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ABSTRACT
We consider the classical matroid matching problem. Un-
weighted matroid matching for linear matroids was solved
by Lovász, and the problem is known to be intractable for
general matroids. We present a PTAS for unweighted ma-
troid matching for general matroids. In contrast, we show
that natural LP relaxations have an Ω(n) integrality gap
and moreover, Ω(n) rounds of the Sherali-Adams hierarchy
are necessary to bring the gap down to a constant.

More generally, for any fixed k ≥ 2 and ε > 0, we obtain a
(k/2 + ε)-approximation for matroid matching in k-uniform
hypergraphs, also known as the matroid k-parity problem.
As a consequence, we obtain a (k/2 + ε)-approximation for
the problem of finding the maximum-cardinality set in the
intersection of k matroids. We have also designed a 3/2-
approximation for the weighted version of a special case of
matroid matching, the matchoid problem.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures

General Terms
Algorithms, Theory

Keywords
matroid, matching, local search, Sherali-Adams hierarchy

1. INTRODUCTION
The matroid matching problem was proposed by Lawler as

a common generalization of two important polynomial-time
solvable problems: the non-bipartite matching problem, and
the matroid-intersection problem (see [32]). Unfortunately,
it turns out that matroid matching for general matroids is
intractable and requires an exponential number of queries if
the matroid is given by an oracle (see [36, 26]). This result
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can be easily transformed into an NP-completeness proof
for a concrete class of matroids (see [46]). An important
result of Lovász is that (unweighted) matroid matching can
be solved in polynomial time for linear matroids (see [35]).
There have been several attempts to generalize Lovász’ re-
sult to the weighted case. Polynomial-time algorithms are
known for some special cases (see [49]), but for general linear
matroids there is only a pseudopolynomial-time randomized
exact algorithm (see [8, 40]).

In this paper, we revisit the matroid matching problem
for general matroids. Our main result is that while LP-
based approaches including the Sherali-Adams hierarchy fail
to provide any meaningful approximation, a simple local-
search algorithm gives a PTAS (in the unweighted case).
This is the first PTAS for general matroid matching and
to our knowledge also the first example of a problem where
there is such a dramatic gap between the performance of
the Sherali-Adams hierarchy and a simple combinatorial al-
gorithm. We also provide approximation results for a gener-
alization of the problem to hypergraphs; more details follow.

We assume familiarity with approximation algorithms (see
[51], for example) and matroid algorithmics (see [46], for ex-
ample). Throughout, we consider maximization problems.
A c-approximation algorithm finds in polynomial time a so-
lution of value at least OPT/c. Briefly, for a matroid M,
we denote the ground set ofM by V = V (M), its set of in-
dependent sets by I = I(M), and its rank function by rM.
For a given matroidM, the associated matroid constraint is
S ∈ I(M) or equivalently |S| = rM(S).

In the matroid hypergraph matching problem, we are given
a matroid M = (V, I) and a hypergraph G = (V, E) where
E ⊆ 2V . Note that the vertex set of the hypergraph G
and the ground set of the matroid M are the same. The
goal is to choose a maximum-cardinality collection of disjoint
hyperedges E∗ ⊆ E in hypergraph G, such that the set of
vertices covered by hyperedges in E∗ is an independent set in
matroidM. If G is a graph, we obtain the classical matroid
matching problem.

The matroid hypergraph matching problem generalizes
several classical optimization problems, namely:

1. If M is a free matroid (i.e., I(M) = 2V ), then the
problem is the maximum hypergraph matching problem
or the maximum set-packing problem. Set packing in
general is NP-hard, but when G is a graph, it is the
classical matching problem which led Edmonds to the
notion of polynomial-time algorithms (see [15, 16]).

2. In the k-matroid intersection problem we are given k
matroidsM1 = (V, I1), . . . ,Mk = (V, Ik) on the same



ground set V , and the goal is to find a maximum cardi-
nality set S of elements that is independent in each of
the k matroids, i.e. S ∈ ∩kj=1Ij . The k-matroid inter-
section problem is NP-hard for k ≥ 3 but polynomially
solvable for k = 2 (see [46]).

3. A problem of intermediate generality is the k-uniform
matchoid problem, defined for k = 2 by Edmonds and
studied by Jenkyns (see [27]). In this problem, we
have a k-uniform hypergraph and a matroidMv given
for each vertex v, having ground set the set of hyper-
edges containing v. The goal is to choose a maximum
collection of hyperedges S, such that for each v, the
hyperedges in S containing v form an independent set
in Mv. This can be also seen as a packing problem
with many matroid constraints, where each item par-
ticipates in at most k of them.

By taking eachMv to be the uniform matroid of rank
1, we get the set-packing problem. By taking k arbi-
trary matroids defined on k copies of the same ground
set V and a hypergraph of n parallel hyperedges on the
k copies of the same element from V , we get k-matroid
intersection. On the other hand, the matchoid prob-
lem is a special case of matroid matching, as we show
below. We remark that even for k = 2, the matchoid
problem is NP-hard (see [36]).

4. The special case of the matroid hypergraph matching
problem when each vertex belongs to a unique hyper-
edge, and all hyperedges have cardinality exactly k is
known as the matroid k-parity problem, or simply the
matroid parity problem when k = 2. As we show be-
low, this problem is in fact equivalent to k-uniform
matroid matching, even in terms of approximation.

k-uniform matroid matching
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Next, we explain how the k-uniform matchoid problem is
a special case of matroid k-parity. Given a hypergraph G,
we can replace each vertex by nv distinct copies, where nv
is the number of hyperedges containing v. We replace each
hyperedge in G by a collection of distinct copies of its ele-
ments, so that we get a hypergraph G′ where the hyperedges
are disjoint. In the matchoid problem, we have a matroid
Mv defined on the nv copies of each vertex v, and we de-
fine a new matroid M′ by taking the union of the matroids
Mv. Then matroid k-parity for (G′,M′) is equivalent to
the original k-uniform matchoid for (G,Mv).

In fact, a similar construction implies that matroid k-
parity includes (and therefore is equivalent to) matroid match-
ing in k-uniform hypergraphs (or more generally in hyper-
graphs where each hyperedge has cardinality at most k,
which can be shown by adding dummy elements). Given
an instance of k-uniform matroid matching, we define nv
copies for each vertex v where nv is the degree of v in the
hypergraph G = (V, E). We replace each hyperedge in G by
a collection of distinct copies of its elements, so that the new
hyperedges are disjoint. Let G′ = (V ′, E ′) be the new hyper-
graph. We also define a new matroid M′ on the ground set
V ′, where the nv copies of each vertex act as parallel copies.
That is, a set of vertices S′ ⊆ V ′ is independent in M′ if
it contains at most one copy of each vertex from V and the
respective set S ⊆ V is independent inM. It is not difficult
to show that M′ is a matroid.

Henceforth, we will discuss the matroid k-parity problem
with the understanding that all our results can be easily
extended to the k-uniform matroid matching problem. For
the purposes of this paper, the terms matroid matching and
matroid parity are essentially interchangeable.

Literature overview.
There are a few different lines of research relevant to our

results. The matroid parity problem (for k = 2) was orig-
inally popularized by Lawler [31]. The maximum-cardinality
matroid parity problem was shown to have exponential query
complexity in general (see [36, 26]), and to be NP-hard for
some concrete classes of matroids. If the matroid is linear
over the reals, the problem is polynomially solvable (see [35,
20, 41, 42, 48]). For more on matroid parity, applications
and closely related problems, see [6, 37, 43, 44]. The linear
matroid k-parity problem also admits a polynomial time al-
gorithm if k is a constant, and the rank of matroid M is
O(log |V |) (see [4]). The special case of matroid intersection
can be solved in polynomial time for arbitrary matroids (see
for example [46]), even in the weighted case.

It is not difficult to show that a simple greedy algorithm
that adds hyperedges one-by-one, as long as the current
solution remains independent, gives a k-approximation for
general weighted matroid k-parity and that this guaran-
tee is tight. This follows from the work of Jenkyns on k-
independence systems; see [28] (see also Section 2). Until
our present work, this was the only algorithm known for the
general matroid k-parity problem with a provable approx-
imation guarantee. The only improvement to our knowl-
edge has been achieved in the case of unweighted matroid
matching (k = 2), where Fujito proved that a local-search
algorithm gives a 3/2-approximation (see [19]).

Linear-programming relaxations for the matroid match-
ing problem (k = 2) have been studied in [50, 11, 12, 21].
An LP proposed by Vande Vate (see [50]) has been shown
to be half-integral, and moreover, there are polynomial-time
algorithms to find a half-integral optimal solution in the un-
weighted case (see [11, 12]) and the general weighted case
(see [21]). However, this approach has not yielded any ap-
proximation algorithms for matroid matching.

We now survey known results on the approximability of
various special cases of the matroid k-parity problem. Local-
search algorithms exploring a larger neighborhood for the k-
set packing problem were analyzed in [25]. They showed that
a local-search algorithm produces a solution with approxi-
mation guarantee k/2 + ε for any fixed ε > 0 and constant k



in polynomial time. Hardness of approximation results are
known for the maximum k-dimensional matching problem
which is a special case of the maximum k-set packing prob-
lem and hence also matroid k-parity. The best known lower
bound is the Ω(k/ log k) hardness of approximation of [24].
It is also known that a large-neighborhood local-search algo-
rithm has a tight approximation guarantee of k−1+ε for the
problem of (weighted) k-matroid intersection (see [33]). It
should be noted though that unweighted versions of packing
problems seem to be easier for algorithm design and analysis,
and approximation guarantees for general linear objective
functions can often be improved for an unweighted variants.

The Sherali-Adams hierarchy (see [47]) has been studied
recently for a number of combinatorial optimization prob-
lems (see [29, 30] for surveys on the results in this area).
Mathieu and Sinclair proved (see [38]) for the non-bipartite
matching problem that r rounds of Sherali-Adams applied to
the matching polytope have integrality gap 1 +O(1/r) and
hence provides a PTAS (while the problem can be solved
exactly in polynomial time). Chan and Lau considered k-
uniform hypergraph matching, i.e. k-set packing, and proved
that that even after O(n) rounds of Sherali-Adams, the stan-
dard LP has integrality gap at least k − 2 (see [9]). In con-
trast, local search techniques yield a (k/2+ε)-approximation
(see [25]), and an alternative LP (using intuition from local
search) has integrality gap at most (k + 1)/2 (see [9]).

Our Results.
On the negative side, we show that the known linear re-

laxations of matroid parity do not yield any reasonable ap-
proximation guarantee (even for k = 2 with unit weights).
More precisely, all variants of the LPs that have been pro-
posed have an Ω(n) integrality gap for instances with n pairs.
Moreover, Ω(n) rounds of the Sherali-Adams hierarchy are
required to generate an LP with a constant integrality gap.

In contrast, we prove that a very simple local-search algo-
rithm gives a PTAS for unweighted matroid parity. Given
the negative results for the matroid parity problem (see [36,
26]), this is the best type of worst-case result we could ex-
pect for this problem. It is also a strong manifestation of
the fact that LP-based hierarchies do not always match the
performance of combinatorial algorithms (which was, in a
weaker sense, shown previously for the matching problem in
graphs (see [38]) and hypergraphs (see [9])).

For the more general problem of unweighted matroid k-
parity, we present a (k/2 + ε)-approximation, for any fixed
k ≥ 2 and ε > 0. As a special case, this subsumes the
(unweighted) k-matroid intersection problem for which a k-
approximation was known since 1976 (see [28]) and has been
only recently improved to k − 1 + ε (see [33]).

The algorithm that we analyze is simple local search that
in each iteration seeks to remove s(ε) hyperedges and add
s(ε) + 1 hyperedges to the current solution in such a way
that the new solution defines an independent set in matroid
M. We call this the s-neighborhood local-search algorithm.
If there is no improvement the algorithm stops and out-
puts the current local optimum. Our analysis uses an idea
from [25] to reduce inductively the instance, and given the
performance of the local search on the smaller instance, to
derive the guarantee on the original one. But the presence
of the matroid independence constraint complicates matters
significantly. In particular, to achieve the approximation
guarantee of 1 + ε for the matroid parity problem we need

to implement the local-search algorithm with s(ε) exponen-
tially large in 1/ε, while it is well known that s(ε) = d1+1/εe
is enough for the maximum matching problem in graphs (the
fixed-size augmenting-path algorithm could be viewed as a
local-search algorithm). We do not know if having such a
large neighborhood is necessary or if it is just an artifact of
our analysis. Surprisingly, for k ≥ 3, we show that to achieve
k/2 + ε approximation, it is enough to run the local-search
algorithm with s(ε) polynomially bounded in 1/ε.

The rest of the paper is organized as follows. In §2,
we show that matroid k-parity is a special case of a “k-
independence system” which implies a greedy k-approxima-
tion. In §3, we present our PTAS for unweighted matroid
parity. In §4, we consider various linear-programming re-
laxations for the matroid parity problem and present our
lower bounds on their integrality gap. In §5, we present a
(k/2 + ε)-approximation for matroid k-parity.

We have also developed a 3/2-approximation algorithm for
the weighted matchoid problem, which is a special case of
weighted matroid parity. This result uses an LP relaxation
of the matchoid problem and its known half-integrality (see
[11, 12, 21, 50] for closely related LPs). We provide an alter-
native proof that is very simple and intuitive which might be
of independent interest. Unfortunately, the space here does
not allow us to present these results, so we refer to [34].

2. RELATION TO INDEPENDENCE
SYSTEMS

First, we show that the matroid k-parity falls in the frame-
work of k-independence systems (see [28]). Such systems
generalize intersections of k matroids, and in fact several
definitions of various degrees of generality have been pro-
posed (see also [39, 7]). Jenkyns’ definition is as follows.

Definition 1. A family of sets I ⊂ 2V is a p-system, if
for all W ⊆ V ,

max{|B| : B ⊆W,B ∈ I} ≤ p ·min{|B| : B ⊆W,B ∈ I}

Lemma 1. The independence system corresponding to ma-
troid k-parity is a k-system.

Proof. Consider an independent collection of hyperedges
W = {e1, . . . , e`}, and two bases (i.e., setwise maximal in-
dependent subsets) B1, B2 of W . Assume toward a con-
tradiction that |B2| > k|B1|. Let S1 =

S
{e : e ∈ B1} and

S2 =
S
{e : e ∈ B2}; i.e. |Si| = k|Bi| and both S1 and S2 are

independent in the matroid M. By the matroid extension
axiom, S1 can be completed from S2 to a set S1 ∪ S′2 inde-
pendent in M, where S′2 ⊆ S2 \ S1 and |S′2| = |S2| − |S1| =
k|B2|−k|B1|. Note that S′2 is not necessarily a union of hy-
peredges. However, it must contain at least one hyperedge,
otherwise |S′2| ≤ (k − 1)|B2| < k|B2| − k|B1|. Therefore,
there is a hyperedge ei ∈ B2 \ B1 that we can add to B1

which contradicts B1 being a base of W .

The work of [27, 18] for p-systems gives the following re-
sults (see also [7]).

Theorem 1. The greedy algorithm gives a p-approximation
for maximizing a linear function over a p-system. Moreover,
the greedy algorithm gives a (p+ 1)-approximation for max-
imizing a monotone submodular function over a p-system.



Corollary 1. The greedy algorithm gives a k-approxima-
tion for matroid k-parity even in the weighted version. More-
over, the greedy algorithm gives a (k+ 1)-approximation for
maximizing a monotone submodular function over sets fea-
sible for the matroid k-parity problem.

We regard the greedy k-approximation for matroid k-parity
as a“folklore”result and a starting point for further improve-
ments. For unweighted matroid parity (k = 2), this has been
improved to a factor of 3/2 by Fujito [19]. For general k, no
better approximation was known prior to our work.

3. PTAS FOR MATROID PARITY
Let us start with the case of k = 2, i.e. matroid parity.

In an instance of matroid parity, we have disjoint pairs, and
we look for a maximum-cardinality collection of pairs whose
union forms an independent set in a given matroid. We
present a PTAS for this problem.

Definition 2. For feasible solutions A and B of matroid
parity, a “local move of size s between A and B” is a choice
of s − 1 pairs e1, . . . , es−1 inside A, and s pairs e′1, . . . , e

′
s

inside B, such that (A \
Ss−1
i=1 ei)∪

Ss
i=1 e

′
i is again feasible.

Theorem 2. For any ε > 0, a local-search algorithm which
considers local moves of size up to s(ε) = 5d1/(2ε)e achieves
a (1 + ε)-approximation for the matroid parity problem.

The same result also holds for matroid matching, by a
simple reduction that we outlined in the introduction. The
theorem follows immediately from the following characteri-
zation of local optima.

Lemma 2. Let t ≥ 1, and A,B feasible solutions to the
matroid parity problem such that

|A| < (1− 1/2t) |B|.

Then there is a local move of size 5t−1 between A and B.

Assuming that B is an actual optimum and A is a local
optimum with respect to local moves of size 5t−1, this implies
that A is a 2t/(2t − 1)-approximate solution. This means
that for any fixed ε > 0, we can pick t = d1/(2ε)e + 1 and
s = 5t−1; the corresponding local-search algorithm achieves
a (1 + ε)-approximation for matroid parity.

It remains to prove the lemma. Our proofs uses the stan-
dard notion of matroid contraction. For a set S ⊂ V (M),
M/S (readM contract S) is the matroid having ground set
V (M)\S and set of independent sets {T ⊆ V (M)\S : T ∪
J ∈ I(M)}, where J is an arbitrary maximal independent
subset of S with respect to M.

Proof. Let A,B be feasible solutions as above. (We as-
sume for simplicity that A and B are disjoint, otherwise we
can contract the intersection, which only decreases the ra-
tio |A|/|B|.) Because |A| < |B|, there exists B0 ⊂ B, |B0| =
|B|−|A| such that A∪B0 is independent inM. We proceed
by induction on t.

Base case: t = 1.
For t = 1, we have |A| < 1

2
|B|. Then, |B0| = |B| − |A| >

1
2
|B|. Because B decomposes into disjoint pairs, this means

there must be a pair contained inside B0. This pair can be
added to A without violating independence, i.e. there is a
local move of size one.

General case: t ≥ 2.
We assume that |A| = |B| − a where a > 1

2t
|B|. We also

assume a ≤ 1
2
|B|, otherwise we are in the base case. We

construct a set B0 ⊂ B as above, with A ∪ B0 independent
and |B0| = a. Again, if there is a pair contained inside B0,
we can add it to A, and we are done. So let us assume that
no pair is contained completely inside B0.

Every pair intersecting B0 also contains an element in
B \ B0; let us denote the elements matched with B0 by
B1. We have |B1| = |B0| = a. Let M0 = M/B0 denote
the matroid where B0 has been contracted. Because A ∪
B0 and B1 ∪ B0 are independent in M (by construction),
we get that A and B1 are independent in M0. Because
|A| = |B| − a ≥ a = |B1|, we can extend B1 by adding
(possibly zero) elements fromA, to form anM0-independent
set (A \A1) ∪B1 where |A1| = |B1| = a.

If A1 contains a pair e then we can find a local move
as follows: A \ e is independent in M0, and so is the set
(A \ A1) ∪ B1. Therefore, A \ e can be extended to a set
(A \ e) ∪ {x′, x′′} independent in M0, such that x′, x′′ ∈
B1. The elements x′, x′′ are contained in pairs e′, e′′ whose
remaining elements are in B0. Because (A \ e) ∪ {x′, x′′} is
independent in M0 = M/B0, any elements of B0 can be
added for free, and (A \ e) ∪ e′ ∪ e′′ is independent in M.
This defines a local move of size two.

The rest of the proof deals with the case when there is no
pair contained in A1. Then, every pair intersecting A1 also
contains an element in A \ A1; let us denote the elements
matched with A1 by A2. We have |A2| = |A1| = a. Here is
where we apply the inductive hypothesis.

The inductive step.
We define a new matroidM1 =M0/B1 =M/(B0 ∪B1).

By construction, the sets A∗ = A \ (A1 ∪ A2) and B∗ =
B \ (B0 ∪ B1) are both independent in M1. They both
form a union of pairs and hence are feasible solutions to the
matroid parity problem for M1. We have |A∗| = |A| − 2a
and |B∗| = |B| − 2a. Because |A| = |B| − a, we get

|A∗|
|B∗| =

|A| − 2a

|B| − 2a
=
|B| − 3a

|B| − 2a
= 1− 1

|B|/a− 2
.

Because we assumed a > 1
2t
|B|, we have |B|/a < 2t and

|A∗| < (1 − 1
2t−2

)|B∗|, so we can apply the inductive hy-

pothesis. There is a local move of size s = 5t−2 between
A∗ and B∗, i.e. a union of s − 1 pairs Ã ⊆ A∗ and s pairs
B̃ ⊆ B∗ such that (A∗ \ Ã) ∪ B̃ is independent in M1. Our
goal is to find a local move of size 5s = 5t−1 between A and
B (in M).

The set (A∗\Ã)∪B̃ is independent inM1. Unfortunately,

(A \ Ã) ∪ B̃ is not necessarily independent, even in M. We

have to proceed more carefully. The set (A∗ \ Ã)∪A2 = A \
(A1∪Ã) is independent inM1 =M0/B1, because (A\A1)∪
B1 was constructed to be independent inM0. Therefore, we
can extend (A∗ \ Ã) ∪ B̃ to a set (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C2)

independent in M1, where C2 ⊆ A2 and |C2| ≤ |B̃|. (If

|A2| ≤ |B̃|, we can just set C2 = A2.)

The new set (A∗ \ Ã) ∪ B̃ ∪ (A2 \C2) is also independent

inM0 (a weaker condition). So is (A∗ \ Ã)∪ (A2 \C2)∪A1,
as any subset of A is independent inM0. Therefore, we can
extend (A∗ \ Ã)∪ B̃ ∪ (A2 \C2) to a set (A∗ \ Ã)∪ B̃ ∪ (A2 \
C2) ∪ (A1 \ C1) in M0, where C1 ⊆ A1 and |C1| ≤ |B̃|.



The set we have obtained is not necessarily a union of
pairs, so let us remove the whole pair for each element in
C1 and C2. Let us denote by C′ the union of all pairs inter-
secting C1 ∪ C2. By our construction, we have C1 ∪ C2 ⊆
C′ ⊆ A1 ∪ A2. Further, let us define C′1 = C′ ∩ A1 and
C′2 = C′ ∩ A2. Each pair on A1 ∪ A2 contains exactly one
element in A1 and one element in A2, therefore |C′1| = |C′2|.
Also, |C′1| = |C′2| ≤ |C1 ∪ C2|, because each each element of
C1 ∪ C2 contributes at most one pair to C′.

We obtain a feasible solution A+ = (A∗ \ Ã) ∪ B̃ ∪ (A2 \
C′2) ∪ (A1 \ C′1) in M0. Now, consider the set (A+ \ A1) ∪
B1 = (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C′2) ∪ B1. This is independent
inM0, because A+ \A1 was constructed to be independent
inM1 =M0/B1. Because A+ misses some elements in A1,
namely C′1, the cardinality of (A+\A1)∪B1 is actually larger
than |A+|, |(A+ \ A1) ∪ B1| = |A+| + |C′1|. Hence, we can
extend A+ by |C′1| elements of B1, let us call them F1, to
obtain a set A+∪F1 independent inM0. The pairs touching
F1 have exactly 1 element in B1 and the other element in
B0. Let F0 be the elements of B0 matched with F1. We can
add F0 for free and obtain an independent set A+∪F1∪F0 in
M. We have |F0| = |F1| = |C′1| = |C′2|. Now A+∪F1∪F0 is
a union of pairs and hence a feasible solution, of cardinality

|A+ ∪ F1 ∪ F0| = |A+ ∪ C′1 ∪ C′2| = |(A \ Ã) ∪ B̃| > |A|.

Finally, let us estimate the size of this local move. We re-
moved Ã∪C′1 ∪C′2 from A, and added B̃ ∪F1 ∪F0 instead.
The size of C′1 is bounded by |C′1| ≤ |C1 ∪C2| ≤ 2|B̃|, hence

|F1| = |C′1| ≤ 2|B̃|. The size of F0 is equal to the size of F1,

i.e. |F0 ∪ F1| = 2|F1| ≤ 4|B̃|. In summary, we are adding at

most 5|B̃| elements to A, i.e. the size of the local move is at

most 5|B̃| = 5s = 5t−1.

4. LP RELAXATIONS
In this section, we consider a linear-programming approach

to matroid parity. Our results in this direction are mostly
negative and indicate that linear programming in this case
fails very badly compared to the local-search algorithm pre-
sented in the previous section. We formulate our linear pro-
grams for the general case of matroid k-parity but the case
k = 2 is already sufficiently general to obtain our results.

We start with the following natural LP for the weighted
matroid k-parity problem (equivalent to an LP studied in
[21]). The variables ye correspond to the hyperedges and the
variables xu correspond to the elements of the ground set.
We assume here that each hyperedge alone is independent;
otherwise we remove it from the instance.

max
X
e∈E

weye, (1)

X
u∈S

xu ≤ rM(S), ∀S ⊆ V, (2)

xu = ye, ∀u ∈ e, e ∈ E , (3)

xu, ye ≥ 0, ∀u ∈ V, e ∈ E . (4)

In the objective function (1) we are maximizing the total
weight of chosen hyperedges. The constraints (3) correspond
to the fact that we can choose a hyperedge only if we chose
all its vertices. The constraints (2) are the standard rank
constraints for the matroid M and any independent set of
vertices must satisfy them.

For any set of elements S ⊆ V let sp(S) = {u ∈ V |
rM(S ∪ {u}) = rM(S)} be the span of S in matroid M.
F ⊆ V is a flat if sp(F ) = F (for more information on these
concepts, see [46], Chapter 39). Since rM(sp(S)) = rM(S),
it is easy to see that it is enough to write the constraints (2)
for every flat F ⊆ V ; the inequality for arbitrary S ⊂ V is
implied by the flat F = sp(S).

Another set of valid inequalities (for k = 2) were suggested
by Vande Vate [50] and studied in subsequent work [11, 12,
21, 50]. For a set S ⊆ V and a hyperedge e, let a(S, e) =
rM(S∩sp(e)). In case of a flat F , the intuition is that a(F, e)
is the dimension of the subspace of F generated by e. The
LP proposed by Vande Vate is as follows.

max
X
e∈E

weye, (5)

X
e∈E

a(S, e)ye ≤ rM(S), ∀S ⊆ V, (6)

ye ≥ 0, ∀e ∈ E . (7)

Again, it is equivalent to consider the inequalities (6) only
for flats, which was the formulation given by Vande Vate.
This LP is potentially stronger than LP (1-4), which can be
equivalently obtained from (5-7) by replacing a(S, e) with
the smaller quantity |S ∩ e|.

It is known that the linear program (5-7) is half-integral
in the 2-uniform case. Moreover, there are polynomial time
algorithms to find a half-integral optimal solution in the un-
weighted 2-uniform case (see [11, 12]) and the weighted 2-
uniform case (see [21]). The following lemma shows the va-
lidity of the LP (5–7) in the general k-uniform case. We
could not find a published proof of validity (even for k = 2),
so for completeness we provide a short proof.

Lemma 3. The inequalities (6) are valid for the matroid
k-parity problem.

Proof. Consider any feasible solution, a collection of hy-
peredges E∗ = {e1, . . . , ek} such that e1 ∪ . . . ∪ ek is an in-
dependent set in matroid M. In the following, we denote
the rank function ofM simply by r(S). Let Si = S∩ sp(ei).
Note that r(Si) = a(S, ei). We claim that for any i < k,
r(S1 ∪ . . . ∪ Si) = r(S1 ∪ . . . ∪ Si−1) + r(Si). By induction,

we will get that r(S1∪. . .∪Sk) =
Pk
i=1 r(Si) =

Pk
i=1 a(S, ei)

which implies the inequalities (6).
We let rA(S) = r(A∪S)−r(A); due to submodularity, this

is a non-increasing function of A. Let A = S1∪. . .∪Si−1 and
B = e1∪ . . .∪ei−1. Our goal is to prove that rA(Si) = r(Si).
Because A ⊆ sp(B), we get rA(Si) ≥ rsp(B)(Si) = rB(Si),
using that r(sp(B)) = r(B) and r(Si ∪ sp(B)) = r(Si ∪ B).
On the other hand, as ei is independent of B, we have

r(sp(ei)) = rB(sp(ei)) = rB(Si) + rB∪Si(sp(ei)))

≤ rA(Si) + rSi(sp(ei))

using again the submodularity of r. This implies that rA(Si)
≥ r(sp(ei)) − rSi(sp(ei)) = r(Si). The opposite inequality
is obvious and hence rA(Si) = r(Si).

In the following, we use examples where e = sp(e) for
all hyperedges e ∈ E . Note that in this case, a(S, e) =
rM(S∩ sp(e)) = rM(S∩e) = |S∩e|, and hence the two LPs
are in fact equivalent.



4.1 Integrality gap example
It is known that the integrality gap of the LP relaxation

(1–4) is k − 1 + 1
k

for the maximum weighted hypergraph
matching problem [9]. Therefore, it is tempting to conjec-
ture that a similar result should hold for matroid hypergraph
matching. Unfortunately, as we show below, the integral-
ity gap of the linear-programming relaxation (1–4) is Ω(|E|)
even when k = 2 and the matroid is linear over the rationals.

Example.
Consider a ground set V = {u1, v1, . . . , un, vn} of size 2n,

partitioned into pairs ei = {ui, vi}. The weight of each pair
is wei = 1. Given an integer parameter t ≥ 1, we define a
matroid M = (V, I) as follows. For a set S ⊆ V , let p(S)
be the number of pairs ei such that ei ⊆ S. Then let S ∈ I
if p(S) ≤ t.

It can be checked that I satisfies the matroid indepen-
dence axioms: For any S, T ∈ I, |S| < |T |, either T contains
an element from a pair {ui, vi} which is disjoint from S, or
it contains more pairs than S. In either case, we can extend
S by adding some element of T . Moreover, this matroid is
is linear over the rationals (see [34]).

First, let us write down the LP for this particular example.
We have variables yi for i = 1, . . . , n, which are constrained
by yi ∈ [0, 1]. Since sp(ei) = ei, the LPs (1-4) and (5-7)
coincide. It is enough to write the constraints (6) for flats,
and in particular only for collections of pairs S =

S
i∈T ei.

This is because including only one element of a pair in S
always increases rM(S) by 1 and hence cannot strengthen
the constraint. Also, for S =

S
i∈T ei where |T | ≤ t, the

rank is rM(S) = |S| and the respective constraint (6) is
implied by yi ≤ 1. The only non-trivial constraints are for
S =

S
i∈T ei, |T | > t, where we get rM(S) = 2t+ (|T | − t) =

t+ |T |. Also, a(S, ei) = 2 for all i ∈ T . Therefore, the LP is
as follows.

max

nX
i=1

wiyi, (8)

X
i∈T

yi ≤
1

2
(t+ |T |), ∀T ⊆ [n], |T | > t (9)

0 ≤ yi ≤ 1, ∀i. (10)

Lemma 4. The integrality gap of LP (8–10) is Ω(n/t),
even in the unweighted case.

Proof. It is easy to see that yi = 1/2 for all i = 1, . . . , n
is a feasible fractional solution. Therefore, LP ≥ n/2. How-
ever, only t pairs can be selected in an integral optimum,
i.e. OPT = t.

For t = 1, we get an Ω(n) integrality gap. One way to
improve the quality of linear-programming relaxations is to
add valid inequalities that cut bad fractional solutions. One
of the possible classes of valid inequalities are the so-called
clique inequalities that were recently shown to reduce the in-
tegrality gap for unweighted hypergraph matching from k−1
to (k + 1)/2 [9]. This motivates us to define the undirected
graph G′ = (E , E′) where the vertices are the hyperedges
e ∈ E in our instance of matroid hypergraph matching and
the edges are defined between “incompatible hyperedges” e
and e′, i.e. when r(e ∪ e′) < |e ∪ e′|. A set of vertices C in
graph G′ is called a clique if it has an edge between every

pair of vertices in C. Let C be the set of all cliques in graph
G′. Then the following set of constraints is valid for the
matroid hypergraph matching problemX

e∈C

ye ≤ 1, ∀C ∈ C. (11)

However, as we can see in the example above (for t ≥ 2),
sometimes the clique inequalities do not add any non-trivial
constraints and the LP effectively remains the same. More
generally, we could add all the valid constraints for the
stable-set polytope corresponding to G′ (or perhaps con-
sider the semidefinite program corresponding to the Lovász
θ-function). The relaxation would still remain the same,
since the graph G′ is empty in our example.

In the next section, we consider the strongest known sys-
tematic way of generating valid constraints in linear pro-
gramming, which is the Sherali-Adams hierarchy.

4.2 The Sherali-Adams hierarchy
The Sherali-Adams hierarchy produces progressively stronger

refinements of a given LP by introducing new variables yL
indexed by subsets of the original variables, and then pro-
jecting back to the space of the original variables. We follow
the formalism of [38]. To carry out r rounds of Sherali-
Adams, we consider all pairs of disjoint subsets of variables
I, J such that |I ∪ J | = r. We multiply each constraint
by
Q
i∈I yi

Q
j∈J(1 − yj), expand all the monomial terms

and replace every square y2
i by yi. Now all terms are mul-

tilinear, and we replace each occurrence of
Q
`∈L y` by a

new variable yL. We also do the same for the constraintQ
i∈I yi

Q
j∈J(1 − yj) ≥ 0, for all disjoint I, J such that

|I ∪ J | = r+ 1. This defines the new LP; note that the vari-
ables yL for |L| > 1 play no role in the objective function
and thus the polytope can be viewed as projected back to
the original space.

Lemma 5. The integrality gap of LP (8–10) still remains
Ω(n/r) after r rounds of the Sherali-Adams hierarchy.

Proof. Our starting point is LP (8–10), with the param-
eter t chosen equal to the desired number of rounds r. We
have constraints

P
`∈T y` ≤

1
2
(r + |T |) for all |T | > r. We

multiply this constraint by
Q
i∈I yi

Q
j∈J(1− yj) and obtainX

`∈T

y`
Y
i∈I

yi
Y
j∈J

(1− yj) ≤
1

2
(r+ |T |)

Y
i∈I

yi
Y
j∈J

(1− yj). (12)

We expand the products, linearize the expressions, and re-
place monomials

Q
`∈L y` by new variables yL as explained

above. We also do the same thing for the constraints
Q
i∈I yiQ

j∈J(1 − yj) ≥ 0 with |I ∪ J | = r + 1. We claim that

yL = 1/2|L| for all |L| ≤ r + 1 is a feasible solution for the
new LP.

To see this, first observe that whenever we have ` ∈ J
on the left-hand side of (12), the corresponding term con-
tains y`(1 − y`) = y` − y2

` which disappears after lineariza-
tion. In terms where ` ∈ I, we get y2

` which gets linearized
to y`. Equivalently, we can replace y` by 1 in its appear-
ance before the product

Q
i∈I yi, whenever ` ∈ I. Vari-

ables outside of I ∪ J remain unchanged. Therefore, af-
ter linearization, the left-hand side is equal to (|T ∩ I| +P
`∈T\(I∪J) y`)

Q
i∈I yi

Q
j∈J(1− yj).

Now we replace the monomials
Q
`∈L y` by yL and sub-

stitute yL = 1/2|L|. Note that this is equivalent to directly



substituting y` = 1/2 for all `. Thus the left-hand side be-
comes

(|T ∩ I|+ 1
2
|T \ (I ∪ J)|) 2−|I∪J|

= 1
2
(|T ∩ I|+ |T \ J |) 2−|I∪J| ≤ 1

2
(r + |T |) 2−|I∪J|

using the fact that |I| ≤ r. This verifies the linearized form
of constraint (12).

The inequalities arising from
Q
i∈I yi

Q
j∈J(1−yj) ≥ 0 are

easy to verify, since our assignment yL = 1/2|L| is equivalent
to substituting yi = 1/2. Therefore, our fractional solution
is feasible for r rounds of Sherali-Adams.

Finally, the value of our fractional solution is equal to
n/2, because each singleton variable is yi = y{i} = 1/2. The
integral optimum is OPT = r.

To summarize, our LP (8–10) is an instance of the strongest
“natural LP” for matroid matching we are aware of, namely
the Vande Vate LP (5-7). The same LP (8–10) is obtained
even with the added clique constraints (11) and other valid
constraints for the stable-set polytope which are hard to op-
timize over in general. On top of this LP, we run the Sherali-
Adams hierarchy and the gap still remains superconstant for
o(n) rounds.

4.3 Lower bound on Chvátal rank
Another popular way to derive progressively stronger linear-

programming relaxations is to apply Chvátal-Gomory cuts
(for example, see [45]). Let P := {x ∈ Rn :

Pn
j=1 ai,jxj ≤

bi, for i = 1, . . . ,m} be a polyhedron defined by rational
data. Let

P
j ajxj ≤ b be a linear inequality satisfied by

all points in P . Such an inequality is called a valid (linear)
inequality for P .

Now, let PI := conv (P ∩ Zn). If
P
j ajxj ≤ b is a valid

linear inequality for P , and aj ∈ Z for all j, then clearlyP
j ajxj ≤ bbc is a valid linear inequality for PI . Any such

inequality is known as a Chvátal-Gomory cut with respect to
P . Applying all Chvátal-Gomory cuts to P , we obtain the
first Chvátal closure P (1) of P . It is a classical result that
P (1) is again a polyhedron; that is, only a finite number of
the Chvátal-Gomory cuts for P are needed to describe P (1).
Now, we can repeatedly apply this closure operator, and we
obtain after r repetitions the r-th Chvátal closure P (r) of P .
If the linear inequality

P
j ajxj ≤ b is valid for P (r) but not

P (r−1), then we say that the inequality has Chvátal rank r.
It is a classical result that when P is described by rational
data, PI = P (r) for some finite r.

Hartmann established lower bounds on the Chvátal rank
for many classes of polytopes of interest in combinatorial
optimization (see [22] and also [14]). Eisenbrand and Schulz
established that for polytopes in [0, 1]n, the Chvátal rank is
at most 3n2 log(n), and furthermore that there is a family
of polytopes in the [0, 1]n that has Chvátal rank at least
(1 + ε)n (see [17]).

The proof of the following lemma is a generalization of the
geometric proof from [14] of the classical result by Chvátal
[13] that a clique inequality involving n variables requires at
least blog2 nc rounds of the Chvátal-Gomory hierarchy. Let

Pt be the polytope described by(8–10). So P(r)
t is its r-th

Chvátal closure.

Lemma 6. The point yr ∈ Rn defined by yri = 1
2
( t
t+1

)r,

for i = 1, . . . , n, is in P(r)
t .

Proof. We prove the lemma by induction on the number
r of rounds of the Chvátal closure. The base case r = 0 is
trivial since the solution (1/2, . . . , 1/2) is obviously feasible
for the linear program (8–10) for any parameter t ≥ 1.

We assume that yr−1 ∈ P(r−1)
t . Let

Pn
i=1 aiyi ≤ b be

a valid linear inequality for P(r−1)
t , with ai ∈ Z. Because

(0, . . . , 0) is a feasible integral solution for the linear program

(8–10), we obtain (0, . . . , 0) ∈ P(r−1)
t , and therefore b ≥ 0.

If ai ≤ 0 for all i = 1, . . . , n, then
Pn
i=1 aiy

r
i ≤ 0 ≤ bbc ≤ b.

Let A+ :=
P
i|ai>0 ai. If the vector (a1, . . . , an) has at

most t strictly positive components, then A+ ≤ b since any
integral solution with at most t variables equal to one and
the remaining variables equal to zero is a feasible integral
solution for the linear program (8–10), which implies that

such a solution must belong to P(r−1)
t . Moreover, because

A+ is an integer, we have A+ ≤ bbc. Therefore, we havePn
i=1 aiy

r
i < A+ ≤ bbc.

Consider now an inequality in which the vector (a1, . . . , an)
has more than t strictly positive components. Recall that
ai ∈ Z and hence these coefficients are at least 1. An integral
solution χ having any t of the respective coordinates equal
to one and remaining coordinates equal to zero is feasible
for (8–10); therefore t ≤

Pn
i=1 aiχi ≤ b. We obtain

nX
i=1

aiy
r
i =

t

t+ 1

nX
i=1

aiy
r−1
i ≤ t

t+ 1
b ≤ bbc,

which implies that yr ∈ P(r).

Corollary 2. The integrality gap of the linear-programming
relaxation obtained from the linear-programming relaxation
(8–10) after t rounds of Chvátal closure is Ω(n/t).

Proof. By the Lemma 6 there exists a feasible fractional

solution of value n
2

( t
t+1

)t = Ω(n) in P(t)
t , while the value of

the integral optimal solution is t.

Corollary 3. The Chvátal rank of the polytope defined
by (8–10) with t = n/4 is at least n/4.

Proof. Consider the inequality
Pn
i=1 yi ≤ t. This in-

equality is valid for all integer feasible solutions of the linear
programming relaxation (8–10). Let r be the smallest inte-

ger such that this inequality is valid for P(r)
t ; i.e., r is the

Chvátal rank of the inequality
Pn
i=1 yi ≤ t. By Lemma 6,

we obtain n
2

( t
t+1

)r ≤ t. Therefore,

r ≥ log2 n− log2(2t)

log2(1 + 1/t)
≥ t(log2 n− log2(2t)).

For t = n/4, the Chvátal rank is r ≥ n/4.

5. MATROID K-PARITY
Here we extend the analysis of local search to matroid

k-parity; i.e. instead of pairs, we work with hyperedges of
size k. We assume that k ≥ 3. In an instance of matroid k-
parity, all hyperedges are mutually disjoint. We remark that
our analysis extends to k-uniform matroid matching where
hyperedges need not be disjoint, by a standard reduction.

Interestingly, the analysis for k ≥ 3 is slightly different
and the complexity of our (k/2+ε)-approximation for k ≥ 3
has a much better dependence on ε than our PTAS for
k = 2 (matroid matching). More precisely, while we need
local moves of size exponential in 1/ε in order to achieve a



(1 + ε)-approximation for matroid matching, local moves of
size polynomial in 1/ε are sufficient to achieve a 1/(2/k −
ε)-approximation for matroid k-parity. We do not know
whether our analysis is optimal in terms of this dependence.

Definition 3. For feasible solutions A,B of matroid k-
parity, a local move of size s between A and B is a choice
of s − 1 hyperedges e1, . . . , es−1 from A, and s hyperedges
e′1, . . . , e

′
s from B, such that (A\

Ss−1
i=1 ei)∪

Ss
i=1 e

′
i is feasible.

Theorem 3. For any k ≥ 3 and ε > 0, a local-search
algorithm which considers local moves of size up to s(ε) =
d1/ε3e achieves a 1/(2/k− ε)-approximation for the matroid
k-parity problem.

This follows easily from the following characterization of
local optima.

Lemma 7. Let k ≥ 3, t ≥ 1, and A,B feasible solutions
to the matroid k-parity problem such that

|A| <
„

2

k
− 1

(k − 1)t

«
|B|.

Then there exists a local move of size (2k+ 1)t−1 between A
and B.

Note that in order to achieve a 1/(2/k−ε)-approximation,
it suffices to pick t = dlogk−1(1/ε)e and s(ε) = (2k+1)t−1 ≤
1/εlogk−1(2k+1). Then, if A is a local optimum and B is
a global optimum, the lemma implies that |A| ≥ (2/k −
1/(k − 1)t)|B| ≥ (2/k − ε)|B|. For simplicity, we replaced

1/εlogk−1(2k+1) by 1/ε3 in the statement of the theorem, but
for large k the dependency gets close to 1/ε.

It remains to prove the lemma.

Proof. (Lemma 7). Let A,B be feasible solutions as
above. (We assume for simplicity that A and B are disjoint,
otherwise we can contract the intersection, which only de-
creases the ratio |A|/|B|.) Because |A| < |B|, there exists
B′ ⊂ B, |B′| = |B| − |A| such that A ∪B′ is independent in
M. We proceed by induction on t.

Base case: t = 1.
Here, we have |A| < ( 2

k
− 1

k−1
)|B| < 1

k
|B|. Then, it is im-

possible that every hyperedge in B contains some element in
B \B′, because that would mean that |A| = |B \B′| ≥ 1

k
|B|.

Hence, there must be a hyperedge contained completely in-
side B′, which can be added to A without violating inde-
pendence. This means there is a local move of size one.

General case: t ≥ 2.
We assume that |A| = (2/k−ε)|B| and ε > 1

(k−1)t . Again,

if there is a hyperedge contained inside B′, we can add it to
A, and we are done. So let us assume that no hyperedge is
contained completely inside B′.

We use a counting argument to show that there must be
many hyperedges with exactly k − 1 elements in B′. Let a
denote the number of such hyperedges (|e∩B′| = k−1), and
b the number of hyperedges such that |e ∩ B′| ≤ k − 2. All
hyperedges in B fall into one of these two categories, hence
|B| = k(a+b). On the other hand, |B′| ≤ (k−1)a+(k−2)b
which means that |A| = |B| − |B′| ≥ a + 2b. We assumed
that |A| = (2/k − ε)|B|, which implies

a+ 2b ≤ |A| = (2/k − ε) |B| = (2− kε) (a+ b). (13)

We conclude that

a ≥ kε(a+ b). (14)

Let Q denote these a hyperedges in B and V (Q) denote the
elements of B that belongs to hyperedges in Q; each of them
contains exactly one element in B \ B′ and k − 1 elements
in B′. Let B0 = V (Q) ∩B′ and B1 = V (Q) ∩ (B \B′). We
have |B0| = (k − 1)a and |B1| = a.

LetM0 =M/B0 denote the matroid with B0 contracted.
Because A∪B0 ⊆ A∪B′ and B1∪B0 ⊆ B, both of which are
independent in M, we get that A and B1 are independent
in M0. Because |A| ≥ a + 2b ≥ |B1|, we can extend B1

by adding (possibly zero) elements from A, to form a M0-
independent set (A \A1) ∪B1 where |A1| = |B1| = a.

If A contains any hyperedge e with |e ∩ A1| ≥ 2, we find
a local move of size two as follows: ((A \ e) \A1) ∪B1 is an
independent set inM0, whose cardinality is at least |A\e|+2
(because A1 contains ≥ 2 elements of e). Therefore, A\e can
be extended to a set (A \ e) ∪ {x′, x′′} independent in M0,
such that x′, x′′ ∈ B1. The elements x′, x′′ are contained
in hyperedges e′, e′′ whose remaining elements are in B0.
Because (A \ e) ∪ {x′, x′′} is independent in M0 = M/B0,
any elements of B0 can be added for free, and (A\e)∪e′∪e′′
is independent in M. This defines a local move of size two.

The rest of the proof deals with the case in which there
is no hyperedge in A with more than 1 element in A1. Let
P be the collection of hyperedges in A intersecting A1; each
such hyperedge satisfies |e∩A1| = 1, and so |P | = |A1| = a.
Let A2 denote the remaining elements of P , i.e. A2 ⊆ A\A1

and |A2| = (k−1)a. Here we apply the inductive hypothesis.

The inductive step.
We define a new matroidM1 =M0/B1 =M/(B0 ∪B1).

By construction, the sets A∗ = A \ (A1 ∪ A2) and B∗ =
B \ (B0∪B1) are both independent inM1. They both form
a union of hyperedges and hence feasible solutions to the
matroid k-parity problem forM1. We have |A∗| = |A| − ka
and |B∗| = |B| − ka = kb. Using (13), we get

|A∗|
|B∗| =

|A| − ka
kb

=
(2− kε)(a+ b)− ka

kb
=

2

k
−ε− (k − 2 + kε)a

kb

and applying (14) to estimate a ≥ kbε, we get

|A∗|
|B∗| ≤

2

k
− ε− (k − 2 + kε)ε ≤ 2

k
− (k − 1)ε.

Because we assumed ε > 1
(k−1)t , we have

|A∗| <
„

2

k
− 1

(k − 1)t−1

«
|B∗|,

and we can apply the inductive hypothesis. There is a local
move of size s = (2k+1)t−2 between A∗ and B∗, i.e. a union

of s− 1 hyperedges Ã ⊆ A∗ and s hyperedges B̃ ⊆ B∗ such
that (A∗ \ Ã)∪ B̃ is independent inM1. Our goal is to find
a local move of size (2k + 1)s between A and B (in M).

We accomplish this by a construction essentially identi-
cal to the case of matroid parity. The set (A∗ \ Ã) ∪ B̃ is

independent in M1. Unfortunately, (A \ Ã) ∪ B̃ is not nec-
essarily independent, even in M. However, the set (A∗ \
Ã) ∪ A2 = A \ (A1 ∪ Ã) is independent in M1 = M0/B1,
because (A \ A1) ∪ B1 was constructed to be independent

in M0. Therefore, we can extend (A∗ \ Ã) ∪ B̃ to a set



(A∗ \ Ã)∪ B̃∪ (A2 \C2) independent inM1, where C2 ⊆ A2

and |C2| ≤ |B̃|. (If |A2| ≤ |B̃|, we just take C2 = A2.)

The new set (A∗ \ Ã) ∪ B̃ ∪ (A2 \C2) is also independent

inM0 (a weaker condition). So is (A∗ \ Ã)∪ (A2 \C2)∪A1,
as any subset of A is independent inM0. So, we can extend
(A∗\Ã)∪B̃∪(A2\C2) to a set (A∗\Ã)∪B̃∪(A2\C2)∪(A1\C1)

independent in M0, where C1 ⊆ A1 and |C1| ≤ |B̃|.
The set we have obtained is not necessarily a union of

hyperedges, so let us remove the entire hyperedge for each
element in C1 and C2. Let us denote by C′ the union of
all hyperedges intersecting C1 ∪ C2. Note that due to our
construction, C1 ∪ C2 ⊆ C′ ⊆ A1 ∪ A2. We also define
C′1 = C′ ∩ A1 and C′2 = C′ ∩ A2. We know that each
hyperedge on A1 ∪ A2 contains exactly one element in A1

and k − 1 elements in A2. Therefore, |C′2| = (k − 1)|C′1|,
and also |C′1| = 1

k
|C′| ≤ |C1 ∪C2| , because each element of

C1 ∪ C2 contributes at most one hyperedge to C′.
We obtain a feasible solution A+ = (A∗ \ Ã) ∪ B̃ ∪ (A2 \

C′2) ∪ (A1 \ C′1) in M0. Now, consider the set (A+ \ A1) ∪
B1 = (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C′2) ∪ B1. This is independent
inM0, because A+ \A1 was constructed to be independent
inM1 =M0/B1. Because A+ misses some elements in A1,
namely C′1, the cardinality of (A+\A1)∪B1 is actually larger
than |A+|, namely |(A+ \ A1) ∪ B1| = |A+| + |C′1|. Hence,
we can extend A+ by F1 ⊆ B1, |F1| = |C′1|, to obtain a
set A+ ∪ F1 independent in M0. The hyperedges touching
F1 have exactly 1 element in B1 and the remaining k − 1
elements in B0 (denote these by F0), hence we can add F0

for free and obtain an independent set A+∪F1∪F0 inM. We
have |F1| = |C′1| and |F0| = (k−1)|F1| = (k−1)|C′1| = |C′2|.
To conclude, we have found a feasible solution A+ ∪F1 ∪F0

in M, of cardinality

|A+ ∪ F1 ∪ F0| = |A+ ∪ C′1 ∪ C′2| = |(A \ Ã) ∪ B̃| > |A|.

Finally, let us estimate the size of this local move. We re-
moved Ã∪C′1 ∪C′2 from A, and added B̃ ∪F0 ∪F1 instead.
The size of C′1 is bounded by |C′1| ≤ |C1 ∪C2| ≤ 2|B̃|, hence

|F0 ∪ F1| = k|C′1| ≤ 2k|B̃|. In summary, we are adding at

most (2k + 1)|B̃| elements to A, i.e. the size of the local

move is at most (2k + 1)|B̃| = (2k + 1)t−1.

6. CONCLUSION
We have seen that a simple combinatorial algorithm per-

forms dramatically better than any known LP-based ap-
proach for matroid matching. Linear programming still holds
some promise for the k-uniform matchoid problem. Our 3

2
-

approximation for the weighted matchoid problem and the
results from [9] on the integrality gap of the hypergraph
matching problem motivate the following.

Conjecture 1. The integrality gap of the LP relaxation
(1–4) is k − 1 + 1

k
for the maximum weighted k-matchoid

problem and k − 1 for the maximum weighted k-matroid in-
tersection problem.

In the case of weighted matroid k-parity, we have the fol-
lowing conjecture, which is true (and tight) for the weighted
k-set packing problem due to [1, 3] and also for the weighted
k-matroid intersection problem due to [33].

Conjecture 2. The simple local-search algorithm for the
weighted matroid k-parity problem that tries to add/remove

a constant number of hyperedges in each iteration has ap-
proximation guarantee k−1 + ε for any ε > 0 (with running
time depending on 1/ε).

A very intriguing open problem is to show that this simple
local-search algorithm gives a PTAS for weighted matroid
parity (k = 2). This problem is interesting even for the spe-
cial case of linear matroids, because Lovász’ polynomial-time
algorithm applies only to the unweighted case (see [35]). For
the weighted linear case, there is only a pseudopolynomial-
time randomized exact algorithm [8] and pseudopolynomial-
time randomized parallel exact algorithm [40].

Another interesting line of research is to analyze more so-
phisticated local-search algorithms (see [5, 10]) implemented
for the weighted matroid k-parity problem. Such algorithms
are known to provide improved approximation guarantees
for the weighted set packing problem.
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Matching: the Power of Local Search, IBM Research
Report RC24898, 11/2009.

[35] L. Lovász, Matroid matching and some applications,
J. Comb. Th., Ser. B 28, 208–236, 1980.

[36] L. Lovász, The matroid matching problem. In: L.
Lovász, L., V.T. Sös (Eds.), “Algebraic Methods in
Graph Theory, Vol. II,” (Colloq. Szeged, 24–31 August
1978). Colloq., Math. Soc. Janos Bolyai 25,
North-Holland, 495–517, 1981.

[37] L. Lovász and M.D. Plummer, “Matching Theory,”
Annals of Disc. Math. 29, North-Holland, 1986.

[38] C. Mathieu and A. Sinclair, Sherali-Adams relaxations
of the matching polytope, in Proc. STOC 2009.

[39] J. Mestre, Greedy in approximation algorithms, in:
“Proc. of ESA,” 528–539, 2006.

[40] H. Narayanan, H. Saran and V. Vazirani, Randomized
Parallel Algorithms for Matroid Union and
Intersection, With Applications to Arboresences and
Edge-Disjoint Spanning Trees, SIAM Journal of
Computing 23(2), 387-397, (1994).

[41] J.B. Orlin, A fast, simpler algorithm for the matroid
parity problem, In: A. Lodi, A. Panconesi and
G. Rinaldi (Eds.), “Proceedings of the The 13th
IPCO,” (Bertinoro, Italy, 26–28 May 2008), LNCS
5035, 2008, 240–258.

[42] J.B. Orlin and J.H. Vande Vate, Solving the linear
matroid parity problem as a sequence of matroid
intersection problems,” Mathematical Programming,
47, 81–106, 1990.

[43] A. Recski, “Matroid theory and its applications in
electric network theory and in statics,” Algorithms and
Combinatorics 6, Springer Verlag, Berlin, 1989.
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