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ABSTRACT. A periodic (dynamic) graph is an infinite graph with a repetitive 
structure and a compact representation. A periodic graph is represented by 
a finite directed graph, called the dependence or the static graph, with d- 
dimensional integer vector weights associated with its edges. For every vertex 
in the dependence graph there corresponds a d-dimensional lattice in the 
periodic graph. For every edge (u , u) in the dependence graph with vector 
weight a ,  there are infinitely many edges in the periodic graph, namely, 
from every point on the lattice corresponding to u to the point shifted by 
a on the lattice corresponding to u . Periodic graphs are used, for example, 
to model VLSI circuits and systems of uniform recurrence relations. In this 
paper we give algorithms to compute weakly connected components, to test 
bipartiteness, and to compute a minimum average cost spanning tree for 
d-dimensional periodic graphs. 

1. Introduction 

Periodic graphs are infinite graphs with a repetitive structure. They have a 
finite description (the "period") given by a directed graph with integer vector 
weights associated with the edges. A more formal definition follows. 

DEFINITION 1.1. Given G = (V , E , f) , where f: E -+ zd is a weight 
function on the edges of G ,  the periodic (dynamic) graph G* = (V* , E*) 
defined by G has: 

d 
V* = {(z, v)lzE Z , v E V), 

E* = {((z, u) ; (z + f (u ,  v) , v))l(u, v) E E )  . 
The dimension of G* is d .  The graph G is called the dependence or the 
static graph. For an edge (u , v) E E , the edges generated by (u , v) are 
( ( z , u ) ; ( z + f ( u , v ) , u ) )  ( z € z d ) .  

See Figures 1 and 2 for examples of one- and two-dimensional periodic 
graphs, respectively. Note that for our purposes the periodic graph as defined 
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FIGURE 1. Example of a one-dimensional periodic graph. 

FIGURE 2. Example of a two-dimensional periodic graph. 

above may be viewed as undirected. Therefore, a directed edge (u ,  v) E E 
in the dependence graph with f(u,  v) = z is equivalent to a directed edge 
(v , u) with weight f(v , u) = -z .  The undirected infinite periodic graph 
defined by G does not change if (u ,  v) is replaced by (v , u) . Periodic 
graphs can be used to model a system of uniform recurrence equations [12] 
and VLSI circuits [8, 91. We are interested in testing properties of a peri- 
odic graph by working on the defining finite dependence graph. Previous 
work on periodic graphs was concerned with scheduling [2, 12, 151, planarity 
testing [lo], cycle detection [I, 2, 9, 12, 131, and finding strongly connected 
components [2] of directed periodic graphs. Orlin [14] defined the concept 
of a one-dimensional dynamic/periodic graph and discussed the complex- 
ity of recognizing some properties of it. In particular, he considered finding 
the connected and strongly connected components, recognizing bipartiteness, 
and computing a minimum average cost spanning tree. Iwano [7] studied 
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two-dimensional periodic graphs and gave algorithms that test bipartiteness, 
and compute connected components. 

The current paper generalizes some of the results of Orlin and of Iwano to 
higher dimensions. We consider here the problems of recognizing connectiv- 
ity, bipartiteness, and computing a minimum average cost spanning tree. The 
periodic graph of Figure 1 is bipartite and has three connected components. 
The periodic graph of Figure 2 is connected but is not bipartite. 

$2 gives an algorithm for the connectivity problem. This algorithm is used 
in the succeeding sections. It is a generalization of the algorithms of [14, 
71. The connectivity algorithm computes dependence graphs whose corre- 
sponding periodic graphs are isomorphic to the connected components of 
the original periodic graph. 53 gives an algorithm that checks whether the 
periodic graph is bipartite. 54 gives an algorithm for finding a tree that spans 
a given periodic graph and has an asymptotically minimal average cost. The 
problems of recognizing bipartiteness and of computing a minimum average 
cost spanning tree in one-dimensional periodic graphs were studied by Orlin 
[14]. The problems of finding connected components and testing bipartite- 
ness in two-dimensional periodic graphs were studied by Iwano [7]. In this 
paper we generalize these results to higher dimensions. 

2. Connectivity 

PROBLEM 2.1. Given G = (V,  E ,  f) , recognize whether or not the peri- 
odic graph G* is connected. If G* is not connected, find Gi = (7, Ei , f,) , 
i = 1 , . . . , r , such that the corresponding periodic graphs G: are isomorphic 
to the connected components of G* . 

An algorithm that solves Problem 2.1 for one-dimensional periodic graphs 
was given by Orlin [14]. An algorithm for two-dimensional periodic graphs 
was given by Iwano [7]. Orlin also proved that if the dependence graph G 
is connected, then all the connected components of G* are isomorphic, and 
therefore only one dependence graph suffices for describing the connected 
components of G* . We show that the same is true in higher dimensions. 

The following proposition is a restatement of Lemma 4 of [14]. The proof 
given there works for any dimension. 

DEFINITION 2.2. Let f: E + R~ be a weight function on the edges of a 
d graph. A function d: V + R is called a potential. Denote by f : E + R~ 

the function f(d)( i ,  j) = f(i , j) + d(i) - d(j)  . 

PROPOSITION 2.3. For any potential function d: V + zd , if G = ( V , E , f) 
and G' = ( V ,  E ,  f (d)) ,  then G* is isomorphic to (GI)* and the isomorphism 
X : V* -+ ( v')* is given by X ( z  , i) = (z + d(i) , i) . 

DEFINITION 2.4. If G = (V,  E ,  f) contains a spanning tree T c E such 
that for all the edges e E T ,  f(e) = 0 ,  then G is in a basic form. 

The following corollary of Lemma 4 of [14] generalizes to vector weights. 
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COROLLARY 2.5. Given G = (V , E , f )  and a spanning tree T c E of G, 
a potential function d can be computed such that for the dependence graph 
with new weights G' = (V,  E , f (d) ) ,  the periodic graph (GI)* is isomorphic 
to G* and f(d)(e) = 0 for all e E T.  

PROOF. This is done by computing the distances on the tree T from one 
vertex to all the other vertices, and choosing d: V + zd to be the distance 
function. 

We refer to the above procedure as a transformation of G into a basic 
form. 

DEFINITION 2.6. Given an integer matrix A E zdXm , we define an equiv- 
A alence relation - on Zd as follows. TWO vectors a ,  b E zd are in the same 

A equivalence class (a - b) if and only if there exists an integer vector z E Z" 
such that a - b = Az . 

A REMARK 2.7. Observe that if d = m = 1 , then the relation a - b simply 
means a - b (mod A, , )  . In general, an equivalence class of the relation 
A - is simply a translate (by a vector in Zd)  of the lattice spanned by the 
columns of A .  When m < d , there are infinitely many equivalence classes. 
When m = d and A is nonsingular, there are finitely many equivalence 
classes. When m > d , there exists a d x d matrix B that defines the same 
equivalence relations as A (see Problem 2.8). 

PROBLEM 2.8. Let 

be the lattice spanned by m vectors a' , . . . , am E zd . Find vectors b1 , . . . , 
1 m b' E zd , a permutation (i, , . . . , id) of (1 , . . . , d )  , and vectors z , . . . , z 

E Z' with the following properties: 

(i) 9 = rjbJlrj E Z ) .  

(ii) The vectors bj are linearly independent. 
(iii) The permutation (i, , . . . , id) is such that for j = 1 ,  . . . , 1, bJ = 0 

lk 

for k < j . 
(iv) For all j E (1,  . . . , m) , a' = ~ z /  , where B is the matrix whose 

columns are the bJ's. 

PROPOSITION 2,9. Problem 2.8 can be solved in 0 ( d 2 m ~ ( d  log(d 1 1 ~ 1 1 ) ) )  
time, where 1 1  All = max, la: 1 and B(t) bounds the time required to per/orm 
the extended Euclidean algorithm on two t bit integers. 

PROOF. Denote by A E zdXm the matrix whose jth column is a' ( j  = 
1 , . . . , m) . Note that the rows of A are not necessarily independent. We be- 
gin by identifying a maximal set of linearly independent rows of A.  This can 
be done in polynomial time by "careful" Gaussian elimination [4]. Without 



RECOGNIZING PROPERTIES OF PERIODIC GRAPHS 139 

loss of generality, suppose that the first 1 rows comprise such a set (otherwise, 
the rows of A can be permuted accordingly), and denote the submatrix by 
A' E 2 1 x r n .  Let A" E z ( ~ - ~ ) ~ ~  be the submatrix consisting of the last d - 1 
rows of A.  Moreover, during the process of identifying the submatrices, we 
also find a Y E Q ( ~ - ' ) ~ '  such that A" = YA' , and the size of each entry of 
Y is bounded by the determinants of the square submatrices of A (that is, 
IlYll = O(llAlll)) . This computation can be done in O(1dm) arithmetic oper- 
ations on numbers of size O(llAlll) . Let 9' c Z' denote the lattice spanned 
by the columns of A' . It is easy to verify that (b' , bf') (b' E R' , b" E Rd-') 
is in 2 if and only if b' E 2' and bf' = ~ b '  . Moreover, if u1 , . . . , u1 E 2' 
span the lattice 2' , then the vectors (ul , YU') , . . . , (u' , YU') span the lat- 
tice 2. 

Denote the columns of A' by a". Observe that the lattice 9' spanned 
by the a1''s does not change if any vector a" is replaced by -a1', or by 
a'' + a', or a'' - aIk for some k # j . By a classical theorem of Hermite 
[6] (note that A' has a full row rank), the matrix A' can be triangulated by 
elementary (unimodular) column operations, i.e., the only operations used 
in this transformation are additions of integral multiples of one column to 
another, and exchanges of columns. Neither of these operations alters the 
lattice spanned by the columns of A'. The matrix A' is transformed so 
that the last m - 1 (1 5 d) columns become zero, and the first 1 columns 
comprise an integer lower triangular matrix with nonzero diagonal entries. If 
the diagonal entries are maximal in their rows, then the triangular matrix is 
unique and is called the Hermite normal form of A' . It follows from Her- 
mite's proof that this can be accomplished in at most lm applications of the 
extended Euclidean algorithm for the g.c.d. (of two numbers) plus 0(12m) 
arithmetic operations on integers. Kannan and Bachem [ l l ]  proposed an im- 
provement of this algorithm, where all the operations are done on integers of 
polynomial size. Hafner and McCurley [S] proposed an asymptotically faster 
algorithm where all integers encountered do not exceed l'll~'11~'. Their algo- 
rithm runs in 0 ( l 2 r n ~ ( 1  log(lllAll))) bit operations. Moreover, for the sim- 
pler task of triangulating A', they used fast matrix multiplication to get even 
better time bounds. Using O(ls-' m log(2m/l)B(l log(l ~ ~ A ' I I ) ) )  bit operations 
(where 0 < 2.376, following Coppersmith and Winograd [3]), the algorithm 
computes a triangular matrix whose entries have absolute values bounded by 
l ' ~ 2 ~ ~ ~ ' ~ f  . 

Assume A' has been transformed into triangular form, replace A" by 
YA'. Note that the new A" has integer entries of absolute values 
0(1'/~+'11~11~'). Thus, the new matrix A has for every k ,  k = 1 , . . . , 1 ,  
A,, # 0 and A,, = 0 for j > k . Also, for k = 1 + 1, . . . , d , Akj = 0 for 

all j > 1 .  Finally, let the vector bJ be equal to the jth column of the matrix 
A ( j  = 1 ,  . . . , 1).  Note that properties (i) and (ii) of Problem 2.8 imply 



140 EDITH COHEN AND NIMROD MEGIDDO 

that I 5 d and that the permutation ( i ,  , . . . , i d )  and the vectors z1 , . . . , zm 
exist. Given the bJ7s, the vectors d can be computed easily. 0 

COROLLARY 2.10. (i) If A has full row rank, then Problem 2.8 can be 
solved in 

O(ls- 'm l o g ( 2 m / l ) ~ ( l l o g ( l ~ ~ ~ ' ~ ~ ) ) )  
bit operations (where 8 < 2.376). 

(ii) When d is jixed, Problem 2.8 can be solved in O ( m  log(llA(I)) arith- 
metic operations. 

(iii) If an integer multiple h of det B is given, then it follows from Theorem 
1 of [S] that Problem 2.8 can be solved in 0 ( d 2 m ~ ( h ) )  arithmetic operations. 

Algorithm 2.1 1 solves Problem 2.1. It first transforms the weights of G to 
a basic form. The algorithm continues and solves Problem 2.8 with respect 
to the transformed edge weights. The number of connected components of 
G* is det B .  

ALGORITHM 2.1 1. (Connectivity). (i) Compute a spanning tree T c E of 
G and the appropriate potential function d ,  and transform f to a basic form, 
i.e., replace f by f (see Corollary 2.5). 

m (ii) Denote by a' , . . . , a the vector weights in the range of the (trans- 
formed) f . Solve Problem 2.8 with respect to the a' 's, i.e., compute the vectors 
bJ ,  zJ .  

(iii) If I = d , then the number of connected components of G* is ngXl Bii . 
Otherwise, there are infinitely many connected components, each of which is 
an l-dimensional periodic graph. Consider the new edge weights f :  E + Z' 
given by f ( e )  = zJ , where f ( e )  = a'. Construct the dependence graph 6 = 
( V ,  E ,  6. The periodic graph (6)* is isomorphic to each of the connected 
components of G* . The isomorphism Z :  v* + V* is given by Z ( a ,  u )  = 
(Ba + z,  u )  , so that diferent connected components have diferent values of 
z E zd a~sociated with them. 

The correctness of the algorithm is proved in the following proposition. 

PROPOSITION 2.12. Suppose G = (V  , E , f )  is connected and f is in a basic 
form. Denote by B E zdx' the matrix sought in Problem 2.8 with respect to 
the vectors f ( e )  ( e  E E )  . Under these conditions: 

(i) If 1 = d , then the number of connected components of G* is ng=, Bii . 
(ii) The connected components of G* correspond to the equivalence classes 

of E ,  i.e., two vertices (a ,  u )  , (b ,  v) E V* are in the same connected 
component if and only i f  a E b. 

(iii) The graph (@* is connected and isomorphic to each of the connected 
components of G* . 

PROOF. For the proof of part (i), note that det B is the volume of a "cell" 
of the lattice, which is the same as the number of distinct lattices that can 
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be obtained by an integral translation of the given lattice. To prove part 
(ii) observe that (a ,  u) and (b, v) are in the same connected component if 
and only if a - b equals an integer combination of the vectors f(E) . Part 
(iii) follows from part (ii). The isomorphism 2': p* + V* is given by 
Z ( a , u ) = ( B a + z , u ) .  0 

REMARK 2.13. The connected components of G* are I-dimensional peri- 
odic graphs. Observe that when the weights f are in the basic form, then I 
is the dimension of the vector space spanned by f(E) . 

Denote m = IEI and l l f l l  = max,,, Ilf(e) 11, . Denote by conn(m , Ilfll, d )  
the number of operations required by the connectivity algorithm. 

PROPOSITION 2.14. Let B(t) be as in Proposition 2.9. We have 

PROOF. The computation done by Algorithm 2.11 amounts to transform- 
ing G to a basic form, and to a solution of an instance of Problem 2.8. Recall 
that the transformation to a basic form involves a computation of a span- 
ning tree, and computing single source shortest paths on the tree. Therefore, 
the transformation is done in O(m) operations. The proof follows from 
Proposition 2.9. 

COROLLARY 2.1 5. The following are consequences of Corollary 2.10: 

(i) If the connected components of G* are I-dimensional periodic graphs, 
then Algorithm 2.1 1 requires O(ls-'m log(2m/l)B(I log(1 l ) f l l ) ) )  oper- 
ations (8  < 2.376). 

(ii) If the dimension d is fixed, the algorithm requires O(m log ( I f ( ( )  op- 
erations. 

(iii) Consider the problem of recognizing whether the number of connected 
components of G* equals k ,  where k is somefuced integer. It follows 
from Corollary 2.10(iii) that this task can be done in 0(d2m) time. 

3. Bipartiteness 

In this section we consider the following problem. 
PROBLEM 3.1. Given a dependence graph G = (V , E , f) , decide whether 

or not G* is bipartite. 
DEFINITION 3.2. Given a dependence graph G , define G = (V , E ,  r) as 

follows. Let be the set of pairs (u ,  v) E V x V such that there exists 
w E V with {(u, w) , (w , v)) E . For such pairs let f(u, v) = f(u,  w) + 
f(w, v ) .  

REMARK 3.3. Note that the graph g is well defined even when G does 
not have edge weights. In this case the edges of G correspond to paths of 
length 2 in G .  If G is connected, then it is bipartite if and only if G has 
two connected components. If G is a nonbipartite connected graph, then 5 
is connected. 
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We assume in this section that G* is connected. If this is not true, then 
the dependence graphs that define the connected components of G* should 
be considered independently. 

ALGORITHM 3.4. (Bipartiteness). (i) Construct 6 as described in Defini- 
tion 3.2. 

(ii) If is not connected, then G* is bipartite. Stop. 
(iii) Otherwise, the graph G* is bipartite ifand only if (G)* is not con- 

nected. 

Correctness. Observe that (G)* = z* , that is, (u ,  v) is an edge of (z)* if 
and only if there is a path of length two between u and v in G* . Therefore, 
it follows from Remark 3.3 that G* is bipartite if and only if the graph (z)* 
is not connected. This condition is checked in steps (ii) and (iii) of the 
algorithm. 

Complexity. The algorithm amounts to constructing the graph z ,  and 
then testing if the periodic graphs corresponding to (or to its connected 
components) have one or two connected components. The construction of 
z requires 0(m2) time. Observe that I ~ I  = 0(1El2). Thus, the time com- 
plexity of testing if z* has one or two connected components is 0(d2m2) 
(see Corollary 2.15(iii)). It follows that the time complexity of the algorithm 
is 0(d2m2) .  

4. Minimum average cost spanning tree 

Orlin [14] defined a minimum average cost spanning tree of a one-dimen- 
sional periodic graph and gave an algorithm that computes one. We extend 
his definition to higher dimensions as follows. 

DEFINITION 4.1. Let G = (V , E , f , c) be a dependence graph together 
with edge costs given by c: E -+ R+ . 

(i) Extend c to the edges of G* in the obvious way: c((z, u) ; (z + 
f(u,  v ) ,  v)) = c ( u ,  v ) .  

(ii) For any positive integer n , denote by Gn = (vn , E") the finite 
subgraph of G* induced by the set of vertices (z ,  v) (v E V) with 
Iz , l<n  ( i =  1 ,  . . . ,  d ) .  

(iii) A minimum average cost spanning tree (MACST) T* c E* of G* is 
a spanning tree for which the limit 

lim ( ~ n ) - ~  c(e) 
n-cc 

e€E"nT* 

exists and is minimal among all trees for which such a limit exists. 
(iv) A spanning tree T* is said to be optimal if each finite subtree T; c 

T* is a minimum cost spanning tree of the subgraph of G* induced 
by the nodes of T;" . 
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B DEFINITION 4.2. Let B E Zdxd  and let -- be the equivalence relation 
on Zd defined by B in Definition 2.6. Let 3 be the lattice spanned by 
the columns of B.  For any a E Zd , denote by 3") the lattice spanned 
by the columns of B together with a .  Denote by B'") E ZdXd a matrix 
whose columns span the lattice 3(a). Denote by R(B) c Zd any set of 

B representatives of the equivalence classes of the relation - . 
REMARK 4.3. If B is full rank and triangular, then a triangular matrix 

B") can be computed within 0 ( d 2 ~ ( l o g d e t ~ ) )  time, which amounts to 
0 (d2  log det B) arithmetic operations (see [S]). 

Algorithm 4.4 below computes an optimal MACST of G* . The algorithm 
maintains a set of isomorphic trees and a matrix B , such that the equivalence 
classes of correspond to these trees. The infinite tree T* computed by 
the algorithm is represented by a collection of pairs (e ,  B) , where e E E 
and B E zdxi is an integer matrix. Each such pair represents a set of edges 
of G* : 

(i) When i < d , each such pair represents infinitely many edges: for 
( U  , V )  E E , ((z,  u) ; (z + f(u , v) , v)) E T* if and only if z E R(B) . 
The algorithm generates one such pair for each i < d . 

(ii) When i = d ,  the matrix B is nonsingular. The algorithm may 
produce as many as m - d such pairs. Each pair represents finitely 
many edges: for (u , v) E E , ((z, u) ; (z + f(u , v) , v)) E T* if and 

B 
only if z E R(B) and z + y for all y E R(B('(~))) . Observe that the 
number of edges that correspond to such pairs is I R(B) I - I R ( B ( ~ ( ~ ) ) )  1 . 

Each edge e E E can occur in at most one pair ( e ,  B) . Algorithm 4.4 
below consists of two phases. During the first phase (steps (iii), (iv)), pairs 
with i < d are selected. During the second phase (steps (v), (vi)), pairs with 
i = d are selected. Within each phase, the algorithm is greedy and selects the 
edges (with a certain desired property) according to increasing cost. Without 
loss of generality, assume G* is connected. 

ALGORITHM 4.4. (Optimal Minimum Average Cost Spanning Tree). 
(i) Find a minimum cost spanning tree T of G and transform G to the 

basic form corresponding to T (see Corollary 2.5). 
(ii) Initialize T* t {(t , {O))lt E T )  . 
(iii) Do step (iv) for i = 1 , . . . , d ,  and then go to (iv). 
(iv) Find an edge ei E E of minimum cost, such that f(ei) is linearly 

independent of the weights of previously selected edges: f(ej) ( j  < i) . Let 

B E zdxi be the matrix whose columns are the vectors f(e,) , . . . , f(e,) . Add 
the pair (ei , B) to the forest T* . 

(v) At this point B E Zdxd  is a square matrix, and T* consists of det B 
isomorphic trees. Transform B into a triangular matrix that defines the same 
lattice (see Proposition 2.9). Repeat step (vi) until det B = 1 . 
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(vi) Select an edge e of minimal cost such that f ( e )  # Bz for all z E z d .  
Add the pair (e  , B) to T* . Update B to be B('(") (see Definition 4.2 and 
Remark 4.3). 

Correctness. Denote by el , . . . , e, (d  5 s 5 m )  the edges selected by 
the algorithm. The edges el , . . . , ed are selected during step (iv). First we 
prove that T* is indeed a tree. 

PROPOSITION 4.5. Throughout the execution of the algorithm, the connected 
components of T* constitute a collection of isomorphic trees corresponding to 

B the equivalence classes of the relation - . 
PROOF. Consider any point during the execution of the algorithm and sup- 

pose el , . . . , ek are the edges that have been selected so far. Recall that two 
B vectors are in the same equivalence class of N if and only if they differ by 

an integer linear combination of the vectors f ( e l )  , . . . , f (ek)  . First, observe 
that after step (ii) of the algorithm, T* consists of a collection of finite trees. 
The vertex sets of these trees have the form { ( i  , v ) ( v  E V }  . The proposition 
follows by induction on k . 0 

The graph G* is connected. Therefore, if all edges are selected, we must 
have det B = 1 . Thus the algorithm is guaranteed to terminate with det B = 

1 . It follows from Proposition 4.5 that when the algorithm terminates the 
forest T* has one connected component. 

PROPOSITION 4.6. The tree T* computed by the algorithm has a minimum 
average cost. 

PROOF. Observe that the set T of edges of G* corresponding to the set 
T U { e l )  is contained in T* and does not contain a cycle. Thus, T is a 
forest of G* . We will show that it can be converted into a tree by adding 
an asymptotically small number of edges from E* , so that the limit of the 
average cost is the same as in T .  

Consider the intersection of T with Gn . Imagine running any greedy 
algorithm for a minimum spanning tree of Gn . We show that such an al- 
gorithm selects all the edges of T n Gn . Obviously, the edges generated by 
T do not introduce any cycles, and they are of minimum cost. All the other 
edges of G ,  whose weights equal 0 ,  generate edges of G* that introduce 
cycles. However, the algorithm selects the next minimum cost edge el E E 
such that f (e , )  # 0 ,  and adds to T* all the edges generated by el . Thus, no 
cycle is introduced. 

By now, we have a forest of isomorphic trees of size Q(n/llfIl) that cover 
Gn . The asymptotic average cost of the forest is 

This gives a lower bound on the asymptotic average cost of the spanning 
tree of G* . Observe that it is an upper bound as well, since the number of 
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additional edges needed to complete this forest to a tree is 0((2nld-' 11fl1) . 
It is easy to see that, regardless of the choice of these additional edges, the 
asymptotically minimum average cost of the tree is the same as that of the 
initial forest, i.e., c(T U {e,)) . 

PROPOSITION 4.7. The tree T* is optimal (see Definition 4.l(iv)). 

PROOF. TO prove optimality, consider some subtree T; of T* . Denote 
by H the subgraph of G* induced by the nodes of T; . We need to show 
that T; is a minimum cost spanning tree of H , i.e., the edges of T are the 
same as the ones picked by some greedy algorithm. Algorithm 4.4 is greedy 
within each of its two phases. Edges are selected according to increasing cost. 
When an edge e is selected, the algorithm adds to T* a maximal subset of 
the edges generated by e , so that T* remains acyclic. We need to show that 
during the first phase of the algorithm, no two trees that are connected by an 
edge can be connected by an edge of a lower cost. Consider the state before 
choosing a new edge in the first phase. Observe that all vertices of a connected 
component always lie on a "flat" which is a translate of the subspace spanned 
by the columns of B (see Proposition 4.5). The weight of any edge selected 
by the algorithm during step (iv) is linearly independent of the columns of 
B . Thus, the new edges must lie between two such "flats". All edges of lower 
cost are linearly dependent on the columns of B . Therefore, they lie within 
such flats. It follows that the new edges added to T* are minimum cost 
edges, linking connected components of the current T* . Hence, they occur 
in some minimum cost spanning tree. 

The algorithm amounts essentially to computing a minimum cost spanning 
tree in G , and then computing the matrix B and updating it at most m times 
(see Remark 4.3). Thus, the complexity is O(n log n + m d 2 ~ ( d  log(d llfll))) . 
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