
P1: FYX/FYX P2: FYX/ABE QC: FYX/ABE T1: FYX

CB465-Mitchell-FM CB465-Mitchell July 27, 2002 17:48 Char Count= 0

CONCEPTS IN
PROGRAMMING
LANGUAGES

John C. Mitchell
Stanford University

iii



P1: FYX/FYX P2: FYX/ABE QC: FYX/ABE T1: FYX

CB465-Mitchell-FM CB465-Mitchell July 27, 2002 17:48 Char Count= 0

published by the press syndicate of the university of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2002

Printed in the United States of America

Typefaces Times Ten 10/12.5 pt., ITC Franklin Gothic, and Officina Serif
System LATEX 2ε [tb]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data available.

ISBN 0 521 78098 5 hardback

iv



P1: FYX/FYX P2: FYX/ABE QC: FYX/ABE T1: FYX

CB465-Mitchell-FM CB465-Mitchell July 27, 2002 17:48 Char Count= 0

Contents

Preface page ix

Part 1 Functions and Foundations

1 Introduction 3

1.1 Programming Languages 3
1.2 Goals 5
1.3 Programming Language History 6
1.4 Organization: Concepts and Languages 8

2 Computability 10

2.1 Partial Functions and Computability 10
2.2 Chapter Summary 16
Exercises 16

3 Lisp: Functions, Recursion, and Lists 18

3.1 Lisp History 18
3.2 Good Language Design 20
3.3 Brief Language Overview 22
3.4 Innovations in the Design of Lisp 25
3.5 Chapter Summary: Contributions of Lisp 39
Exercises 40

4 Fundamentals 48

4.1 Compilers and Syntax 48
4.2 Lambda Calculus 57
4.3 Denotational Semantics 67
4.4 Functional and Imperative Languages 76
4.5 Chapter Summary 82
Exercises 83

v



P1: FYX/FYX P2: FYX/ABE QC: FYX/ABE T1: FYX

CB465-Mitchell-FM CB465-Mitchell July 27, 2002 17:48 Char Count= 0

vi Contents

Part 2 Procedures, Types, Memory Management, and Control

5 The Algol Family and ML 93

5.1 The Algol Family of Programming Languages 93
5.2 The Development of C 99
5.3 The LCF System and ML 101
5.4 The ML Programming Language 103
5.5 Chapter Summary 121
Exercises 122

6 Type Systems and Type Inference 129

6.1 Types in Programming 129
6.2 Type Safety and Type Checking 132
6.3 Type Inference 135
6.4 Polymorphism and Overloading 145
6.5 Type Declarations and Type Equality 151
6.6 Chapter Summary 155
Exercises 156

7 Scope, Functions, and Storage Management 162

7.1 Block-Structured Languages 162
7.2 In-Line Blocks 165
7.3 Functions and Procedures 170
7.4 Higher-Order Functions 182
7.5 Chapter Summary 190
Exercises 191

8 Control in Sequential Languages 204

8.1 Structured Control 204
8.2 Exceptions 207
8.3 Continuations 218
8.4 Functions and Evaluation Order 223
8.5 Chapter Summary 227
Exercises 228

Part 3 Modularity, Abstraction, and Object-Oriented Programming

9 Data Abstraction and Modularity 235

9.1 Structured Programming 235
9.2 Language Support for Abstraction 242
9.3 Modules 252
9.4 Generic Abstractions 259
9.5 Chapter Summary 269
Exercises 271

10 Concepts in Object-Oriented Languages 277

10.1 Object-Oriented Design 277
10.2 Four Basic Concepts in Object-Oriented Languages 278



P1: FYX/FYX P2: FYX/ABE QC: FYX/ABE T1: FYX

CB465-Mitchell-FM CB465-Mitchell July 27, 2002 17:48 Char Count= 0

Contents vii

10.3 Program Structure 288
10.4 Design Patterns 290
10.5 Chapter Summary 292
10.6 Looking Forward: Simula, Smalltalk,

C++, Java 293
Exercises 294

11 History of Objects: Simula and Smalltalk 300

11.1 Origin of Objects in Simula 300
11.2 Objects in Simula 303
11.3 Subclasses and Subtypes in Simula 308
11.4 Development of Smalltalk 310
11.5 Smalltalk Language Features 312
11.6 Smalltalk Flexibility 318
11.7 Relationship between Subtyping and

Inheritance 322
11.8 Chapter Summary 326
Exercises 327

12 Objects and Run-Time Efficiency: C++ 337

12.1 Design Goals and Constraints 337
12.2 Overview of C++ 340
12.3 Classes, Inheritance, and Virtual Functions 346
12.4 Subtyping 355
12.5 Multiple Inheritance 359
12.6 Chapter Summary 366
Exercises 367

13 Portability and Safety: Java 384

13.1 Java Language Overview 386
13.2 Java Classes and Inheritance 389
13.3 Java Types and Subtyping 396
13.4 Java System Architecture 404
13.5 Security Features 412
13.6 Java Summary 417
Exercises 420

Part 4 Concurrency and Logic Programming

14 Concurrent and Distributed Programming 431

14.1 Basic Concepts in Concurrency 433
14.2 The Actor Model 441
14.3 Concurrent ML 445
14.4 Java Concurrency 454
14.5 Chapter Summary 466
Exercises 469



P1: FYX/FYX P2: FYX/ABE QC: FYX/ABE T1: FYX

CB465-Mitchell-FM CB465-Mitchell July 27, 2002 17:48 Char Count= 0

viii Contents

15 The Logic Programming Paradigm and Prolog 475

15.1 History of Logic Programming 475
15.2 Brief Overview of the Logic Programming Paradigm 476
15.3 Equations Solved by Unification as Atomic Actions 478
15.4 Clauses as Parts of Procedure Declarations 482
15.5 Prolog’s Approach to Programming 486
15.6 Arithmetic in Prolog 492
15.7 Control, Ambivalent Syntax, and Meta-Variables 496
15.8 Assessment of Prolog 505
15.9 Bibliographic Remarks 507

15.10 Chapter Summary 507

Appendix A Additional Program Examples 509

A.1 Procedural and Object-Oriented Organization 509

Glossary 521

Index 525



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

1

Introduction

“The Medium Is the Message”

Marshall McLuhan

1.1 PROGRAMMING LANGUAGES

Programming languages are the medium of expression in the art of computer pro-
gramming. An ideal programming language will make it easy for programmers to
write programs succinctly and clearly. Because programs are meant to be under-
stood, modified, and maintained over their lifetime, a good programming language
will help others read programs and understand how they work. Software design and
construction are complex tasks. Many software systems consist of interacting parts.
These parts, or software components, may interact in complicated ways. To man-
age complexity, the interfaces and communication between components must be
designed carefully. A good language for large-scale programming will help program-
mers manage the interaction among software components effectively. In evaluating
programming languages, we must consider the tasks of designing, implementing, test-
ing, and maintaining software, asking how well each language supports each part of
the software life cycle.

There are many difficult trade-offs in programming language design. Some lan-
guage features make it easy for us to write programs quickly, but may make it harder
for us to design testing tools or methods. Some language constructs make it easier for
a compiler to optimize programs, but may make programming cumbersome. Because
different computing environments and applications require different program char-
acteristics, different programming language designers have chosen different trade-
offs. In fact, virtually all successful programming languages were originally designed
for one specific use. This is not to say that each language is good for only one purpose.
However, focusing on a single application helps language designers make consistent,
purposeful decisions. A single application also helps with one of the most difficult
parts of language design: leaving good ideas out.

3



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

4 Introduction

THE AUTHOR

I hope you enjoy using this book. At the beginning of each chapter, I have
included pictures of people involved in the development or analysis of
programming languages. Some of these people are famous, with major
awards and published biographies. Others are less widely recognized.
When possible, I have tried to include some personal information based
on my encounters with these people. This is to emphasize that program-
ming languages are developed by real human beings. Like most human
artifacts, a programming language inevitably reflects some of the per-
sonality of its designers.

As a disclaimer, let me point out that I have not made an attempt
to be comprehensive in my brief biographical comments. I have tried
to liven up the text with a bit of humor when possible, leaving serious
biography to more serious biographers. There simply is not space to
mention all of the people who have played important roles in the history
of programming languages.

Historical and biographical texts on computer science and computer
scientists have become increasingly available in recent years. If you like
reading about computer pioneers, you might enjoy paging through Out of
Their Minds: The Lives and Discoveries of 15 Great Computer Scientists
by Dennis Shasha and Cathy Lazere or other books on the history of
computer science.

John Mitchell

Even if you do not use many of the programming languages in this book, you
may still be able to put the conceptual framework presented in these languages to
good use. When I was a student in the mid-1970s, all “serious” programmers (at my
university, anyway) used Fortran. Fortran did not allow recursion, and recursion was
generally regarded as too inefficient to be practical for “real programming.” However,
the instructor of one course I took argued that recursion was still an important idea
and explained how recursive techniques could be used in Fortran by managing data
in an array. I am glad I took that course and not one that dismissed recursion as an
impractical idea. In the 1980s, many people considered object-oriented programming
too inefficient and clumsy for real programming. However, students who learned
about object-oriented programming in the 1980s were certainly happy to know about



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

1.2 Goals 5

these “futuristic” languages in the 1990s, as object-oriented programming became
more widely accepted and used.

Although this is not a book about the history of programming languages, there is
some attention to history throughout the book. One reason for discussing historical
languages is that this gives us a realistic way to understand programming language
trade-offs. For example, programs were different when machines were slow and
memory was scarce. The concerns of programming language designers were therefore
different in the 1960s from the current concerns. By imaging the state of the art in
some bygone era, we can give more serious thought to why language designers made
certain decisions. This way of thinking about languages and computing may help
us in the future, when computing conditions may change to resemble some past
situation. For example, the recent rise in popularity of handheld computing devices
and embedded processors has led to renewed interest in programming for devices
with limited memory and limited computing power.

When we discuss specific languages in this book, we generally refer to the original
or historically important form of a language. For example, “Fortran” means the
Fortran of the 1960s and early 1970s. These early languages were called Fortran I,
Fortran II, Fortran III, and so on. In recent years, Fortran has evolved to include
more modern features, and the distinction between Fortran and other languages has
blurred to some extent. Similarly, Lisp generally refers to the Lisps of the 1960s,
Smalltalk to the language of the late 1970s and 1980s, and so on.

1.2 GOALS

In this book we are concerned with the basic concepts that appear in modern pro-
gramming languages, their interaction, and the relationship between programming
languages and methods for program development. A recurring theme is the trade-off
between language expressiveness and simplicity of implementation. For each pro-
gramming language feature we consider, we examine the ways that it can be used
in programming and the kinds of implementation techniques that may be used to
compile and execute it efficiently.

1.2.1 General Goals

In this book we have the following general goals:

� To understand the design space of programming languages. This includes con-
cepts and constructs from past programming languages as well as those that may
be used more widely in the future. We also try to understand some of the ma-
jor conflicts and trade-offs between language features, including implementation
costs.

� To develop a better understanding of the languages we currently use by comparing
them with other languages.

� To understand the programming techniques associated with various language
features. The study of programming languages is, in part, the study of conceptual
frameworks for problem solving, software construction, and development.



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

6 Introduction

Many of the ideas in this book are common knowledge among professional pro-
grammers. The material and ways of thinking presented in this book should be
useful to you in future programming and in talking to experienced programmers
if you work for a software company or have an interview for a job. By the end of the
course, you will be able to evaluate language features, their costs, and how they fit
together.

1.2.2 Specific Themes

Here are some specific themes that are addressed repeatedly in the text:

� Computability: Some problems cannot be solved by computer. The undecidabil-
ity of the halting problem implies that programming language compilers and
interpreters cannot do everything that we might wish they could do.

� Static analysis: There is a difference between compile time and run time. At
compile time, the program is known but the input is not. At run time, the program
and the input are both available to the run-time system. Although a program
designer or implementer would like to find errors at compile time, many will not
surface until run time. Methods that detect program errors at compile time are
usually conservative, which means that when they say a program does not have
a certain kind of error this statement is correct. However, compile-time error-
detection methods will usually say that some programs contain errors even if
errors may not actually occur when the program is run.

� Expressiveness versus efficiency: There are many situations in which it would be
convenient to have a programming language implementation do something auto-
matically. An example discussed in Chapter 3 is memory management: The Lisp
run-time system uses garbage collection to detect memory locations no longer
needed by the program. When something is done automatically, there is a cost.
Although an automatic method may save the programmer from thinking about
something, the implementation of the language may run more slowly. In some
cases, the automatic method may make it easier to write programs and make pro-
gramming less prone to error. In other cases, the resulting slowdown in program
execution may make the automatic method infeasible.

1.3 PROGRAMMING LANGUAGE HISTORY

Hundreds of programming languages have been designed and implemented over
the last 50 years. As many as 50 of these programming languages contained new
concepts, useful refinements, or innovations worthy of mention. Because there are
far too many programming languages to survey, however, we concentrate on six
programming languages: Lisp, ML, C, C++, Smalltalk, and Java. Together, these
languages contain most of the important language features that have been invented
since higher-level programming languages emerged from the primordial swamp of
assembly language programming around 1960.

The history of modern programming languages begins around 1958–1960 with
the development of Algol, Cobol, Fortran, and Lisp. The main body of this book



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

1.3 Programming Language History 7

covers Lisp, with a shorter discussion of Algol and subsequent related languages. A
brief account of some earlier languages is given here for those who may be curious
about programming language prehistory.

In the 1950s, a number of languages were developed to simplify the process
of writing sequences of computer instructions. In this decade, computers were very
primitive by modern standards. Most programming was done with the native machine
language of the underlying hardware. This was acceptable because programs were
small and efficiency was extremely important. The two most important programming
language developments of the 1950s were Fortan and Cobol.

Fortran was developed at IBM around 1954–1956 by a team led by John
Backus. The main innovation of Fortran (a contraction of formula translator) was
that it became possible to use ordinary mathematical notation in expressions. For
example, the Fortran expression for adding the value of i to twice the value of
j is i + 2∗j. Before the development of Fortran, it might have been necessary to
place i in a register, place j in a register, multiply j times 2 and then add the
result to i. Fortran allowed programmers to think more naturally about numeri-
cal calculation by using symbolic names for variables and leaving some details of
evaluation order to the compiler. Fortran also had subroutines (a form of proce-
dure or function), arrays, formatted input and output, and declarations that gave
programmers explicit control over the placement of variables and arrays in mem-
ory. However, that was about it. To give you some idea of the limitations of
Fortran, many early Fortran compilers stored numbers 1, 2, 3 . . . in memory lo-
cations, and programmers could change the values of numbers if they were not
careful! In addition, it was not possible for a Fortran subroutine to call itself, as
this required memory management techniques that had not been invented yet (see
Chapter 7).

Cobol is a programming language designed for business applications. Like
Fortran programs, many Cobol programs are still in use today, although current
versions of Fortran and Cobol differ substantially from forms of these languages
of the 1950s. The primary designer of Cobol was Grace Murray Hopper, an im-
portant computer pioneer. The syntax of Cobol was intended to resemble that
of common English. It has been suggested in jest that if object-oriented Cobol
were a standard today, we would use “add 1 to Cobol giving Cobol” instead of
“C++”.

The earliest languages covered in any detail in this book are Lisp and Algol,
which both came out around 1960. These languages have stack memory manage-
ment and recursive functions or procedures. Lisp provides higher-order functions
(still not available in many current languages) and garbage collection, whereas the
Algol family of languages provides better type systems and data structuring. The
main innovations of the 1970s were methods for organizing data, such as records (or
structs), abstract data types, and early forms of objects. Objects became mainstream
in the 1980s, and the 1990s brought increasing interest in network-centric computing,
interoperability, and security and correctness issues associated with active content
on the Internet. The 21st century promises greater diversity of computing devices,
cheaper and more powerful hardware, and increasing interest in correctness, security,
and interoperability.



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

8 Introduction

1.4 ORGANIZATION: CONCEPTS AND LANGUAGES

There are many important language concepts and many programming languages.
The most natural way to summarize the field is to use a two-dimensional matrix, with
languages along one axis and concepts along the other. Here is a partial sketch of
such a matrix:

Heap
Language Expressions Functions storage Exceptions Modules Objects Threads

Lisp x x x
C x x x
Algol 60 x x
Algol 68 x x x x
Pascal x x x
Modula-2 x x x x
Modula-3 x x x x x x
ML x x x x x
Simula x x x x x
Smalltalk x x x x x x
C++ x x x x x x
Objective x x x x

C
Java x x x x x x x

Although this matrix lists only a fraction of the languages and concepts that might
be covered in a basic text or course on the programming languages, one general
characteristic should be clear. There are some basic language concepts, such as ex-
pressions, functions, local variables, and stack storage allocation that are present in
many languages. For these concepts, it makes more sense to discuss the concept in
general than to go through a long list of similar languages. On the other hand, for
concepts such as objects and threads, there are relatively few languages that exhibit
these concepts in interesting ways. Therefore, we can study most of the interesting
aspects of objects by comparing a few languages. Another factor that is not clear from
the matrix is that, for some concepts, there is considerable variation from language to
language. For example, it is more interesting to compare the way objects have been
integrated into languages than it is to compare integer expressions. This is another
reason why competing object-oriented languages are compared, but basic concepts
related to expressions, statements, functions, and so on, are covered only once, in a
concept-oriented way.

Most courses and texts on programming languages use some combination of
language-based and concept-based presentation. In this book a concept-oriented
organization is followed for most concepts, with a language-based organization used
to compare object-oriented features.

The text is divided into four parts:

Part 1: Functions and Foundations (Chapters 1–4)
Part 2: Procedures, Types, Memory Management, and Control (5–8)
Part 3: Modularity, Abstraction and Object-Oriented Programming (9–13)



P1: GMS/LPH P2: GFM/... QC: .../... T1: ...

CB465-01 CB465-Mitchell July 17, 2002 14:48 Char Count= 0

1.4 Organization: Concepts and Languages 9

Part 4: Concurrency and Logic Programming (14 and 15)

In Part 1 a short study of Lisp is presented, followed by a discussion of compiler
structure, parsing, lambda calculus, and denotational semantics. A short chapter pro-
vides a brief discussion of computability and the limits of compile-time program
analysis and optimization. For C programmers, the discussion of Lisp should provide
a good chance to think differently about programming and programming languages.

In Part 2, we progress through the main concepts associated with the conventional
languages that are descended in some way from the Algol family. These concepts
include type systems and type checking, functions and stack storage allocation, and
control mechanisms such as exceptions and continuations. After some of the history
of the Algol family of languages is summarized, the ML programming language is
used as the main example, with some discussion and comparisons using C syntax.

Part 3 is an investigation of program-structuring mechanisms. The important lan-
guage advances of the 1970s were abstract data types and program modules. In the
late 1980s, object-oriented concepts attained widespread acceptance. Because object-
oriented programming is currently the most prominent programming paradigm,
in most of Part 3 we focus on object-oriented concepts and languages, comparing
Smalltalk, C++, and Java.

Part 4 contains chapters on language mechanisms for concurrent and distributed
programs and on logic programming.

Because of space limitations, a number of interesting topics are not covered.
Although scripting languages and other “special-purpose” languages are not covered
explicitly in detail, an attempt has been made to integrate some relevant language
concepts into the exercises.


