
Reasoning about Lock Placements

Peter Hawkins, Alex Aiken�, Kathleen Fisher��,
Martin Rinard, and Mooly Sagiv

Stanford University, Tufts University, MIT, Tel Aviv University

Abstract. A lock placement describes, for each heap location, which
lock guards the location, and under what circumstances. We formalize
methods for reasoning about lock placements, making precise the interac-
tions between the program, the heap structure, and the lock placement.

1 Introduction

Most concurrent software uses locks as a primitive for ensuring mutual exclusion
between threads. While it is correct to say that the key characteristic of a lock
is that it may be held by only one thread at a time, such a description fails to
capture the higher-level purposes for which programmers use locks. Universally,
locks are used to protect data, guaranteeing that only one thread operates on
particular parts of the store at a time. The association between locks and the data
they protect is, however, implicit, and in the presence of mutable data structures
it is not even clear how to describe the relationship between a possibly changing
set of locks and the changing heap the locks protect.

This paper investigates what it means for locks to protect data. So far as we are
aware, there are no proposals in the literature for even stating the relationship
between locks and the data they protect that capture the range of ways in
which locks are used in practice. In particular, we are interested in explaining
speculative locks and the common case in which updates to the heap change
which data locks protect. We believe ours is the first proposal to address these
issues.

To explain our results, we begin with a slightly informal, simple, obviously
correct, but impractical locking protocol. We assume the heap consists of a graph
of objects (nodes), each of which has a set of fields (edges) that point to other
objects. We also assume that concurrent operations are expressed as transactions
that execute atomically (e.g., atomic blocks). Every heap edge has a logical lock.
Each transaction t must obey a standard two-phase locking protocol:

– Acquire all logical locks of every edge read or written by t.
– Perform the reads and writes of t.
– Release all of t’s logical locks.

� This work was supported by NSF grants CCF-0702681 and CNS-050955.
�� The views expressed are those of the author and do not reflect the official policy or

position of the Department of Defense or U.S. Government. Distribution Statement
A (Approved for Public Release, Distribution Unlimited).

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 333–353, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

334 P. Hawkins et al.

It is a classic result [8] that any interleaving of such transactions is serializable
(equivalent to some sequential schedule of the transactions). However in practice
acquiring a separate lock for every field of every object touched by a transaction
is exorbitantly expensive. Thus, practical locking protocols use fewer locks. For
example, a tree data structure might have a single lock at the root, or a hash
table may have one lock per hash bucket, with no locks on the bucket contents.

The key insight is that the programmer has made an optimization: many
logical locks are represented by a single physical lock. We can still think of a
transaction as acquiring all of the logical locks required, but now instead of
acquiring the lock on the actual edge e it must instead acquire the physical lock
ψ(e) assigned to the edge by a lock placement ψ, which is a mapping from logical
locks to the physical locks that implement them. For example, in the tree case
ψ(e) = ρ for every edge in the tree, where ρ is the tree’s root. For the hash table,
ψ(e) = li, where the i-th bucket has an associated physical lock li for every field
e in the i-th bucket. If the same physical locks represents multiple logical locks
then transactions need only acquire the single physical lock to obtain access to
multiple heap locations.

Lock placements capture common idioms for programming with locks:

– Locking at different granularities corresponds to different lock placements.
For example, each element of a tree may have its own lock, or there may be
a single coarse-grained lock. Lock placements make explicit which locations
are guarded by the same lock, and where that lock is placed.

– It is sometimes beneficial to place the lock guarding an object o in a field
of o itself, which means that o cannot be locked without first accessing o
in an unlocked state. Lock placements can describe such speculative locking,
allowing us to reason about transactions that make use of it.

– Which locks guard which fields often changes over time. As a simple example,
consider a heap in which all nil fields are guarded by a global lock, and all
non-nil fields are guarded by a speculative lock in the object the field points
to. When a nil field is assigned an object the global lock is split and no longer
guards the field, and when a pointer field is assigned nil that field is merged
into the global lock. Lock placements can depend on the state of the heap
and so naturally capture lock splitting and merging.

We develop our results incrementally, beginning with flat “heaps” that are just
a set of global variables with no pointers (Section 2). In this simple setting
we formalize the key notions of lock placements and stability, we give a proof
system for showing that transaction traces are well-locked, and we prove that well-
locked transactions are serializable. We then consider heaps that are mutable
trees (Section 3), where the main complication is that logical locks are now
named by heap paths, which may be updated concurrently. Finally, we consider
a class of mutable DAG heaps (Section 4) based on decompositions [13]; sharing
complicates lock placements as there may be multiple access paths to an object.

For space reasons, all proofs are in the technical report [12]. Because our focus
is on formalizing lock placements, we do not consider liveness properties, such as

Reasoning about Lock Placements 335

m ∈ M memory locations l ∈ L, L ⊆ L locks, lock sets
b ::= F | T booleans ω ::= m �→ b heap assertions

ψ ⊆ M → 2L×Φ lock placements Φ � φ ::= b | ω | φ ∨ φ | φ ∧ φ guards
t ::= wr(m, b) | obs(m) = b | rd(m) = b | lock l | unlock l transaction ops.

Fig. 1. Locations, Lock Placements, Transaction Operations

deadlock, or optimizations, such as early release, since these issues are orthogonal
to the ones we explore. The standard techniques for ensuring deadlock-freedom
apply, including both static techniques (imposing a total ordering on locks) and
dynamic techniques (using a contention manager to resolve deadlocks at run-
time).

2 Flat Maps

We first consider a simple class of heaps defined over a fixed set of memory
locations M. A flat map heap is a set of mappings {m �→ b}m∈M from each
location m ∈ M to a boolean value b. Let L be a fixed set of physical locks ; in
this section we assume that memory locations and locks are disjoint. For ease
of exposition we consider only exclusive locks — that is, if a transaction holds a
lock then no other transaction may acquire concurrent access to the same lock.

A common correctness criterion for concurrent transactions is serializability.
Informally a concurrent execution of a set of transactions is serializable if the
reads and writes transactions make to the heap are equivalent to the reads and
writes in some serial schedule of the same transactions. Serializability ensures
we can reason about programs as if only one transaction executes at a time.

A transaction T is a sequence t1t2 . . . of the atomic transaction operations
given in Figure 1: a possibly unstable read of locationm yielding b (rd(m) = b), a
logical observation of location m yielding b (obs(m) = b), a write of b to location
m (wr(m, b)), a lock of a physical lock l (lock l), or an unlock of physical lock l
(unlock l). With the exception of the rd and obs operations the concrete semantics
of transaction operations are standard; the details are in the technical report [12].
We assume the execution of operations is sequentially consistent.

The transaction language distinguishes between between high-level obs oper-
ations, which are observations of the state of memory that affect the outcome of
a transaction and for which the locking protocol must ensure serializability, and
low-level rd operations, which do not directly affect the outcome of a transaction
and need not be serializable. A transaction may freely perform a rd operation
on any location at any time, regardless of the locks that it holds, however there
is no guarantee that the value read will remain stable; a read is stable only if no
concurrent transaction may write to the same location and invalidate the value
that was read. If a transaction holds locks that ensure that the value returned by
a rd operation is stable and cannot be altered by concurrent transactions, then a
transaction may logically obs the result of the read operation and use that value
to perform computation. The distinction between stable and unstable reads is
key to reasoning about speculative locking (Section 2.1).

336 P. Hawkins et al.

1: lock l 1: lock l1 9: unlock l1 1: lock l1 9: obs(m4) = F
2: rd(m1) = T 2: rd(m1) = T 10:unlock l0 2: rd(m1) = T 10:unlock l4
3: obs(m1) = T 3: obs(m1) = T 3: obs(m1) = T 11:unlock l3
4: rd(m3) = F 4: rd(m3) = F 4: lock l3 12:unlock l1
5: obs(m3) = F 5: obs(m3) = F 5: rd(m3) = F
6: rd(m4) = F 6: lock l0 6: obs(m3) = F
7: obs(m4) = F 7: rd(m4) = F 7: lock l4
8: unlock l (a) 8: obs(m4) = F (b) 8: rd(m4) = F (c)

Fig. 2. Transaction traces that observe the values of locations m1, m3, and m4 under
(a) coarse, (b) intermediate, and (c) fine-grained lock placements

2.1 Lock Placements

We associate a logical lock with every heap location m ∈ M. Whenever a trans-
action observes or changes the value of a memory location it must hold the
associated logical lock. It is inefficient to attach a distinct lock to every memory
location; instead we use a smaller set of physical locks (or simply locks) L to
implement logical locks; a lock placement maps logical locks to physical locks.
Different placement functions describe different granularities of locking.

Formally, a lock placement ψ for a boolean heap is a mapping from each
location m ∈ M to a guarded set of locks that protect it. Each entry in ψ(m) is
a pair of a lock l ∈ L and a guard φ, which is a condition under which l protects
m. A guard is a boolean combination of heap assertions m �→ b; for a given
memory location each lock may only appear at most once on the left hand side
of a guarded lock pair, and the set of guards must be mutually exclusive, and
total, that is, exactly one guard is true for any given heap state.

For example, suppose M = {m0, . . . ,mk−1}. Different placements allow us to
describe a range of different locking granularities:

– A coarse-grain locking strategy protects every memory location with the
same lock, that is, set L = {l} and set ψ(mi) = {(l,T)} for all i. To observe
or write to any memory location a transaction must hold lock l.

– An medium-grain locking strategy stripes memory locations across a small
set of locks. Set L = {l0, . . . , lp−1}, and then set ψ(mi) = {(l(i mod p),T)} for
all i. To observe or write to memory location mi, we must hold lock l(i mod p).

– A fine-grain strategy associates a distinct lock with every memory location.
Set L = {l0, . . . , lk−1} and set ψ(mi) = {(li,T)} for all i. To observe or write
to memory location mi we must hold lock li.

Figure 2 shows three variants of a transaction that reads memory locations m1,
m3 and m4 (chosen arbitrarily for the example), observing values T, F, and
F respectively. The figure shows a variant of the transaction for each locking
granularity, using p = 2 physical locks in the medium-grain case.

A speculative lock placement is a placement in which the identity of a lock that
protects a memory location depends on the memory location itself. For example
a simple speculative placement ψs is as follows. Let L = {lf , lt} and M = {m}.

Reasoning about Lock Placements 337

(a) 1: rd(m) = T (b) 1: rd(m) = T 7: obs(m) = F (c) 1: lock lf
2: lock lt 2: lock lt 8: unlock lf 2: lock lt
3: rd(m) = T 3: rd(m) = F 3: rd(m) = T
4: obs(m) = T 4: unlock lt 4: wr(m,F)
5: unlock lt 5: lock lf 5: unlock lt

6: rd(m) = F 6: unlock lf

Fig. 3. Traces that read and write location m under the speculative lock placement ψs

Set ψs(m) = lf if m �→ F, or lt if m �→ T Under this placement, lock lf protects
memory location m if m contains the value F, whereas lock lt protects memory
location m if m contains the value T.

A more realistic example of speculative lock placement is motivated by trans-
actional predication [2] which uses a speculative placement of STM metadata.
We use a collection M = {m1, . . . ,mk} of memory locations to model a con-
current set. Location mi has value T if value i is present in the set. We use
L = {l⊥, l1, . . . , lk} and the placement ψ(mi) = l⊥ if mi �→ F, or li if mi �→ T.

The speculative placement allows us to attach a distinct lock to every entry
present in the set, without also requiring that we keep around a distinct lock for
every entry that is absent from the set. Two transactions that operate on keys
present in the set only contend on the same lock if they are accessing the same
key. Transactions that operate on keys that are absent will however contend on
l⊥; this strategy is effective if we expect sets to have at most a small fraction
of all possible elements at any one time. If necessary, we can reduce contention
on absent entries to arbitrarily low levels by striping the logical locks protecting
absent entries across a set of physical locks l1⊥, l

2
⊥, . . . as discussed earlier.

It may not be immediately obvious how to acquire a lock on a memory location
when we do not know which lock to take without knowing the value of the
memory location. The key to this apparent circularity is that a transaction can
use unstable reads to guess the identity of the correct lock; once the transaction
has acquired the lock it can redo the read to verify that its guess was correct. If
the transaction guesses correctly, then the second read is stable. If the transaction
guesses incorrectly it can release the lock and repeat the process. Figure 3(a)
shows a transaction that observes the state of m under the speculative lock
placement ψs. If another transaction had raced, we might have had to retry the
read, as shown in Figure 3(b). Finally, to perform an update, we must hold both
locks, as shown in Figure 3(c); otherwise by changing m we might implicitly
release a lock that another transaction holds on the state of m.

2.2 Well-Locked Transactions

We represent the state of a transaction as two sets: the observation set Ω and a
lock set L. The observation set Ω is a set of heap assertionsm �→ b that represent
a transaction’s local view of the heap. The lock set L is a set of physical locks held
by the transaction. Every heap assertion in the observation set must be stable;

338 P. Hawkins et al.

FLock l /∈ L
Ω,L 	ψ lock l;Ω,L ∪ {l}

FUnlock l ∈ L L′ = L \ {l} Ω′ = �Ω | L′;ψ�
Ω,L 	ψ unlock l;Ω′, L′

FRdUnstable
Ω′ = Ω ∪ {m �→ b} ¬lockedψ(m,Ω′, L)

Ω,L 	ψ rd(m) = b;Ω,L

FRdStable
Ω′ = Ω ∪ {m �→ b} lockedψ(m,Ω

′, L)

Ω,L 	ψ rd(m) = b;Ω′, L

FObserve
(m �→ b) ∈ Ω

Ω,L 	ψ obs(m) = b;Ω,L

FWrite m ∈ domΩ Ω′ = Ω[m �→ b](∀m′, l, φ. (l, φ) ∈ ψ(m′) ∧m ∈ domφ =⇒ l ∈ L
)

Ω,L 	ψ wr(m, b);Ω′, L

Fig. 4. Well-locked transaction operations: Ω,L 	ψ t;Ω′, L′

informally, the facts in the observation set are logically locked and cannot be
invalidated by a concurrent interfering transaction. We write Ω[m �→ b] to denote
the result of adding or updating the heap observationm �→ b to Ω, replacing any
existing observations about m. The predicate lockedψ(m,Ω,L) holds for heap
location m if a transaction with heap observations Ω and locks L has logically
locked location m under lock placement ψ, where Ω � φ denotes entailment:

lockedψ(m,Ω,L) = ∃(l, φ) ∈ ψ(m). l ∈ L ∧Ω � φ
The judgement Ω,L �ψ t;Ω′, L′ defined in Figure 4 characterizes well-locked

operations. The judgment holds if whenever a transaction with observations Ω
and holding locks L executes operation t, then on completion of the operation
the transaction has new observations Ω′ and locks L′. Given the set of physical
operations that a transaction performs, the well-lockedness judgement computes
the set of stable observations of the transaction, and ensures that a transaction
only logically observes and writes locations on which it holds logical locks.

The (FLock) rule allows a transaction to acquire a lock l if the transaction
does not already have l in its set of locks L; acquiring a lock has no affect on
the observation set Ω. The (FUnlock) rule allows a transaction to release any
lock l in its lock set L; any facts in Ω that were protected by l are no longer
stable, so the rule uses the stabilization operator to compute a new stable set of
observations Ω′. The stabilization of a set of observations Ω0 under locks L and
placement ψ, written �Ω0 | L;ψ	, is the limit of the monotonic sequence:

Ωi+1 = {m �→ b ∈ Ωi | lockedψ(m,Ωi, L)}
Note that the limit always exists, because Ω0 is finite (since it is constructed by
a finite transaction execution) and the empty set is always a fixed point of the
equation if no larger set is. A set of observations Ω is stable under locks L and
placement ψ if Ω is its own stabilization, that is, Ω = �Ω | L;ψ	.

Rule (FObserve) states that a transaction may logically observe any sta-
ble fact from its stable observation set Ω. The (FRdUnstable) rule allows a
transaction to perform a speculative read on a memory location on which the
transaction does not hold a lock; however since the result may not be stable
the rule does not update the set Ω. To enable reasoning about speculation, the
determination whether the read is stable or not occurs in a context that includes
the read of m; since we assume that reads are atomic, there is an instant in time

Reasoning about Lock Placements 339

at which both the old stable facts in Ω and the newly read value of m hold,
and it is in that context that we determine stability. The (FRdStable) rule
allows a transaction to read memory locations on which it holds a lock; since
such a read is stable the rule updates the set of observations Ω with the newly
read information about the heap. Finally the (FWrite) rule requires that a
transaction can only update a location m if it holds the lock on m; furthermore
the lock for any location m′ for which m appears in a guard must also be held
by the transaction—hence no transaction can destabilize the observations of an-
other transaction. The last condition together with lockedψ(m,Ω,L) imply that
lockedψ(m,Ω

′, L) holds, which is why the latter is not listed as a precondition
of the rule.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets
Li and observation sets Ωi such that

L0 = Lk = ∅, Ω0 = Ωk = ∅, and Ωi−1, Li−1 �ψ ti;Ωi, Li for 1 ≤ i ≤ k.

As an example of applying the rules, consider again the speculative read trans-
action shown in Figure 3(b). Let Ωi and Li denote the lock sets of the transaction
after line i. Initially we have Ω0 = ∅ and L0 = ∅. The read on line 1 is unstable,
so Ω1 = ∅ and L1 = ∅. The lock on line 2 adds an entry to the lock set lt, so
Ω2 = ∅ and L2 = {lt}. The read on line 3 yields m �→ F, however the read
would only be stable if lockedψ(m, {m �→ F}, {lt}) holds, which it does not; once
again we have Ω3 = ∅ and L3 = {lt}. Lines 4 and 5 update the lock set; we
have Ω4 = Ω5 = ∅, L4 = ∅, and L5 = {lf}. The read on line 6 once again yields
m �→ F, but this time the predicate lockedψ(m, {m �→ F}, {lf}) holds and the
read is stable, yielding Ω6 = {m �→ F} and L6 = {lf}. The logical observation
of m �→ F on line 7 is permitted by the judgement since we know m �→ F is
part of the stable heap; the observation and lock sets are unchanged (Ω7 = Ω6,
L7 = L6). Finally, line 8 releases lock lf , so we have L8 = ∅. The assertion about
m in Ω7 is no longer stable, so the stabilization operator removes it from the
observation set, finally yielding Ω8 = ∅.

2.3 Serializability of Well-Locked Transactions

A schedule s for a set of transactions T1, . . . ,Tk is a permutation of the con-
catenation of all transactions in the set, such that each transaction Ti is a
subsequence of s. Formally, a schedule is valid if it corresponds to an execution
of the concrete semantics (see the technical report [12] for details). Informally,
validity requires the execution respect the mutual exclusion property of locks,
and memory accesses must accurately reflect the state of the global heap. A
schedule is serial if operations of different transactions are not interleaved.

Lemma 1. Let s be a valid schedule of well-locked transactions {T1, . . . ,Tk}.
Let Ωji and Lji be the set of observations and locks of transaction i after schedule
step j. Let hj be the heap after schedule step j. Then for all time steps j the
lock sets {Lji}ki=1 are disjoint, and the observation sets {Ωji }ki=1 are stable, have

disjoint domains, and heap hj is an extension of each {Ωji }ki=1.

340 P. Hawkins et al.

The disjointness of observation sets in Lemma 1 follows from the exclusivity of
physical locks. If we allowed shared/exclusive locks, then we would also need to
allow observation sets to overlap on values protected by shared locks.

A well-locked transaction T = (ti)ki=1 is logically two-phase if the domains
of the observation sets of the transaction have a growing phase and a shrinking
phase, that is, there exists some j such that for all i where 1 ≤ i ≤ j, we have
domΩi−1 ⊆ domΩi and for all i where j < i ≤ k we have domΩi−1 ⊇ domΩi.

A logical schedule ŝ is the subsequence of a schedule s consisting of all the
obs and wr operations. Two operations conflict if they access the same memory
locationm. Two schedules s1 and s2 are conflict-equivalent if the logical schedule
ŝ1 can be turned into the logical schedule ŝ2 by a sequence of swaps of adjacent
non-conflicting operations.

Lemma 2. Any valid schedule of a set of well-locked, logically two-phase trans-
actions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

2.4 Shared/Exclusive Logical Locks

A limitation of the protocol just presented is that locks are exclusive — hold-
ing a lock gives a transaction sole access to an edge, even if the transaction
only wants to read the edge. Lock placement is a separate issue from whether
non-exclusive locks exist for reading. Exclusive locks are sufficient to illustrate
all of the important features of our techniques and have the advantage of not
introducing the extra and extraneous complications of supporting non-exclusive
access. However, non-exclusive locks are important, and so we briefly illustrate
how to extend our approach to locks providing shared read access.

To allow shared access to fields we relax the requirement that guards must be
mutually exclusive, thereby allowing each logical lock to map to many physical
locks at the same time. Under the relaxed definition of placement, a transaction
has shared access to a memory location m if it holds at least one of the locks
that protect m, whereas a transaction has exclusive access to m if it holds all of
the locks that protect m. Formally, a transaction has shared access to a memory
location m if lockedψ(m,Ω,L) holds. We also define a new predicate

exclusiveψ(m,Ω,L) = ∀(l, φ) ∈ ψ(m). l ∈ L ∨Ω � ¬φ
which holds for heap location m if a transaction with heap observations Ω and
locks L has an exclusive logical lock on location m under lock placement ψ.

To show serializability, we need to add an additional precondition to the
(FWrite) rule requiring that a transaction have exclusive access to any memory
location it writes. The statement of the proof of Lemma 1 must be altered since
different observation sets may share fields on which they hold a shared lock—
only the exclusively held fields must be disjoint between transactions. Finally we
must update the definition of a two-phase transaction to ensure that transactions
only release exclusive access to a field in the shrinking phase of a transaction.

Reasoning about Lock Placements 341

f, f ,F fields x, y, ρ object names e ::= nil | x expressions
ω ::= x.f �→ e heap assertions ψ ⊆ 2f → 2f placements

t ::= wr(x.f , e) | obs(x.f) = e | rd(x.f) = e | x = new() | lock x | unlock x trans. ops.

Fig. 5. Tree transactions

3 Mutable Tree-Structured Heaps

In Section 2 we described a locking protocol for flat heaps with a fixed set of
memory locations and locks. In this section we extend our results to dynamically
allocated, mutable tree-shaped heaps with a placement function based on paths.

A tree heap h consists of a set of objects, each with a unique name, usually
denoted x or y. Every object has a fixed set of fields F . Each object field x.f con-
tains a pointer either to some object y or nil. The heap contains a distinguished
root object, named ρ. In a quiescent state, that is, in the absence of running
transactions, we require that the heap be a forest.

We associate a logical lock with every field of every object in the heap. Unlike
the flat heaps of Section 2 we do not assume that we have a separate set of
physical locks distinct from the set of memory locations; instead, following the
practice of languages such as Java, we require that every heap object can function
as a physical lock, and we use a lock placement function to describe a policy for
mapping the logical locks attached to fields onto the physical locks (the objects).
To define the lock placement, we use access paths from the root ρ to name both
the fields we want to protect and the objects whose physical locks protect them.

We extend the set of transaction operations of Section 2 to read from and
write to fields of objects, to handle dynamic allocation of new objects, and to
apply lock and unlock operations to objects rather than a separate set of locks.
The transaction operations, shown in Figure 5, are: write an expression e (either
an object y or nil) to field f of object x (wr(x.f , e))), a possibly unstable read
of field f of object x yielding result e (rd(x.f) = e), a stable observation of field
f of object x yielding e (obs(x.f) = e), allocation of a fresh object (x = new()),
locking an object (lock x), and unlocking an object (unlock x).

3.1 Lock Placements

We name edges in the heap as a non-empty field path (a sequence of field names)
f = f1f2 . . . from the root, ending in the edge in question. Since the path names
a field in the heap, the path must be non-empty. We also name objects using
fields, except that the path ends at the object the field points to; note that in
the case of objects the empty path names the root of the heap. A lock placement
ψ is a function from non-empty paths to paths, which maps every edge in a heap
to an object whose attached physical lock protects it.

Consider heaps with fields drawn from the set F = {a, b}. We can protect ev-
ery edge of the heap with a single coarse-grain lock by setting ψ1(f) = ε for all f .
If we want different locks for the a and b subtrees, we can use the lock placement

ψ2(f) = a if a ≺ f , b if b ≺ f , and ε if f = a or f = b (1)

342 P. Hawkins et al.

where g ≺ f denotes that g is a prefix of f . For example, in Figure 6(a), under
placement ψ2 the lock at ρ protects the edges ρx and ρy, the lock at x protects
the edges xz and xu, and the lock at y protects the edge yv.

(a) ρ

x y

nil vz u

a b

a b a b

(b) ρ

nil y

nil v

a b

a b

Fig. 6. Examples of tree heaps. Nodes
represent objects, whereas edges represent
fields. Node ρ is the root object

If for an edge f the placement path
ψ(f) leads to nil in the heap, we use the
lock on the object preceding the edge
to nil in the placement path. For ex-
ample, consider Figure 6(b) under the
placement ψ2. According to the place-
ment, the lock that protects the edge
named by path ab is ψ2(ab) = a, how-
ever edge a from the root ρ points to
nil. Instead, we use the lock on the
longest non-nil prefix of ψ2(ab), namely
ρ itself.

(a) lock ρ (b) lock ρ unlock w (c) rd(ρ.b) = y unlock w
rd(ρ.b) = y rd(ρ.b) = y unlock y lock y unlock y
obs(ρ.b) = y obs(ρ.b) = y unlock ρ rd(ρ.b) = y
lock y lock y obs(ρ.b) = y
w = new () rd(y.a) = nil rd(y.a) = nil
wr(y.a, w) w = new () w = new ()
unlock y lock w lock w
unlock ρ wr(y.a, w) wr(y.a, w)

Fig. 7. Three transaction traces that add a new outgoing edge labelled a from node y
to the tree of Figure 6(b) under the lock placements (a) ψ2, (b) ψ3, and (c) ψ4

Modifications to the heap may implicitly alter the mapping from logical locks
to physical locks. If a transaction updates an edge, then the transaction must
hold all logical locks whose mapping to physical locks may change both before
and after the update. For example consider again the lock placement ψ2 in the
context of the tree heap shown in Figure 6(b). According to the placement the
lock on ρ protects the edge a from the root; however since edge a points to nil,
edges on any path that begins with a are also protected by the lock at a. If a
transaction were to set ρ.a to point to a fresh vertex w, the lock at w would
now protect the edges on paths that begin with a; the transaction has split the
logical roles of the lock at ρ before the write between the lock at ρ and the lock
on new node w. Whenever a transaction splits or merges locks (e.g., by setting
the field ρ.a to nil again), it must hold every lock involved.

Figure 7(a) shows a trace of a transaction that adds a new edge labeled a
from object y to a fresh object w to the heap of Figure 6(b) under placement
ψ2. The transaction acquires two locks, namely the lock at ρ that protects the
edge from ρ to y, and the lock at y that protects the entire subtree rooted at y.
We need not hold a lock on w when adding w into the tree since no path in the
range of the placement function is a suffix of the path to the updated edge ba.

Reasoning about Lock Placements 343

If we desire finer-grained locking, we can use a lock attached to every object
to protect the fields of that object by using the placement function ψ3(gf) =
g for any g, f . The lock placement ψ3 places the lock that protects each edge f
on the object at the head of the edge. Figure 7(b) shows a trace of a transac-
tion that again adds the edge labeled a from node y to a fresh node w to the
heap of Figure 6(b), this time under lock placement ψ3. Unlike the transaction
of Figure 7(a), we need to ensure that by adding the new edge the write does
not implicitly change the mapping from edges to locks. The well-lockedness con-
ditions, which we introduce shortly, require that a transaction hold all physical
locks which may map to different logical locks before and after a write. The op-
eration rd(y.a) = nil verifies that there is no existing subtree of y reachable via
edge a. Before the update the lock at y protects every possible edge reachable
from y.a, however after the write the lock y only protects the edge y.a itself,
whereas the lock at w protects everything reachable from node w. Hence we
must hold lock w when performing the write, since adding the edge splits the
lock at y. (In general one must hold locks when connecting objects into the heap,
however in this specific case, since the write which links w to the heap is the
last write in the transaction it would be possible to optimize away the lock and
unlock.)

Finally, if we set ψ4(f) = f we obtain a speculative placement where each edge
is protected by a lock at its target. Figure 7(c) once again shows a transaction
that adds a fresh edge labeled a to node w, this time using placement ψ4. The
transaction begins with a speculative read to guess that the identity of the object
whose lock protects ρ.b is y. After locking y, the transaction performs the read
again; since the read still returns y, the read is stable since the transaction
already holds lock y. The transaction then performs a read of y.a which returns
nil. The value of the placement function for edge y.a is ψ(ba) = ba, however since
edge ba points to nil, the lock on the longest non-nil prefix of ba protects ba, in
this case path b (node y). Since we hold the lock on y already, we know that the
read of y.a is also stable. Finally, the transaction must hold the lock on w when
adding it to the heap to maintain the invariant that a transaction must hold
all physical locks whose logical/physical mapping changes as a consequence of a
write.

3.2 Well-Locked Transactions

We represent a transaction’s state by three sets. As before, L is the set of locks
that transaction holds, and Ω is a set of stable heap observations of the form
x.f �→ e. We do not require Ω be a forest; a transaction may create any heap
shapes it desires within its local heap. However, the forest invariant must be
restored when the transaction releases objects in its local heap back into the
global heap. Enforcing this condition is the purpose of the set Γ . An object x
is a member of Γ if the transaction has shown that there is no globally visible
path from the root to x (i.e., the transaction has locked the edge to x). The well-
lockedness rules for tree heaps ensure that there is at most one globally-visible
edge to any node and hence the globally-visible part of the heap is a forest. At

344 P. Hawkins et al.

TLock x /∈ L
Ω,Γ, L 	ψ lock x;Ω,Γ, L ∪ {x}

TUnlock x ∈ L L′ = L \ {x}
(Ω′, Γ ′) = �Ω;Γ | L′;ψ� forest(Ω,Ω′, Γ, Γ ′)

Ω,Γ, L 	ψ unlock x;Ω′, Γ ′, L′

TNew Ω′ = Ω ∪ {x.f �→ nil | f ∈ F}
x /∈ domΩ x /∈ Γ Γ ′ = Γ ∪ {x}

Ω,Γ, L 	ψ x = new();Ω′, Γ ′, L

TObserve (x.f �→ e) ∈ Ω
Ω,Γ, L 	ψ obs(x.f) = e;Ω,Γ, L

TRdUnstable
x.f /∈ domΩ Ω′ = Ω ∪ {x.f �→ e}

¬lockedψ(x.f,Ω′, Γ, L)
Ω,Γ, L 	ψ rd(x.f) = e;Ω,Γ, L

TRdStable x.f /∈ domΩ Ω′ = Ω ∪ {x.f �→ e}
lockedψ(x.f,Ω

′, Γ, L) Γ ′ =
{
Γ if e = nil
Γ ∪ {y} if e = y

Ω, Γ, L 	ψ rd(x.f) = e;Ω′, Γ ′, L

TWrite x.f ∈ domΩ Ω′ = Ω[x.f �→ e](∀g,h. (Ω 	 g ∼ x) ∧ gf � ψ(h) =⇒ pathlockedψ(h, Ω, L) ∧ pathlockedψ(h, Ω
′, L)

)

Ω,Γ, L 	ψ wr(x.f, e);Ω′, Γ, L

Fig. 8. Well-locked tree operations: Ω,Γ, L 	ψ t;Ω′, Γ ′, L′

the start of every transaction Γ is the empty set. Transactions add entries to Γ
by discovering global edges to nodes and transferring them into their local heap
Ω; entries are removed from Γ when pointers to objects are released from the
stable heap Ω back into the global heap.

The path alias judgement Ω � f ∼ x holds if f is a path in Ω from the root
to location x; that is, if |f | = k, then there is a sequence of vertices v = v0v1 · · ·
such that (ρ.f0 �→ v0) ∈ Ω, (vi−1.fi−1 �→ vi) ∈ Ω for all 1 < i < k − 1, and
vk−1.fk−1 �→ x. We write f ∈ Ω if the path f from the root vertex exists in Ω,
that is, Ω � f ∼ x holds for some object x.

The restriction of a path f to a local heap Ω, written f |Ω , is defined as

f |Ω = f if f ∈ Ω, or g if ∃g, h. gh � f ∧Ω � nil ∼ gh.

The restriction of path f is either f itself if present in the heap, or the longest
prefix of the path present in the heap where no edge points to nil. The restriction
of a path is undefined if the path f leaves the stable local heap Ω.

We hold the lock on an edge reached via a path if we hold the corresponding
lock placement, restricted to the heap:

pathlockedψ(f , Ω, L) ::= ∃x ∈ L. Ω � ψ(f)|Ω ∼ x

We hold the lock on a field f of an object x under observations Ω, objects Γ
and locks L, written lockedψ(x.f ,Ω, Γ, L), if we hold a lock on field f on every
path in the local heap, and furthermore there are no paths to x outside the local
heap. Formally,

lockedψ(x.f ,Ω, Γ, L) ::= x ∈ Γ ∧ ∀g. (Ω � x ∼ g =⇒ pathlockedψ(gf,Ω, L))

If the local heap Ω contains cycles, observe that there may be infinitely many
paths g and the predicate is well-defined in this case. To verify the absence of
paths to x from outside the local heap, it is sufficient to check that x ∈ Γ ,
because any object y �∈ Γ is outside the local heap and thus has no stable

Reasoning about Lock Placements 345

fields and cannot form part of a path to x. Further, the definition of the locked
predicate implies that if there is no path from the root ρ to node x, then the
fields of x are locked for any transaction with x ∈ Γ ; thus newly allocated objects
can be added to Γ without taking a lock since they are disconnected from the
global heap.

The judgement Ω,Γ, L �ψ t;Ω′, Γ ′, L′ defined in Figure 8 captures the class
of well-locked tree operations. If the judgement holds, then a transaction that
executes operation t under stable observation set Ω, objects Γ , and lock set L
yields a new stable observation set Ω′, objects Γ ′ and lock set L′. The (TNew)
rule states that all of the fields of a newly allocated object x point to nil, and
since there can be no path to x in the heap all of x’s fields are stable and x ∈ Γ .
As before, the (TLock) rule allows a transaction to acquire a lock it does not
yet hold and has no affect on either Ω or Γ .

In the (TUnlock) rule, the stabilization operator is slightly more involved
than in the case of flat heaps, because we must compute not just the stable set
of heap facts, but also the set of objects for which the transaction has locked the
incoming path: if an edge x.f �→ y drops out of the stable observation set because
a lock is released, the transaction can no longer assume it holds locks on all of
the paths to object y. The stabilization (Ω′, Γ ′) of a local heap Ω0 and global
heap Γ0 under locks L and placement ψ, written (Ω′, Γ ′) = �Ω0;Γ0 | L;ψ	, is
the limit of the monotonically decreasing sequence:

Ωi+1 = {x.f �→ e ∈ Ωi | lockedψ(x.f,Ωi, Γi, L)} Γi+1 = Γi \ {y | x.f �→ y ∈ Ωi \Ωi+1}

Rule (TUnlock) requires that transactions maintain the forest condition

forest(Ω,Ω′, Γ, Γ ′) ::= ∀y.
(
|{x.f | (x.f �→ y) ∈ Ω \Ω′}| =

{
1 if y ∈ Γ \ Γ ′
0 otherwise

)
.

The forest condition ensures that a transaction may only release a pointer to a
node y into the global heap if there are no other references to y in the global
heap (y ∈ Γ). Furthermore, the condition also ensures that a transaction cannot
release two or more pointers to the same location y into the global heap.

The rules (TObserve), (TRdUnstable), and (TRdStable) are similar to
the rules in Section 2, updated to reflect that the heap now involves objects and
fields. Note that (TRdStable) adds the object that is the target of the read to
Γ in the case that the field is not nil.

The most interesting rule is (TWrite). Writing a field x.f �→ y not only
changes the paths to y, it changes the paths to every object reachable from y.
Thus, as a result of a single field update, the placements may change for y and
edges reachable from y. Furthermore, fields no longer reachable from x.f after
the update also may have altered lock placements. For this reason a transaction
must hold locks on every edge reachable from x.f both before and after the
update. These conditions are necessary for safety, but need not be burdensome
if the lock placement has a suitable granularity. For example, if the subtrees
rooted at x and y are locked by the locks at x and y respectively, the update
requires two locks.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets
Li, observation sets Ωi, and object sets Γ i such that L0 = Lk = ∅, Ω0 = ∅,

346 P. Hawkins et al.

Γ 0 = ∅, and Ωi−1, Γ i−1, Li−1 �ψ ti;Ωi, Γ i, Li for 1 ≤ i ≤ k. A well-locked
transaction must begin with all three sets Ω, Γ , L empty. Furthermore at the
end of the transaction the set of locks L must be empty again, and hence a
transaction must release all of its locks. We do not require that Ω or Γ be empty
at the conclusion of a transaction; however since the transaction may not hold
any locks on termination, any part of the heap that is stable and in Ω with an
empty lock set cannot be reachable from the global heap and is garbage.

Lemma 3. Let s be a valid schedule of a set of well-locked transactions
{T1, . . . ,Tk}. Let Ωji , Γ ji , and Lji be the set of observations, objects, and locks
of each transaction after schedule step j. Let hj be the heap after schedule step
j, and suppose h0 is a forest. Then for all time steps j:
– the lock sets {Lji}ki=1 are disjoint, the sets {Γ ji }ki=1 are disjoint,

– the observation sets {Ωji }ki=1 are stable, have disjoint domains, and heap hj

is an extension of each {Ωji }ki=1, and

– the global heap hj less edges present in the local heaps {Ωji }ki=1 is a forest.

Further if x ∈ Γ ji then all pointers to x are in some local heap Ωji′ .

Finally, we have a logical serializability lemma analogous to Lemma 2, which
can be extended to shared/exclusive locks as for flat heaps:

Lemma 4. Any valid schedule of a set of well-locked, logically two-phase tree
transactions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

4 Transactions on DAGs of Bounded Degree

At the core of the locking protocol of Section 3 is the invariant that the global
heap is a forest. Since lock placements are defined using access paths, for sound-
ness the locking protocol must show that a transaction holds locks that protect
an edge on every possible path. In a forest there is at most one path between
nodes.

In this section we show how to relax the forest restriction and apply lock
placements to a class of directed acyclic graph heaps with a bounded number of
paths to each node. The technical machinery developed so far remains almost
unchanged, with the exception that the forest condition is replaced by a condition
that allows for more paths to an object. One hurdle, however, is that we need
some way to describe the aliasing patterns in the heap, for otherwise it is not
possible to define what it means to be sound for any locking protocol. We use
a recent proposal for describing a large class of heaps with sharing [13], which
describe decomposition heaps whose shape matches a static description given by
a decomposition heap shape. We stress that our results are not limited to the
class of heaps described in [13]; our techniques could be applied analogously to
any number of other methods for describing the possible shapes of the heap. The
point is that we need some description of the sharing patterns in the heap, and
one good choice is to use decomposition heaps.

Reasoning about Lock Placements 347

(a) (b)
ρ

ŷ ẑ

ŵ

v̂

âpid b̂ns

ĉns d̂pid

êcpu

ρ

y1 y2 z1 z2

w1 w2 w3

v1 v2 v3

a1 a2 b1 b2

c1 c2 c1 d1 d2 d3

e1 e2 e3

Fig. 9. (a): A decomposition heap shape, and (b):
a decomposition heap that is an instance of decom-
position heap shape (a)

A decomposition heap shape
ĥ is a rooted, connected, di-
rected acyclic graph (V̂ , Ê) con-
sisting of a set of vertices V̂ =
{û, v̂, . . . } and a set of edges
Ê ⊆ V̂ × F̂ × V̂ labeled
with field names drawn from a
set F̂ . We require that every
edge in a decomposition shape
have a unique field label. Fig-
ure 9(a) gives a decomposition
heap shape describing the data
structures of a simple process

scheduler. Every process has associated fields pid (process id), ns (name space),
and the process’ assigned cpu; a pair of a pid and a ns uniquely identify a pro-
cess. To find the cpu of a particular process, we can first look up the the process
id by following edge âpid and then the process’ name space by following edge

ĉns, or we can first look up the name space by following edge b̂ns and then the
process id by following edge d̂pid. For a given pair of process id and name space,
the shared node ŵ in the decomposition shape assures us we will get the same
result regardless of which path we take.

A decomposition shape is a static description of a class of heaps. Let in(v̂) be
the set of field names incoming to v̂ in a decomposition and let out(v̂) be the set

of outgoing field names. A heap (V,E) is an instance of a decomposition d̂ if
– every vertex in V is an instance vi of some vertex v̂ ∈ V̂ ,
– every edge (ui, fj, vk) ∈ E is an instance of some (û, f̂ , v̂) ∈ Ê, and

– every vertex vi has exactly one instance fi of every incoming edge f̂ ∈ in(v̂).
These conditions are a relaxation of usual definition of a valid instance [13],
but suffice for our purposes. The last condition provides a bound on the in-
degree of a vertex, which is the key to applying path-based lock placements to
decomposition heaps. Figure 9(b) shows a heap that is an instance of the process
scheduler decomposition shape of Figure 9(a). The nodes are objects in memory.

Every edge f̂ from a vertex û to a vertex v̂ of the decomposition shape has a
corresponding set of edges {f1, f2, · · · } outgoing from any instance ui of û in
a decomposition heap. Intuitively, each vertex (object) u has a container data
structure called f that contains references to a set of instances of v̂. For example
in Figure 9(b), the root object ρ has a set of process id’s (the ai) and a set
of name spaces (the bi). Note how the decomposition shape in Figure 9(a) is
replicated across a number of different instances in Figure 9(b) with the stated
sharing properties.

The well-lockedness rules defined below quantify over all suffixes of a path f . To
keep our transaction-language small, we require that the set of possible instances
fi of each abstract edge f̂ be drawn from a bounded set; that is i ∈ {1, . . . , k} for
some k. The bounded set restriction can be lifted by extending the transaction
language with an iteration operation that allows a transaction to iterate over all

348 P. Hawkins et al.

(a) 1: lock ρ 9: wr(y2.c7, w4) (b) 1: rd(ρ.a2) = y2 9: rd(y2.c7) = nil
2: rd(ρ.a2) = y2 10:wr(z2.d5, w4) 2: lock y2 10:rd(z2.c5) = nil
3: rd(ρ.b2) = z2 11:unlock ρ 3: rd(ρ.a2) = y2 11:w4 = new ŵ
4: obs(ρ.a2) = y2 4: obs(ρ.a2) = y2 12:wr(y2.c7, w4)
5: obs(ρ.b2) = z2 5: rd(ρ.b2) = z2 13:wr(z2.d5, w4)
6: rd(y2.c7) = nil 6: lock z2 14:unlock z2
7: rd(z2.d5) = nil 7: rd(ρ.b2) = z2 15:unlock y2
8: w4 = new ŵ 8: obs(ρ.b2) = z2

Fig. 10. Example transactions that add a new node w4 with access paths a2c7 and b2d5
to the decomposition heap instance shown in Figure 9(b), under (a) lock placement
ψ1(f) = ε, and (b) lock placement ψ3(f) = ai if ai � f , and bj if bj � f .

instances of an edge from a vertex; the addition of iteration allows the rules to
conclude the a fact holds for all instances of an abstract edge f̂ .

The transaction operations on DAGs are similar to those on trees (Section 3).
The operations (Figure 11), are: write an expression e (either nil or some vk to
field fj of object ui (wr(ui.fj, e))), a possibly unstable read of field fj of object
ui yielding result e (rd(ui.fj) = e), a logical observation of field fj of object ui
yielding e (obs(ui.fj) = e), allocation of a fresh object of type v̂ (vi = new v̂),
locking an object (lock vi), and unlocking an object (unlock vi).

4.1 Lock Placements

Lock placements are defined exactly as in the tree case: ψ is a function from
non-empty heap paths to paths, which maps every edge in a heap to an object
whose lock protects it. Because edges may now have multiple paths that reach
them, a transaction must hold locks on all paths to an edge to perform a stable
read or to write the edge.

We now illustrate some of the possibilities for lock placements on decomposi-
tion heaps. For our standard first example, by setting ψ1(f) = ε for all f we can
use a single lock at the root of the heap to protect every edge in a decomposition
instance. Figure 10(a) shows a well-locked transaction that adds a fresh instance
of ŵ, namely w4, to the heap of Figure 9(b) under lock placement ψ1. Acquiring
the lock on ρ protects the entire heap graph; the transaction then adds w4 under
both the access path a2c7 and b2d5.

Another possibility is to use the placement ψ2(f) = ε if f ∈ {ai, bi, aicj , aidj},
aicj if f = aicjek, and bidj if f = bidjek which uses a lock at the root to protect

instances of edges â, b̂, ĉ, and d̂, and locks at instances of node ŵ to protect
instances of edge ê. Instances of edge ê can be reached by two different paths,
and thus to observe ê a transaction must acquire locks on both paths.

Finally, we can use a speculative lock placement. We could protect instances
of edges â and b̂ using speculative locks placed at their targets, and use locks at
y and z to protect edges ĉ, d̂, and ê, via the lock placement ψ3(f) = ai if ai �
f , and bj if bj � f . Figure 10(b) again shows a transaction that adds a fresh
instance w4 of node ŵ, this time under the speculative lock placement ψ3.

Reasoning about Lock Placements 349

ψ ⊆ 2f̂ → 2f̂ placements ui, vj ,V object names û, v̂ vertices

e ::= nil | vi expressions ω ::= ui.f �→ e heap assertions f̂ , f̂ , fi, f fields
t ::= wr(ui.f , e) | obs(ui.f) = e | rd(ui.f) = e | vi = new v̂ | lock vi | unlock vi ops.

Fig. 11. Decomposition transactions

4.2 Well-Locked Transactions

As in the case of tree heaps we represent the state of a transaction using three
sets: Ω (the local stable heap), L (the held set of locks), and Γ . Sets Ω and L
are defined as for trees, but we extend the definition of Γ to DAGs with sharing.

The purpose of Γ is to track objects for which the transaction holds locks
on incoming edges. In particular, if a transaction does not hold locks on some
incoming edges to an object o, then there may be a path from the global heap
to o and the transaction cannot rely on the stability of o’s fields. Thus Γ is
the transaction’s view of the global heap and what other transactions might be
able to do to objects of interest to the transaction. The global heap view Γ is
a mapping from each vertex vi in the heap to the subset of the incoming edge
labels of the decomposition in(v̂) known to be absent from the global heap (i.e.,
either non-existent or locked by the transaction). We maintain the invariant that
in the global heap there is at most one edge to any instance of a decomposition
vertex v̂ labeled with an instance of each f̂ ∈ in(v̂). If Γ (vi) = ∅, then vi may

have an instance of each incoming edge in in(f̂) in the global heap. If Γ (vi) = {f̂}
then v has no incoming edge in the global heap labeled with an instance of f̂ . If
Γ (v) = in(v̂) then v has no incoming edges from the global heap.

As before, we hold the lock on an edge reached via a path if we hold the path’s
corresponding lock placement, restricted to the heap:

pathlockedψ(f , Ω, L) ::= ∃vi ∈ L. Ω � g ∼ vi ∧ ψ(f)|Ω = g,

where fΩ is the restriction of path f to heap Ω, defined in Section 3.
The judgement Ω,Γ � exposed(x) holds if there may be a path to vertex x in

the heap that does not lie entirely in the stable observation set Ω; the judgement
is defined by the inference rules:

Γ (vk) �= in(v̂)

Ω,Γ 	 exposed(vk)

Ω,Γ 	 exposed(ui) ∧ (ui.fj �→ vk) ∈ Ω

Ω,Γ 	 exposed(vk)

We hold the lock on a field x.f if we hold a lock on that field on every path in
the local heap, and there are no paths to x outside the local heap:

lockedψ(vi.fj , Ω, Γ, L) ::= ¬exposed(vi) ∧ ∀g. (Ω 	 g ∼ vi =⇒ pathlockedψ(gfj , Ω, L))

The judgement Ω,Γ, L �ψ t;Ω′, Γ ′, L′ defined by the rules in Figure 12 describes
the class of well-locked decomposition operations, analogous to the class of well-
locked tree operations of Section 3. The judgement holds if a transaction exe-
cuting operation t under local heap Ω, global heap approximation Γ , and locks
L yields an updated local heap Ω′, global heap approximation Γ ′, and lock set
L′. The (DNew) rule states that the fields of a newly allocated object vi point
to nil; furthermore there can be no heap paths to a freshly allocated object so

350 P. Hawkins et al.

DNew Ω′ = Ω ∪ {vi.fj �→ nil | f̂ ∈ out(v̂)}
vi /∈ domΩ Γ ′ = Γ [vi �→ in(v̂)] vi /∈ domΓ

Ω, Γ, L 	ψ vi = new v̂;Ω′, Γ ′, L

DLock vi /∈ L
Ω,Γ, L 	ψ lock vi;Ω,Γ, L ∪ {vi}

DUnlock vi ∈ L L′ = L \ {vi}
(Ω′, Γ ′) = �Ω;Γ | L′;ψ� balias(Ω,Ω′, Γ, Γ ′)

Ω,Γ, L 	ψ unlock vi;Ω
′, Γ ′, L′

DObserve (ui.fj �→ e) ∈ Ω
Ω,Γ, L 	ψ obs(ui.fj) = e;Ω,Γ, L

DRdUnstable
ui.fj /∈ domΩ

Ω′ = Ω ∪ {ui.fj �→ e}
¬lockedψ(ui.fj , Ω′, Γ, L)

Ω, Γ, L 	ψ rd(ui.fj) = e;Ω,Γ, L

DRdStable ui.fj /∈ domΩ
Ω′ = Ω ∪ {ui.fj �→ e} lockedψ(ui.fj , Ω

′, Γ, L)

Γ ′ =
{
Γ if e = nil
Γ [vi �→ Γ (vi) ∪ {f̂}] if e = vi

Ω,Γ, L 	ψ rd(ui.fj) = e;Ω′, Γ ′, L

DWrite ui.fj ∈ domΩ Ω′ = Ω[ui.fj �→ e](∀g,h. (Ω 	 g ∼ ui) ∧ gf � ψ(h) =⇒ pathlockedψ(h, Ω, L) ∧ pathlockedψ(h, Ω
′, L)

)

Ω,Γ, L 	ψ wr(ui.fj , e);Ω
′, Γ, L

Fig. 12. Well-locked decomposition operations: judgement Ω,Γ, L 	ψ t;Ω′, Γ ′, L′

assertions about the fields of vi are stable and Γ (vi) = in(v̂). The (DLock) rule
allows a transaction to acquire a lock that it does not hold at any time.

The (DUnlock) rule allows a transaction to release any lock that it holds;
the rule applies the stabilization operation to remove any newly unstable facts
from Ω. Similar to the tree case, the stabilization (Ω′, Γ ′) of a local heap Ω0 and
global heap Γ0 under locks L and placement ψ, written (Ω′, Γ ′) = �Ω0;Γ0 | L;ψ	,
is the limit of the monotonically decreasing sequence:

Ωi+1 = {uj .fk �→ e ∈ Ωi | lockedψ(uj .fk, Ωi, Γi, L)}
Γi+1 = Γi \ {vk �→ f̂ | ui.fj �→ vk ∈ Ωi \Ωi+1}

To ensure there is at most instance of any edge f̂ ∈ in(v̂) in the global heap,
the rule requires the bounded alias condition balias(Ω,Ω′, Γ, Γ ′), defined as

∀vk. |{ui.fj | (ui.fj �→ vk) ∈ Ω \Ω′}| = 1, if f̂ ∈ Γ (vk) \ Γ ′(vk) or 0, otherwise.

The bounded alias condition ensures that a transaction may only release an
edge with abstract label f̂ to a node vk into the global heap if there are no other
edges to vk labeled f̂ in the global heap (f̂ ∈ Γ (vk)). The condition also forbids

releasing two pointers with the same label f̂ to the same node vk into the heap.
Rule (DObserve) states that a transaction may logically observe stable heap

facts. The (DRdUnstable) rule allows a transaction to read a value specula-
tively at any time, however unstable reads do not update Ω or Γ . A transaction
may perform a stable read of a pointer if it holds the appropriate lock, transfer-
ring the pointer from the global heap into Ω and updating Γ accordingly. Finally,
a transaction may write to a field if it holds the associated lock and holds locks
on any edges whose logical/physical mapping may change due to the update.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets
Li, observation sets Ωi, and global heap sets Γ i such that L0 = Lk = ∅, Ω0 = ∅,
Γ 0 = ∅, and Ωi−1, Γ i−1, Li−1 �ψ ti;Ωi, Γ i, Li for 1 ≤ i ≤ k.

Reasoning about Lock Placements 351

Lemma 5. Let s be a valid schedule of well-locked transactions {T1, . . . ,Tk}.
Let Ωji , Γ

j
i , and Lji be the set of observations, global heaps, and locks of each

transaction after schedule step j. Let hj be the heap after schedule step j, and
suppose the part of h0 reachable from the root is a tree. Then for all time steps
j:
– the lock sets {Lji}ki=1 are disjoint, and the non-alias sets {Γi}ki=1 are disjoint,

– the observation sets {Ωji }ki=1 are stable, disjoint, and heap hj is an extension

of each {Ωji }ki=1, and

– Let heap h be the heap hj less edges present in the local heaps {Ωji }ki=1. Then

for every vertex v ∈ h and edge label f̂ ∈ in(v̂) either there is exactly one

edge labeled with an instance of f̂ pointing to v in h, or f̂ ∈ Γ ji for some i

and there are no edges labeled with an instance of f̂ pointing to v in h.

Finally, we have a logical serializability lemma similar to Lemma 2 and Lemma 4,
which can be extended to shared/exclusive locks using the approach in
Section 2.4.

Lemma 6. Any valid schedule of well-locked, logically two-phase decomposition
transactions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

5 Related Work

Two-phase locking was originally introduced in the context of transactions op-
erating over abstract entities, each with its own associated lock [8]. The core
technical idea of this paper is that we can use two-phase locking to show seri-
alizability of a wide class of locking strategies by adding a layer of indirection
between logical locks, which are the entities that are the subject of the original
two-phase locking protocol, and the physical locks that implement them. Other
authors have also advocated more logical notions of locking [5].

Various authors have investigated techniques for inferring locks to implement
atomic sections [16,14,7,11,3,4,20]. A related problem is automatically optimizing
programs with explicit locking by combining multiple locks into one [6]. A key
part of this class of work is constructing a mapping from program objects to
the locks that protect them, similar to our lock placement language. The lock
placements we propose are much more flexible; in particular existing formalisms
cannot handle the class of path placements we propose in this paper, such as
speculative locks, or lock placements that vary with heap updates. A possible
future application of our methods is extending lock inference techniques to take
advantage of the additional expressive power of our techniques.

A novel feature of our proposal is that we can reason about speculative lock
placements. Speculative locking is used in practice in highly concurrent libraries
and has appeared in the literature in the context of software transactional mem-
ory [2]. Although we present our ideas in the context of pessimistic locks, the
same idea can also be used to reason about speculative placements of STM
metadata.

352 P. Hawkins et al.

A variety of locking protocols have been proposed in the literature that ex-
tend two-phase locking to handle dynamically changing heaps and to allow early
release. Examples include the dynamic tree and DAG locking protocols [1] and
domination locking [9]. Existing protocols use the lock on each object to protect
that object’s fields, whereas our work investigates a more flexible space of map-
pings. We do not address early release as it is orthogonal to the issues of lock
placement.

The concept of a stable set and stabilization is related to rely-guarantee logic
[15] and its developments [19]. Concurrent extensions of separation logic, such
as Concurrent Separation Logic [17], RGSep [18] and work on storable locks [10]
allow local reasoning about programs with shared mutable state that is accessed
concurrently. Our work complements work on direct reasoning about concurrent
code; we propose a locking protocol, parameterized by a lock placement, by
which we can show conflict-serializability for code that obeys the protocol.

6 Conclusion

We have formalized lock placements, showing that such diverse concepts as lock
granularity, speculative locks, lock splitting and merging, and dynamically chang-
ing lock assignments can all be expressed using a lock placement that maps each
heap field to a lock that guards it. We described a series of proof systems for
showing that transaction traces are well-locked and therefore serializable, applied
to flat heaps, tree-structured heaps, and to DAG heaps with bounded degree.

References

1. Attiya, H., Ramalingam, G., Rinetzky, N.: Sequential verification of serializability.
In: POPL, pp. 31–42. ACM, New York (2010)

2. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication: high-
performance concurrent sets and maps for STM. In: PODC, pp. 6–15. ACM, New
York (2010)

3. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In: PLDI,
pp. 304–315. ACM, New York (2008)

4. Cunningham, D., Gudka, K., Eisenbach, S.: Keep Off the Grass: Locking the Right
Path for Atomicity. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 276–290.
Springer, Heidelberg (2008)

5. Deshmukh, J., Ramalingam, G., Ranganath, V.-P., Vaswani, K.: Logical Concur-
rency Control from Sequential Proofs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS,
vol. 6012, pp. 226–245. Springer, Heidelberg (2010)

6. Diniz, P.C., Rinard, M.C.: Lock coarsening: Eliminating lock overhead in automat-
ically parallelized object-based programs. JPDC 49(2), 218–244 (1998)

7. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL,
pp. 291–296. ACM, New York (2007)

8. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency
and predicate locks in a database system. Commun. ACM 19, 624–633 (1976)

9. Golan-Gueta, G., Bronson, N., Aiken, A., Ramalingam, G., Sagiv, M., Yahav, E.:
Automatic fine-grained locking using shape properties. In: OOPSLA (2011)

Reasoning about Lock Placements 353

10. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for
Storable Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807,
pp. 19–37. Springer, Heidelberg (2007)

11. Halpert, R.L., Pickett, C.J.F., Verbrugge, C.: Component-based lock allocation. In:
PACT, pp. 353–364. IEEE Computer Society, Washington, DC (2007)

12. Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M.: Reasoning about
lock placements (extended version). Tech. rep., Stanford University (2011),
http://theory.stanford.edu/~hawkinsp/papers/tr/lockplacements.pdf

13. Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M.: Data representation
synthesis. In: PLDI, pp. 38–49. ACM, New York (2011)

14. Hicks, M., Foster, J.S., Pratikakis, P.: Lock inference for atomic sections. In:
TRANSACT (2006)

15. Jones, C.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University (1981)

16. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: Synchronization infer-
ence for atomic sections. In: POPL, pp. 346–358. ACM, New York (2006)

17. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Computer
Science 375(1-3), 271–307 (2007)

18. Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007)

19. Wickerson, J., Dodds, M., Parkinson, M.: Explicit Stabilisation for Modular Rely-
Guarantee Reasoning. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012,
pp. 610–629. Springer, Heidelberg (2010)

20. Zhang, Y., Sreedhar, V., Zhu, W., Sarkar, V., Gao, G.: Minimum Lock Assignment:
A Method for Exploiting Concurrency among Critical Sections. In: Amaral, J.N.
(ed.) LCPC 2008. LNCS, vol. 5335, pp. 141–155. Springer, Heidelberg (2008)

http://theory.stanford.edu/~hawkinsp/papers/tr/lockplacements.pdf

	Reasoning about Lock Placements
	Introduction
	Flat Maps
	Lock Placements
	Well-Locked Transactions
	Serializability of Well-Locked Transactions
	Shared/Exclusive Logical Locks

	Mutable Tree-Structured Heaps
	Lock Placements
	Well-Locked Transactions

	Transactions on DAGs of Bounded Degree
	Lock Placements
	Well-Locked Transactions

	Related Work
	Conclusion

