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On Finding Additive, Superadditive and Subadditive
Set-Functions Subject to Linear Inequalities

Numnrod Megiddo®

Abstract. Complexity results are obtained with regard to problems of find-
ing solutions to set of linear inequalities which are compatible with some set-
functions and a prescribed intersection graph. It is shown that the additive case is
NP-complete, the superadditive case is coNP-complete, and the subadditive case
is in P.

1. Introduction

In this note we describe some problems inspired by work on a recent paper (1. Some
of the problems are related to [3].

Let X denote any set and let v : 2¥ — R be a nonnegative set-function. The

function v is called additive if for every pair of disjoint subsets S, T C X, v(SUT) =
v(S) + v(T). The function is called superadditive if for every pair of disjoint subsets
S, T'C X, v(SUT)>v(S)+v(T). Note that a superadditive function (and therefore
also an additive one) must be monotone, ie., v(S) < o(T) if S C T, and satisfy
v(0) = 0. Finally, the function is called subadditive if it is monotone and for every pair
of disjoint subsets S, T C X, v(SUT) < v(S) +«(T).

In Section 2 we show that the problem finding a solution of linear inequalities,
which 1s compatible with some additive set-function, can be solved in polynomial time.
However, if the structure is prescribed by an intersection graph then the problem is
already NP-complete. In Section 3 we discuss the superadditive case. Surprisingly,
replacing “additive™ by “superadditive”™ changes the problem from NP-complete into
coNP-complete. In Section 4 we show that the subadditive case (yet with the intersec-
tion graplh) is solvable in polynomial time.
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2. Additive function compatibility

In this section we consider the problem of recognizing whether a system of linear in-
equalities has a solution which is compatible with some additive function. More pre-
cisely, consider first the following problem:

Problem 2.1. The input consists of an (m + n)-matrix A = (a;;), an m-vector b, and
a scalar c. The problem is to find a vector 2 = R™ such that

(i) Az > b, and
(i1) there exist a set X, an additive set-function v : 2X — R, and subsets Fy,---, E,, C
X such that v(L7, E)) = cand (E;) =2, (j =1,---.n).

We wish to formulate Problem 2.1 as a mathematical programming problem. Thus,
we are looking for a characterization of vectors & which satisfy condition (ii) of the

problem. This is given in the following lemma:

Lemma 2.2. For every nonnegative vector @ = R" and for any scalar ¢, condition (i)
of Problem 2.1 is satisfied if and only if

max r;, < ¢ < Z;c

peiiad 7
1<ysn j=1
Proof: Denote
n
c=) w;
J=1
and
¢ = max z;
1<3<n
Assume without loss of generality that 2; > 2, > --- > z,,. The “only if” part is

obvious. For the “if" part consider first two extreme cases. Suppose ¢ = ¢. Obviously,
there exist a set X, an additive set-function © on X, and pairwise disjoint subsets

Ej C X (j =1,---,n) such that T(E;) = z;. In the other extreme case, ¢ = ¢,
there exist a set X (X M X = 0), an additive set-function z, and subsets E, = X
(j=1,--,n),
E,2E2---2E,,
such that
UE;) =z -

In general, if ¢ < ¢ < ¢, let ¢ be the number between 0 and 1 such that

c=(1—t)c+tc.



Let X = XYUX,E = E; U E; (j=1,---,n) and for every S C X, let
o(S)=(1-)r(SNX)+tr(SNX).
Ej)=c

) = z; and »(L7?

i=1

It 1s easy to vernfy that the function v i1s additive, v(E,

We thus have the following:
Proposition 2.3. Problem 2.1 can be solved in polynomial time as the following sysiem
of linear inequalities:

n

dz>b Z.DJ‘ZC . 0<2;<e (j=1,---.n).

—

<

Problem 2.1 turued out to be easy, probably due to the lack of structural require-
ments on the sets E;. We now consider a more structured problem. Suppose we are
required to have the sets E,---, E, so that E; N E; = 0 if and only if the pair (E;, E})
is in a certain given set &£ of pairs. In other words, denoting V = {E,,---, E,.}, the
graph G = (V. &) (called the intersection graph of the sets Ey.--:, E,) is prescribed.
Of course, we could consider more complicated structural constraints but it turns out
that with a prescribed intersection graph the problem is already NP-complete. Thus,
consider the following problem:

Problem 2.4. The input consists of an (/m ~ n)-matrix 4 = (a,;), an m-vector b, a
scalar ¢, and a graph ¢ = (V,&) (|V

= n). The problem is to recognize whether
there exist a set X, a family of n distinct subsets F,,---, E, C X consistent with the
intersection graph G, and an additive set-function v : 2¥ — R, such that

Za,‘jv(Ej)Zbi (1:1,,m)
b

U(U" EJ) =c.

i=1
We first prove:

Proposition 2.5. Problem 2.4 is NP-hard.

Proof: The proof follows by reduction from the maximum independent set problem
[2]. Suppose a graph G = (V,£) and a number & are given, and we have to recognize
whether there exists in G an independent set of vertices (i.e., a set U C V of vertices
such that for every pair u,v € U, (u,v) ¢ £) whose cardinality is at least k. Consider
an instance of Problem 2.4 with a single inequality:

n
Yoz k,
1=1



where ¢ = 1, and the prescribed intersection graph is the graph ¢. Let X denote a

set and let v denote an additive set-function on X. Let Fy,---, E, denote subsets of

X consistent with the graph ¢. Without loss of generality assume
X =UF .

The problem 1s equivalent to the system:

For every S C V, denote

i
I
)
ks
R
)
uhj‘

J=S P
and let
75 = v(ds)
Obviously,
EJ' = As
525

so we have

5
I
]
o
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sC)
w5 >0
Note that
E,‘ M EJ' = n Ag s
§2{1.s5}
50

o ENE)= Y 7s.
52435}
Thus, for every pair 7, j such that £, 1 E, = 0, and for every § such that § 2 {7, j},
we must have 7 = 0. In other words, for every non-independent set S5, ws = 0.
Let 7 denote the family of independent sets in . There is no difficulty with the
requirements that certain pairs of sets have nonempty intersection; a solution where
such a pair does not intersect can be modified by adding a common element to which
the function assigns value zero. Thus, Problem 2.4 1s equivalent to the following
system of linear inequalities in the variables 7s:

Z|S|7I'52k
SeT
271'5:1
SeT

s >0 (SeT).



It is easy to see that the latter has a solution if and only if there exists an independent
set S such that

) >k

(A

Proposition 2.6. Probiem 2./ is in the class NP.

Proof: To prove membership in NP, note that with the notation established in the
proof of Proposition 2.5, Problem 2.4 is equivalent to the following system of linear

inequalities:
N sms b (1=1.---,m)
S
N ors =
2 ng — C
ser

It 1s well-known that if this system has a solution then it must have a solution where
at most m + 1 of the ws's are positive. Moreover, there exists a solution whose size

1s bounded by a polynomial in the size of the problem. Membership in NP is evident
from these observatious.

We have established

Proposition 2.7. Problem 2.J is NP-complete.

3. Superadditive function compatibility

In this section we consider problems similar to the ones of Section 2, involving super-
additive rather than additive functions. However, we first need to explain a certain
difference between the two problems. An analogue of Problem 2.1 (which turns out to
be too easy) is phrased as follows.

Problem 3.1. The input consists of an (m ~ n)-matrix 4 = (a,;), an m-vector b, and
a scalar c. The problem is to find a vector z = R™ {(or conclude that none exists) such
that

(i) Az > b, and
(1) there exist a superadditive set-function v on a set X and subsets E},---, E, C X
such that v(U?_, E}) = c and v(E;) =z; (j = 1,---,n).

(S5



Note that the superadditivity condition applies to pairs of disjoint sets. Suppose
Ei,---.E, C X are such that every two of them intersect and none of them con-
tains any other one. Suppose the (nonnegative) values v(E;) (j = 1,---,n) are given.
Now, extend the function v by defining

v(S) = (E;) .

v(5) ET%’EI( ;)
Obviously, the resulting function is superadditive. This implies the following proposi-
tion which makes Problem 3.1 too easy:

Proposition 3.2. Problem 3.1 is equivalent to the following system of linear inequal-
ities:

Av>b 0 0< a2 (J=1,---,n).

As in Section 2, a miore interesting problem arises when some structure is imposed
on the sets E; through a prescribed intersection graph ¢ = (V, ):

Problem 3.3. The input consists of an (m ~ n)-matrix 4 = (a;;), an m-vector b, a
scalar ¢, and a graph ¢ = (V,€) (Vi = n). The problem is to recognize whether
there exist a set X, a family of n distinct subsets Ey,---, E,, € X consistent with the
intersection graph G, and a superadditive set-function v : 2* — R, such that

Mage(E))>b (i=1,---,m)
J

T( !"I;'l:l

EJ') =cC.
Again, we assume without loss of generality that

E; .

2

X =7

=1

The analysis of the computational complexity of Problem 3.3 is based on the following

lemma.

Lemma 3.4. Let Ey,---, E, be subsets of a set X = _7_|E; none of which contains
the other, and let G = (V,£) denotie their iniersection graph. Under these condiiions,
a partial sei-function v, satisfying v(E;) =w; >0 (1 =1,---,n) and v(X) = ¢, can
be extended into a superadditive set-function on the set X if and only if the mazimum
weight (in terms of the numbers of the form w;) of an independent set of vertices is
not greater than c.

Proof: The “only if” part is obvious. For the “if” part, define a set-function u by

u(S) = max{z U(Eji)} '

1=1



where the maximum is taken over all the sums of v(E},) such that E; ,---, E; are
pairwise disjoint subsets of S:if § does not contain any E;, u(S) = 0. The function u
is superadditive since, if S| S5, = 0. the family of independent sets of E,’s contained
in S; U S, contains all the unions of independent sets of E;’s contained in S; with
independent sets of E,’s contained in S.. It is easy to see that if the condition of the

lemma holds then the function u is in fact an extension of v.

Corollary 3.5. 4 soluiion to Problem 5.7 exists if and only if there exist values
v(E;) = w; such that

(1) EJ‘ aijp(EJ') > b ("? = lv cee,m)
(i1) the weight (in terms of the w;’s! of any independent set in G s not greater than

C.

e

For definitions of the classes NP and coNP and related material see [2].

Proposition 3.6. Problem 3.5 is complete for the complexity class coNP in polynomial-
time reducibilities.

Proof: ~ The fact that the complement of Problem 3.3 is NP-hard follows easily
from Corollary 3.5 since the maximum independent set problem in a graph can be
trivially reduced to Problem 3.3. Thus the interesting part of the proposition is
membership in coNP. We now show how in view of Corollary 3.5 one can recognize
in nondeterministic polvnomial time that the problem has no solution. A solution
has to satisfy the following system of linear inequalities:

Az > b
Yoz, <c (5<1)
JES
‘I:JEO (].:1,"',71‘)

(where 7 1s the family of independent sets in ). By linear programming duality,
this problem has a solution if and only if the following system (in the variables

v=1(y1, . Ym)¥ and (75)sz7) does not have a solution:
by —c Z ws > 1
s
ATy =Y ws<0 (j=1,.n)
35
yi7s 2 0.

However, if the latter has a solution then it also has one whose size is polynomial in
the size of the problem, where at most n + 1 of the variables y; and 75 are positive.
This implies that the latter problem is in NP and hence our original problem is in

CONP. 1



4. Subadditive function compatibility

In this section we consider problems similar to the oues of the previous sections, but
now with (monotone) subadditive functions.

Problem 4.1. The input consists of an (m ~ n)-matrix 4 = (a;;), an m-vector b, a
scalar ¢, and a graph G = (V. &) (V! = n). The problem is to recognize whether
there exist a set X, a fawily of n distinct subsets E,,---, E, T X consistent with the
intersection graph G, and a snbadditive set-function v : 2X — R, such that
Zaijv(Ej)Ebi (i:]-',"'rrn')
J

(Ll B =

Again, we assume without loss of generality that
X =UT_E;.

The analysis of the computational complexity of Problem 4.1 is based on the following
lemma.

Lemma 4.2. Lef Ey.---, E, be subsets of a set X = UT_| E; none of which contains
the other, and let G = (V. &) denote their intersection graph. Under these conditions,
a partial set-function v, satisfying v(E;) =w; >0 (1 =1,--+,n) and v(X) = ¢, can be
extended into a subadditive set-functiion on the set X if and only if

max {wi} < ¢ < min_ {w; +wj} .

1<k<n (E,"Ej)et-

Proof: The “only if” part is obvious. For the “if" part, define a set-function u by

u(S) = max{v(E;)} (S CX)

(and u(X) = ¢). Obviously, the function u is monotone and extends v. It is also easy
to check that it is subadditive if our condition is satisfied. ,

Corollary 4.3. Problem /.1 can be solved in polynomial time as the following system
of linear inequalities:

Az > b
zi+zjze (B Bj) ¢S
OSIEJ'SC (.7:]-) 'sn')'
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