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minimum. It further more has an identifiable subset of integer components that re-
tain their value in an integer optimal solution of the problem. These properties are
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1. Introduction

The formulation of the integer programming problem discussed hereafter is as follows:

n
Minimize E w;T;

i=1

0 <z; <uj G=1,...,n)

x; integer G=1,...,n)

where 1 < j;,k; <n,w; >0 (¢ =1,...,n), and all the coefficients are integer.

Whereas an integer programming problem with two variables is in the class of poly-
nomial problems [7, 10], the problem (IP) is NP-complete — the vertex cover problem
([8]) is a special case with a; = b; = ¢; = u; = 1. Although the vertex cover problem is
a limited special case of the problem (IP), many of its known properties extend also to
the problem (IP). The vertex cover problem, and its complement — the independent set
problem, have several structural properties discovered by Nemhauser and Trotter [12]:
Consider the linear programming relaxation of the vertex cover problem, (VCR), namely,

Z w;r; = Min Z w;iT;
- = - (VCR)
subject to x; +x; > 1 (for every edge (¢,7) in the graph)

0<z; <1 (j=1,...,n).

Then, there exists an optimal solution @* such that =% € {0,1, %} (this was previously
observed by Balinski). In addition, there exists an optimal integer solution that is equal
to & in its integer components. In particular, it means that an optimal integer solution
may be obtained by rounding the components of ®* that are equal to % The rounding
could be up or down to 1 or 0 respectively. Since there are 2" possible rounding schemes
(some of which may not lead to a feasible solution) this fact in itself does not aid in
speeding up the search for an optimal solution.

The fact that some solutions to (VCR) consist of integer multiples of % is, however,
useful in developing a 2-approximation algorithm for the vertex cover problem, by round-
ing up the linear programming relaxation solution. The results described here extend
many of the properties of the vertex cover problem to any integer programming problem
with two variables per inequality. Specifically, we show how to find in polynomial time a
feasible solution all the components of which are integer multiples of % Moreover this so-
lution is optimal among a set of solutions to be defined later. This set contains all integer
solutions and is contained in the set of all feasible solutions that are integer multiples of
%. (As demonstrated later, finding an optimal solution over the set of feasible solutions
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that are integer multiples of % is an NP-hard problem). In contrast to the vertex cover
problem, an optimal solution to the linear programming relaxation of (IP), called (IPR),
is a fractional vector that is often not an integer multiple of % Whereas for the vertex
cover problem, the absolute value of all nonseparable subdeterminants of the constraint
matrix is bounded by 2, (this explains why a linear programming relaxation solution
that is basic, is an integer multiple of %), this is not the case for the problem (IP), where
the subdeterminants of the constraint matrix may assume arbitrarily large values. It is
therefore somewhat surprising that relaxed solutions that are integer multiples of % can
be obtained for (IPR) in what amounts to essentially the same computational effort as

that of solving (VCR).

In order to find solutions that are integer multiples of %, we use the polynomial time
algorithm for solving integer programs in bounded variables over monotone inequalities
proposed in [6]. An inequality in two variables is called monotone if it is of the form

ax;, —bxy, > ¢

where a and b are both nonnegative. Although, as proved by Lagarias [9], the prob-
lem of finding a feasible solution of a system of monotone inequalities in integers is
NP-complete, the algorithm of Hochbaum and Naor [6] finds an optimal solution in
time O(mnU?log(Un?/ m)). Since our (IP) is not necessarily defined on monotone in-
equalities, we use a transformation of nonmonotone inequalities to monotone inequalities
proposed by Edelsbrunner, Rote and Welzl [2]. The transformation does not preserve in-
tegrality, yet each solution to the transformed problem corresponds to a feasible solution
of the original problem, and in addition it consists of integer multiples of %

The problem of finding a feasible solution of a system of inequalities in integers is
NP-complete. The problem (IP) with two variables per inequality has, however, among
its many remarkable properties also the property that a feasible solution can be identified
in O((n + m)U) time. Such an algorithm, based on ideas of T. Feder, is presented in
Section 4. This algorithm is used for obtaining a feasible solution from the solution
consisting of integer multiples of %

A common method for deriving (lower) bounds for integer programming problems is
by solving a linear programming relaxation. A notable feature of the linear programming
relaxation of (IPR) of (IP) is that feasible solutions can be derived in strongly polynomial
time. Megiddo [11] was the first to discover such an algorithm. The fastest algorithms
currently known for the problem are by Cohen and Megiddo [1] and by Hochbaum and
Naor [6], with running times of O(mn?(log® n + logm)) and O(mn?logm), respectively.
The algorithm presented here is a relaxation which is tighter than the one obtained by
the LP-relaxation. In case the bounds U are fixed, the relaxation here is also obtained
in faster running time.

As noted in [12], the LP-relaxation of the vertex cover problem (VCR) is solved by
finding an optimal cover in a bipartite graph with two vertices for each vertex in the



original graph, and two edges for each edge in the original graph. In a bipartite graph
a vertex cover may be identified from the solution of a corresponding minimum cut
problem. Our algorithm is also a minimum cut algorithm applied to a graph with nU,
(or rather, 3-7_, u;) nodes and mU arcs.

The other property of the vertex cover problem, namely, that for any optimal solution
to (VCR) there exists an optimal solution 2* of the vertex cover problem that coincides
with @* in every integer component ([12]), is useful in reducing the size of the problem.
This property can be used for instance in branch-and-bound procedures. This property
has been useful in deriving a whole class of approximation algorithms for the vertex
cover problem, all of which are twice the optimum or less, ([5]). The same approach,
of fixing those variables that retain their value in an optimal solution, may be used for
(IP) with the potential for developing tighter worst-case error bounds for special classes
of instances.

The feasibility problem of systems of linear inequalities in binary variables with at
most two variables per inequality is closely related to the 2-satisfiability problem (2-SAT).
An instance of the latter is a conjunction of ¢ disjunctions in p boolean variables, each
disjunction having one of the forms: (i) «; V «;, (ii) «; V &;, and (iii) @; V @;. A feasible
solution for this problem can be found in linear time [3]. The corresponding system of
linear inequalities in binary variables consists of constraints of one of the following types:
(i) @i+ x; > 1, (ii) @; > xj, and (iii) @; + ; < 1. The problem of minimizing a linear
function in binary variables subject to such a system of linear inequalities will be referred
to as the 2-SAT integer programming problem.

Recently Gusfield and Pitt [4] described a 2-approximation algorithm for the 2-SAT
problem. Their approach is not related to ours and yields neither a lower bound nor the
option of fixing some of the variables, as our algorithm does.

In Section 2 we review the procedure of reducing (IP) to a monotone system. In
Section 3 we describe the algorithm for optimizing over a monotone system. In Section 4
we present a polynomial algorithm for finding a feasible solution to (IP) or verifying that
none exists. Section 5 explains how to generate a 2-approximation solution to (IP) from
the optimal solution to the monotone system and a feasible solution to (IP). Finally, in
Sections 6 and 7 we discuss properties of 2-SAT systems and their generalizations.

2. The reduction to a monotone system and its properties

Consider a generic nonmonotone inequality of the form ax + by > ¢ where a and b are
positive. (Any nonmonotone inequality can be written in this form, perhaps with a
reversed inequality). The procedure in [2] replaces each variable x by two variables, a*



and x7, and each inequality by two inequalities as follows:
axt —by” > ¢
—ax” + byt >c.

The two resulting inequalities are monotone. Note that upper and lower bounds con-
straints {; < x; < u; are transformed to

_|_
Kjg:z;j Su]‘
—ujg:zjj_g—ﬁj.

In the objective function, the variable x is substituted by %(:1;"’ —a7).
Monotone inequalities remain so by replacing the variables  and y in one inequality
by T and T, and in the second, by 2~ and y~, respectively.

Let A be the matrix of the constraints in the original system and let A® be the
matrix of the monotone system resulting from the above transformation. The matrix
A®) consists of 2m inequalities with two variables per inequality, and 2n upper and
lower bound constraints. The order of this matrix is therefore (2m + 4n) x 2n.

Given a system of inequalities with two variables per inequality, let the set of feasible
solutions for this system be

S={xecR" | Az < ¢},

and the feasible solutions to the monotone system resulting from the transformation
above,

S9 = ((@*,27) | AP 27) < e 2tz € R

IfxzcS ot =2, and = = —a, then (2t,27) € S?). So, for every feasible solution
in S, there exists a feasible solution in S®). Conversely, if (2+,27) € @, then 2 =
%(a:"’ —a~) € S. Hence, for every feasible solution in S, there is a feasible solution in

S.
Let Sy = {x € S | ® integer }, and let

552) = {%(a:+ —z7) | (e, 27) € S and x*, & integer } .

If & € Sy, then ® € 5. Thus, 5; € S C 3.

In fact, the set of solutions S}z) is even smaller than the set of feasible solutions that
are integer multiples of % To see that, let

1
S ={x| Az <candzclz"}.



1 1
Then, the claim is that 552) C 5(5), yet 53) may contain points not in 552). The following
example illustrates such a case:

dr + 2y <6
O<azy<l1.

1
Obviously, (x =1, y = %) is a feasible solution in $2). But there is no corresponding
integer solution in S? as 2t = —z~ = 1 implies that y* =y~ = 0. It follows that the

bound derived from optimizing over S}Q) is tighter than a bound derived from optimizing
1

over 5(2). Not only is this latter optimization weaker, but it is also in general NP-hard.
To see that this is NP-hard, we use a reduction from the vertex cover problem proposed
by O. Goldschmidt. Consider a vertex cover problem with nonnegative weights of nodes,

Minimize Z w;T;
, = | (VC)

subject to a;, +xp, > 1 (i=1,...,m)
0<az;, <1, a;integer (j=1,...,n)

(where 1 < ji, ki < n). Due to the nonnegativity of w;, the problem does not change if
we increase the bounds to 2:

Minimize ijxj
j=1
subject to aj, +xp, > 1 (i=1,...,m)
0<az;, <2, x;integer (j=1,...,n).
Using the substitution y; = %l‘]‘, it is evident that this problem is equivalent to the
following problem in which the integrality requirement is replaced by the restriction that
the variables are integer multiples of %:

Minimize ijyj
=
subject to 2y, + 2y, > 1 (i=1,...,m)
0<y; <1, y;isan integer multipleof £ (j =1,...,n).

Hence, to solve in integer multiples of % is at least as difficult as to solve the vertex cover
problem.

An intuitive explanation of the difficulty of these problems and of the relative weakness
of the LP-relaxation bound is that the coefficients of the variables in the constraints are
“unnecessarily” large. The reduction we use (of [6]) effectively eliminates such large
coefficients and substitutes them by ones of absolute value 1, at the expense of increasing
the number of inequalities and variables by a factor of U.



3. Integer optimization over monotone inequalities

Hochbaum and Naor [6] describe an algorithm for optimization in integers over a system
of monotone inequalities,

Minimize Z d;x;
= (IP2)

subject to @z, — bixg, > ¢; (1=1,...,m)
(; <wx;<wuj, xjinteger (j=1,...,n),
where a;, b;,¢; (1 = 1,...,m), and d; (j = 1,...,n) are rational, and ¢; and u; (j =

1

objective function coefficients d; (7 = 1,...,n) may be negative. Note that in this section

,...,n) are integers. The coefficients a; and b; (¢ = 1,...,m) are nonnegative but the
we allow nonzero lower bounds on the variables. The algorithm is reviewed here for the
sake of completeness.

A directed graph (' is created where for each variable x; in the interval [(;, u;], there
are u; — {; + 1 nodes representing it, one for each integer value in the range. A set of
nodes is said to be closed if it contains all the nodes that can be reached via a directed
path from any node in the set. It is shown that a maximum weight closed set in this
graph corresponds to an optimal solution of (IP2).

For each integer k in the range, there is an arc (k,k — 1) from the node representing
the value k to the node representing the value £ —1. The node representing (; has an arc
directed to it from the source node s. Thus, if the source node is in a closed set then so
are all {; nodes. The monotone inequalities are represented by arcs. For each potential
value k of variable wy,, all inequalities in which x;, appears with negative coefficient
impose a minimum value on the variable x;, that appears in the same inequality with a
positive coefficient,

a;
This is represented by an arc going from node k of z;, to node ky of z;,. If k&4 > u;j,, then
the value k of the variable xy, is infeasible, and the upper bound of zy, is reset to k£ — 1.
A closed set containing s corresponds to a feasible solution to (IP2) where the variable
x; assumes the value of the largest node representing it in the closed set.

We now assign the node (; of variable x;, the weight —d;(;, and all other nodes
representing variable z; are assigned the weight —d;. A maximum weight closed set cor-
responds then to an optimal solution to the minimization problem (IP2). The maximum
closure in a graph is derived from solving a minimum cut problem in the graph after
adding a source and a sink, placing arcs from the source to all nodes of positive weight
with capacity equal to that weight, and placing arcs from all nodes with negative weight
to the sink with capacity equal to the absolute value of that weight. All other arcs are



assigned infinite capacity. The source set of a minimum cut in this graph corresponds
to a maximum weight closed set with the weights as specified. The justification for the
algorithm of maximum closure is given by Picard [13].

Notice that a 2-SAT formula can be generated from the graph G: there is a clause
y V & corresponding to each directed edge * — y. There is a 1-1 correspondence be-
tween the closed subsets in G and the feasible solutions of the 2-SAT formula generated.
The relationship between integer programs with two variables per inequality and 2-SAT
formulae will be investigated more thoroughly in the next section.

4. A polynomial algorithm for the feasibility of (IP)

In this section we show that every bounded integer system with two variables per in-
equality can be equivalently written as a 2-SAT instance. We use an idea of T. Feder.
Recall that for each variable x; we have 0 < z; <w; < oo (¢ = 1,...,n). We replace each
variable ; by u; binary variables x;, (¢ = 1,...,u;), with the constraints x;; > ;41
({=1,...,u; —1). Subject to these constraints, the correspondence between x; and the
ui-tuple (z1,..., 2., ) is one-to-one and is characterized by x;; = 1 if and only if «; > ¢
((=1,...,u;), or, equivalently, @; = 3,1, 4.

We now explain how to transform the constraints of the given system into constraints
in terms of the x;’s. Suppose

apx; + agjr; > by

is one of the given constraints. There are several cases to be distinguished. Without loss
of generality, assume both aj; and ay; are nonzeros. Consider the case where both are
positive, and assume without loss of generality that 0 < by < agu; + agju;. For every (

(C=0,...,u;), let
’ka —ﬁaki-‘
Qg = | ——— —1
(9

It is easy to see that for an integer solution @, ay;x; + ay;jx; > by if and only if for every
l (KZO,...,UZ'),

either x; > or x; > au

or, equivalently,
either 2, >0 +4+1 or a; >y +1.

Under the above transformation between the ;’s and the x;,’s, this is equivalent to:
(i) For every £ ({ = 0,1,...,u; — 1), if 0 < ap < wuy, then either z;,4y = 1 or
Lo+l = 17 and if ape > Uy, then Tio41 = 1.

(ii) For € = u;, if agy, > 0, then Tjorp, +1 = 1 (since we have ay,, < u;).
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The disjunction in (i) can be written as
Tipt1 + Tjapet1 = 1

Thus, altogether we have replaced one original constraint on z; and x; by at most u; + 1
constraints on the variables z;, and z;,. The other cases, corresponding to different sign
combinations of ay;, aj;, and by, can be handled in a similar way.

If the above transformation is applied to a monotone system of inequalities, then the
resulting 2-SAT integer program is also monotone.

To summarize, we replace the n original variables and m original constraints by
u = 37_, u; new variables and at most mU + u new constraints, where U/ = max; u;.
The time bounds for finding a feasible solution are as follows.

Lemma 4.1. A feasible solution to a bounded linear program with two variables per
inequality can be computed in O(m +n + u + mU) time.

Proof: A feasible solution to a 2-SAT integer program can be found in linear time using
the algorithm of [3]. Encoding a bounded integer program as a 2-SAT integer program
generates u variables and at most mU + u constraints. Hence, the time bounds follow.

It is an open question whether a feasible solution can be computed in polynomial
time for an wnbounded integer program with two variables per inequality, where the
degree of the polynomial may depend on n, m, and the largest integer in the matrix
[A b] represented in unary.

5. Computing an approximate solution

In this section we show how to obtain a 2-approximation for the optimum of a bounded
integer program with two variables per inequality in O(mnU?log(Un?/m)) time. We as-
sume that the given integer program has a feasible integer solution denoted by z1,..., z,.
(This can be tested using Lemma 4.1).

We first transform the integer program into a monotone integer system as outlined
in Section 2 and compute an optimal solution for the monotone system as outlined in
Section 3. For every variable z; (i = 1,...,n), let mJ and m; denote the respective
values of 2 and z; in the optimal solution of the monotone system. For i = 1,...,n, let

x« _ 10+

m? = 3(m; —m; ). We define the following solution vector, denoted by £ = ({y,...,(,),

where for 2 = 1,...,n:
min{m}’, —m;} if z; < min{m], —m;}
l; = 2 if min{m}, —m7} <z <max{m}, —m;}
max{m}’, —m;} if z; > max{m’,—m;} .



Lemma 5.1. The vector £ is a feasible solution of the given integer program.

Proof: Let ax; 4+ bx; > ¢ be an inequality where a and b are non-negative. We check
all possible cases. If (; is equal to z; or min{m;, —m;}, and (; is equal to z; or
min{m}, —m} }, then clearly,

al; +bl; > az; + bz; > ¢ .
Suppose {; > z; and {; = max{m}", —m;} }. By construction, we know that
amj’—bm; > ¢ and —am;—l—bm}"Zc.
If {; > —m;, then,
al; + bl; > —am; + bm}" >c.

Otherwise,
al; 4+ bl; Zam;"—bm; >c.

The last case is when {; = max{m]", —m;}, and {; = max{m], —m }. In this case,
al; + bl; > amj’—bm; >c.
The other types of inequalities are handled similarly. g

We showed that vector £ is a feasible solution. We now argue that it also approximates
the optimum.

Theorem 5.2.

(i) The vector £ is a 2-approximate solution of the bounded integer program.

(ii) The value of the objective function at the vector m* is at least a half of the value
of the objective function of the best integer solution.

Proof: By construction, £ < 2m*. From Section 2 we know that the vector m*

provides a lower bound on the value of the objective function for any integral solution.

Hence, the theorem follows. y

The complexity of the algorithm is dominated by the complexity of the procedure in
[6] for optimizing over a monotone system. The running time is O(mnU?log(Un?/m)).

What happens when we are optimizing over a 2-SAT integer program? The integer
program that we are given may be of this type, or we may get a 2-SAT integer program
by applying the transformation outlined in Section 4.

In this case, for all ¢ such that m = —m;, we get £; = m?. If m # —m, we get

l; = z;. In other words, the 2-approximate solution is obtained by rounding, either up
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or down, the fractional coordinates of m*. Lemma 5.1 ensures that there always exists
a feasible rounding.

We note that in the special case of a monotone 2-SAT integer programming problem,
all the basic solutions of the linear programming relaxation are integer, hence no rounding
is required in this case.

6. Properties of binary integer programs

In this section we further investigate the properties of 2-SAT integer programs. We
first consider the linear relaxation of a 2-SAT integer programming problem. It turns out
that solutions of this relaxation always have denominator not greater than 2. This follows
from the statement in the next lemma about the determinants of 2-SAT’s nonseparable
submatrices. A matrix is nonseparable if there do not exist partitions of the columns and
rows to two subsets (or more) Cq,Cy and Ry, Ry such that all nonzero entries in every
row and column appear only in the submatrices defined by the sets €} x Ry and C3 x R,.

Lemma 6.1. The determinants of all nonseparable submatrices of a 2-SAT linear pro-
gramming problem have absolute value at most 2.

Proof: Let A denote the constraint matrix of a 2-SAT integer program. Thus, A has
at most two non-zero entries in every column. We show that the absolute value of
the determinant of any nonseparable square submatrix of A can be either 0, 1, or 2.
The proof of this claim is by induction on the size of the submatrix. Since the entries
of A are from {—1,0,1}, the claim holds for 1 x 1 submatrices. Assume it holds for
any (m — 1) x (m — 1) submatrix and we show that the claim holds for any m x m
submatrix.

We may assume that each row and column in A has exactly two non-zero entries.
Otherwise, there must be a row or a column where all entries, possibly with the excep-
tion of one, are zero. In either case, we can apply the inductive assumption directly
and prove the claim. Let A;; denote the submatrix obtained by deleting the ¢’th row
and the j’th column from A.

Without loss of generality, we may assume that the two non-zero elements in row
i of A are in columns ¢ and ¢ + 1 (modulo m). (Due to the nonseparability of the
submatrix, this can be achieved by appropriate row and column interchanges.) Hence,

det(A) = A[L,1] - det(An) — (—=1)" Afm, 1] - det(Ay) .

The absolute values of the determinants of A;; and A,,; are equal to 1, since both are
triangular matrices with nonzero diagonal elements. Therefore, the absolute value of
the determinant of A is at most 2. ¢
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An immediate corollary of Lemma 6.1 is the fact that the value of every variable
in a basic solution of the 2-SAT linear program is in the set {0, %, 1}. Although for
binary integer problems the subdeterminants can be of value greater than 2, and hence
the solutions would not be in this set, we get rid of these “unnecessary” solutions by
reducing the problem first to 2-SAT, as in Section 4. In a 2-SAT system the variables are
assumed to be binary. Lemma 6.1, however, applies to any linear programming problem
with a constraint matrix with coefficients 0,1, —1, and at most two nonzero elements in
each row. We call such a system generalized 2-SAT. Note that we do not assume the
existence of finite upper bounds on the variables. We will show that a 2-approximation

can be achieved even for such systems.

1
Lemma 6.2. A generalized 2-SAT has the property that S}Q) = 502,

1 1
Proof: Tt suffices to prove that 5(2) is contained in S}z). Let ¢ € S(2). Define a

solution (&%, &™) as follows. For j = 1,...,n,
(i) If @; is an integer, set *7 = —x; = ;.
(ii) If x; is a noninteger, then set :1;;" =uz; + % and 7 = —x; + %

It is easy to show that (@™, ™) satisfies the (three) generic types of constraints defining
+
J
we have z; + 2 > c. If either both z; and z;, are integer or both are noninteger, then
_I_

S}z). For example, consider a constraint of the form =7 — z; > ¢. Since x is feasible,
we have 2] — xp = r; + xx > c¢. Assuming that x; + z; is noninteger, if x; + 7 > ¢
then a; + x; — % > ¢. Using the fact that :1;;" > x; and —x, > xp — %, it follows that
:1;;" —xp >+ ap — % > ¢. The other cases follow from similar considerations.

One corollary of Lemmas 6.1 and 6.2 is that the linear programming relaxation of a
2-SAT and a generalized 2-SAT can be solved by optimizing over the respective monotone
system. Both problems are then solvable in strongly polynomial time: the 2-SAT as a
maximum flow (or rather minimum cut) problem, and the generalized 2-SAT as a dual
of a linear flow problem. Note that one could also solve these linear programs in strongly
polynomial time, without using the transformation to a monotone system, by directly
applying the algorithm of [14]. The latter, however, is not as efficient as the best known
algorithms for solving maximum flow problems or linear flow problems.

We next show how to obtain a 2-approximation for a generalized 2-SAT integer pro-
gram. First, we note that the procedure described above in Section 5 is not applicable
here since the variables might not have finite upper bounds. Since we already know how
to solve the monotone system, the difficulty lies in finding a feasible integer solution or
verifying that none exists. We perform this latter task as follows.

Let (&%, 27) be an optimal solution of the monotone system, i.e., ® = (2™ — @)

solves the linear programming relaxtion. Using, if necessary, the transformation in the
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proof of Lemma 6.2, we may assume that :1;;" = —x; or :1;;" =—z; +1(j=1,...,n).

Next, we apply Lemma 5.1 to conclude that the given generalized 2-SAT integer program
is feasible if and only if there exists a feasible rounding of . The latter can be tested by
the linear time algorithm in [3]. Moreover, Theorem 5.2 ensures that if such a rounding
exists, then it is a 2-approximation.

7. “Fixing” Variables

As discussed in the introduction, the solution to the relaxation of the vertex cover problem
(VCR) has the property that there exists an optimal solution that coincides with the
relaxed solution in all integer components. This allows to “fix” the variables that are
integer in the relaxation and remove them from further consideration, hence reduce the
size of the problem. Not only is the size of the problem reduced, but also any solution on
the remaining set of variables has an objective function value at most twice the optimum.
This idea was proposed in [5] as a method for generating approximation algorithms with
a worst-case ratio smaller than 2 for various special classes of graphs. We show here
that precisely the same idea applies to any integer programming problem (IP), after it is
transformed to a 2-SAT.

Lemma 7.1. Let ) be an optimal solution of 2-SAT in the set S}z). Let
INT ={j | :L'EZ) =0 or :L'EZ) =1} .
Then there s an optimal integer solution z of 2-SATsuch that z; = x§2) for 3 € INT.

Proof: The proof is a generalization of that in [12]. For a set A C {1,2,...,n}, let
w(A) = Yieqw;. Let Py = {jla'® =1}, and By = {j[« = 0}, i.e., P, U P, = INT.
In the first part we prove the claim that there exists an optimal integer solution z
such that Py is a suset of {j|z; = 1}. In the second part of the proof we use such an
integer solution to construct an optimal integer solution satisfying the statement of the
Lemma.

Consider first the proof of the claim. The proof is by contradiction. Suppose that
I ={j|lz; = 0}N P is nonempty for every optimal integer solution z. The contradiction

1
will follow by proving that there exists a solution in 53 that is strictly better than
2 which, with Lemma 5.1, contradicts the optimality of (%),

Consider some optimal solution z. Let J = {j|z; = 1} N Py. We now prove that
w(l) > w(J).

Indeed, if the opposite inequality were to hold for some z, then a solution, say wu,
obtained from z by setting the variables with indices in [ to 1 and the variables with
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indices in J to 0, would be feasible and its objective value would not be greater than the
optimum. But {j|u; = 0} N Py is empty, contradicting the assumption. The feasibility
of u follows from the feasibility of z and (). To prove the feasibility, consider first a
constraint of the type z, + , > 1. We may assume, without loss of generality, that
p € J. Under this assumption :1;](72) = 0 and therefore l’gz) =1. If z, = 1 then u, = 2,
since ¢ ¢ J and the constraint is satisfied. If z;, = 0 then ¢ € I, u, = 1, and again the
constraint is satisfied. Second consider a constraint of the type z, + 2, < 1. We may
assume, without loss of generality, that p € I. Thus :1;](72) = 1 and therefore l’gz) =0
and ¢ € I. If ¢ € J, then u, = 0 and w satisfies the constraint. Otherwise, we conclude
that u, = 2z, = 0, and again w satisfies the constraint. Finally, consider the last type
of constraint, x, > x,. If p € I, this constraint is certainly satisfied by w. Suppose
that p ¢ I. If z, = 0, then :1;](72) = 0. From the feasibility of both z and ® it follows
that z, = 0 and l’gz) = 0. Thus, u, = u, = 0 and u satisfies the constraint. Next,
suppose that z, = 1. If :1;](72) =1 then u, = 2, = 1 and again the constraint is satisfied.
It :1;](72) = 0, then p € J and also l’gz) =0. If z, =0, then v, = 2z, = 0 since ¢ & J ,
while if z, = 1, then ¢ € J and therfore u, = 0. In both cases, u, = 0 implies that u
satisfies the constraint. This concludes the proof that u is a feasible integer solution.

Therefore, w(I) > w(.J).

Consider now the vector 2’ where

1/2 if jel
=13 1/2 if j€J
! ) :
T otherwise.

J

We claim that @’ is feasible, and hence &' € S(%). To prove feasibility, we consider
the three types of possible inequalities, and show that they are satisfied. Since all
inequalities involving two variables that are both equal to % are satisfied, we need only
verify inequalities in which one of the variables is in I U .J and the other is in P; \ [ or

in P\ J.
Consider the inequality x, + x, < 1. This inequality may not be satisfied for @

!
if 2, = % and z; = 1. Since z) = 1 we have ¢ € P, \ [. Now, p ¢ [, or else x? ig
infeasible because in that case both values of x, and z, in £ are 1. If p € J, then
zp =1 and also z, = 1 (as ¢ € P, \ ), hence z is infeasible. Therefore, whenever this
inequality arises it is feasible.

Consider now the inequality z, + z, > 1. This inequality may not be satisfied for
o if ol = 1
, :1;](72) = l’gz) = 0 and £ is infeasible. p in I implies that z, = 0, which in turn implies
that z, = 1. Thus, we conclude that ¢ € J which contradicts the fact that ¢ € Py \ J.

So, again, this inequality is feasible for @’.

and z; = 0. So ¢ € Py \ J. p must therefore be in I, since otherwise p € J

Finally, consider the inequality , > x, . This inequality may not be satisfied for
1

@ if 2/, = Land 2} =1 orif 2/, =0 and 2, = ]. Consider the first case: ¢ € Py \ [
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and p € I, or else @) is infeasible. But then z, = 0 and z, = 1, which implies that
z is infeasible. Hence, this case cannot occur. In the second case ¢ € J or else ¢ € I,
:I;gQ) = 1 and 2 is infeasible. Thus, z, = 1. On the other hand, from p € Py \ J we
have z, = 0 and the feasibility of z is contradicted.

1
It follows that @’ is a feasible solution and @’ € S2). Now,

J

n
J=

wj:zjgz) — Zw]‘x( =w(l)— %w(]) + %w(]) = Lw(I) - %w(]) > 0.
7=1

1

1
This contradicts the optimality of ) in S}z) = 5(2), Hence, there is an optimal
solution z such that {j | z; =1} D P;.

If Py is a subset of {j|z; = 0} then the proof is complete. Thus, suppose that Iy,
defined as the intersection of Py and {j|z; = 1}, is nonempty. Define an integer solution
u by setting u; = 01if y € Iy and u; = z; otherwise. It is clear that P, is a subset
of {j|u; = 1} and Fy is a subset of {j|u; = 0}. Also, the objective value at w is not
larger than the objective value at z. To complete the proof, it suffices to show that w
is a feasible solution. Consider first a constraint of the type x, + x, > 1. Without loss
of generality, suppose that p € [5. Thus, :1;](72) = 0. Since ¥ is a feasible solution, it
follows that l’gz) = 1. The latter implies that z, = 1. In particular, ¢ € Iy and therefore
uy, = 1, so the constraint is satisfied. It is clear that w satisfies every constraint of the
type x, + , < 1. Finally, consider a constraint of the type z, > x,. If either ¢ € I
or p € Iy the constraint is trivially satisfied. Thus, suppose that ¢ € Iy and p € Iy.
Hence, :1;](72) = 0. Moreover, from the feasibility of @(® it follows that :I;gQ) =0. If
were equal to 1 then we would get that ¢ € Iy. Therefore z, = 0, which in turn implies
that u, = 0, and the constraint is satisfied by the integer vector w. This concludes the
proof. g

Notes. This paper is based on an earlier version by the first author alone. The con-
tribution of N. Megiddo and A. Tamir was to indicate that the qualification of “rounding
property” in that earlier version was unnecessary, and a feasible solution can always be
found provided that the original problem is feasible. They also proposed an alternative
algorithm, where the problem (IP) is first transformed to 2-SAT and then the monotone
transformation and the [6] procedure is applied. This algorithm is in fact identical in its
outcome, the graph created, to the algorithm presented here, and hence not discussed
explicitly. The extension to the generalized 2-SAT is also due to them, as well as various
improvements to the presentation of the paper.
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