
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 4. 199 1

Applied Geometry
and Discrete Mathematics

THE VICTOR KLEE FESTSCHRIFT

Recognizing Properties of Periodic Graphs

EDITH COHEN AND NIMROD MEGIDDO

ABSTRACT. A periodic (dynamic) graph is an infinite graph with a repetitive
structure and a compact representation. A periodic graph is represented by
a finite directed graph, called the dependence or the static graph, with d-
dimensional integer vector weights associated with its edges. For every vertex
in the dependence graph there corresponds a d-dimensional lattice in the
periodic graph. For every edge (u , u) in the dependence graph with vector
weight a , there are infinitely many edges in the periodic graph, namely,
from every point on the lattice corresponding to u to the point shifted by
a on the lattice corresponding to u . Periodic graphs are used, for example,
to model VLSI circuits and systems of uniform recurrence relations. In this
paper we give algorithms to compute weakly connected components, to test
bipartiteness, and to compute a minimum average cost spanning tree for
d-dimensional periodic graphs.

1. Introduction

Periodic graphs are infinite graphs with a repetitive structure. They have a
finite description (the "period") given by a directed graph with integer vector
weights associated with the edges. A more formal definition follows.

DEFINITION 1.1. Given G = (V , E , f) , where f: E -+ zd is a weight
function on the edges of G , the periodic (dynamic) graph G* = (V* , E*)
defined by G has:

d
V* = {(z, v)lzE Z , v E V),

E* = {((z, u) ; (z + f (u , v) , v))l(u, v) E E) .
The dimension of G* is d . The graph G is called the dependence or the
static graph. For an edge (u , v) E E , the edges generated by (u , v) are
((z , u) ; (z + f (u , v) , u)) (z € z d) .

See Figures 1 and 2 for examples of one- and two-dimensional periodic
graphs, respectively. Note that for our purposes the periodic graph as defined

1980 Mathematics Subject Classijication (1 985 Revision). Primary OSCXX; Secondary 68R10,
68435.

Research partially supported by NSF PYI Grant CCR-8858097.

0 199 1 American Mathematical Society
1052-1798191 $1.00 + S.25 per page

135

EDITH COHEN AND NIMROD MEGIDDO

FIGURE 1. Example of a one-dimensional periodic graph.

FIGURE 2. Example of a two-dimensional periodic graph.

above may be viewed as undirected. Therefore, a directed edge (u , v) E E
in the dependence graph with f(u, v) = z is equivalent to a directed edge
(v , u) with weight f(v , u) = -z . The undirected infinite periodic graph
defined by G does not change if (u , v) is replaced by (v , u) . Periodic
graphs can be used to model a system of uniform recurrence equations [12]
and VLSI circuits [8, 91. We are interested in testing properties of a peri-
odic graph by working on the defining finite dependence graph. Previous
work on periodic graphs was concerned with scheduling [2, 12, 151, planarity
testing [lo], cycle detection [I, 2, 9, 12, 131, and finding strongly connected
components [2] of directed periodic graphs. Orlin [14] defined the concept
of a one-dimensional dynamic/periodic graph and discussed the complex-
ity of recognizing some properties of it. In particular, he considered finding
the connected and strongly connected components, recognizing bipartiteness,
and computing a minimum average cost spanning tree. Iwano [7] studied

RECOGNIZING PROPERTIES OF PERIODIC GRAPHS 137

two-dimensional periodic graphs and gave algorithms that test bipartiteness,
and compute connected components.

The current paper generalizes some of the results of Orlin and of Iwano to
higher dimensions. We consider here the problems of recognizing connectiv-
ity, bipartiteness, and computing a minimum average cost spanning tree. The
periodic graph of Figure 1 is bipartite and has three connected components.
The periodic graph of Figure 2 is connected but is not bipartite.

$2 gives an algorithm for the connectivity problem. This algorithm is used
in the succeeding sections. It is a generalization of the algorithms of [14,
71. The connectivity algorithm computes dependence graphs whose corre-
sponding periodic graphs are isomorphic to the connected components of
the original periodic graph. 53 gives an algorithm that checks whether the
periodic graph is bipartite. 54 gives an algorithm for finding a tree that spans
a given periodic graph and has an asymptotically minimal average cost. The
problems of recognizing bipartiteness and of computing a minimum average
cost spanning tree in one-dimensional periodic graphs were studied by Orlin
[14]. The problems of finding connected components and testing bipartite-
ness in two-dimensional periodic graphs were studied by Iwano [7]. In this
paper we generalize these results to higher dimensions.

2. Connectivity

PROBLEM 2.1. Given G = (V, E , f) , recognize whether or not the peri-
odic graph G* is connected. If G* is not connected, find Gi = (7, Ei , f,) ,
i = 1 , . . . , r , such that the corresponding periodic graphs G: are isomorphic
to the connected components of G* .

An algorithm that solves Problem 2.1 for one-dimensional periodic graphs
was given by Orlin [14]. An algorithm for two-dimensional periodic graphs
was given by Iwano [7]. Orlin also proved that if the dependence graph G
is connected, then all the connected components of G* are isomorphic, and
therefore only one dependence graph suffices for describing the connected
components of G* . We show that the same is true in higher dimensions.

The following proposition is a restatement of Lemma 4 of [14]. The proof
given there works for any dimension.

DEFINITION 2.2. Let f: E + R~ be a weight function on the edges of a
d graph. A function d: V + R is called a potential. Denote by f : E + R~

the function f(d)(i , j) = f(i , j) + d(i) - d(j) .

PROPOSITION 2.3. For any potential function d: V + zd , if G = (V , E , f)
and G' = (V , E , f (d)) , then G* is isomorphic to (GI)* and the isomorphism
X : V* -+ (v')* is given by X (z , i) = (z + d(i) , i) .

DEFINITION 2.4. If G = (V, E , f) contains a spanning tree T c E such
that for all the edges e E T , f(e) = 0 , then G is in a basic form.

The following corollary of Lemma 4 of [14] generalizes to vector weights.

138 EDITH COHEN AND NIMROD MEGIDDO

COROLLARY 2.5. Given G = (V , E , f) and a spanning tree T c E of G,
a potential function d can be computed such that for the dependence graph
with new weights G' = (V, E , f (d)) , the periodic graph (GI)* is isomorphic
to G* and f(d)(e) = 0 for all e E T.

PROOF. This is done by computing the distances on the tree T from one
vertex to all the other vertices, and choosing d: V + zd to be the distance
function.

We refer to the above procedure as a transformation of G into a basic
form.

DEFINITION 2.6. Given an integer matrix A E zdXm , we define an equiv-
A alence relation - on Zd as follows. TWO vectors a , b E zd are in the same

A equivalence class (a - b) if and only if there exists an integer vector z E Z"
such that a - b = Az .

A REMARK 2.7. Observe that if d = m = 1 , then the relation a - b simply
means a - b (mod A, ,) . In general, an equivalence class of the relation
A - is simply a translate (by a vector in Zd) of the lattice spanned by the
columns of A . When m < d , there are infinitely many equivalence classes.
When m = d and A is nonsingular, there are finitely many equivalence
classes. When m > d , there exists a d x d matrix B that defines the same
equivalence relations as A (see Problem 2.8).

PROBLEM 2.8. Let

be the lattice spanned by m vectors a' , . . . , am E zd . Find vectors b1 , . . . ,
1 m b' E zd , a permutation (i, , . . . , id) of (1 , . . . , d) , and vectors z , . . . , z

E Z' with the following properties:

(i) 9 = rjbJlrj E Z) .

(ii) The vectors bj are linearly independent.
(iii) The permutation (i, , . . . , id) is such that for j = 1 , . . . , 1, bJ = 0

lk

for k < j .
(iv) For all j E (1, . . . , m) , a' = ~ z / , where B is the matrix whose

columns are the bJ's.

PROPOSITION 2,9. Problem 2.8 can be solved in 0 (d 2 m ~ (d log(d 1 1 ~ 1 1)))
time, where 1 1 All = max, la: 1 and B(t) bounds the time required to per/orm
the extended Euclidean algorithm on two t bit integers.

PROOF. Denote by A E zdXm the matrix whose jth column is a' (j =
1 , . . . , m) . Note that the rows of A are not necessarily independent. We be-
gin by identifying a maximal set of linearly independent rows of A. This can
be done in polynomial time by "careful" Gaussian elimination [4]. Without

RECOGNIZING PROPERTIES OF PERIODIC GRAPHS 139

loss of generality, suppose that the first 1 rows comprise such a set (otherwise,
the rows of A can be permuted accordingly), and denote the submatrix by
A' E 2 1 x r n . Let A" E z (~ - ~) ~ ~ be the submatrix consisting of the last d - 1
rows of A. Moreover, during the process of identifying the submatrices, we
also find a Y E Q (~ - ') ~ ' such that A" = YA' , and the size of each entry of
Y is bounded by the determinants of the square submatrices of A (that is,
IlYll = O(llAlll)) . This computation can be done in O(1dm) arithmetic oper-
ations on numbers of size O(llAlll) . Let 9' c Z' denote the lattice spanned
by the columns of A' . It is easy to verify that (b' , bf') (b' E R' , b" E Rd-')
is in 2 if and only if b' E 2' and bf' = ~ b ' . Moreover, if u1 , . . . , u1 E 2'
span the lattice 2' , then the vectors (ul , YU') , . . . , (u' , YU') span the lat-
tice 2.

Denote the columns of A' by a". Observe that the lattice 9' spanned
by the a1''s does not change if any vector a" is replaced by -a1', or by
a'' + a', or a'' - aIk for some k # j . By a classical theorem of Hermite
[6] (note that A' has a full row rank), the matrix A' can be triangulated by
elementary (unimodular) column operations, i.e., the only operations used
in this transformation are additions of integral multiples of one column to
another, and exchanges of columns. Neither of these operations alters the
lattice spanned by the columns of A'. The matrix A' is transformed so
that the last m - 1 (1 5 d) columns become zero, and the first 1 columns
comprise an integer lower triangular matrix with nonzero diagonal entries. If
the diagonal entries are maximal in their rows, then the triangular matrix is
unique and is called the Hermite normal form of A' . It follows from Her-
mite's proof that this can be accomplished in at most lm applications of the
extended Euclidean algorithm for the g.c.d. (of two numbers) plus 0(12m)
arithmetic operations on integers. Kannan and Bachem [l l] proposed an im-
provement of this algorithm, where all the operations are done on integers of
polynomial size. Hafner and McCurley [S] proposed an asymptotically faster
algorithm where all integers encountered do not exceed l'll~'11~'. Their algo-
rithm runs in 0 (l 2 r n ~ (1 log(lllAll))) bit operations. Moreover, for the sim-
pler task of triangulating A', they used fast matrix multiplication to get even
better time bounds. Using O(ls-' m log(2m/l)B(l log(l ~ ~ A ' I I))) bit operations
(where 0 < 2.376, following Coppersmith and Winograd [3]), the algorithm
computes a triangular matrix whose entries have absolute values bounded by
l ' ~ 2 ~ ~ ~ ' ~ f .

Assume A' has been transformed into triangular form, replace A" by
YA'. Note that the new A" has integer entries of absolute values
0(1'/~+'11~11~'). Thus, the new matrix A has for every k , k = 1 , . . . , 1 ,
A,, # 0 and A,, = 0 for j > k . Also, for k = 1 + 1, . . . , d , Akj = 0 for

all j > 1 . Finally, let the vector bJ be equal to the jth column of the matrix
A (j = 1 , . . . , 1). Note that properties (i) and (ii) of Problem 2.8 imply

140 EDITH COHEN AND NIMROD MEGIDDO

that I 5 d and that the permutation (i , , . . . , i d) and the vectors z1 , . . . , zm
exist. Given the bJ7s, the vectors d can be computed easily. 0

COROLLARY 2.10. (i) If A has full row rank, then Problem 2.8 can be
solved in

O(ls- 'm l o g (2 m / l) ~ (l l o g (l ~ ~ ~ ' ~ ~)))
bit operations (where 8 < 2.376).

(ii) When d is jixed, Problem 2.8 can be solved in O (m log(llA(I)) arith-
metic operations.

(iii) If an integer multiple h of det B is given, then it follows from Theorem
1 of [S] that Problem 2.8 can be solved in 0 (d 2 m ~ (h)) arithmetic operations.

Algorithm 2.1 1 solves Problem 2.1. It first transforms the weights of G to
a basic form. The algorithm continues and solves Problem 2.8 with respect
to the transformed edge weights. The number of connected components of
G* is det B .

ALGORITHM 2.1 1. (Connectivity). (i) Compute a spanning tree T c E of
G and the appropriate potential function d , and transform f to a basic form,
i.e., replace f by f (see Corollary 2.5).

m (ii) Denote by a' , . . . , a the vector weights in the range of the (trans-
formed) f . Solve Problem 2.8 with respect to the a' 's, i.e., compute the vectors
bJ , zJ .

(iii) If I = d , then the number of connected components of G* is ngXl Bii .
Otherwise, there are infinitely many connected components, each of which is
an l-dimensional periodic graph. Consider the new edge weights f : E + Z'
given by f (e) = zJ , where f (e) = a'. Construct the dependence graph 6 =
(V , E , 6. The periodic graph (6)* is isomorphic to each of the connected
components of G* . The isomorphism Z : v* + V* is given by Z (a , u) =
(Ba + z, u) , so that diferent connected components have diferent values of
z E zd a~sociated with them.

The correctness of the algorithm is proved in the following proposition.

PROPOSITION 2.12. Suppose G = (V , E , f) is connected and f is in a basic
form. Denote by B E zdx' the matrix sought in Problem 2.8 with respect to
the vectors f (e) (e E E) . Under these conditions:

(i) If 1 = d , then the number of connected components of G* is ng=, Bii .
(ii) The connected components of G* correspond to the equivalence classes

of E , i.e., two vertices (a , u) , (b , v) E V* are in the same connected
component if and only i f a E b.

(iii) The graph (@* is connected and isomorphic to each of the connected
components of G* .

PROOF. For the proof of part (i), note that det B is the volume of a "cell"
of the lattice, which is the same as the number of distinct lattices that can

RECOGNIZING PROPERTIES OF PERIODIC GRAPHS 141

be obtained by an integral translation of the given lattice. To prove part
(ii) observe that (a , u) and (b, v) are in the same connected component if
and only if a - b equals an integer combination of the vectors f(E) . Part
(iii) follows from part (ii). The isomorphism 2': p* + V* is given by
Z (a , u) = (B a + z , u) . 0

REMARK 2.13. The connected components of G* are I-dimensional peri-
odic graphs. Observe that when the weights f are in the basic form, then I
is the dimension of the vector space spanned by f(E) .

Denote m = IEI and l l f l l = max,,, Ilf(e) 11, . Denote by conn(m , Ilfll, d)
the number of operations required by the connectivity algorithm.

PROPOSITION 2.14. Let B(t) be as in Proposition 2.9. We have

PROOF. The computation done by Algorithm 2.11 amounts to transform-
ing G to a basic form, and to a solution of an instance of Problem 2.8. Recall
that the transformation to a basic form involves a computation of a span-
ning tree, and computing single source shortest paths on the tree. Therefore,
the transformation is done in O(m) operations. The proof follows from
Proposition 2.9.

COROLLARY 2.1 5. The following are consequences of Corollary 2.10:

(i) If the connected components of G* are I-dimensional periodic graphs,
then Algorithm 2.1 1 requires O(ls-'m log(2m/l)B(I log(1 l) f l l))) oper-
ations (8 < 2.376).

(ii) If the dimension d is fixed, the algorithm requires O(m log (I f (() op-
erations.

(iii) Consider the problem of recognizing whether the number of connected
components of G* equals k , where k is somefuced integer. It follows
from Corollary 2.10(iii) that this task can be done in 0(d2m) time.

3. Bipartiteness

In this section we consider the following problem.
PROBLEM 3.1. Given a dependence graph G = (V , E , f) , decide whether

or not G* is bipartite.
DEFINITION 3.2. Given a dependence graph G , define G = (V , E , r) as

follows. Let be the set of pairs (u , v) E V x V such that there exists
w E V with {(u, w) , (w , v)) E . For such pairs let f(u, v) = f(u, w) +
f(w, v) .

REMARK 3.3. Note that the graph g is well defined even when G does
not have edge weights. In this case the edges of G correspond to paths of
length 2 in G . If G is connected, then it is bipartite if and only if G has
two connected components. If G is a nonbipartite connected graph, then 5
is connected.

142 EDITH COHEN AND NIMROD MEGIDDO

We assume in this section that G* is connected. If this is not true, then
the dependence graphs that define the connected components of G* should
be considered independently.

ALGORITHM 3.4. (Bipartiteness). (i) Construct 6 as described in Defini-
tion 3.2.

(ii) If is not connected, then G* is bipartite. Stop.
(iii) Otherwise, the graph G* is bipartite ifand only if (G)* is not con-

nected.

Correctness. Observe that (G)* = z* , that is, (u , v) is an edge of (z)* if
and only if there is a path of length two between u and v in G* . Therefore,
it follows from Remark 3.3 that G* is bipartite if and only if the graph (z)*
is not connected. This condition is checked in steps (ii) and (iii) of the
algorithm.

Complexity. The algorithm amounts to constructing the graph z , and
then testing if the periodic graphs corresponding to (or to its connected
components) have one or two connected components. The construction of
z requires 0(m2) time. Observe that I ~ I = 0(1El2). Thus, the time com-
plexity of testing if z* has one or two connected components is 0(d2m2)
(see Corollary 2.15(iii)). It follows that the time complexity of the algorithm
is 0(d2m2) .

4. Minimum average cost spanning tree

Orlin [14] defined a minimum average cost spanning tree of a one-dimen-
sional periodic graph and gave an algorithm that computes one. We extend
his definition to higher dimensions as follows.

DEFINITION 4.1. Let G = (V , E , f , c) be a dependence graph together
with edge costs given by c: E -+ R+ .

(i) Extend c to the edges of G* in the obvious way: c((z, u) ; (z +
f(u, v) , v)) = c (u , v) .

(ii) For any positive integer n , denote by Gn = (vn , E") the finite
subgraph of G* induced by the set of vertices (z , v) (v E V) with
Iz , l<n (i = 1 , . . . , d) .

(iii) A minimum average cost spanning tree (MACST) T* c E* of G* is
a spanning tree for which the limit

lim (~ n) - ~ c(e)
n-cc

e€E"nT*

exists and is minimal among all trees for which such a limit exists.
(iv) A spanning tree T* is said to be optimal if each finite subtree T; c

T* is a minimum cost spanning tree of the subgraph of G* induced
by the nodes of T;" .

RECOGNIZING PROPERTIES OF PERIODIC GRAPHS 143

B DEFINITION 4.2. Let B E Zdxd and let -- be the equivalence relation
on Zd defined by B in Definition 2.6. Let 3 be the lattice spanned by
the columns of B. For any a E Zd , denote by 3") the lattice spanned
by the columns of B together with a . Denote by B'") E ZdXd a matrix
whose columns span the lattice 3(a). Denote by R(B) c Zd any set of

B representatives of the equivalence classes of the relation - .
REMARK 4.3. If B is full rank and triangular, then a triangular matrix

B") can be computed within 0 (d 2 ~ (l o g d e t ~)) time, which amounts to
0 (d2 log det B) arithmetic operations (see [S]).

Algorithm 4.4 below computes an optimal MACST of G* . The algorithm
maintains a set of isomorphic trees and a matrix B , such that the equivalence
classes of correspond to these trees. The infinite tree T* computed by
the algorithm is represented by a collection of pairs (e , B) , where e E E
and B E zdxi is an integer matrix. Each such pair represents a set of edges
of G* :

(i) When i < d , each such pair represents infinitely many edges: for
(U , V) E E , ((z, u) ; (z + f(u , v) , v)) E T* if and only if z E R(B) .
The algorithm generates one such pair for each i < d .

(ii) When i = d , the matrix B is nonsingular. The algorithm may
produce as many as m - d such pairs. Each pair represents finitely
many edges: for (u , v) E E , ((z, u) ; (z + f(u , v) , v)) E T* if and

B
only if z E R(B) and z + y for all y E R(B('(~))) . Observe that the
number of edges that correspond to such pairs is I R(B) I - I R (B (~ (~))) 1 .

Each edge e E E can occur in at most one pair (e , B) . Algorithm 4.4
below consists of two phases. During the first phase (steps (iii), (iv)), pairs
with i < d are selected. During the second phase (steps (v), (vi)), pairs with
i = d are selected. Within each phase, the algorithm is greedy and selects the
edges (with a certain desired property) according to increasing cost. Without
loss of generality, assume G* is connected.

ALGORITHM 4.4. (Optimal Minimum Average Cost Spanning Tree).
(i) Find a minimum cost spanning tree T of G and transform G to the

basic form corresponding to T (see Corollary 2.5).
(ii) Initialize T* t {(t , {O))lt E T) .
(iii) Do step (iv) for i = 1 , . . . , d , and then go to (iv).
(iv) Find an edge ei E E of minimum cost, such that f(ei) is linearly

independent of the weights of previously selected edges: f(ej) (j < i) . Let

B E zdxi be the matrix whose columns are the vectors f(e,) , . . . , f(e,) . Add
the pair (ei , B) to the forest T* .

(v) At this point B E Zdxd is a square matrix, and T* consists of det B
isomorphic trees. Transform B into a triangular matrix that defines the same
lattice (see Proposition 2.9). Repeat step (vi) until det B = 1 .

144 EDITH COHEN AND NIMROD MEGIDDO

(vi) Select an edge e of minimal cost such that f (e) # Bz for all z E z d .
Add the pair (e , B) to T* . Update B to be B('(") (see Definition 4.2 and
Remark 4.3).

Correctness. Denote by el , . . . , e, (d 5 s 5 m) the edges selected by
the algorithm. The edges el , . . . , ed are selected during step (iv). First we
prove that T* is indeed a tree.

PROPOSITION 4.5. Throughout the execution of the algorithm, the connected
components of T* constitute a collection of isomorphic trees corresponding to

B the equivalence classes of the relation - .
PROOF. Consider any point during the execution of the algorithm and sup-

pose el , . . . , ek are the edges that have been selected so far. Recall that two
B vectors are in the same equivalence class of N if and only if they differ by

an integer linear combination of the vectors f (e l) , . . . , f (ek) . First, observe
that after step (ii) of the algorithm, T* consists of a collection of finite trees.
The vertex sets of these trees have the form { (i , v) (v E V } . The proposition
follows by induction on k . 0

The graph G* is connected. Therefore, if all edges are selected, we must
have det B = 1 . Thus the algorithm is guaranteed to terminate with det B =

1 . It follows from Proposition 4.5 that when the algorithm terminates the
forest T* has one connected component.

PROPOSITION 4.6. The tree T* computed by the algorithm has a minimum
average cost.

PROOF. Observe that the set T of edges of G* corresponding to the set
T U { e l) is contained in T* and does not contain a cycle. Thus, T is a
forest of G* . We will show that it can be converted into a tree by adding
an asymptotically small number of edges from E* , so that the limit of the
average cost is the same as in T .

Consider the intersection of T with Gn . Imagine running any greedy
algorithm for a minimum spanning tree of Gn . We show that such an al-
gorithm selects all the edges of T n Gn . Obviously, the edges generated by
T do not introduce any cycles, and they are of minimum cost. All the other
edges of G , whose weights equal 0 , generate edges of G* that introduce
cycles. However, the algorithm selects the next minimum cost edge el E E
such that f (e ,) # 0 , and adds to T* all the edges generated by el . Thus, no
cycle is introduced.

By now, we have a forest of isomorphic trees of size Q(n/llfIl) that cover
Gn . The asymptotic average cost of the forest is

This gives a lower bound on the asymptotic average cost of the spanning
tree of G* . Observe that it is an upper bound as well, since the number of

RECOGNIZING PROPERTIES OF PERIODIC GRAPHS 145

additional edges needed to complete this forest to a tree is 0((2nld-' 11fl1) .
It is easy to see that, regardless of the choice of these additional edges, the
asymptotically minimum average cost of the tree is the same as that of the
initial forest, i.e., c(T U {e,)) .

PROPOSITION 4.7. The tree T* is optimal (see Definition 4.l(iv)).

PROOF. TO prove optimality, consider some subtree T; of T* . Denote
by H the subgraph of G* induced by the nodes of T; . We need to show
that T; is a minimum cost spanning tree of H , i.e., the edges of T are the
same as the ones picked by some greedy algorithm. Algorithm 4.4 is greedy
within each of its two phases. Edges are selected according to increasing cost.
When an edge e is selected, the algorithm adds to T* a maximal subset of
the edges generated by e , so that T* remains acyclic. We need to show that
during the first phase of the algorithm, no two trees that are connected by an
edge can be connected by an edge of a lower cost. Consider the state before
choosing a new edge in the first phase. Observe that all vertices of a connected
component always lie on a "flat" which is a translate of the subspace spanned
by the columns of B (see Proposition 4.5). The weight of any edge selected
by the algorithm during step (iv) is linearly independent of the columns of
B . Thus, the new edges must lie between two such "flats". All edges of lower
cost are linearly dependent on the columns of B . Therefore, they lie within
such flats. It follows that the new edges added to T* are minimum cost
edges, linking connected components of the current T* . Hence, they occur
in some minimum cost spanning tree.

The algorithm amounts essentially to computing a minimum cost spanning
tree in G , and then computing the matrix B and updating it at most m times
(see Remark 4.3). Thus, the complexity is O(n log n + m d 2 ~ (d log(d llfll))) .

1. E. Cohen and N. Megiddo, Strongly polynomial and NC algorithms for detecting cycles
in dynamic graphs, Proc. 21st Annual ACM Sympos. on Theory of Computing, ACM,
1989, pp. 523-534.

2. , Strongly polynomial time and NC algorithms for detecting cycles in periodic graphs,
IBM Research Report RJ 7587 (70764), IBM Almaden Research Center, San Jose, Ca.,
July 1990.

3. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Proc.
19th Annual ACM Sympos. on Theory of Computing, ACM, 1987, pp. 1-6.

4. J. Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Stan-
dards 71B (1967), 241-245.

5. J. L. Hafner and K. S. McCurley, Asymptotically fast triangularization of matrices over
rings, IBM Research Report RJ 6921 (66027), IBM Almaden Research Center, San Jose,
Ca., July 1989. Also in: Proc. 1st Annual ACM-SIAM Sympos. on Discrete Algorithms,
ACM-SIAM, 1990, 194-200.

6. C. Hermite, Sur /'introduction des variables continues duns la theorie des nombres, J.
Reine Angew. Math. 41 (1851), 431-451.

7. K. Iwano, Some problems on doubly periodic infinite graphs, Tech. Rep. CS-TR-078-87,
Princeton University, 1987.

146 EDITH COHEN AND NIMROD MEGIDDO

8. K. Iwano and K. Steiglitz, Optimization ofone-bit full adders embedded in regular struc-
tures, IEEE Trans. Acoust. Speech Signal Process., IEEE, New York, 1986.

9. , Testing for cycles in infinite graphs with periodic structure, Proc. 19th Annual ACM
Sympos. on Theory of Computing, ACM, 1987, pp. 46-53.

10. , Planarity testing of doubly connected periodic infinite graphs, Networks 18 (1988),
205-222.

11. R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507.

12. R. M. Karp, R. E. Miller, and S. Winograd, The organization of computations for uniform
recurrence equations, J. Assoc. Comput. Mach. 14 (1967), 563-590.

13. K. S. Kosaraju and G. F. Sullivan, Detecting cycles in dynamic graphs in polynomial time,
Proc. 27th Annual IEEE Sympos. on Foundations of Computer Science, ACM, 1988, pp.
398-406.

14. J. B. Orlin, Some problems in dynamiclperiodic graphs, in Progress in Combinatorial
Optimization (W. R. Pullyblank, ed.), Academic Press, Orlando, Florida, 1984, pp. 273-
293.

15. V. P. Roychowdhury and T. Kailath, Study of parallelism in regular iterative algorithms,
Proc. 1990 ACM Sympos. on Parallel Algorithms and Architectures, ACM, 1990, pp.
367-376.

DEPARTMENT OF COMPUTER SCIENCE, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305
AND IBM ALMADEN RESEARCH CENTER, SAN JOSE, CALIFORNIA 95 120-6099

E-mail address: edith@cs.stanford.edu

IBM ALMADEN RESEARCH CENTER, SAN JOSE, CALIFORNIA 95120-6099 AND SCHOOL OF

MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL
E-mail address : megiddo@ibm.com

