A Constant Factor Approximation for the Single Sink Edge Installation Problem

Sudipto Guha1 Adam Meyerson1 Kamesh Munagala1

ABSTRACT

We present the first constant approximation to the single sink buy-at-bulk network design problem, where we have to design a network by buying pipes of different costs and capacities per unit length to route demands at a set of sources to a single sink. The distances in the underlying network form a metric. This result improves the previous bound of O(\log |R|), where R is the set of sources. Our algorithms are combinatorial and can be derandomized easily at the cost of a constant factor loss in the approximation ratio.

1. INTRODUCTION

A typical network design problem requires laying cables on an underlying metric in order to connect a set of demand points. The network must support each demand point operating at a known peak (or average) rate, and we would like the cheapest possible network supporting these demands. If the cost of cables is linear in the amount of bandwidth they provide, this problem is polynomial-time solvable using multicommodity flow techniques. However, in several real applications the costs of cables obey economies of scale; the cost-per-unit-bandwidth is less for a higher-capacity cable. It is not hard to observe that the cost of a cable becomes a concave function of the demand. While this concave cost function reduces the total expenditure on cables, it also makes the problem NP-Hard [13].

1AT&T Research. This work was done while the author was a student in the Department of Computer Science, Stanford University CA 94305 with research Supported by IBM Research Fellowship, NSF Grant IIS-9811904 and NSF Award CCR-9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox Corporation. Email: sudipto@research.att.com.
2Department of Computer Science, Stanford University CA 94305. Supported by ARO DAAG-55-97-1-0221. Email: aam@cs.stanford.edu.
3Department of Computer Science, Stanford University CA 94305. Supported by ONR N00014-98-1-0589. Email: kamesh@cs.stanford.edu.

This problem arises in several other situations, in any general transportation network (data, telephony, or goods) where the cost of conduit is concave in the demand.

We consider the case where all demands need to connect to a core network. This core could represent the internet backbone, a set of file servers, or the factories where a product is produced. We call this problem the single-sink buy-at-bulk problem: even though there may exist multiple sinks, the sinks are symmetric in that demand points do not care to which sink they are connected. We may view the core nodes as being connected by edges of length zero, allowing us to treat them as a single sink.

Our algorithm provides the first constant factor approximation for the single-sink buy-at-bulk problem. It builds a solution tree recursively connecting pieces of the network into larger ones, considering each type of cable in turn and constructing alternate shortest-path and Steiner forests. This approach is very different from the techniques used earlier by [13, 2] which relied on approximating metrics using trees via the results of [3, 11, 4, 5]. Our algorithm utilizes more structure specific to the problem, and we are in the process of comparing it to previous approaches.

Our algorithm is randomized and combinatorial with a running time of O(kn^2 \log n), for n demand points and k cable types. This is significantly better than the linear programming-based approaches used by [2] and also improves upon the O(kn^2) running time for the O(\log n) combinatorial approximation given in [12].

The algorithm may be derandomized at the cost of additional constants in the approximation factor. However, the randomization simplifies the analysis greatly, and appears to be an interesting tool for hierarchical network design problems.

Our techniques build upon the results of Guha et al [9] for the Access Network Design problem, a special case of single sink buy-at-bulk. This problem was first defined by Andrews and Zhang [1], in which a feasible solution must utilize all cables to a minimum fractional capacity. They observed that the solution for the Access Network Design problem appears to be a recursive collection of shortest path trees. However, for the problem discussed herein, we show that the solution (upto constant factors, see Section 2) alternates between shortest-path and Steiner trees. The Steiner tree aspect arises due to the relaxation of the minimum fractional requirement, and does not allow a simple amortization of costs as used in [9]. Instead, we explore a different analysis technique which enables us to provide constant factor approximations for the buy-at-bulk problem and also

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. STOC '01, July 6-8, 2001, Hersonissos, Crete, Greece. Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.
improve the approximation factors for the Access Network Design problem.

For this analysis technique to work, we need to consider solutions of specific structure which preserves near-optimality. Using this structure theorem, we can also capture the near-optimal solution in a linear programming formulation. This allows an independent lower bounding technique for the buy-at-bulk problem. Our analysis shows a constant integrality gap. Garg et al. [8] show a $O(K)$ integrality gap for a less constrained but more natural LP formulation, where K is the number of different cable types.

Previous and Related Results

The problem of buy-at-bulk network design was first introduced by Salman et al. [13]. Related work includes the result of Awerbuch and Azar [2] which gives an $O(\log^2 n)$ approximation even in the case where different demand points must communicate with different sinks. This result may be improved to $O(\log n \log \log n)$ using subsequent results of Bartal [5] on probabilistic approximation of metrics using trees, and may be derandomized using the results of [6, 7].

Independent of this work, Garg et al. [8] obtained a $O(K)$ approximation (where K is the number of different cable types) to the single sink buy-at-bulk problem by rounding the natural LP formulation.

The Access Network Design problem, a special case of single sink buy-at-bulk, was introduced by Andrews and Zhang [1] and the first constant approximation was given by Guha et al. [9].

Meyerson et al. provided an $O(\log n)$ approximation in [12] for the more general problem where cable types may have limited availability.

Organization of the Paper

In Section 2, we state the single sink buy-at-bulk problem formally, and discuss some structural properties of the optimal solution. In Section 3, we discuss a scaling idea to remove similar pipe types, and show how it improves the structure of the optimal solution. We also show that the structure of this near-optimum solution (coupled with the constant approximation for this near optimal solution) immediately suggests a linear programming formulation with constant integrality gap. We then present the HIERARCHY algorithm in Section 4 and show a constant approximation ratio. We conclude by showing how to improve the approximation ratio for Access Network Design and to derandomize our algorithms.

2. PROBLEM STATEMENT

Given a graph $G(V, E)$ with distances on the edges, the goal is to construct a network routing a set $S_1 \subseteq V$ of demand nodes to a single sink s. We are given K types of connections (pipes) each with a fixed cost and a capacity. The cost of placing a pipe of fixed cost σ_k along a path of length L will be $\sigma_k L$. Each demand node $v \in S_1$ needs to transport some amount of demand d_v to the sink. The objective is to optimize the cost of buying pipes along the edges to route all demands to the sink. We are allowed to buy multiple copies of a pipe along the same link.

We will use an alternate formulation of this problem, introduced by Andrews and Zhang. Instead of each pipe having a capacity u_k, the pipes will have incremental cost defined by $\delta_k = \frac{\sigma_k}{u_k}$. This represents the per-unit-flow cost of the pipe. If we transport d units of demand along a path of length L using pipe k, we will pay a total of $L(\sigma_k + \delta_k d)$. It’s not hard to see that a solution under this formulation costs at least as much as the same solution under the capacitated model, and at most twice as much as the solution under the capacitated model.

If we number the pipes in increasing order of capacity, we observe the following conditions: $\sigma_1 < \sigma_2 < \cdots < \sigma_K$, and $\delta_1 > \delta_2 > \cdots > \delta_K$. We will define $f_k(D) = \sigma_k + \delta_k D$ to be the per-unit-distance cost of routing demand D along a pipe of type k. The capacity of pipe k is $u_k = \sigma_k / \delta_k$.

We will now try to identify structural properties in the optimal solution.

2.1 Structure of Optimal Solution

First, observe that as we increase demand along an edge, there are break-points at which it becomes cheaper to use the next larger pipe type. Let g_k be the demand for which it becomes cheaper to use a pipe of type $k + 1$ compared to a pipe of type k. Assume without loss of generality that $0 = g_0 < g_1 < g_2 < g_3 < \cdots < g_K < g_K = \infty$.

Observe now that if the demand amount is in the range $[g_{i-1}, u_i]$, we can ignore the incremental cost with a factor 2 loss in cost, and the cost of the edge will just be σ_i times the length of the edge, independent of the demand. If on the other hand, the demand is in the range $[u_i, g_i]$, we can ignore the fixed cost with a factor 2 loss in cost, and the cost of the edge per unit length is δ_i times the demand.

This implies that the optimum solution can be converted with a factor 2 loss in cost to a layered solution. Layer i has a Steiner forest using pipes of type i followed by a forest of shortest path trees using pipes of the same type. Each pipe in the Steiner forest has at least g_{i-1} demand and each pipe in the shortest path forest has at least u_i amount of demand.

3. LAYERED SOLUTION

In this section, we will strengthen the structure described above to obtain a layered solution with cost close to the optimal cost.

3.1 Removing Similar Pipes

Our algorithm will progressively construct partial solutions using each pipe type in turn. In order to bound the total cost, we must guarantee that pipes are very different from one another in terms of fixed and incremental costs. We will eliminate various pipe types in order to guarantee the following conditions hold for some positive α ($\alpha < \frac{1}{2}$ to be determined later).

1. For any $k < K$, we have $\sigma_k < \alpha \sigma_{k+1}$.
2. For any $k < K$, we have $\alpha \delta_k > \delta_{k+1}$.

We need to prove that we can guarantee these conditions without increasing the cost of the optimum solution by too much.

Lemma 3.1. We can eliminate pipes in order to guarantee that among the remaining pipes we have $\sigma_k < \alpha \sigma_{k+1}$ while increasing the fixed cost of the optimum solution by at most $1/\alpha$. The incremental cost of the optimum solution can only decrease.
Proof. We find the largest pipe k such that $\sigma_k \geq \alpha \delta_{k+1}$. We eliminate this pipe, replacing it in the optimum solution with pipe $k+1$. We renumber the pipes and repeat. Notice that if at some point some pipe type is replaced by pipes of type k, then we will always keep pipes of type k in the final solution (since every higher pipe type than k is at least α higher fixed cost). When this finishes, we will have the desired property. The original optimum solution with pipe replacements has fixed cost at most $1/\alpha$ larger since any pipe which was replaced was replaced by a pipe with at most $1/\alpha$ bigger fixed cost. The incremental cost can only decrease, since higher fixed cost implies smaller incremental cost. \hfill \square

A similar process allows us to guarantee the second condition.

Lemma 3.2. We can eliminate pipes in order to guarantee that among the remaining pipes we have $\alpha b_k > \delta_{k+1}$ while increasing the incremental cost of the optimum solution by at most $1/\alpha$. The fixed cost of the optimum solution can only decrease.

Combining these two lemmas, we can guarantee the two conditions with only a constant increase in the cost of the solution.

Theorem 3.1. There exists a solution which uses only the remaining pipes after elimination, and has cost at most $1/\alpha$ times the cost of the original optimum solution.

3.2 Solution Properties

We will define b_k to be such that $f_{k+1}(b_k) = 2\alpha f_k(b_k)$. We define b_k to be sufficient demand that it becomes considerably cheaper to use a pipe of type $k+1$ rather than a pipe of type k. We first show that $u_k \leq b_k \leq u_{k+1}$.

Lemma 3.3. $b_k \leq u_{k+1}$.

Proof. From the definition of b_k, we can write:

$$\sigma_{k+1} + \delta_{k+1} b_k = 2\alpha (\sigma_k + \delta_k b_k)$$

Solving this equation for b_k yields:

$$b_k = \frac{\sigma_{k+1} - 2\alpha \sigma_k}{2\alpha \delta_k - \delta_{k+1}} \leq \frac{\sigma_{k+1}}{2\alpha \delta_k - \delta_{k+1}} \leq \frac{\sigma_{k+1}}{\delta_{k+1}} = u_{k+1}$$

\hfill \square

Lemma 3.4. $b_k \geq u_k$

Proof. When we have b_k flow, it is cheaper to use a pipe of type $k+1$ rather than a pipe of type k. It follows that $\sigma_{k+1} + \delta_{k+1} b_k < \sigma_k + \delta_k b_k$. Solving this for b_k, we can see that

$$b_k \geq \frac{\sigma_{k+1} - \sigma_k}{\delta_k - \delta_{k+1}}$$

Since $\alpha < 1/2$, it follows that $\sigma_{k+1} > 2\sigma_k$ and we can conclude that $b_k \geq u_k$. \hfill \square

Lemma 3.5. For any demand $D \geq b_k$, $f_{k+1}(D) \leq 2\alpha f_k(D)$.

Proof. Suppose $D = b_k + x$ for some $x \geq 0$. Then,

$$f_{k+1}(D) = \sigma_{k+1} + \delta_{k+1}(b_k + x) = 2\alpha(\sigma_k + \delta_k b_k) + \delta_{k+1} x$$

Noting that $\delta_{k+1} \leq \alpha \delta_k$, it immediately follows that $f_{k+1}(D) \leq 2\alpha f_k(D)$. \hfill \square

There exists a near-optimum solution which uses pipe type $k+1$ only if at least b_k demand is being routed. This solution also routes all demand which enters a node using pipes of type k out of that node using pipes of types k or $k+1$. This structural observation about a nearly (within constant factor) optimum solution will be important in our proof of the approximation ratio, since we will approximate this near optimal structure.

Theorem 3.2. There exists a solution which uses pipe type $k+1$ on a link only if at least b_k demand is being routed across that link, and which routes all demand which entered a node using pipe k out of that node using pipes k and $k+1$. This solution pays at most $2/\alpha + 1$ times the optimum.

Proof. We consider the nodes of the optimum solution tree from the bottom up. Suppose a node has flow outgoing on a pipe of type k. We can conclude that all incoming flow was on pipes of type k or less, since otherwise we could improve the optimum solution by changing one of the pipe types. Consider the flow incoming on pipes of type i in increasing order of i. Either the total flow incoming on pipes of type i is at least b_i or it is not. If it is at least b_i, then we add a pipe of length zero from this node to itself; this pipe has type $i+1$ and carries the flow which was incoming on pipes of type i. Adding this pipe does not increase the cost of the solution, since the pipe has length zero. If there is not b_i demand incoming on pipes of type i, then we add a new pipe of type i from the node to its parent which will carry all the flow which was incoming on pipes of type i. The total flow traveling from this node to its parent has not changed. We can see that the new solution constructed will have the desired properties; we must guarantee that it is within a constant of optimum. Consider an edge in the optimum tree. The original optimum placed a pipe of type k here. We may have placed an additional pipe of each type 1 through $k-1$ along this edge. The pipe of type i routes at most b_i flow. The total cost of these additional pipes is therefore at most $\sum_{i=1}^{i=k-1} f_i(b_i)$. Using Lemma 3.3 and the definition of b_i, we can guarantee that $f_i(b_i) = \frac{1}{2\alpha} f_{i+1}(b_{i+1}) \leq \frac{1}{2\alpha} f_{i+1}(u_{i+1}) = 2\alpha \delta_{i+1}$. Substituting this into the equation, the additional pipe cost is at most $\frac{1}{\alpha^2} \sum_{i=2}^{k-1} \delta_i$. Because each fixed cost is at most half the next higher fixed cost, we can bound this sum by $\frac{1}{\alpha} \delta_k$ and the total cost of the solution has increased by at most a factor of $\frac{2}{\alpha} + 1$. \hfill \square

3.3 LP Formulation

We can encode the structural observation above into an integer program formulation. We denote by $x_{v,k}$ whether the demand at node v uses a pipe of type k on edge e. By $y_{v,k}$ we denote whether there exists a pipe of type k on edge e. Also, let $f_{k,l}$ denote a flow of type k on edge e that will use a pipe of type l on the next edge it traverses. Note
that the only valid \((k, l)\) pairs are \((k, k)\) and \((k, k+1)\). The integer program can then be formulated as follows\(^1\):

Minimize \(\sum_{e \in E} \sum_{k} \alpha_{e,k} \cdot y_{ek} + \sum_{e \in E} \sum_{k} \sum_{h} \delta_{h} \cdot d_{e} \cdot x_{veh} \)

\[\sum_{e \in \text{In}(v)} f_{e, k} + f_{ek} = \sum_{e \in \text{Out}(v)} f_{e, k+1} + f_{ek} \quad \forall v \in V, k \]

\[\sum_{v} d_{v} x_{veh} = f_{eh} + f_{eh+1} \quad \forall e \in E, k \]

\[x_{veh} \leq y_{k} \quad \forall e \in E, k \]

\[x_{veh}, y_{k} \in \{0, 1\} \]

Theorem 3.3. The linear relaxation of the above IP has constant integrality gap.

The proof of the above theorem follows easily from the algorithm described below. The only additional detail is the fact that the LPs for both Steiner tree construction and facility location problems have constant integrality gap.

4. The Algorithm

We will now present the Hierarchy algorithm for single sink buy-at-bulk based on the structural observations we made above. The scaling idea from the previous section allows us to compare the cost of our solution in each layer against the respective costs of the optimum solution.

Let \(s \) denote the sink node. Our algorithm constructs forests in layers. We will illustrate the construction for layer \(i \). Let \(S_i \) be the set of demand points we have at this stage. \(S_i \) is the original set of demand points. We include \(s \) in all the sets \(S_i \). Layer \(i \) will use pipe type \(i \) exclusively.

We will use the load balanced facility location problem \([9, 10]\) as a sub-routine below. This problem is a variant of the classical facility location problem, where we have a lower bound on the amount of demand any open facility must serve. We can approximate this to a constant factor of \(\mu \) provided we relax the lower bound by factor \(\beta = \frac{1 + \mu}{\mu} \). Here, \(r \) is the best known approximation for facility location, and can be taken as 1.728.

Steiner Trees Construct a Steiner tree on \(S_i \). The edge cost per unit length is \(\sigma_{i} \). Root this tree at \(s \). Transport the demands from \(S_i \) upwards along the tree. If on any edge, the amount of demand is larger than \(u_{i} \), we “cut” the tree at that edge. This gives us a forest on \(S_i \) where each edge has at most \(u_{i} \) demand through it.

Consolidate Consider any root in this forest. This has at least \(u_{i} \) amount of demand coming to it from nodes in \(S_i \). Let the set of demand points sending demand to some root \(j \) be \(S_{ij} \). Pick a node at random from \(S_{ij} \) in proportion to its demand and send all the demand at \(j \) to this node.

Shortest Path Trees We solve a load balanced facility location instance on \(S_i \) with the facility lower bound \(b_{i} \) on all nodes and the edge cost per unit length \(\delta_{i} \). If there does not exist \(b_{i} \) total demand, then we instead route directly to the sink. We get a forest of shortest path trees. We route our current demands along these trees to their roots.

Consolidate Consider any root in this forest. Some set of nodes from \(S_i \) were assigned to this root, and their (original) total demand is at least \(\beta b_{i} \). We choose one such node at random, in proportion to their original demands. We send all the demand from the root to the chosen node. We set \(S_{i+1} \) to these new demand locations.

Our solution will route the demands through the forests of increasing pipe types. This solution need not be a tree, but can easily be converted to one of no greater cost.

4.1 Analysis

We define \(C_{k} \) to be the total cost which this near-optimum solution pays using pipes of type \(k \). The total cost of the solution is therefore \(\sum_{k=1}^{K} C_{k} = C^{*} \).

Let \(d_{v} \) be the demand of node \(v \) in the original \(S_1 \) demands. We define \(D_{v} \) to be the demand at node \(v \) in the current stage of the algorithm.

Let \(T_{i}^{f} \) be the incremental cost of the Steiner Tree at layer \(i \) and \(T_{i}^{f} \) be its fixed cost. The total cost of the Steiner Tree at layer \(i \) is \(T_{i} = T_{i}^{f} + T_{i}^{f} \).

Let \(P_{i}^{f} \) be the incremental cost of the shortest path tree at layer \(i \) and \(P_{i}^{f} \) be its fixed cost. The total cost of the shortest path tree at layer \(i \) is \(P_{i} = P_{i}^{f} + P_{i}^{f} \).

Let \(N_{i} \) be the total cost of the consolidation steps for layer \(i \). The total cost of our solution is therefore \(\sum_{i} (T_{i} + P_{i} + N_{i}) \).

At each layer we will construct an overall solution to the problem on the nodes \(S_{i} \). Let \(C_{i}(j) \) represent the total cost which this solution on the nodes \(S_{i} \) pays using pipes of type \(j \).

Lemma 4.1. At the end of any consolidation step, every node has \(E[D_{v}] = d_{v} \).

Proof. We will prove this by induction on the steps \(i \).

Suppose that the statement is true at some step. We will show that it is true at the next step.

Suppose that the demand at node \(v \) after the previous consolidation step was \(x_{v} \). By the induction hypothesis, \(E[x_{v}] = d_{v} \). There are two cases to consider: either we performed a Steiner Tree step or a Shortest Path Tree step.

Suppose we have just performed a Steiner Tree step. The current node is routed to some root with total demand \(D \). We then choose a node for consolidation. The probability that we choose node \(v \) is \(x_{v}/D \). If we choose \(v \), demand \(D \) will be placed there; otherwise no demand can be placed there. Thus the expected amount of demand placed at \(v \) is \(x_{v} \); by induction we can claim that \(E[D_{v}] = E[x_{v}] = d_{v} \) as desired.

Suppose we have just performed a Shortest Path Tree step. The current node is routed to some root which would have demand \(D \) if the demands were as in the \(S_1 \) stage. The probability we consolidate to \(v \) is \(d_{v}/D \); if we do, the total demand at \(v \) will be the total of the current demands of all the nodes routed to this root. Let \(V \) be the set of nodes routed to \(v \). \(E[d_{v}] \) is therefore \(E[\frac{d_{v}}{D} \sum_{u \in V} x_{u}] \). Observe now that:

\[E[\sum_{u \in V} x_{u}] = \sum_{u \in V} E[x_{u}] = \sum_{u \in V} d_{u} = D \]
Thus \(E[D_v] = d_v. \)

Lemma 4.2. \(E[N_i] \leq T_i + P_i. \)

Proof. The consolidation step following a tree construction always has expected cost at most the cost of the tree construction.

Lemma 4.3. \(E[P_i^T] \leq \mu r \sum_{j=1}^{i-1} \alpha^{i-j} C_j. \)

Proof. Suppose the demands at the sources were those from \(S_1 \). Then one possible solution would be the optimum problem solution up until pipes of type \(i + 1 \) were used. We know that the optimum solution must the desired \(b_i \) flow before using pipes of type \(i + 1 \). It follows that we can find a solution with cost at most \(\mu r \) times the incremental cost of the optimum using pipes of type 1 through \(i \). Since we will always pay the incremental cost \(b_i \), and the incremental costs scale by \(\alpha \), we can guarantee a total cost of at most \(\sum_{j=1}^{i-1} \alpha^{i-j} C_j \) for this solution. Our actual demand at each node has expected value equal to the original demand, so the expected value of \(P_i^T \) is bounded as above.

Lemma 4.4. \(P_i^F \leq P_i. \)

Proof. The Steiner Tree stage guarantees at least \(u_k \) demand or zero everywhere. If an edge has zero demand flowing on it, we will pay zero for that edge. Otherwise there is at least \(u_k \) demand on the edge and we pay an incremental cost which exceeds the fixed cost.

Lemma 4.5. Let \(D_v \) be the demand at \(v \in S_1 \), where \(v \neq s \). Then, \(E[D_v] \geq \beta b_{i-1}. \)

Proof. We obtain the nodes \(S_i \) by solving a load balanced facility location instance on \(S_1 \) with lower bounds \(b_{i-1}. \) In this solution, each node in \(S_i \) except \(s \) has demand at least \(\beta b_{i-1}. \) Consider any node \(w \in S_1 \), and suppose that the demand our solution so far has there is \(x_w. \) Then, \(E[x_w] = d_w. \) Therefore, \(E[D_v] \geq \beta b_{i-1}. \)

Lemma 4.6. At stage \(i \) we can construct a solution which uses only pipes of \(i \) and higher. This solution has cost \(C_i(j) \) using pipes of type \(j \), where \(E[C_i(j)] \leq C_j \) for \(j > i \) and \(C_i(j) = 0 \) for \(j < i \), and \(E[C_i(i)] \leq \sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j. \)

Proof. For \(i = 1 \) we use the near-optimum solution itself and the claim follows immediately.

Consider stage \(i \). If we use the pipes as in the near-optimum solution, our expected cost using each pipe type \(j \) would be equal to \(C_j. \) For each pipe of type \(j < i \), we remove the pipe if the total demand flowing across it is zero. Otherwise we replace the pipe with a pipe of type \(i \). The cost of this replacement pipe is \(f_i(D) \) where \(D \) is the demand flowing across it. Given that the demand is nonzero, the node must lie along the path from one of the chosen consolidation nodes from the previous stage. Each of these nodes has expected demand at least \(\beta b_{i-1}. \) It follows that \(E[f_i(D)] \leq \frac{1}{\beta(2\alpha)^{i-j}} f_j(D). \) We can therefore bound the cost of this modified solution using pipes of type \(i \) by an expected \(\sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j. \)

Lemma 4.7. \(E[T_i^F] \leq 2 \sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j. \)

Proof. The solution given in Lemma 4.6 is one possible Steiner tree. The fixed cost of this Steiner tree is bounded by the following expected cost:

\[\sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j. \]

This holds because the cost on a pipe of type \(i + k \) will be reduced by \(\alpha^k \) since we pay only for a pipe of type \(i \). We can find a Steiner Tree of at most twice this cost, so the claim follows.

Lemma 4.8. \(T_i^F \leq T_i^P. \)

Proof. Since we cut the tree at any edge with more than \(u_k \) demand along it, we guarantee that the fixed cost paid on any edge we actually use exceeds the incremental cost.

Theorem 4.1. The Hierarchy algorithm is a constant-approximation for single-sink buy-at-bulk.

Proof. The total cost of our solution is bounded by \(\sum (2T_i^P + 2P_i^F). \) Using Lemmas 4.3 and 4.7, we conclude that the expected cost of our solution is bounded by the following:

\[4 \sum (2 \sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j) + 2 \sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j + \mu r \sum_{j=1}^{i-1} \frac{1}{\beta(2\alpha)^{i-j}} C_j. \]

By reversing orders of summation, we can bound this by:

\[4 \left(\frac{2}{1 - \alpha} + \frac{2}{\beta(1 - 2\alpha)} + \frac{\mu r}{1 - \alpha} \right) C^*. \]

This is our approximation against the near-optimum solution. Theorem 3.2 allows us to bound our overall approximation ratio by:

\[\frac{4(\frac{2}{\alpha})(1 + \frac{2}{\alpha})(\frac{2}{1 - \alpha} + \frac{2}{\beta(1 - 2\alpha)} + \frac{\mu r}{1 - \alpha})}{1 - \alpha}. \]

5. IMPROVED ALGORITHM FOR ACCESS NETWORK DESIGN

The Access Network Design problem is a special case of Single Sink buy-at-bulk with additional restrictions on the costs of the pipe types. The main restriction is that a type \(k \) pipe is cheaper only when it routes significant demand. Formally, the restrictions can be stated as follows:

1. For \(2 \leq k \leq K \), if \(d < \frac{\alpha}{\delta_k} \), then \(d\delta_k + \sigma_k < d\delta_k + \sigma_k \).
2. The smallest demand looks like the smallest pipe capacity, or more precisely, \(d \cdot \delta_1 > \sigma_1 \).
3. $\sum_{k<h} \sigma_k = O(\sigma_h)$.

Andrews and Zhang [1] show that the optimal solution can be converted with a constant factor loss into a layered solution of shortest path forests.

We can improve the analysis of the above algorithm for Access Network Design. As shown in [9], for the Access Network Design, we have a layered shortest path forest solution with a reduction in cost at each layer. We can prove the following theorem:

Theorem 5.1. There exists a solution to the Access Network Design problem in which only we pipe types satisfying the condition $\phi_i = \frac{\delta_i}{\delta_{i-1}} \leq \alpha$, and in which any pipe of type i has at least u_i amount of demand flowing through it. The fixed and incremental costs of this solution are each within $\frac{1}{\alpha}$ of the original optimum which used all pipe types and which had at least u_i demand in any pipe of type k.

Let $\phi_k = \frac{\delta_k}{\delta_{k-1}}$. We can assume with a loss of $\frac{1}{\alpha}$ in the approximation ratio that all $\phi_k \leq \alpha < 1$. Our algorithm will lay pipes in increasing order of types.

Let S_i denote the demand points at stage i. We maintain the invariant that every demand point has at least βu_i demand. We solve the load balanced facility location instance on S_i with lower bound u_{i+1} (except on the sink s). We route the demands to the open facilities using pipes of type i. For every open facility, we choose one of the demand points sending demand to it at random in proportion to its demand, and route all the demand to this point using pipes of type $i + 1$. Let S_{i+1} be the final set of demand points to where we route the demands. Note that every demand point has at least βu_{i+1} demand.

Let P_i^i be the routing cost at stage i, and let P_i^F be the fixed cost. Note that $P_i^F \leq \frac{1}{\alpha} P_i^i$ because of the invariant on the demands.

We define C_i^* to be the total incremental cost incurred by the optimal solution using pipes of type i. Note that the total cost of the optimal solution is $C^* \geq \sum_i C_i^*$.

Lemma 5.1. $E[P_i^i] \leq \mu r(1 + \alpha)(\sum_j \alpha^{j-i-1} C_i^*)$.

Proof. The routing cost that the optimum solution pays in routing the original demand points till stage i using pipes of type i is at most $\sum_j \alpha^{-j-i-1} C_i^*$. This follows from [9] and from the analysis in Section 4. This is an instance of the load balanced facility location problem, and so the expected cost of our solution is within μr times this solution. For routing back to randomly chosen nodes, we pay α times this cost in the expected sense, as we use a pipe of larger type. \qed

It is now easy to see the following.

Lemma 5.2. $E[\sum_i (P_i^i + P_i^F)] \leq (1 + \frac{1}{\alpha})\mu r \frac{1}{\alpha(1-\alpha)} C^*$.

Note that we lost a factor of $\frac{1}{\alpha}$ up front in the routing cost because of scaling the pipe types. Our approximation ratio is therefore $\frac{2\mu^2 \frac{1}{\alpha(1-\alpha)}}{2\mu^2 + 1}$. Choosing $\mu = 2$ and $\alpha = \sqrt{2} - 1$, we have a 80.566 approximation.

Theorem 5.2. We have a randomized constant approximation for Access Network Design.

6. DERANDOMIZATION

The algorithms mentioned above can be derandomized as follows. Instead of constructing the trees starting from S_1, we construct it from the nodes in S_{i-1} and do not route back. The cost we pay in the layer i has geometrically decreasing contribution from previous layers. We omit the details.

7. REFERENCES

