ON FINDING ADDITIVE, SUPERADDITIVE AND SUBADDITIVE SET-FUNCTIONS SUBJECT TO LINEAR INEQUALITIES

Nimrod Megiddo
IBM Almaden Research Center
650 Harry Road
San Jose, California 95120-6099
and
School of Mathematical Sciences
Tel Aviv University
Tel Aviv, Israel

Abstract

Complexity results are obtained with regard to problems of finding solutions to set of linear inequalities which are compatible with some set-functions and a prescribed intersection graph. It is shown that the additive case is NP-complete, the superadditive case is coNP-complete, and the subadditive case is in P .

On Finding Additive, Superadditive and Subadditive Set-Functions Subject to Linear Inequalities

Nimrod Megiddo

Abstract

Complexity results are obtained with regard to problems of finding solutions to set of linear inequalities which are compatible with some setfunctions and a prescribed intersection graph. It is shown that the additive case is NP-complete, the superadditive case is coNP-complete, and the subadditive case is in P .

1. Introduction

In this note we describe some problems inspired by work on a recent paper [1]. Some of the problems are related to $[3]$.

Let X denote any set and let $v: 2^{X} \rightarrow R$ be a nonnegative set-function. The function v is called additive if for every pair of disjoint subsets $S, T \subset X, v(S \cup T)=$ $v(S)+v(T)$. The function is called superadditive if for every pair of disjoint subsets $S, T \subset X, v(S \cup T) \geq v(S)+v(T)$. Note that a superadditive function (and therefore also an additive one) must be monotone, i.e., $v(S) \leq v(T)$ if $S \subseteq T$, and satisfy $v(\emptyset)=0$. Finally, the function is called subadditive if it is monotone and for every pair of disjoint subsets $S, T \subset X, v(S \cup T) \leq v(S)+v(T)$.

In Section 2 we show that the problem finding a solution of linear inequalities, which is compatible with some additive set-function, can be solved in polynomial time. However, if the structure is prescribed by an intersection graph then the problem is already NP-complete. In Section 3 we discuss the superadditive case. Surprisingly, replacing "additive" by "superadditive" changes the problem from NP-complete into coNP-complete. In Section 4 we show that the subadditive case (yet with the intersection graph) is solvable in polynomial time.

[^0]
2. Additive function compatibility

In this section we consider the problem of recognizing whether a system of linear inequalities has a solution which is compatible with some additive function. More precisely, consider first the following problem:

Problem 2.1. The input consists of an (m v n)-matrix $A=\left(a_{i j}\right)$, an m-vector b, and a scalar c. The problem is to find a vector $x \in R^{n}$ such that
(i) $A x \geq b$, and
(ii) there exist a set \mathcal{F}, an additive set-function $v^{\prime}: 2^{X} \rightarrow R$, and subsets $E_{1}, \cdots, E_{n} \subseteq$ X such that $r\left({ }_{l}^{n=1} E_{j}\right)=c$ and $u\left(E_{j}\right)=x_{j}(j=1, \cdots, n)$.

We wish to formulate Problem 2.1 as a mathematical programming problem. Thus, we are looking for a characterization of vectors x which satisfy condition (ii) of the problem. This is given in the following lemma:

Lemma 2.2. For every nonnegative vector $x \in R^{n}$ and for any scalar c, condition (ii) of Problem 2.1 is satisfied if and only if

$$
\max _{1 \leq j \leq n} x_{j} \leq c \leq \sum_{j=1}^{n} x_{j} .
$$

Proof: Denote

$$
\bar{c}=\sum_{j=1}^{n} x_{j}
$$

and

$$
\underline{c}=\max _{1 \leq j \leq n} x_{j} .
$$

Assume without loss of generality that $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$. The "only if" part is obvious. For the "if" part consider first two extreme cases. Suppose $c=\bar{c}$. Obviously, there exist a set $\overline{\mathcal{V}}$, an additive set-function \bar{v} on \bar{X}, and pairwise disjoint subsets $\bar{E}_{j} \subseteq \bar{X}(j=1, \cdots, n)$ such that $\bar{r}\left(\bar{E}_{j}\right)=x_{j}$. In the other extreme case, $c=\underline{c}$, there exist a set $X(\bar{X} \cap X=0)$, an additive set-function \underline{v}, and subsets $E_{j} \subseteq X$ $(j=1, \cdots, n)$,

$$
E_{1} \supseteq E_{2} \supseteq \cdots \supseteq E_{n},
$$

such that

$$
\underline{v}\left(E_{j}\right)=x_{j} .
$$

In general, if $\underline{c}<c<\bar{c}$, let t be the number between 0 and 1 such that

$$
c=(1-t) \underline{c}+t \bar{c} .
$$

Let $X=X \cup \mathcal{X}, E_{j}=E_{j} \cup \bar{E}_{j}(j=1, \cdots, n)$ and for every $S \subseteq X$, let

$$
v(S)=(1-t) \underline{z}(S \cap X)+t \bar{x}(S \cap \bar{X}) .
$$

It is easy to verify that the function v is additive, $v\left(E_{j}\right)=x_{j}$ and $v\left(\cup_{j=1}^{n} E_{j}\right)=c$.
We thus have the following:
Proposition 2.3. Problem 2.1 can be solved in polynomial time as the following system of linear inequalities:

$$
A x \geq b \quad, \quad \sum_{j=1}^{n} x_{j} \geq c \quad, \quad 0 \leq x_{j} \leq c \quad(j=1, \cdots, n)
$$

Problem 2.1 turned out to be easy, probably due to the lack of structural requirements on the sets E_{j}. We now consider a more structured problem. Suppose we are required to have the sets E_{1}, \cdots, E_{n} so that $E_{i} \cap E_{j} \neq 0$ if and only if the pair (E_{i}, E_{j}) is in a certain given set \mathcal{E} of pairs. In other words, denoting $\mathcal{V}=\left\{E_{1}, \cdots, E_{n}\right\}$, the graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ (called the intersection graph of the sets $\left.E_{1}, \cdots, E_{n}\right)$ is prescribed. Of course, we could consider more complicated structural constraints but it turns out that with a prescribed intersection graph the problem is already NP-complete. Thus, consider the following problem:

Problem 2.4. The input consists of an (m, n)-matrix $A=\left(a_{i j}\right)$, an m-vector b, a scalar c, and a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})(|\mathcal{V}|=n)$. The problem is to recognize whether there exist a set \mathcal{X}, a family of n distinct subsets $E_{1}, \cdots, E_{n} \subseteq X$ consistent with the intersection graph \mathcal{G}, and an additive set-function $v: 2^{X} \rightarrow R$, such that

$$
\begin{aligned}
& \sum_{j} a_{i j} v\left(E_{j}\right) \geq b_{i} \quad(i=1, \cdots, m) \\
& v\left(\cup_{j=1}^{n} E_{j}\right)=c .
\end{aligned}
$$

We first prove:
Proposition 2.5. Problem 2.4 is NP-hard.
Proof: The proof follows by reduction from the maximum independent set problem [2]. Suppose a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and a number k are given, and we have to recognize whether there exists in \mathcal{G} an independent set of vertices (i.e., a set $U \subset \mathcal{V}$ of vertices such that for every pair $u, v \in U,(u, v) \notin \mathcal{E})$ whose cardinality is at least k. Consider an instance of Problem 2.4 with a single inequality:

$$
\sum_{j=1}^{n} x_{j} \geq k
$$

where $c=1$, and the prescribed intersection graph is the graph \mathcal{G}. Let \mathcal{X} denote a set and let v denote an additive set-function on X. Let E_{1}, \cdots, E_{n} denote subsets of X consistent with the graph \mathcal{G}. Without loss of generality assume

$$
X=U_{j=1}^{n} E_{j}
$$

The problem is equivalent to the system:

$$
\begin{aligned}
\sum_{j=1}^{n} v\left(E_{j}\right) & \geq k \\
v\left(X^{\prime}\right) & =1 .
\end{aligned}
$$

For every $S \subseteq \mathcal{V}$, denote

$$
A_{s}=\bigcap_{j \leq S} E_{j} \bigcap_{j \div S} \bar{E}_{j}
$$

and let

$$
\pi_{s}=v\left(A_{s}\right)
$$

Obviously,

$$
E_{j}=\bigcup_{S \ni j} A_{S}
$$

so we have

$$
\begin{aligned}
v^{\prime}\left(E_{j}\right) & =\sum_{s=j} \pi_{s} \\
\sum_{s \subseteq} \pi_{s} & =v(\mathrm{X}) \\
\pi_{s} & \geq 0
\end{aligned}
$$

Note that

$$
E_{\mathbf{i}} \cap E_{j}=\bigcap_{S \supseteq\{i, j\}} A_{S},
$$

so

$$
\vartheta\left(E_{i} \cap E_{j}\right)=\sum_{s \supseteq\{i, j\}} \pi_{s} .
$$

Thus, for every pair i, j such that $E_{i} \cap E_{\jmath}=0$, and for every S such that $S \cong\{i, j\}$, we must have $\pi_{s}=0$. In other words, for every non-independent set $S, \pi_{s}=0$. Let \mathcal{I} denote the family of independent sets in \mathcal{G}. There is no difficulty with the requirements that certain pairs of sets have nonempty intersection; a solution where such a pair does not intersect can be modified by adding a common element to which the function assigns value zero. Thus, Problem 2.4 is equivalent to the following system of linear inequalities in the variables π_{s} :

$$
\begin{aligned}
\sum_{s \in \mathcal{I}}|S| \cdot \pi_{s} & \geq k \\
\sum_{S \in \mathcal{I}} \pi_{s} & =1 \\
\pi_{s} & \geq 0 \quad(S \in \mathcal{I}) .
\end{aligned}
$$

It is easy to see that the latter has a solution if and only if there exists an independent set S such that

$$
|S| \geq k .
$$

1

Proposition 2.6. Problem 2.4 is in the class NP.

Proof: To prove membership in NP, note that with the notation established in the proof of Proposition 2.5, Problem 2.4 is equivalent to the following system of linear inequalities:

$$
\begin{aligned}
\sum_{s \in I} a_{1} \pi_{s} & \geq b_{1} \quad(i=1, \cdots, m) \\
\sum_{S \in I} \pi_{s} & =c \\
\pi s & \geq 0 \quad(S \in \mathcal{I})
\end{aligned}
$$

It is well-known that if this system has a solution then it must have a solution where at most $m+1$ of the π_{s} 's are positive. Moreover, there exists a solution whose size is bounded by a polynomial in the size of the problem. Membership in NP is evident from these observatious.

We have established

Proposition 2.7. Problem :2.4 is NP-complete.

3. Superadditive function compatibility

In this section we consider problems similar to the ones of Section 2, involving superadditive rather than additive functions. However, we first need to explain a certain difference between the two problems. An analogue of Problem 2.1 (which turns out to be too easy) is phrased as follows.

Problem 3.1. The input consists of an ($m, ~ n$)-matrix $A=\left(a_{i j}\right)$, an m-vector b, and a scalar c. The problem is to find a vector $x \in R^{n}$ (or conclude that none exists) such that
(i) $A x \geq b$, and
(ii) there exist a superadditive set-function v on a set X and subsets $E_{1}, \cdots, E_{n} \subseteq X$ such that $v\left(\cup_{j=1}^{n} E_{j}\right)=c$ and $v\left(E_{j}\right)=x_{j}(j=1, \cdots, n)$.

Note that the superadditivity condition applies to pairs of disjoint sets. Suppose $E_{1}, \cdots, E_{n} \subseteq X$ are such that every two of them intersect and none of them contains any other one. Suppose the (nonnegative) values $火\left(E_{j}\right)(j=1, \cdots, n)$ are given. Now, extend the function r by defining

$$
r(S)=\max _{E_{S}=S} r\left(E_{j}\right)
$$

Obvionsly, the resulting function is superadditive. This implies the following proposition which makes Problem 3.1 too easy:

Proposition 3.2. Problem 3.1 is equivalent to the following system of linear inequalities:

$$
A x \leq b \quad 0 \leq x^{2} \leq c \quad(j=1, \cdots, n) .
$$

As in Section 2, a more interesting problem arises when some structure is imposed on the sets E_{j} through a prescribed intersection graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$:

Problem 3.3. The input consists of an $(m \backslash n)$-matrix $A=\left(a_{i j}\right)$, an m-vector b, a scalar c, and a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})(\mid \mathcal{V}=n)$. The problem is to recognize whether there exist a set X, a family of n distinct subsets $E_{1}, \cdots, E_{n} \subseteq X$ consistent with the intersection graph \mathcal{G}, and a superadditive set-function $v: 2^{X} \rightarrow R$, such that

$$
\begin{aligned}
& \sum_{j} a_{i j} v\left(E_{j}\right) \geq b_{i} \quad(i=1, \cdots, m) \\
& v\left(\cup_{j=1}^{n} E_{j}\right)=c
\end{aligned}
$$

Again, we assume without loss of generality that

$$
X=\bigcup_{j=1}^{n} E_{j} .
$$

The analysis of the computational complexity of Problem 3.3 is based on the following lemma.

Lemma 3.4. Let E_{1}, \cdots, E_{n} be subsets of a set $X=\bigcup_{j=1}^{n} E_{j}$ none of which contains the other, and let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ denote their intersection graph. Under these conditions, a partial set-function v, satisfying $v\left(E_{j}\right)=w_{j} \geq 0(i=1, \cdots, n)$ and $v(X)=c$, can be extended into a superadditive set-function on the set X if and only if the maximum weight (in terms of the numbers of the form w_{k}) of an independent set of vertices is not greater than c.

Proof: The "only if" part is obvious. For the "if" part, define a set-function u by

$$
u(S)=\max \left\{\sum_{i=1}^{k} v\left(E_{j_{i}}\right)\right\}
$$

where the maximum is taken over all the sums of $r\left(E_{j_{i}}\right)$ such that $E_{j_{1}}, \cdots, E_{j_{k}}$ are pairwise disjoint subsets of S : if S does not contain any $E_{j}, u(S)=0$. The function u is superadditive since, if $S_{1} \cap S_{2}=0$, the family of independent sets of E_{i} 's contained in $S_{1} \cup S_{2}$ contains all the unions of independent sets of E_{i} 's contained in S_{1} with independent sets of E_{1} 's contained in S_{2}. It is easy to see that if the condition of the lemma holds then the function u is in fact an extension of v. I

Corollary 3.5. A solution to Problem 3.3 exists if and only if there exist values $v\left(E_{j}\right)=w_{j}$ such that
(i) $\sum_{j} a_{i j} v\left(E_{j}\right) \geq b_{i}(i=1, \cdots, m)$,
(ii) the weight (in terms of the w_{j} s of any independent set in \mathcal{G} is not greater than c.

For definitions of the classes N P and coNP and related material see [2].
Proposition 3.6. Problem 3.3 is complete for the complexity class coNP in polynomialtime reducibilities.

Proof: The fact that the complement of Problem 3.3 is NP-hard follows easily from Corollary 3.5 since the maximum independent set problem in a graph can be trivially reduced to Problem 3.3. Thus the interesting part of the proposition is membership in coNP. We now show how in view of Corollary 3.5 one can recognize in nondeterministic polynomial time that the problem has no solution. A solution has to satisfy the following system of linear inequalities:

$$
\begin{aligned}
& A x \geq b \\
& \sum_{j \in S} x_{j} \leq c \quad(S \in \mathcal{I}) \\
& x_{j} \geq 0 \quad(j=1, \cdots, n)
\end{aligned}
$$

(where \mathcal{I} is the family of independent sets in \mathcal{G}). By linear programming duality, this problem lias a solution if and only if the following system (in the variables $y=\left(y_{1}, \cdots, y_{m}\right)^{T}$ and $\left.\left(\pi_{s}\right)_{s \in I}\right)$ does not have a solution:

$$
\begin{aligned}
b^{T} y-c \sum_{\overline{s \in T}} \pi_{s} & \geq 1 \\
A^{T} y-\sum_{\substack{s \in T \\
s \neq j}} \pi_{s} & \leq 0 \quad(j=1, \cdots, n) \\
y_{i}, \pi_{s} & \geq 0 .
\end{aligned}
$$

However, if the latter has a solution then it also has one whose size is polynomial in the size of the problem, where at most $n+1$ of the variables y_{j} and π_{s} are positive. This implies that the latter problem is in NP and hence our original problem is in coNP.

4. Subadditive function compatibility

In this section we consider problems similar to the ones of the previous sections, but now with (monotone) subadditive functions.

Problem 4.1. The imput consists of an (m v n)-matrix $A=\left(a_{i j}\right)$, an m-vector b, a scalar c, and a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})(\mathcal{V}=n)$. The problem is to recognize whether there exist a set X, a family of n distinct subsets $E_{1}, \cdots, E_{n} \subseteq X$ consistent with the intersection graph \mathcal{G}, and a subadditive set-function $v: \mathfrak{2}^{X} \rightarrow R$, such that

$$
\begin{aligned}
& \sum_{j} a_{i j} v^{\prime}\left(E_{j}\right) \geq b_{i} \quad(i=1, \cdots, m) \\
& \tau \cdot\left(l_{j=1}^{n} E_{j}\right)=c .
\end{aligned}
$$

Again, we assume without loss of generality that

$$
X=\cup_{j=1}^{n} E_{j} .
$$

The analysis of the computational complexity of Problem 4.1 is based on the following lemma.

Lemma 4.2. Let E_{1}, \cdots, E_{n} be subsets of a set $X=\bigcup_{j=1}^{n} E_{j}$ none of which contains the other, and let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ denote their intersection graph. Under these conditions, a partial set-function v, satisfying $v\left(E_{j}\right)=w_{j} \geq 0(i=1, \cdots, n)$ and $v(X)=c$, can be extended into a subadditive set-function on the set \boldsymbol{X} if and only if

$$
\max _{1 \leq k \leq n}\left\{u_{k}\right\} \leq c \leq \min _{\left(E_{i, E_{j} \mid \notin \varepsilon}\right.}\left\{w_{i}+w_{j}\right\} .
$$

Proof: The "only if" part is obvious. For the "if" part, define a set-function u by

$$
u(S)=\max _{E_{j} \subseteq S}\left\{v\left(E_{j}\right)\right\} \quad(S \subset \mathbf{X})
$$

(and $u(X)=c$). Obviously, the function u is monotone and extends v. It is also easy to check that it is subadditive if our condition is satisfied.

Corollary 4.3. Problem 4.1 can be solved in polynomial time as the following system of linear inequalities:

$$
\begin{aligned}
A x & \geq b \\
x_{i}+x_{j} & \geq c \quad\left(\left(E_{i}, E_{j}\right) \notin \mathcal{E}\right) \\
0 \leq x_{j} & \leq c \quad(j=1, \cdots, n) .
\end{aligned}
$$

References

[1] R. Fagin, J. Y. Halpern and N. Megiddo, "A logic for reasoning about probability", Research Report RJ 6190 IBM Almaden Research Center, San Jose, CA 95120-6099, 1988.
(2) M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979.
[3] G. Georgakopoulos, D. Kavvadias and C. H. Papadimitriou, "Probabilistic satisfiability", Journal of Complexity, to appear.

Complexity results are obtained with regard to problems of finding solutions to set of linear inequalities which are compatible with some set-functions and a prescribed intersection graph. It is shown that the additive case is NP-complete, the superadditive case is coNP-complete, and the subadditive case is in P.

[^0]: *IBM Research, Almaden Research Center, San Jose, CA 95120-6099, and School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

