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Abstract� The problem of integer programming in bounded variables� over
constraints with no more than two variables in each constraint is NP�complete� even
when all variables are binary� This paper deals with integer linear minimization
problems in n variables subject to m linear constraints with at most two variables
per inequality� and with all variables bounded between � and U � For such systems�
a ��approximation algorithm is presented that runs in time O�mnU� log�Un��m���
so it is polynomial in the input size if the upper bound U is polynomially bounded�
The algorithm works by �nding �rst a super�optimal feasible solution that consists
of integer multiples of �

� � That solution gives a tight bound on the value of the
minimum� It further more has an identi�able subset of integer components that re�
tain their value in an integer optimal solution of the problem� These properties are
a generalization of the properties of the vertex cover problem� The algorithm de�
scribed is� in particular� a ��approximation algorithm for the problem of minimizing
the total weight of true variables� among all truth assignments to the ��satis�ability
problem�
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�� Introduction

The formulation of the integer programming problem discussed hereafter is as follows�

Minimize
nX

j��

wjxj

subject to aixji � bixki � ci �i � �� � � � �m	


 � xj � uj �j � �� � � � � n	

xj integer �j � �� � � � � n	

�IP	

where � � ji� ki � n� wi � 
 �i � �� � � � � n	� and all the coe�cients are integer�

Whereas an integer programming problem with two variables is in the class of poly

nomial problems ��� �
�� the problem �IP	 is NP
complete � the vertex cover problem
����	 is a special case with ai � bi � ci � ui � �� Although the vertex cover problem is

a limited special case of the problem �IP	� many of its known properties extend also to
the problem �IP	� The vertex cover problem� and its complement � the independent set
problem� have several structural properties discovered by Nemhauser and Trotter �����
Consider the linear programming relaxation of the vertex cover problem� �VCR	� namely�

nX
j��

wjx
�
j � Min

nX
j��

wjxj

subject to xi � xj � � �for every edge �i� j	 in the graph	


 � xj � � �j � �� � � � � n	�

�VCR	

Then� there exists an optimal solution x� such that x�j � f
� �� ��g �this was previously
observed by Balinski	� In addition� there exists an optimal integer solution that is equal

to x� in its integer components� In particular� it means that an optimal integer solution
may be obtained by rounding the components of x� that are equal to �

�
� The rounding

could be up or down to � or 
 respectively� Since there are �n possible rounding schemes

�some of which may not lead to a feasible solution	 this fact in itself does not aid in
speeding up the search for an optimal solution�

The fact that some solutions to �VCR	 consist of integer multiples of �
� is� however�

useful in developing a �
approximation algorithm for the vertex cover problem� by round

ing up the linear programming relaxation solution� The results described here extend
many of the properties of the vertex cover problem to any integer programming problem
with two variables per inequality� Speci�cally� we show how to �nd in polynomial time a

feasible solution all the components of which are integer multiples of �
�� Moreover this so


lution is optimal among a set of solutions to be de�ned later� This set contains all integer
solutions and is contained in the set of all feasible solutions that are integer multiples of
�
�
� �As demonstrated later� �nding an optimal solution over the set of feasible solutions
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that are integer multiples of �
�
is an NP
hard problem	� In contrast to the vertex cover

problem� an optimal solution to the linear programming relaxation of �IP	� called �IPR	�
is a fractional vector that is often not an integer multiple of �

�
� Whereas for the vertex

cover problem� the absolute value of all nonseparable subdeterminants of the constraint

matrix is bounded by �� �this explains why a linear programming relaxation solution
that is basic� is an integer multiple of �

�
	� this is not the case for the problem �IP	� where

the subdeterminants of the constraint matrix may assume arbitrarily large values� It is
therefore somewhat surprising that relaxed solutions that are integer multiples of �

�
can

be obtained for �IPR	 in what amounts to essentially the same computational e�ort as
that of solving �VCR	�

In order to �nd solutions that are integer multiples of �
�� we use the polynomial time

algorithm for solving integer programs in bounded variables over monotone inequalities
proposed in ���� An inequality in two variables is called monotone if it is of the form

axji � bxki � c

where a and b are both nonnegative� Although� as proved by Lagarias ���� the prob


lem of �nding a feasible solution of a system of monotone inequalities in integers is
NP
complete� the algorithm of Hochbaum and Naor ��� �nds an optimal solution in
time O�mnU� log�Un�� m		� Since our �IP	 is not necessarily de�ned on monotone in

equalities� we use a transformation of nonmonotone inequalities to monotone inequalities

proposed by Edelsbrunner� Rote and Welzl ���� The transformation does not preserve in

tegrality� yet each solution to the transformed problem corresponds to a feasible solution
of the original problem� and in addition it consists of integer multiples of �

�
�

The problem of �nding a feasible solution of a system of inequalities in integers is

NP
complete� The problem �IP	 with two variables per inequality has� however� among
its many remarkable properties also the property that a feasible solution can be identi�ed
in O��n � m	U	 time� Such an algorithm� based on ideas of T� Feder� is presented in
Section �� This algorithm is used for obtaining a feasible solution from the solution

consisting of integer multiples of �
� �

A common method for deriving �lower	 bounds for integer programming problems is
by solving a linear programming relaxation� A notable feature of the linear programming
relaxation of �IPR	 of �IP	 is that feasible solutions can be derived in strongly polynomial
time� Megiddo ���� was the �rst to discover such an algorithm� The fastest algorithms

currently known for the problem are by Cohen and Megiddo ��� and by Hochbaum and
Naor ���� with running times of O�mn��log� n� logm		 and O�mn� logm	� respectively�
The algorithm presented here is a relaxation which is tighter than the one obtained by
the LP
relaxation� In case the bounds U are �xed� the relaxation here is also obtained

in faster running time�

As noted in ����� the LP
relaxation of the vertex cover problem �VCR	 is solved by
�nding an optimal cover in a bipartite graph with two vertices for each vertex in the
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original graph� and two edges for each edge in the original graph� In a bipartite graph
a vertex cover may be identi�ed from the solution of a corresponding minimum cut
problem� Our algorithm is also a minimum cut algorithm applied to a graph with nU �
�or rather�

Pn
j�� uj	 nodes and mU arcs�

The other property of the vertex cover problem� namely� that for any optimal solution

to �VCR	 there exists an optimal solution z� of the vertex cover problem that coincides
with x� in every integer component �����	� is useful in reducing the size of the problem�
This property can be used for instance in branch
and
bound procedures� This property

has been useful in deriving a whole class of approximation algorithms for the vertex
cover problem� all of which are twice the optimum or less� ����	� The same approach�
of �xing those variables that retain their value in an optimal solution� may be used for
�IP	 with the potential for developing tighter worst
case error bounds for special classes

of instances�

The feasibility problem of systems of linear inequalities in binary variables with at
most two variables per inequality is closely related to the �
satis�ability problem ��
SAT	�
An instance of the latter is a conjunction of q disjunctions in p boolean variables� each

disjunction having one of the forms� �i	 xi � xj� �ii	 xi � �xj� and �iii	 �xi � �xj� A feasible
solution for this problem can be found in linear time ���� The corresponding system of
linear inequalities in binary variables consists of constraints of one of the following types�
�i	 xi � xj � �� �ii	 xi � xj� and �iii	 xi � xj � �� The problem of minimizing a linear

function in binary variables subject to such a system of linear inequalities will be referred
to as the �
SAT integer programming problem�

Recently Gus�eld and Pitt ��� described a �
approximation algorithm for the �
SAT
problem� Their approach is not related to ours and yields neither a lower bound nor the

option of �xing some of the variables� as our algorithm does�

In Section � we review the procedure of reducing �IP	 to a monotone system� In
Section � we describe the algorithm for optimizing over a monotone system� In Section �
we present a polynomial algorithm for �nding a feasible solution to �IP	 or verifying that

none exists� Section � explains how to generate a �
approximation solution to �IP	 from
the optimal solution to the monotone system and a feasible solution to �IP	� Finally� in
Sections � and � we discuss properties of �
SAT systems and their generalizations�

�� The reduction to a monotone system and its properties

Consider a generic nonmonotone inequality of the form ax � by � c where a and b are
positive� �Any nonmonotone inequality can be written in this form� perhaps with a
reversed inequality	� The procedure in ��� replaces each variable x by two variables� x�
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and x�� and each inequality by two inequalities as follows�

ax� � by� � c

�ax� � by� � c �

The two resulting inequalities are monotone� Note that upper and lower bounds con

straints �j � xj � uj are transformed to

�j � x�j � uj

�uj � x�j � ��j �

In the objective function� the variable x is substituted by �
��x

� � x�	�

Monotone inequalities remain so by replacing the variables x and y in one inequality

by x� and y�� and in the second� by x� and y�� respectively�

Let A be the matrix of the constraints in the original system and let A��� be the
matrix of the monotone system resulting from the above transformation� The matrix
A

��� consists of �m inequalities with two variables per inequality� and �n upper and
lower bound constraints� The order of this matrix is therefore ��m� �n	� �n�

Given a system of inequalities with two variables per inequality� let the set of feasible
solutions for this system be

S � fx � �n j Ax � cg �

and the feasible solutions to the monotone system resulting from the transformation
above�

S��� � f�x��x�	 j A����x��x�	 � c
��� � x��x� � �ng �

If x � S� x� � x� and x� � �x� then �x��x�	 � S���� So� for every feasible solution
in S� there exists a feasible solution in S���� Conversely� if �x��x�	 � S���� then x��� �
�
�
�x� � x�	 � S� Hence� for every feasible solution in S���� there is a feasible solution in

S�

Let SI � fx � S j x integer g� and let

S
���
I �

n
�
��x

� � x
�	 j �x��x�	 � S��� and x��x� integer

o
�

If x � SI � then x � S
���
I � Thus� SI � S

���
I � S�

In fact� the set of solutions S���
I is even smaller than the set of feasible solutions that

are integer multiples of �
� � To see that� let

S�
�
�� � fx j Ax � c and x � �

�
Zng �

�



Then� the claim is that S
���
I � S�

�
�
�� yet S�

�
�
� may contain points not in S

���
I � The following

example illustrates such a case�
�x� �y � �


 � x� y � � �

Obviously� �x � �� y � �
�
	 is a feasible solution in S�

�
��� But there is no corresponding

integer solution in S��� as x� � �x� � � implies that y� � y� � 
� It follows that the

bound derived from optimizing over S
���
I is tighter than a bound derived from optimizing

over S�
�
�
�� Not only is this latter optimization weaker� but it is also in general NP
hard�

To see that this is NP
hard� we use a reduction from the vertex cover problem proposed
by O� Goldschmidt� Consider a vertex cover problem with nonnegative weights of nodes�

Minimize
nX

j��

wjxj

subject to xji � xki � � �i � �� � � � �m	


 � xj � � � xj integer �j � �� � � � � n	

�VC	

�where � � ji� ki � n	� Due to the nonnegativity of wj� the problem does not change if
we increase the bounds to ��

Minimize
nX

j��

wjxj

subject to xji � xki � � �i � �� � � � �m	


 � xj � � � xj integer �j � �� � � � � n	 �

Using the substitution yj � �
�
xj� it is evident that this problem is equivalent to the

following problem in which the integrality requirement is replaced by the restriction that
the variables are integer multiples of �

� �

Minimize
nX

j��

wjyj

subject to �yji � �yki � � �i � �� � � � �m	


 � yj � � � yj is an integer multiple of �
� �j � �� � � � � n	 �

Hence� to solve in integer multiples of �
� is at least as di�cult as to solve the vertex cover

problem�

An intuitive explanation of the di�culty of these problems and of the relative weakness
of the LP
relaxation bound is that the coe�cients of the variables in the constraints are
�unnecessarily� large� The reduction we use �of ���	 e�ectively eliminates such large

coe�cients and substitutes them by ones of absolute value �� at the expense of increasing
the number of inequalities and variables by a factor of U �
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�� Integer optimization over monotone inequalities

Hochbaum and Naor ��� describe an algorithm for optimization in integers over a system
of monotone inequalities�

Minimize
nX

j��

djxj

subject to aixji � bixki � ci �i � �� � � � �m	

�j � xj � uj � xj integer �j � �� � � � � n	 �

�IP�	

where ai� bi� ci �i � �� � � � �m	� and dj �j � �� � � � � n	 are rational� and �j and uj �j �
�� � � � � n	 are integers� The coe�cients ai and bi �i � �� � � � �m	 are nonnegative but the
objective function coe�cients dj �j � �� � � � � n	 may be negative� Note that in this section

we allow nonzero lower bounds on the variables� The algorithm is reviewed here for the
sake of completeness�

A directed graph G is created where for each variable xj in the interval ��j� uj�� there
are uj � �j � � nodes representing it� one for each integer value in the range� A set of
nodes is said to be closed if it contains all the nodes that can be reached via a directed
path from any node in the set� It is shown that a maximum weight closed set in this

graph corresponds to an optimal solution of �IP�	�

For each integer k in the range� there is an arc �k� k � �	 from the node representing
the value k to the node representing the value k��� The node representing �j has an arc
directed to it from the source node s� Thus� if the source node is in a closed set then so
are all �j nodes� The monotone inequalities are represented by arcs� For each potential

value k of variable xki� all inequalities in which xki appears with negative coe�cient
impose a minimum value on the variable xji that appears in the same inequality with a
positive coe�cient�

xji �

�
bik � ci

ai

�
� k� �

This is represented by an arc going from node k of xki to node k� of xji� If k� � uji � then
the value k of the variable xki is infeasible� and the upper bound of xki is reset to k � ��
A closed set containing s corresponds to a feasible solution to �IP�	 where the variable

xj assumes the value of the largest node representing it in the closed set�

We now assign the node �j of variable xj� the weight �dj�j � and all other nodes

representing variable xj are assigned the weight �dj � A maximum weight closed set cor

responds then to an optimal solution to the minimization problem �IP�	� The maximum
closure in a graph is derived from solving a minimum cut problem in the graph after
adding a source and a sink� placing arcs from the source to all nodes of positive weight

with capacity equal to that weight� and placing arcs from all nodes with negative weight
to the sink with capacity equal to the absolute value of that weight� All other arcs are
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assigned in�nite capacity� The source set of a minimum cut in this graph corresponds
to a maximum weight closed set with the weights as speci�ed� The justi�cation for the
algorithm of maximum closure is given by Picard �����

Notice that a �
SAT formula can be generated from the graph G� there is a clause

y � �x corresponding to each directed edge x 	 y� There is a �
� correspondence be

tween the closed subsets in G and the feasible solutions of the �
SAT formula generated�
The relationship between integer programs with two variables per inequality and �
SAT

formulae will be investigated more thoroughly in the next section�

�� A polynomial algorithm for the feasibility of �IP	

In this section we show that every bounded integer system with two variables per in


equality can be equivalently written as a �
SAT instance� We use an idea of T� Feder�
Recall that for each variable xi we have 
 � xi � ui �
 �i � �� � � � � n	� We replace each
variable xi by ui binary variables xi� �� � �� � � � � ui	� with the constraints xi� � xi����
�� � �� � � � � ui � �	� Subject to these constraints� the correspondence between xi and the

ui
tuple �xi�� � � � � xiui	 is one
to
one and is characterized by xi� � � if and only if xi � �

�� � �� � � � � ui	� or� equivalently� xi �
Pui

��� xi��

We now explain how to transform the constraints of the given system into constraints

in terms of the xi��s� Suppose

akixi � akjxj � bk

is one of the given constraints� There are several cases to be distinguished� Without loss
of generality� assume both aki and akj are nonzeros� Consider the case where both are
positive� and assume without loss of generality that 
 � bk � akiui � akjuj� For every �

�� � 
� � � � � ui	� let

�k� �

�
bk � �aki

akj

�
� � �

It is easy to see that for an integer solution x� akixi � akjxj � bk if and only if for every
� �� � 
� � � � � ui	�

either xi � � or xj � �k�

or� equivalently�
either xi � � � � or xj � �k� � � �

Under the above transformation between the xi�s and the xi��s� this is equivalent to�

�i	 For every � �� � 
� �� � � � � ui � �	� if 
 � �k� � uj� then either xi���� � � or
xj��k��� � �� and if �k� � uj� then xi���� � ��

�ii	 For � � ui� if �kui � 
� then xj��kui
�� � � �since we have �kui � uj	�

�



The disjunction in �i	 can be written as

xi���� � xj��k��� � � �

Thus� altogether we have replaced one original constraint on xi and xj by at most ui��
constraints on the variables xi� and xj�� The other cases� corresponding to di�erent sign

combinations of aki� akj� and bk� can be handled in a similar way�

If the above transformation is applied to a monotone system of inequalities� then the
resulting �
SAT integer program is also monotone�

To summarize� we replace the n original variables and m original constraints by
�u �

Pn
j�� uj new variables and at most mU � �u new constraints� where U � maxi ui�

The time bounds for �nding a feasible solution are as follows�

Lemma ���� A feasible solution to a bounded linear program with two variables per

inequality can be computed in O�m� n� �u�mU	 time�

Proof� A feasible solution to a �
SAT integer program can be found in linear time using
the algorithm of ���� Encoding a bounded integer program as a �
SAT integer program

generates �u variables and at most mU � �u constraints� Hence� the time bounds follow�

It is an open question whether a feasible solution can be computed in polynomial
time for an unbounded integer program with two variables per inequality� where the
degree of the polynomial may depend on n� m� and the largest integer in the matrix

�A b� represented in unary�

�� Computing an approximate solution

In this section we show how to obtain a �
approximation for the optimum of a bounded
integer program with two variables per inequality in O�mnU� log�Un��m		 time� We as

sume that the given integer program has a feasible integer solution denoted by z�� � � � � zn�
�This can be tested using Lemma ���	�

We �rst transform the integer program into a monotone integer system as outlined
in Section � and compute an optimal solution for the monotone system as outlined in
Section �� For every variable xi �i � �� � � � � n	� let m�

i and m�
i denote the respective

values of x�i and x�i in the optimal solution of the monotone system� For i � �� � � � � n� let
m�

i �
�
��m

�
i �m�

i 	� We de�ne the following solution vector� denoted by � � ���� � � � � �n	�
where for i � �� � � � � n�

�i �

���
��
minfm�

i ��m
�
i g if zi � minfm�

i ��m
�
i g

zi if minfm�
i ��m

�
i g � zi � maxfm�

i ��m
�
i g

maxfm�
i ��m

�
i g if zi � maxfm�

i ��m
�
i g �

�



Lemma ���� The vector � is a feasible solution of the given integer program�

Proof� Let axi � bxj � c be an inequality where a and b are non
negative� We check
all possible cases� If �i is equal to zi or minfm�

i ��m
�
i g� and �j is equal to zj or

minfm�
j ��m

�
j g� then clearly�

a�i � b�j � azi � bzj � c �

Suppose �i � zi and �j � maxfm�
j ��m

�
j g� By construction� we know that

am�
i � bm�

j � c and � am�
i � bm�

j � c �

If �i � �m�
i � then�

a�i � b�j � �am�
i � bm�

j � c �

Otherwise�
a�i � b�j � am�

i � bm�
j � c �

The last case is when �i � maxfm�
i ��m

�
i g� and �j � maxfm�

j ��m
�
j g� In this case�

a�i � b�j � am�
i � bm�

j � c �

The other types of inequalities are handled similarly�

We showed that vector � is a feasible solution� We now argue that it also approximates
the optimum�

Theorem ����

�i	 The vector � is a ��approximate solution of the bounded integer program�

�ii	 The value of the objective function at the vector m� is at least a half of the value

of the objective function of the best integer solution�

Proof� By construction� � � �m�� From Section � we know that the vector m�

provides a lower bound on the value of the objective function for any integral solution�
Hence� the theorem follows�

The complexity of the algorithm is dominated by the complexity of the procedure in
��� for optimizing over a monotone system� The running time is O�mnU� log�Un��m		�

What happens when we are optimizing over a �
SAT integer program� The integer
program that we are given may be of this type� or we may get a �
SAT integer program

by applying the transformation outlined in Section ��

In this case� for all i such that m�
i � �m�

i � we get �i � m�
i � If m

�
i �� �m�

i � we get
�i � zi� In other words� the �
approximate solution is obtained by rounding� either up

�




or down� the fractional coordinates of m�� Lemma ��� ensures that there always exists
a feasible rounding�

We note that in the special case of a monotone �
SAT integer programming problem�
all the basic solutions of the linear programming relaxation are integer� hence no rounding
is required in this case�

�� Properties of binary integer programs

In this section we further investigate the properties of �
SAT integer programs� We

�rst consider the linear relaxation of a �
SAT integer programming problem� It turns out
that solutions of this relaxation always have denominator not greater than �� This follows
from the statement in the next lemma about the determinants of �
SAT�s nonseparable

submatrices� A matrix is nonseparable if there do not exist partitions of the columns and
rows to two subsets �or more	 C�� C� and R�� R� such that all nonzero entries in every
row and column appear only in the submatrices de�ned by the sets C��R� and C��R��

Lemma ���� The determinants of all nonseparable submatrices of a �
SAT linear pro�

gramming problem have absolute value at most ��

Proof� Let A denote the constraint matrix of a �
SAT integer program� Thus� A has
at most two non
zero entries in every column� We show that the absolute value of
the determinant of any nonseparable square submatrix of A can be either 
� �� or ��

The proof of this claim is by induction on the size of the submatrix� Since the entries
of A are from f��� 
� �g� the claim holds for � � � submatrices� Assume it holds for
any �m � �	 � �m � �	 submatrix and we show that the claim holds for any m � m

submatrix�

We may assume that each row and column in A has exactly two non
zero entries�

Otherwise� there must be a row or a column where all entries� possibly with the excep

tion of one� are zero� In either case� we can apply the inductive assumption directly
and prove the claim� Let Aij denote the submatrix obtained by deleting the i�th row
and the j�th column from A�

Without loss of generality� we may assume that the two non
zero elements in row
i of A are in columns i and i � � �modulo m	� �Due to the nonseparability of the

submatrix� this can be achieved by appropriate row and column interchanges�	 Hence�

det�A	 � A��� �� � det�A��	� ���	mA�m� �� � det�Am�	 �

The absolute values of the determinants of A�� and Am� are equal to �� since both are

triangular matrices with nonzero diagonal elements� Therefore� the absolute value of
the determinant of A is at most ��

��



An immediate corollary of Lemma ��� is the fact that the value of every variable
in a basic solution of the �
SAT linear program is in the set f
� �� � �g� Although for
binary integer problems the subdeterminants can be of value greater than �� and hence
the solutions would not be in this set� we get rid of these �unnecessary� solutions by

reducing the problem �rst to �
SAT� as in Section �� In a �
SAT system the variables are
assumed to be binary� Lemma ���� however� applies to any linear programming problem
with a constraint matrix with coe�cients 
� ����� and at most two nonzero elements in
each row� We call such a system generalized �
SAT� Note that we do not assume the

existence of �nite upper bounds on the variables� We will show that a �
approximation
can be achieved even for such systems�

Lemma ���� A generalized �
SAT has the property that S
���
I � S�

�
���

Proof� It su�ces to prove that S�
�
�
� is contained in S

���
I � Let x � S�

�
�
�� De�ne a

solution �x��x�	 as follows� For j � �� � � � � n�

�i	 If xj is an integer� set x�j � �x�j � xj�

�ii	 If xj is a noninteger� then set x�j � xj �
�
�
and x�j � �xj �

�
�
�

It is easy to show that �x��x�	 satis�es the �three	 generic types of constraints de�ning

S
���
I � For example� consider a constraint of the form x�j � x�k � c� Since x is feasible�

we have xj � xk � c� If either both xj and xk are integer or both are noninteger� then
we have x�j � x�k � xj � xk � c� Assuming that xj � xk is noninteger� if xj � xk � c

then xj � xk �
�
� � c� Using the fact that x�j � xj and �x

�
k � xk �

�
� � it follows that

x�j � x�k � xj � xk �
�
�
� c� The other cases follow from similar considerations�

One corollary of Lemmas ��� and ��� is that the linear programming relaxation of a
�
SAT and a generalized �
SAT can be solved by optimizing over the respective monotone
system� Both problems are then solvable in strongly polynomial time� the �
SAT as a

maximum �ow �or rather minimum cut	 problem� and the generalized �
SAT as a dual
of a linear �ow problem� Note that one could also solve these linear programs in strongly
polynomial time� without using the transformation to a monotone system� by directly
applying the algorithm of ����� The latter� however� is not as e�cient as the best known

algorithms for solving maximum �ow problems or linear �ow problems�

We next show how to obtain a �
approximation for a generalized �
SAT integer pro

gram� First� we note that the procedure described above in Section � is not applicable
here since the variables might not have �nite upper bounds� Since we already know how

to solve the monotone system� the di�culty lies in �nding a feasible integer solution or
verifying that none exists� We perform this latter task as follows�

Let �x��x�	 be an optimal solution of the monotone system� i�e�� x � �
��x

� � x
�	

solves the linear programming relaxtion� Using� if necessary� the transformation in the

��



proof of Lemma ���� we may assume that x�j � �x�j or x�j � �x�j � � �j � �� � � � � n	�
Next� we apply Lemma ��� to conclude that the given generalized �
SAT integer program
is feasible if and only if there exists a feasible rounding of x� The latter can be tested by
the linear time algorithm in ���� Moreover� Theorem ��� ensures that if such a rounding

exists� then it is a �
approximation�

�� �Fixing	 Variables

As discussed in the introduction� the solution to the relaxation of the vertex cover problem
�VCR	 has the property that there exists an optimal solution that coincides with the
relaxed solution in all integer components� This allows to ��x� the variables that are

integer in the relaxation and remove them from further consideration� hence reduce the
size of the problem� Not only is the size of the problem reduced� but also any solution on
the remaining set of variables has an objective function value at most twice the optimum�
This idea was proposed in ��� as a method for generating approximation algorithms with

a worst
case ratio smaller than � for various special classes of graphs� We show here
that precisely the same idea applies to any integer programming problem �IP	� after it is
transformed to a �
SAT�

Lemma ���� Let x��� be an optimal solution of �
SAT in the set S
���
I � Let

INT � fj j x
���
j � 
 or x

���
j � �g �

Then there is an optimal integer solution z of �
SATsuch that zj � x
���
j for j � INT�

Proof� The proof is a generalization of that in ����� For a set A � f�� �� � � � � ng� let

w�A	 �
P

j�Awj � Let P� � fjjx
���
j � �g� and P� � fjjx

���
j � 
g� i�e�� P� 
 P� � INT�

In the �rst part we prove the claim that there exists an optimal integer solution z
such that P� is a suset of fjjzj � �g� In the second part of the proof we use such an

integer solution to construct an optimal integer solution satisfying the statement of the
Lemma�

Consider �rst the proof of the claim� The proof is by contradiction� Suppose that
I � fjjzj � 
g�P� is nonempty for every optimal integer solution z� The contradiction

will follow by proving that there exists a solution in S�
�
�
� that is strictly better than

x
��� which� with Lemma ���� contradicts the optimality of x����

Consider some optimal solution z� Let J � fjjzj � �g � P�� We now prove that

w�I	 � w�J	�

Indeed� if the opposite inequality were to hold for some z� then a solution� say u�
obtained from z by setting the variables with indices in I to � and the variables with

��



indices in J to 
� would be feasible and its objective value would not be greater than the
optimum� But fjjuj � 
g � P� is empty� contradicting the assumption� The feasibility
of u follows from the feasibility of z and x���� To prove the feasibility� consider �rst a
constraint of the type xp � xq � �� We may assume� without loss of generality� that

p � J � Under this assumption x���p � 
 and therefore x���q � �� If zq � � then uq � zq
since q �� J and the constraint is satis�ed� If zq � 
 then q � I� uq � �� and again the
constraint is satis�ed� Second consider a constraint of the type xp � xq � �� We may
assume� without loss of generality� that p � I� Thus x���p � � and therefore x���q � 


and q �� I� If q � J � then uq � 
 and u satis�es the constraint� Otherwise� we conclude
that uq � zq � 
� and again u satis�es the constraint� Finally� consider the last type
of constraint� xp � xq� If p � I� this constraint is certainly satis�ed by u� Suppose
that p �� I� If zp � 
� then x���p � 
� From the feasibility of both z and x��� it follows

that zq � 
 and x���q � 
� Thus� up � uq � 
 and u satis�es the constraint� Next�
suppose that zp � �� If x���p � � then up � zp � � and again the constraint is satis�ed�
If x���p � 
� then p � J and also x���q � 
� If zq � 
� then uq � zq � 
 since q �� J �

while if zq � �� then q � J and therfore uq � 
� In both cases� uq � 
 implies that u
satis�es the constraint� This concludes the proof that u is a feasible integer solution�
Therefore� w�I	 � w�J	�

Consider now the vector x� where

x�j �

���
��
��� if j � I

��� if j � J

x
���
j otherwise�

We claim that x� is feasible� and hence x� � S�
�
��� To prove feasibility� we consider

the three types of possible inequalities� and show that they are satis�ed� Since all
inequalities involving two variables that are both equal to �

� are satis�ed� we need only
verify inequalities in which one of the variables is in I 
 J and the other is in P� n I or

in P� n J �

Consider the inequality xp � xq � �� This inequality may not be satis�ed for x�

if x�p � �
�
and x�q � �� Since x�q � � we have q � P� n I� Now� p �� I� or else x��� is

infeasible because in that case both values of xp and xq in x��� are �� If p � J � then
zp � � and also zq � � �as q � P� n I	� hence z is infeasible� Therefore� whenever this
inequality arises it is feasible�

Consider now the inequality xp � xq � �� This inequality may not be satis�ed for
x
� if x�p �

�
� and x�q � 
� So q � P� n J � p must therefore be in I� since otherwise p � J

� x���p � x���q � 
 and x��� is infeasible� p in I implies that zp � 
� which in turn implies

that zq � �� Thus� we conclude that q � J which contradicts the fact that q � P� n J �
So� again� this inequality is feasible for x��

Finally� consider the inequality xp � xq � This inequality may not be satis�ed for
x
� if x�p �

�
� and x�q � � or if x�p � 
 and x�q �

�
� � Consider the �rst case� q � P� n I

��



and p � I� or else x��� is infeasible� But then zp � 
 and zq � �� which implies that
z is infeasible� Hence� this case cannot occur� In the second case q � J or else q � I�

x���q � � and x��� is infeasible� Thus� zq � �� On the other hand� from p � P� n J we
have zp � 
 and the feasibility of z is contradicted�

It follows that x� is a feasible solution and x� � S�
�
�
�� Now�

nX
j��

wjx
���
j �

nX
j��

wjx
�
j � w�I	� �

�
w�I	 � �

�
w�J	 � �

�
w�I	� �

�
w�J	 � 
 �

This contradicts the optimality of x��� in S
���
I � S�

�
�
�� Hence� there is an optimal

solution z such that fj j zj � �g � P��

If P� is a subset of fjjzj � 
g then the proof is complete� Thus� suppose that I��
de�ned as the intersection of P� and fjjzj � �g� is nonempty� De�ne an integer solution
u by setting uj � 
 if j � I� and uj � zj otherwise� It is clear that P� is a subset
of fjjuj � �g and P� is a subset of fjjuj � 
g� Also� the objective value at u is not

larger than the objective value at z� To complete the proof� it su�ces to show that u
is a feasible solution� Consider �rst a constraint of the type xp� xq � �� Without loss
of generality� suppose that p � I�� Thus� x���p � 
� Since x��� is a feasible solution� it
follows that x���q � �� The latter implies that zq � �� In particular� q �� I� and therefore

uq � �� so the constraint is satis�ed� It is clear that u satis�es every constraint of the
type xp � xq � �� Finally� consider a constraint of the type xp � xq� If either q � I�
or p �� I� the constraint is trivially satis�ed� Thus� suppose that q �� I� and p � I��

Hence� x���p � 
� Moreover� from the feasibility of x��� it follows that x���q � 
� If zq
were equal to � then we would get that q � I�� Therefore zq � 
� which in turn implies
that uq � 
� and the constraint is satis�ed by the integer vector u� This concludes the
proof�

Notes� This paper is based on an earlier version by the �rst author alone� The con

tribution of N� Megiddo and A� Tamir was to indicate that the quali�cation of �rounding
property� in that earlier version was unnecessary� and a feasible solution can always be

found provided that the original problem is feasible� They also proposed an alternative
algorithm� where the problem �IP	 is �rst transformed to �
SAT and then the monotone
transformation and the ��� procedure is applied� This algorithm is in fact identical in its

outcome� the graph created� to the algorithm presented here� and hence not discussed
explicitly� The extension to the generalized �
SAT is also due to them� as well as various
improvements to the presentation of the paper�
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