
COST-DISTANCE: Two Metric Network Design

Adam Meyerson
�

Kamesh Munagala
�

Serge Plotkin
�

Abstract

We present the COST-DISTANCE problem: finding a
Steiner tree which optimizes the sum of edge costs along
one metric and the sum of source-sink distances along an
unrelated second metric. We give the first known �����	��

���
randomized approximation scheme for COST-DISTANCE,
where � is the number of sources. We reduce several com-
mon network design problems to COST-DISTANCE, ob-
taining (in some cases) the first known logarithmic ap-
proximation for them. These problems include single-sink
buy-at-bulk with variable pipe types between different sets
of nodes, facility location with buy-at-bulk type costs on
edges, constructing single source multicast trees with good
cost and delay properties, and multi-level facility location.
Our algorithm is also easier to implement and significantly
faster than previously known algorithms for buy-at-bulk de-
sign problems.

1 Introduction

Consider designing a network from the ground up. We
are given a set of customers, and need to place various
servers and network links in order to cheaply provide suf-
ficient service. If we only need to place the servers, this
becomes the facility location problem and constant-factor
approximations are known [28, 12, 19]. If a single server
handles all customers, and we impose the additional con-
straint that the set of available network link types is the
same for every pair of nodes (subject to constant scaling
factors on cost) then this is the single sink buy-at-bulk prob-
lem [27, 5]. We give the first known approximation for the
general version of this problem to optimize both placement
of servers and network topology.
�
Supported by ARO DAAG-55-97-1-0221. Department of

Computer Science, Stanford University CA 94305. Email:
awm@cs.stanford.edu.�

Supported by ONR N00014-98-1-0589. Department of
Computer Science, Stanford University CA 94305. Email:
kamesh@cs.stanford.edu.�

Supported by ARO DAAG55-98-1-0170 and ONR N00014-98-1-
0589. Department of Computer Science, Stanford University CA 94305.
Email: plotkin@cs.stanford.edu.

We reduce the network design problem to the following
theoretical framework, which we call the COST-DISTANCE

problem. We are given a graph with a single distinguished
sink node (server). Every edge in this graph can be mea-
sured along two metrics; the first will be called cost and
the second will be length. Note that the two metrics are
entirely independent, and that there may be any number of
parallel edges in the graph. We are given a set of sources
(customers). Our objective is to construct a Steiner tree
connecting the sources to the sink while minimizing the
combined sum of the cost of the edges in the tree and sum
over sources of the weighted length from source to sink.
Note that our definition is a direct generalization of both
the shortest path tree and the minimum cost Steiner tree. If
costs and lengths are proportional, then constant-factor ap-
proximations [21, 6] are known.

We obtain the first general approximation algorithm for
this problem with unrelated metrics. We prove an ex-
pected competitive ratio of �����	��
�� ��� � (where � is the set
of sources) for our randomized algorithm. The algorithm
is fairly simple to implement and runs in a relatively fast
����� ��� �����������	��
 �!��� time bound.

Many standard problems in network design can be re-
duced to COST-DISTANCE. In particular, we describe
simple reductions from single source buy-at-bulk and the
metric facility location problem. Besides improving best-
known performance bounds for single-source buy-at-bulk,
we demonstrate that a natural combination of facility loca-
tion and buy-at-bulk can be solved by reduction to COST-
DISTANCE. In fact, we can generalize single-source buy-
at-bulk to account for a scenario where not all network link
types are available between every pair of nodes, or where
costs do not scale linearly. This better models real-life sit-
uations where certain types of hardware may not be avail-
able (or may not be practical to install) in certain locations.
Our algorithm provides the first known approximation for
this more general problem. We also obtain the first known
combinatorial approximations for the metric multi-level un-
capacitated facility location problem [20, 1], and for con-
structing single source multicast trees with good cost and
average per receiver delay [26].

From a more theoretical standpoint, consider routing
single-source traffic through a graph where each edge has

some function relating the total traffic along the edge to the
cost of routing that traffic. If all functions are convex in-
creasing (nondecreasing derivative) then exact solutions are
known using min-cost flow techniques. We present the first
approximations for the case where all functions are con-
cave increasing (nonincreasing derivative). Previous work
on buy-at-bulk [5, 4, 27] required that the concave functions
between each pair of nodes be identical up to a constant
scaling factor; we eliminate this requirement.

In addition to generalizing previous results, our algo-
rithm is easy to implement and has a small running time.
This makes it the algorithm of choice for many of the prob-
lems we have previously described. For example, previ-
ous algorithms for single-source buy-at-bulk depended on
complicated methods of randomly selecting trees which ap-
proximate stretch [7, 8, 10, 11]. The algorithm for Access
Network Design [4] depended on linear programming re-
laxation. Our algorithm’s most time-consuming subroutine
is single-pair shortest path.

Summary of Previous Results

If the cost and delay metrics are proportional, the offline
version of COST-DISTANCE has constant factor approxima-
tion [6, 21], and there is an online algorithm performing a
small number of rerouting of existing nodes [14]. If the cost
and delay metrics are unrelated, this problem has no previ-
ously known approximation algorithm.

A related problem is to find a tree with low cost in the �
metric such that the diameter is no more than

�
in the � met-

ric. This problem has an �����	��
 � ����� �	��
 � ��� � approximation
on the cost and diameter [24, 23]. Our algorithm for COST-
DISTANCE has the same basic structure and proof idea as
the algorithm in [24].

Previous results for related network design problems are
discussed in detail in Section 5.

2 The COST-DISTANCE Problem

We are given a graph ��� �	�
��� � along with a set of
source vertices ��
�� which need to be connected to a
single sink vertex ����� . We have two metrics along this
graph. We will call the first metric cost, ������������ and
the second metric length �������� �!� . We are also given a
weighting function "#���$��%�!� on the sources. We denote
the two metrics on an edge & as �'� �	& �(��� �'& ��� .

We are asked to find a connected subgraph �*)+�
�	�,)'���*)	�-
.� which contains all sources (�/
��0)) and
the sink (�1�2�)) such that the following sum is minimized:

3
4�57698
� �	& �!� 3

:�5<;
" �'= � �) �'=<�>� �

Here
�) �'=<�>� � is the total length of the min-length path

from = to � along the edges of �*) .
Our algorithm will give an �����	��
 � ��� � approximation to

this sum. It is important to notice that our approximation
ratio does not depend on the number of edges, since there
may potentially be a large number of edges connecting the
same pair of nodes (��? � �).

3 The Algorithm

The algorithm works by pairing up sources (or pairing
sources with sink) until only the sink remains. At each stage
we find a matching on the nodes, then choose one node from
each matched pair to be “center.” We transport the weight
from the non-center node to the center, paying the appro-
priate edge costs and weight times distance costs. We then
repeat this process on the centers until the sink is the only
remaining node. The details of the algorithm follow.

1. Define �A@�� �CB$DE�GF and "H@��I" . Create empty set
�,) .

2. Set JK�ML .
3. For every pair of non-sink nodes �ONK�>P ��� �RQ :
S Find the shortest NUT�P path in � according to the

metric V �	& �W�����	& �!� �YX[Z]_^a`OX[Zb_c(`X[Zb_^a` � X[Zb_c(` ���	& �S Define d Q �ONK�>P � to be the length under metric
V �	& � of this path.

4. For every non-sink node N2� � Q :
S Find the shortest N,Te� path in � according to the

metric V �	& �W�����	& �!�f" Q �	N �>� �'& �
S Define dgQ �ONK�>� � to be the length under metric
V �	& � of this path.

5. Find a matching between nodes in �9Q such that the
number of unmatched nodes plus half the number
of matched nodes is at most �RQbhji and the value ofk
_^<l c(`Om!nGo	p]q 4sr d Q �ONK�>P � is at most t times the value

of the minimum d Q -cost perfect matching. We assume
i and t are known constants.

6. For each matched pair �ONK�>P � add the edges on the path
defining d Q �	N9�YP � to the set �*) .

7. Create an empty set �RQ �Ku
8. For each pair of non-sink matched nodes �	N9�YP � :
S Choose N to be the center with probability
"HQ �ON �Yh��O"!Q �ON � �$"!Q��	P ��� . Otherwise P will be the
center.

S Add the chosen center to �RQ �Ku and assign the cen-
ter a weight "�Q �9u �	� & ���s& � � � "HQ �ON �!�f"!Q��	P � .

9. Add all unmatched nodes N � �RQ to � Q �9u and define
" Q �9u �ON �W��" Q �ON � .

10. Add the sink to � Q �9u .
11. If � Q �Ku contains only the sink, we are done. Otherwise

increment J and return to step 3.

12. We return �)K� �	�,) �G�,) � where �*) is the set of edges
we constructed and �) is the set of adjacent nodes.

Each time through the steps, the size of our set �9Q is re-
duced by i . Thus the process terminates after �	��
�� � ��� iter-
ations.

A little more detail is needed in step 5. We could find
the minimum cost perfect matching on the set in polyno-
mial time, obtaining i � �

and t ��� . Polynomial-time
algorithms are known for minimum-cost perfect matching
on non-bipartite graphs [25]. However, these algorithms
tend to be impractical1. The following simpler procedure
will work for us, causing only a small constant loss in
our approximation ratio. We will find the cheapest pair of
nodes to connect (minimum d Q��ONK�>P �) and match them. We
then remove these two nodes from consideration and repeat.
We continue this process until half the nodes have been
matched. The � th pair which we choose to match must have
had matching cost at most equal to the (

� �0T��)st cheapest
edge in the perfect matching, according to the deQ metric. It
follows that our total d Q -cost is at most half the dgQ -cost of
the perfect matching, guaranteeing i ��	 h�
 and t ���jh � .

Each iteration of this algorithm finds shortest paths be-
tween all pairs in � Q . Since the metric is different for each
pair, we cannot use all-pairs shortest path computations.
Instead we perform � � Q � � single pair shortest paths. We
first take ����� � time to compute the metric on every edge.
Using Dijkstra’s Algorithm, we can compute the shortest
path between a single pair of nodes in ����� � ���	��
 �!�
time. The matching step (stage 5) can be performed in
����� ��Q � � �	��
 � ��Q � � time. It follows that iteration J takes at
most ��� � � Q � � ��� � ���	��
 �!��� time. Since the size of � Q re-
duces by constant i each iteration, when we sum over itera-
tions the total running time looks like ����� ��� � ��� � ���	��
 �!��� .

4 Analysis

The optimal solution will be a tree, which we will call
��
. To see this, notice that we can take any graph and

produce the shortest-path (according to the length metric)
tree connecting the sink to all sources. This shortest-path

1We could use the ����������������� approximation algorithm in [15] to get�� "!
and # "! . Here, � is the total number of nodes in the graph.

tree will have total cost at most the total cost of the graph
and a distance-to-sink from every source node equal to the
distance-to-sink from the graph. It follows that the optimal
solution must be a tree, since a non-tree solution immedi-
ately gives rise to a tree solution with equal or superior total
value.

We define the following quantities:$ � � k 4�5&%(' ���	& � .��� �OP �U� Total length of edges along the path from P to
the sink in

)�
.*+� � k c 5<; " �OP �

�,� �	P � .
The total “value” of the optimal solution which we will

need to approximate is
$ � � *+� . At each stage in our algo-

rithm, we have some set of nodes �RQ which we are trying to
connect. We define the following potential function:

* �Q � 3
c 5<; Z
" Q �	P � � � �OP �

Notice that
*-�@ � *+� .

Since our algorithm is randomized, we need to analyze
the expected performance. Each stage of the algorithm
transports some weight from matched nodes to chosen cen-
ters. We can define the value of stage J to be the total cost of
the edges used in stage J matching plus the cost to transport
the weight across the appropriate edges to the center. The
total value of our solution will then be the sum of the values
of the stages.

We first prove a lemma bounding the expected potential
function at each stage.

Lemma 4.1 For every stage J , E . *-�Q0/21 *+�
.

Proof: The proof will be by induction. For J � L we know*+�@ � *+� . Consider stage J43 L . Suppose we matched N
and P in our previous matching. The contribution of N and
P to

*+�Q65 u was "!Q75 u �	N �
��� �ON � �C"!Q75 u �	P �

��� �OP � . We choose
a random center. The expected distance from center to sink
is now:

"!Q65 u �ON �
��� �ON � �f"HQ65 u �OP �

�,� �OP �
" Q75 u �ON � �$" Q65 u �OP �

The weight of the new center is " Q75 u �	N � � "!Q75 u �	P � . It
follows that the new center’s expected contribution to

* �Q is
also " Q75 u �	N �

��� �ON � �0" Q65 u �OP �
��� �OP � . Of course, unmatched

nodes contribute equally much to both potentials, and nodes
matched with the source contribute less to

*8�Q since their
weight will disappear. Thus the expected value of

*9�Q is
at most

*-�Q75 u . It follows that E . *-�Q /:1 E . *-�Q65 u / and the
inductive hypothesis implies E . *8�Q;/21 *-� .

We will now relate the value of a stage to the metric
d Q on which we approximated a min-cost perfect match-
ing. This will allow us to bound the expected value of each
stage.

Lemma 4.2 Given a tree

 � �	���G� � and a set of nodes

��� � , there exists a perfect matching of the nodes in �
which uses each edge of the tree at most once.

Proof: The proof will be by induction on the number of
edges in the tree. If the tree includes zero edges, then
� � �W� � and the result is trivially true. Consider a larger
tree. Suppose P � � is a leaf of this tree. If P is not in-
cluded in � , then we can remove P and the edge connecting
it to its parent from the tree to produce a smaller tree,

) .
We inductively produce a perfect matching of the nodes in
� on

) and use the same matching for

. If P is included
in � , then we consider P ’s parent node. If the parent node is
also in � , then we match P with its parent. We then remove
P and it’s edge from the tree to produce

) and inductively
match the rest of � on

) . If the parent node is not in � , we
produce �W) by removing P from � and adding P ’s parent.
We again produce

) and match the nodes. Some node N
is matched to P ’s parent. We will use the identical match-
ing to the one on

) except that we will match P with N by
adding the edge from P to its parent to the relevent path.
This produces the desired matching.

This result previously appeared in [24].

Lemma 4.3 The expected value of stage J at most t � � *8� �$ � � .
Proof: Consider the tree

 �
. By matching the nodes in

� Q in the proper way, we can guarantee that we use only
edges in

)�
and no edge more than once as in lemma 4.2.

This matching has edges with total cost at most
$ �

. The
fraction

� "!Q��ON �]"!Q �OP �Yh��O"!Q��	N � � "!Q �OP � � is at most twice the
minimum of the two weights. Each edge in our matching
would have to be along the path-to-source in the optimal
tree for one of the two matched nodes. It follows that:

3

_^<l c(`Om!nGo	p]q 4sr
d Q �ONK�>P � 1 $ � � � * �Q

The minimum-cost perfect matching along metric d Q
must do at least this well. Since the matching we actu-
ally use has cost at most t times the minimum-cost per-
fect matching, we guarantee a matching of d Q -cost at most
t � $ � � � *-�Q � . We need to relate this cost to the value of the
stage.

The value of the stage is the total cost to transfer weight
from matched nodes to their centers. Suppose we match
N and P . If we choose P as the center, then we need to
transport N ’s weight over to P . This induces a value of
" Q �ON �s���ONK�>P � in addition to the value induced by the cost
of edges used. On the other hand, if we choose N as cen-
ter then we pay "!Q �OP �s���ONK�>P � plus edge costs. The expected
value is thus

"!Q��	P �s"!Q �	N �>� �	N9�YP � �f"!Q��	N �s"HQ �OP �s���ONK�>P �
" Q �ON � �$" Q �OP � � � �ONK�>P �

Notice that this expected value is exactly deQ �	N9�YP � . It
follows that the expected value of the stage is equal to the
total d
Q -cost of the matching found; at most t � $ � � � * �Q � .
This of course depends on

*"�Q , a random variable with ex-
pected value at most

*-�
(as per lemma 4.1). It follows that

the expected value of stage J is at most t � � *"� � $ � � as
desired.

Theorem 4.1 We obtain approximation ratio� t �	��
�� � � �7� ����� ��
 � ��� � to the optimal.

Proof: The expected value of our solution is equal to the
sum of expected value of stages. This gives us total value
E . � /91 k Q E . � Q / . Using lemma 4.3 and our bound on
the total number of stages, we can bound this by E . � /)1
t ���	��
�� � ��� � � � *+� � $ � � . Since the optimal solution has
value

* � � $4� , this proves the desired approximation ratio.

Using the described greedy algorithm to find a match-
ing, we will attain expected approximation ratio �	��
������ � ��� ;
exact perfect matchings would improve this to

� �	��
 � � ��� .
There will be a small additional loss in the last stages where
an uneven number of nodes could cause a few additional
steps, however our total approximation will remain bounded
by an expected ����� ��
 � ��� � .

We note that since the algorithm can optimize any linear
combination of cost and distance, we can use the technique
in [24] to obtain a � �����	��
 � ��� �(� �����	��
 � ��� � � approximation
to the bicriteria problem of optimizing the cost given total
distance and vice versa.

5 Relation to Network Design Problems

We will demonstrate approximation-preserving reduc-
tions from many commonly encountered network design
probems to special cases of COST-DISTANCE. We em-
phasize that for all these problems, our algorithm produces
a logarithmic approximation ratio, while being (in gen-
eral) simpler to implement and faster to run than previously
known algorithms.

5.1 Multicast Tree Design

In this problem, we are given a network � � �W��� � with
costs and delays on the edges. We have a source node =,� �
and receivers �	�%� for multicast data. The goal is to
construct a tree

connecting the source to � so that the sum

of the cost of the tree and the delays seen by the receivers

is small. This problem is equivalent to COST-DISTANCE if
the distance metric are the delays.

This problem has been extensively in the networks com-
munity [9, 18, 22, 26, 31], and many heuristics have been
proposed. This problem also arises in the context of wire
routing in programmable gate arrays and VLSI circuits [3].
We present the first approximation for this problem. Our
approximation ratio is �����	��
 � � � � .

Note that our scheme works for the following problem
as well. Each receiver J specifies a maximum delay

* Q , and
the goal is to construct the cheapest tree that satisfies all the
delay requirements. The cost of our tree is �����	��
 � � � � times
the optimal cost, while the delay seen by receiver J is no
more than �����	��
�� � � � * Q .
5.2 Metric Facility Location

We are given a weighted undirected graph � � �W��� � with
a cost per unit demand �$�!� � � on the edges, which
forms a metric. We have a set of demand points

* � �
with demands � Q , and a set of facility locations � � � with
facility costs � Q . The goal is to open a subset of the facilities
and assign demands to the open facilities so that the sum
of cost of opening the facilities and the cost of routing the
demand to the facilities is minimized.

For edge & in the graph, the bicriteria cost function is
�	L ��� �	& ��� . We add a dummy sink and connect it to all the
facilities. For facility J , the cost of the edge is ��� Q>��L�� . The
demand points will be our source vertices (� � *) and their
weights will be equal to the demands (" �OP � ��� c). The
cost of a COST-DISTANCE solution on this modified graph
is identical to the cost of its corresponding facility-location
solution, so it follows that the reduction is approximation-
preserving.

We can also consider the capacitated version of this prob-
lem, where facility J has capacity N Q . We can open multiple
copies of a facility, but each copy opened at location J costs
� Q . Again, we modify the graph exactly as before, but as-
sign cost ��� Q ��� Z^aZ � on the edge connecting the sink to facility
J . This causes the loss of an additional factor of two (at
most) in the approximation ratio.

We have therefore obtained a ����� ��
 � � * � ��� approxima-
tion to these problems. Note that constant factor approxi-
mations are known for this problem [12, 19, 28].

5.3 Extended Single Sink Buy-at-bulk

In this problem [27], we are given a weighted graph
� �'� �Y� � with length function � � � � � . A subset � �M�
of nodes have demands � Q . We have a special sink node � to
which all this demand must be routed. The demand must be
routed by choosing a tree and buying pipes along this tree.
There are d types of pipes. The type J pipe has cost � Q per

unit length and capacity N�Q . We assume d is ��� poly � � � � ��� .
The goal is to minimize the total cost of pipe bought.

We modify the graph as follows. Replace every edge &
in the graph with d parallel edges & u �Y& � ���	�	�E�Y&�
 . The edge
&aQ has bicriteria cost �'� �	& �>� QY�Y� �'& � pbZ^ Z � . The weight of a node
is its demand. This new graph is the instance of COST-
DISTANCE that we solve. Intuitively, � �'& �s� Q is the fixed cost
of using pipe J , and � �'& � pbZ^ Z is the incremental cost of routing
demand.

It is implicit in the work of [5, 27] that the optimum tree
with the modified cost function is no more than a factor

�
away from the optimum tree for the original problem.

The best previously known approximation for this prob-
lem is �����	��
�� � � �	��
 �	��
 � ��� � which follows by applying the
techniques in [11] to the algorithm in [5]. These algorithms
are based on the work in [7, 8, 10, 11] which show how to
approximate any finite metric by a tree metric so that the
distance between any two nodes in the graph is approxi-
mated well. For the special case of d ��� , Salman et al [27]
showed a constant factor approximation by using previous
results [6, 21] on balancing Steiner trees with shortest path
trees.

All previous approximations assumed that all the d
pipes are available between all pairs of nodes; it is straight-
forward to see that we can do away with this restriction.
This problem arises naturally in network design. There may
be a fixed cost of laying cables which depends on the loca-
tion but is independent of the type of cable being laid (per-
haps the cost of installing the cable outweighs the cost of the
cable itself). Alternatively, certain types of services might
not be available in certain locations. Our algorithm is the
first to handle these sorts of situations.

5.4 Facility Location with Buy-at-Bulk

We can define a combination of the previous problems as
follows. We are given the same graph as in the (capacitated)
facility location problem, and also a set of d pipe types
just as in the buy-at-bulk problem. We wish to open facili-
ties and construct a forest routing the demands to the facili-
ties. The demands must be routed by buying pipes along the
edges of the forest. We wish to optimize the sum of the cost
of laying out the pipes and the cost of opening the facilities.

This problem arises, for example, in placing caches over
the web and connecting the demand points to the caches by
laying out links of some fixed types (like T1, OC10, etc.)
We wish to optimize the total cost of placing the caches and
buying the links to route the demands.

It should be clear that the combination of the modifica-
tions we made in the previous problems gives an instance
of COST-DISTANCE. The approximation ratio is therefore
�����	��
�� * � � . This holds even if the set of available pipes dif-
fers for different pairs of nodes. As far as we are aware, this

is the first approximation algorithm for this problem.

5.5 Multi-level Uncapacitated Facility Location

In the � -level facility location problem, we are given a
graph � �'� �Y� � with a cost function � on the edges, and a set
of demand nodes

*
. We have to route each demand through

� levels of facilities. The cost of placing a facility of level
J at location P is � Q c . The demand first goes to a facility of
level � , from there to a facility of level

�
and so on till it

reaches a facility of level � . As in the classical facility loca-
tion problem, the goal is to optimize the total cost of facility
placement and the cost of routing the demands through the
levels of facilities.

This problem has been extensively studied in operations
research literature [20, 29, 30, 2, 28]. We note that Aardal,
Chudak and Shmoys [1] present a
 approximation for this
problem. Their approach is however, not combinatorial.

We present the first known combinatorial approxima-
tion for general values of � . Our approximation ratio is
�����	��
 � * � � . This result has been improved to a constant
factor in [17].

We reduce the multi-level facility location problem to
COST-DISTANCE. We first make � copies of � which we
denote � u ��� � ���	�	�E�Y��� . We construct a new graph �,) from
these copies as follows. For an edge & � � , its bicriteria
cost in each of the copies is �	L ��� �	& ��� . For Pf� � , we add
an edge between its corresponding vertices in �0Q and � Q �Ku
with cost ��� Q c �YL � . We call these facility edges. We add a
dummy sink node = and connect it to all vertices in � � with
edges of cost ��� � c ��L�� for vertex P . The demand nodes

*
map to the corresponding nodes in � u .

Note that the only way to move from � Q to � Q �Ku is to
take one of the level J facility edges. This means that the
multi-level facility location problem is equivalent to COST-
DISTANCE on the graph �*) with sink = and the demands in
� u . We therefore have the following theorem.

Theorem 5.1 There exists a ����� ��
 � * � � approximation for
the � -level uncapacitated metric facility location problem
running in ��� � � * � � ��� � � � � � � � ��
 � � � � � time.

5.6 Access Network Design

We note that the access network design problem [4] is a
special case of the facility location with buy-at-bulk prob-
lem mentioned above. We therefore have a ����� ��
 � ��� � ap-
proximation for this problem. This result has been im-
proved to a constant factor in [17].

5.7 Concave Functions

Suppose we are given a graph and a set of sources and
demands, and we wish to route all the demand to a single

sink node. For every pair of nodes in the graph, we are
given a concave function which determines the cost of rout-
ing between those nodes given the amount of demand to
be transported. We can compute a tight approximation of
such a concave function by viewing it as the minimum (at
any demand value) of a series of lines of decreasing slope
and increasing y-intercept. The bicriteria cost in the COST-
DISTANCE problem can be seen to represent the y-intercept
(cost) and the slope (length) of lines relating expenditure for
an edge to amount of traffic routed. We can thus simulate
the concave function by providing many parallel edges of
different bicriteria cost.

6 Conclusions

We conclude by mentioning some open problems. First,
we only have very weak lower bounds2 on the approxima-
bility of COST-DISTANCE. We strongly suspect that the
lower bound in the most general case is

� ��� ��
 � ��� � . Second,
it would be interesting to see if the algorithm provides bet-
ter approximation guarantees for specific types of cost func-
tions, specifically those arising from facility location3. Fi-
nally, we are curious as to whether any approximations can
be given for the more general case where the cost-demand
relationship for a pair of nodes in the graph follows an arbi-
trary nondecreasing function (neither convex nor concave).

There is a derandomization of the COST-DISTANCE al-
gorithm due to Chekuri et al [13].

References

[1] K. Aardal, F. Chudak, and D.B. Shmoys. A 3-
approximation algorithm for the k-level uncapacitated
facility location problem. Information Processing Let-
ters, 72:161–167, 1999.

[2] K. Aardal, M. Labbé, J. Leung, and M. Queyranne. On
the two-level uncapacitated facility location problem.
INFORMS J. Comput., 8:289–301, 1996.

[3] M. J. Alexander and G. Robins. New performance-
driven FPGA routing algorithms. IEEE Transactions
on Computer-Aided Design of ICs and Systems, 1996.

[4] M. Andrews and L. Zhang. The access network design
problem. 39th IEEE Symposium on Foundations of
Computer Science, pages 40–49, 1998.

[5] B. Awerbuch and Y. Azar. Buy-at-bulk network de-
sign. 38th IEEE Symposium on Foundations of Com-
puter Science, pages 542–47, 1997.

2The lower bound of 1.46 follows from [16].
3Some of the results in this paper have been improved in [17].

[6] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive
analysis of communication protocols. 9th ACM Sym-
posium on Principles of Distributed Computing, pages
177–87, 1990.

[7] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. 37th IEEE
symposium on Foundations of Computer Science,
pages 184–193, 1996.

[8] Y. Bartal. On approximating arbitrary metrics by tree
metrics. 30th ACM Symposium on Theory of Comput-
ing, 1998.

[9] K. Bharath-Kumar and J.M. Jaffe. Routing to multi-
ple destinations in computer networks. IEEE Transac-
tions on Communications, 31(3):343–51, 1983.

[10] M. Charikar, C. Chekuri, A. Goel, and S. Guha.
Rounding via trees: Deterministic approximation al-
gorithms for group steiner trees and � -median. 30th
ACM Symposium on Theory of Computing, 1998.

[11] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. Plotkin. Approximating a finite metric by a small
number of tree metrics. 39th IEEE Symposium on
Foundations of Computer Science, 1998.

[12] M. Charikar and S. Guha. Improved combinatorial al-
gorithms for facility location and k-median problems.
40th IEEE Symposium on Foundations of Computer
Science, 1999.

[13] C. Chekuri, S. Khanna, and J. Naor. A deter-
ministic algorithm for the COST-DISTANCE problem.
manuscript.

[14] A. Goel and K. Munagala. Balancing steiner trees and
shortest path trees online. 11th ACM-SIAM Sympo-
sium on Discrete Algorithms, 2000.

[15] M. Goemans and D. Williamson. A general approx-
imation technique for constrained forest problems.
SIAM J. Comput., 24(2):296–317, April 1995.

[16] S. Guha and S. Khuller. Greedy strikes back: Im-
proved facility location algorithms. 9th ACM-SIAM
Symposium on Discrete Algorithms, 1998.

[17] S. Guha, A. Meyerson, and K. Munagala. Hierarchi-
cal placement and network design problems. this pro-
ceedings.

[18] S-P. Hong, H. Lee, and B.H. Park. An efficient multi-
cast routing algorithm for delay-sensitive applications
with dynamic membership. IEEE INFOCOM, pages
1433–40, 1998.

[19] K. Jain and V. Vazirani. Primal-dual approximation
algorithms for metric facility location and k-median
problems. 40th IEEE Symposium on Foundations of
Computer Science, 1999.

[20] L. Kaufman, M. vanden Eede, and P. Hansen. A
plant and warehouse location problem. Operations
Research Quarterly, 28:547–557, 1977.

[21] S. Khuller, B. Raghavachari, and N. Young. Balancing
minimum spanning and shortest path trees. Algorith-
mica, 14(4):305–321, 1994.

[22] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos.
Multicast routing for multimedia communication.
IEEE/ACM Transactions on Networking, 1(3):286–
92, June 1993.

[23] G. Kortsarz and D. Peleg. Approximating shallow-
light trees. 8th ACM-SIAM Symposium on Discrete
Algorithms, pages 103–110, 1997.

[24] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J.
Rosenkrantz, and H. B. Hunt III. Bicriteria network
design problems. Computing Research Repository:
Computational Complexity, 1998.

[25] C. Papadimitriou and K. Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Dover Publi-
cations, Inc., 1998.

[26] M. Parsa, Qing Zhu, and J.J. Garcia-Luna-Aceves. An
iterative algorithm for delay-constrained minimum-
cost multicasting. IEEE/ACM Transactions on Net-
working, 6(4):361–74, 1998.

[27] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subrama-
nian. Buy-at-bulk network design: Approximating the
single-sink edge installation problem. 8th ACM-SIAM
Symposium on Discrete Algorithms, pages 619–628,
1997.

[28] D.B. Shmoys, É. Tardos, and K. Aardal. Approxima-
tion algorithms for facility location problems. 29th
ACM Symposium on Theory of Computing, pages
265–274, 1997.

[29] D. Tcha and B. Lee. A branch-and-bound algorithm
for the multi-level uncapacitated location problem.
European J. Oper. Res., 18:35–43, 1984.

[30] T. Van Roy and D. Erlenkotter. A dual based proce-
dure for dynamic facility location. Management Sci.,
28:1091–1105, 1982.

[31] L. Wei and D. Estrin. The trade-offs of multicast trees
and algorithms. International Conference on Com-
puter Communications and Networks, 1994.

