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ABSTRACT 

Smale proposed a framework for applying Newton's method to the linear pro- 
gramming problem. It is shown that his method is closely related to recent interior 
point methods, in the sense that it also traces the path of centers, even though the 
tracing is done outside the affine hull of the feasible domain. Also, an equivalence of 
the fundamental theorems is pointed out. 

It is well known (see [2]) that the linear programming problem 

Minimize cTx subject to A x  2 b, x 2 0 

and its dual 

Maximize bTY subject to ATy < c, y 2 0 
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can be put together as a linear complementarity problem, i.e., given M E R n X n  
and q E Rn,  find z, w E R n  such that 

w = M z + q ,  z ,w>O,  zTw=O,  

where 

which can in turn be viewed as a system of piecewise linear equations [3, 81: 

where xf = max{xj,O), x,: = min{xj, 01, x ' = (xp , .  . . , x,+ IT, SO that z = - x- 
and w = xf. Note that here x E Rn is not the same as the x in the linear 
programming problem above. 

Smale [lo] proposed a "regularization" of the piecewise linear system 
@,(XI = q as follows. For a 2 0, denote 

Approximate x * by 

so @,(XI is approximated by 

@,(x) 3 @: (x) + Ma,- (x) . 

This approximation is good in the sense that @,(x) tends to @,(x) uniformly 
on Rn as a -t 0. Incidentally, the other claim that "for each a, @,(x) tends to 
@,(XI as llxll +m" [lo, p. 178, line 81 is incorrect. For example, let 
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Here, 

whereas 

but x, does not necessarily tend to infinity when llxll does. 
Smale proposes to solve the linear programming problem as follows. For 

every sufficiently large a > llqll, the zero vector lies in the domain of 
quadratic convergence of Newton's method for solving the system @,(XI = 

q +  @,(O). Starting with such an a, a solution for the linear programming 
problem can be obtained by following the path of solutions of @,(XI= 
q +  @,(O) as a is driven to zero. 

Although it does not seem to be an interior point method, it turns out that 
Smale's method is very closely related to recent interior path following 
algorithms. 

The "path of centers" for a general linear complementarity problem [7] is 
defined to be the set of solutions of the following system: 

In the special case of the linear programming problem, this system defines a 
unique path which is obtained by combining the primal and dual logarithmic 
barrier trajectories [4, 1, 7 ,  9, 111. Given a > 0, let us associate with 
any x E R n  a pair of vectors 5 = g(x) = - @,-(x) and q = q(x) = @: (x). If 
@,(x) = q, then obviously q = Mg + q and 5, q > 0. Surprisingly, also 
Sjqj = a2/4, and hence the point (g, q )  lies on the path of centers where 
p = a2/4. 

Conversely, if ( 5 ,  q )  is on the path of centers for a certain value p,  define 
x = q - 5 and a = 2 6 .  We get @i(x)  = - 6 ,  @:(x) = q ,  and @,(x) = q. 
Thus, theorems concerning the path of centers correspond to theorems 
concerning the set of solutions of the system @,(x) = q. The main theorem 
talks about the existence and uniqueness of the path of centers. This is 
discussed below. 

Interestingly, for any x, t j ( ~ ) q j ( ~ )  = p ( j  = 1,. . . , n) and g(x), q(x) > 0. 
However, if x is not exactly on the path of centers, then q(x) # M5(x)+ q. 
This means that although Smale's method traces the ~ a t h  of centers, it does 
not do that within the interior of the feasible domain but rather as an exterior 
point method, although the iterates stay in the positive orthant. 



138 MASAKAZU KOJIMA AND NIMROD MEGIDDO 

Smale defines 

and then proves1 that if M is positive semidefinite, then the map @, : R n  -t R n  
is one-to-one and onto 9kM. In fact, Smale proves that a, is an analytic 
diffeomorphism. 

An equivalent way of stating that a, is one-to-one and onto is as follows. 
If M is positive semidefinite and the feasible domain of the LCP has a 
nonempty interior (i.e., there exist x,y > 0 such that y = Mx+q), then the 
path of centers exists and is unique, i.e., for every p  > 0, there exists a 
uniquepairx,y>O such that y = M x + q a n d  x jy j=p  for j = l  ,..., n. 

The equivalent form of the theorem was independently proven by 
Kojima, Mizuno, and Yoshise [5],  continuing the analysis of [7] .  The proof 
uses arguments of convex optimization. The theorem also follows from a 
more general result on complementarity problems with maximal monotone 
multifunctions given by McLinden [6] .  See Theorems 2 and 3 of [6].  

In order to trace the solutions of @,(XI = q, one needs to have as a 
starting point, an approximate zero2 of @,(x) = q for some a > 0. Since such 
a point is not always available, Smale proposes to start with an approximate 
zero of +,(x)= q +  aa(0). In fact, he argues that the zero vector is an 
approximate zero of the latter for a sufficiently large. The proof of the latter 
is based on Smale's "a-theorem." Now, 

Thus, the choice of 5 = -q = f ie  gives an approximate solution for a large p.  
However, the question of what is a sufficiently large p can be avoided 

' ~ t  least in one place (p. 189, line 11) the proof relies on the special structure of an LCP 
derived from a linear programming problem, but it is claimed that it applies to the more general 
case of a positive semidefinite M. 

' ~ n  approximate zero of differentiable map F :  Rn + R n  is defined to be a point in the 
domain of quadratic convergence of Newton's method for the equation F(x) = 0. 
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altogether if, instead, w e  consider the  system 

where  for p = 1 w e  have a n  exact solution available, namely, 5 = q = e, a n d  
as p approaches zero, the  solution approaches the  path of centers. I t  is not 
known whether  either of these methods can b e  implemented in polynomial 
time. 
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