆ � . The epoch length is
O � ε∆ � . For the error to be of a lower order than
the mean, we need ε∆ � ω � 	 log � n∆ � ∆ � , or ε �

8

ω �
�

log � n∆ ��
∆

� . In addition, we need ε � o � 1 � in order
for equation (13) to hold.

(b) Relation between ∆ and n: For using the Law of Large
Numbers, we need ε∆i j � ω � 1 � . For this, it suffices to
have ∆i j � Ω �

�
∆ � . If ∆i j � o �

�
∆ � , then we ignore

these edges in the analysis of Step 3, and let them con-
tribute to the uncolored edges remaining at the end of
Step 3. Clearly, if ∆i j � 0 whenever ∆i j � o �

�
∆ � as in

condition 1 of Theorem 4, no such edges will be left
over. Otherwise, these edges contribute no more than
n∆i j � o � n

�
∆ � to the degree of each vertex at the end

of Step 3. Thus, the constraint n � o �
�

∆ � or alterna-
tively, ∆ � ω � n2 � is sufficient to ensure the max-degree
of the graph colored greedily in Step 4 is o � ∆ � .

Thus, the conditions (1) and (2) satisfy the constraints
imposed by the proofs as noted in (a) and (b) above. Hence,
the proofs of Theorem 2 and Theorem 3 can be extended to
get a proof of Theorem 4. This completes the sketch of the
proof.

7 General Remarks

Tightness of Theorems 2 and 3. The proof of Lemma 3
suggests an error of order O � log2 � n∆ �

�
∆ � . But neglecting

all edges � i
 j � with ∆i j � o �
�

∆ � leads to an error bound
of o � n

�
∆ � . Hence, the number of colors used by RAND-

COLOR is ∆ � max � O � log2 n∆ �
�

∆ �
 o � n
�

∆ � � .
Note that if each node in the graph G is connected to

O � 1 � other nodes, then we need the constraint ∆ � ω � log4 n �
for our results to hold. Bar-Noy et al.’s [2] lower bound of
2∆ � 1 for online edge coloring of graphs with ∆ � O � logn �
implies our result is almost tight for such graphs. In general,
if the maximum degree of any node in the graph is Φ �
n, then conditions (1) and (2) in Theorem 4 are satisfied
whenever ∆ � Ω � max � Φ2
 log4 n � � . We note that since at
least one node is connected to at least Φ other nodes, we
always have ∆
 Φ in this case.

References

[1] S. Asmussen. Applied Probability and Queues. New
York: Wiley, 1987.

[2] A. Bar-Noy, R. Motwani and J. Naor. The Greedy Al-
gorithm is Optimal for On-Line Edge Coloring. Infor-
mation Processing Letters, 44 (1992), pages 251-253.

[3] Cisco 12000 Gigabit Switch Router. Product
overview, www.cisco.com, Feb. 2000.

[4] R. Cole, K. Ost and S. Schirra. Edge Coloring Bipar-
tite Multigraphs in O � E logD � Time. Combinatorica
21(1):5–12, 2001.

[5] J. Dai and B. Prabhakar. The Throughput of Data
Switches With and Without Speedup. Proceedings of
INFOCOM 2000.

[6] M.R. Garey and D.S. Johnson. Computers and
intractability — a Guide to the Theory of NP-
completeness. W.H. Freeman, 1979.

[7] P. Giaccone, B. Prabhakar and D. Shah. Towards Sim-
ple, High-Performance Schedulers for High-aggregate
bandwidth. Proceedings of INFOCOM 2002.

[8] D. Grable and A. Panconesi. Nearly Optimal
Distributed Edge Coloring in O � loglogn � Rounds.
http://citeseer.nj.nec.com/140887.html.

[9] D. Dubhashi, D. Grable and A. Panconesi. Near-
Optimal, Distributed Edge Coloring via the Nibble
Method. Proceedings of ESA 1995.

[10] N. McKeown, V. Anantharan and J. Walrand. Achiev-
ing 100% Throughput in an Input-Queued Switch.
Proceedings of INFOCOM 1996.

[11] N. McKeown. Scheduling algorithms for Input-
Queued Switches. PhD Thesis, UC Berkeley, 1995.

[12] R. Motwani and P. Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

[13] A. Panconesi and A. Srinivasan. Randomized
Distributed Edge Coloring via an Extension of the
Chernoff-Hoeffding bounds. Proceedings of PODC,
1992, pages 251-262.

[14] D. Shah and M. Kopikare. Delay Bounds for Ap-
proximate Maximum Weight Matching Algorithms for
Input-Queued Switches. Proceedings of INFOCOM
2002.

[15] L. Tassiulas. Linear Complexity Algorithms for
Maximum Throughput in Radio Networks and Input
Queued Switches. Proceedings of INFOCOM 1998.

[16] A. Rasala and G. Wilfong. Strictly non-blocking WDM
cross-connects. Proceedings of SODA 2002.

[17] L. Tassiulas and A. Ephremides. Stability Properties
of Constrained Queueing Systems and Scheduling for
Maximum Throughput in Multihop Radio Networks.
IEEE Transactions on Automatic Control, Vol. 37, No.
12, pp. 1936-1949, December 1992.

[18] V.G. Vizing. On an Estimate of the Chromatic Class
of a p-graph. Metody Diskret. Analiz. 3 (1964), pages
25-30.

9

Appendix

A Discussion of Step 2 in RAND-COLOR

Here we show that it is necessary to either assume that
the edge arrival order is random or to explicitly randomize
the order of edge arrivals. We present an example which
shows that if the edges are presented in an adversarial order,
then ∆ � Ω � ∆ � colors are needed even for dense graphs.

Consider a bipartite multigraph G with four vertices and
∆i j � ∆ � 2, for 1 � i
 j � 2. Let A � � 1 � ε � ∆. The edges are
presented in the following order: In the first ∆ � 2 stages,
all � 1
 1 � and � 2
 2 � edges are presented. The algorithm
chooses some ∆ � 2 of the A colors for the edges � 1
 1 � .
Without loss of generality, let these be 1
 � � �
 ∆ � 2. Also,
the algorithm chooses ∆ � 2 of the A colors for the edges
� 2
 2 � . If the two sets of ∆ � 2 colors are chosen indepen-
dently, the probability that any color chosen for the � 2
 2 �
edges is from � 1
 � � �
 ∆ � 2 � is 1 � 2 � 1 � ε � . Then, with high
probability, out of the ∆ � 2 colors chosen for � 2
 2 � edges,
roughly ∆ � 4 � 1 � ε � 	 O �

�
∆ � colors are also used for the

� 1
 1 � edges. The ∆ � 2 edges of type � 1
 2 � cannot share
any color with either the � 1
 1 � or the � 2
 2 � edges. Hence,
at least ∆ � 4 � 1 � ε � 	 O �

�
∆ � extra colors will be required.

Thus, the total number of colors required will at least be
1 � 25∆ � O �

�
∆ � .

B Proof of Lemma 4

Recall that the epoch of consideration is k � 1. Let us
define A � x � to be the set of colors used by input x and A � xc �
to be the set of colors not used by input x at the end of kth

epoch. Similarly, define the sets B � y � and B � yc � for output
y. For outputs j
 j � and input i define

r1 � j
 i; j � � � � � B � j � � A � ic � ��� B � j � � �
� B � j � � A � ic � �

and for inputs i
 i � and output j define

r2 � i
 j; i � � � � � A � i � � B � jc � ��� A � i � � �
� A � i � � B � jc � � �

When an edge � i
 ol � , ol �� j is added at input i, it will
choose a color used by output j (but not by i and ol) with
probability

pin � i
 ol � � � � B � j � � A � ic � ��� B � ol � �
� A � ic ��� B � ol � �

� r1 � j
 i;ol � � A � ic � � B � j � �
� A � ic ��� B � ol � � (14)

 r1 � j
 i;ol � � A � ic � � B � j � �
∆ � kδ

(15)

The last inequality follows from the fact that

� A � ic ��� B � ol � � � � A � ic � � � ∆ � kδ �

Input i chooses an edge directed towards output ol with
probability pi

l . Hence,

pin
C � ∑

l

pin � i
 ol � pi
l

 � A � ic � � B � j � �
∆ � kδ ∑

l

pi
lr1 � j
 i;ol �

� � A � ic � � B � j � �
∆ � kδ

r1 � i � (16)

where r1 � i � �� ∑l pi
lr1 � j
 i;ol � . Similarly, an edge incident

to output j is the edge im
 j with probability po
m. This edge

picks a color used by input i (and not by j and im) with
probability

pout
C
 � A � ic � � B � j � �

∆ � kδ ∑
m

po
mr2 � i
 j; im �

� � A � ic � � B � j � �
∆ � kδ

r2 � j � (17)

where r2 � j � �� ∑m po
mr2 � i
 j; im � .

Thus we need to bound r1 � i � and r2 � j � in order to get a
bound on pin

C and pout
C . Let us first consider how r1 � j
 i; j � �

changes due to the addition of new edges.
Before proceeding further, we introduce the following

notation for simplicity. Assuming that we are considering a
fixed pair � i
 j � , let rx

1 � r1 � j
 i;x � , and ry
2 � r2 � i
 j;y � . Also

let r1 � j
 i; j � � � a
b , where a and b are integers. On an aver-

age, one edge gets added at a node in any stage. Note that
only the edges incident to i, j and j � can change r1 � j
 i; j � � .
We consider these edges one by one.

Edge incident to output j: Let this edge is incident to
input im. This happens with probability po

m. Such an edge
has to pick a color from the set of colors not used by j and
im. Thus, it can be from one of the following set of colors:

(a) Colors already used by i, i.e. A � i � � B � jc � � A � icm � :
In this case, the number of common colors between
� i
 j � increases, while the ratio r1 � j
 i; j � � is not af-
fected. This happens with probability proportional to

� A � i �
� B � jc �
� A � icm � � � r2 � i
 j; im � � A � i �
� B � jc � � . At the
end of kth epoch,

� A � i � � B � jc � � � kε∆ � C � k � � kδ � C � k �

where δ � ε∆ as before. Hence, this probability is pro-
portional to

pA � r2 � i
 j; im � � kδ � C � k � � �

10

(b) Colors already used by j � and not by i, i.e. A � ic � �
B � j � � � B � jc � � A � icm � :
The numerator of r1 � j
 i; j � � is � A � ic � � B � j ��� B � j � � � ,
which remains same in this case. But the denominator

� A � ic �!� B � j � � increases by 1. Hence r1 � j
 i; j � � changes
from a

b to a
b � 1 . Thus it decreases by a

b � a
b � 1

� a
b2 . This

happens with probability proportional to

pB � r1 � j
 i; j � � � A � i � � B � jc � � � r1 � j
 i; j � � � kδ � C � k � � �

(c) Colors not used by i and not used by j � , i.e. A � ic � �
B � j � c � � B � jc � � A � icm � :
In this case, the numerator � A � ic � � B � j � � B � j � � � of
r1 � j
 i; j � � increases by 1. Further, the denominator

� A � ic � � B � j � � increases by 1 too. That is, r1 � j
 i; j � �
changes from a

b to a � 1
b � 1 . Thus it increases by a � 1

b � 1 � a
b
�

b � a
b2 . This happens with probability proportional to

pD
 � B � jc � � A � icm � � � pA � pB �

Now � B � jc � � A � icm � � � ∆ � 2kδ � Cim j � k � . One
can show that if C � k � are evolving “nicely” (as in
Lemma 2), then ∆ � 2kδ � Cim j � k �
 kδ � C � k � (the de-
tails of the proof will be given in the full paper). This
in turn implies that

pD geq � kδ � C � k � � pA � pB �

To summarize, given the edge � im
 j � is added, the ex-

pected change in r j �
1 is bounded below by

E � ∂r j
�

1 � im � � � kδ � C � k � � � � 1 � r j
�

1 � rim
2 � � b � a �

b2 � r j
�

1
a

b2 � (18)

Edge incident to input i: Let the edge added at input i be
� i
 ol � . Then the following three possibilities arise:

(a) This edge picks a color from the set A � ic � � B � j � �
B � j � c � . In this case, r1 � j
 i; j � � changes from a

b to a � 1
b � 1

and hence it decreases by � b � a
b2 . The upper bound on

the probability of this event is proportional to

pE � r1 � j
 i; j � � � A � ic � � B � j � � � r1 � j
 i; j � � � kδ � C � k � � �

(b) This edge picks a color from A � ic � � B � j � � B � j � � . In
this case, r1 � j
 i; j � � increases.

(c) This edge picks a color from A � ic �
� B � jc � . In this case,
r1 � j
 i; j � � remains the same.

Hence the expected change due to an edge added on i is :

E
 ∂r j �
1 �
 � � kδ � C � k � � r j �

1
� b � a �

b2 (19)

Edge incident to output j � : Let the edge added to output
j � be incident to input iq, 1 � q � n. This edge can result
in a change in r1 � j
 i; j � � only if it picks a color from the
set A � ic ��� B � j ��� B � j � c � . In this case, r1 � j
 i; j � � will change
from a

b to a � 1
b ; i.e. it decreases by 1

b . The upper bound
on the probability of this event happening is proportional to
r1 � j
 i; j � � � A � ic � � B � j � � . Thus the expected change due to
addition of edge on j � is bounded below by:

E
 ∂r j �
1 �
 � � kδ � C � k � � r j �

1
1
b

(20)

From (18), (19) and (20), and since � im
 j � is chosen with
probability po

m, we get

E � ∂r j
�

1 � � � kδ � C � k � � ��� 1 � r j
�

1 � ∑
m

po
mrim

2 � b � a

b2 � r j
�

1
a

b2� r j
�

1
b � a

b2 � r j
�

1
1
b
� (21)

Since b � a
b2 � 1

b � 1 � a � b � � 1
b � 1 � r j �

1 � , (21) reduces to

E � ∂r j
�

1 � � � kδ � C � k � �
b � � 1 � r j

�

1 � r2 � j � � � 1 � r j
�

1 ��� � r j
�

1 � 2� r j
�

1 � 1 � r j
�

1 ��� r j
�

1 �� � kδ � C � k � �
b

� 1 � 4r j
�

1 � r2 � j � � � r j
�

1 � 2 � r j
�

1 r2 � j � �� � kδ � C � k � �
b

� 1 � 4r j
�

1 � r2 � j � � (22)

Input i picks an edge incident to output ol with probability
pi

l , 1 � l � n. In equation (22), j � is a place-holder for such
ols. Hence from (22) and the fact that r1 � i � � ∑l pi

lr
ol
1 , we

get

E
 ∂r1 � i � �
 K1 � 1 � 4r1 � i � � r2 � j � � (23)

where C1 � � kδ � C � k � �
b . By an argument similar to the above

argument, we get

E
 ∂r2 � j � �
 K2 � 1 � 4r2 � j � � r1 � i � � (24)

From (23) and (24), we obtain

E
 ∂ � r1 � i � � r2 � j � � �
 K � � 2 � 5 � r1 � i � � r2 � j � � � (25)

where, K � � min � K1
 K2 � � 0.
Equation (25) implies that for r1 � i � � r2 � j � � 2 � 5, r1 � i � �

r2 � j � has a positive drift in expectation. This is independent
of the value of K � as long as K � � 0, which is guaranteed
by definition. This implies that there exists a constant α � 0
such that r1 � i � � r2 � j � � α at all times with high probabil-
ity by Strong Law of Large Numbers. One can use other
concentration inequalities to get stronger results.

From (16), (17) and above, we obtain that

pC � k �
 α
� A � ic � � B � j � �

∆ � kδ � α
kδ � C � k �

∆ � kδ
� (26)

This completes the proof of Lemma 4.

11

