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Abstract� Traditional decision theory has assumed that agents have com�

plete� consistent and readily available beliefs and preferences� Obviously� even if

an expert system has complete and consistent beliefs� it cannot have them readily

available� Moreover� some beliefs about beliefs are not even approximately com�

putable� It is shown that if all players have complete and consistent beliefs� they

can compute approximate beliefs about beliefs of any order by considering events

arbitrarily close in some well�de�ned sense to the ones in question�

�� Introduction

In traditional decision sciences �see� for example ���� decision makers are usually not
assumed to be restricted in their thinking in any way� They have consistent beliefs and
preferences which are available throughout the decision making process� The widely ac�

cepted Bayesian approach to decision making under uncertainty maintains that� whenever
an agent lacks information about the value of a certain variable� s�he still has some 	sub�
jective
 probability distribution �i�e�� beliefs� with respect to such values� The sense of
the word �has� in the preceding sentence is that all the probabilities are readily available�

Of course� the beliefs are subject to Bayesian updating whenever some new information
is received�

There has recently been interest in modeling players as computing machines �see for
example �
��� If the decision maker is a computer program �an 	expert system
�� rather

than an ideal player as in the traditional theory� its beliefs are not readily available�
The program may have consistent beliefs which it can only approximate with arbitrary
precision� Moreover� for some events with complicated descriptions� the beliefs may be

determined by the basic beliefs but the program cannot even approximate them� It
should be noted that in this paper we do not deal with the question of computational
complexity at all but rather with the more basic notion of computability� Thus� we are
interested here in what expert systems can do in principle and not necessarily in practice�
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It is useful to consider beliefs as computable and noncomputable real numbers� A real
number a is said to be computable if there exists a computer program A such that� given
any rational � � �� A outputs a rational number �a��� such that j�a��� � aj � �� In this
sense the program A 	knows
 the real number a� However� the program can only tell us

approximations to a� We believe that a 	rational
 program should have consistent beliefs
in this asymptotic sense� namely� its exact beliefs should be consistent even though the
program can only work with approximate beliefs�

Game theory is concerned with situations where more than one decision maker is

involved� Players have to reason about the behavior of each other� In a game of incom�
plete information� players do not know exactly who the other players are� i�e�� they do
not know exactly what the other players know about other players� However� Bayesian
players have beliefs �in the form of probability distributions� about other players� The

foundations for a theory of games with incomplete information played by Bayesian play�
ers were laid in ��� �see also ������ However� the questions of computability have not been
addressed in this context�

In this paper players take on the form of programs residing in computers� We are

concerned with the issue of beliefs of programs about other programs and their beliefs�
Beliefs about the state of 	nature
 �as well as beliefs about beliefs about the state of
nature� and so on� are suppressed for simplicity of presentation� In other words� states
of the world �or 	possible worlds
� correspond here to combinations of beliefs of players

about players� Our discussion here should be considered an extension to the foundations
of games with incomplete information played by Bayesian players� Beliefs about beliefs
have also been considered by philosophers� mathematicians and computers scientists�
Some references on beliefs can be found in ��� �� �� ���

�� On levels of belief

For the bene�t of readers who have not been exposed to the issues of beliefs� we �rst
demonstrate the complications involved in beliefs of players about each other� To simplify

the discussion consider henceforth only 
�person games� The extension to any �nite
number of players is straightforward�

Suppose none of the players knows exactly who his�her opponent is� For example�
suppose none of the players knows whether his�her opponent is a male or a female�

However� each player has some belief about the sex of his�her opponent� Let Pi �i � �� 
�
denote the probability with which player i believes his�her opponent is a male� Suppose
player j � � � i does not know the precise value of Pi� Thus� s�he considers Pi to

be a random variable with some probability distribution F ���
j � Here the superscript ���

indicates that this is a belief of level �� Similarly� player i has a probability distribution

F
���
i with respect to Pj which s�he views as a random variable�






If the players are not restricted in any way then F ���
i and F ���

j may already be quite

complicated mathematical objects� Notice that� in general� the player may be concerned
not only with the question of whether the opponent is a male or a female� but also
with the question of what the opponent believes about the sex of the player him�herself�
In principle� each player should have a probability measure on the space of possible

opponents� In particular� this space must have a measurable structure relevant to the
game� Thus� this structure should re�ect not only the sex of the opponent� but also the
opponent�s beliefs about the �rst player�s sex� the beliefs of the second player about the
beliefs of the �rst player about the sex of the second player� and so on� In general� this

already raises the need to consider in�nite spaces of possible opponents� More speci�cally�
already at the �rst level player �� say� has to characterize possible opponents not just
according to beingM �male� or F �female� but also according to types �M�P�� or �F�P��

where P� �which may be any number between � and �� is the probability which player 

ascribes to the event that player � is a male� Of course� the space of possible opponents
has to be considered together with a measurable structure�

At the next level� player i does not know what F ���
j is� so s�he has some probability

distribution F
���
i with respect to it� �The superscript �
� indicates a second level of

beliefs�� This is a distribution on a class of possible probability distributions of a single
random variable� In general� the complication of the possible distributions grows quickly
with the level of belief� Special care has to be given to the problem of measurability� We

sometimes talk about levels of events which are the objects of belief� Essentially� the level
of an event is the number of times we include a reference to a player in the de�nition of
the event�

We consider below the restricted case where players are identi�ed with �nite programs�
The set of all possible programs is of course enumerable� This implies severe restrictions

on the type of beliefs of players about each other�

�� An overview

Every program has a �nite size� Yet it reacts to an in�nite number of possible inputs� In
other words� the behavior of the program in an in�nite number of situations is described
�implicitly� using �nite space� A similar observation applies to the 	beliefs
 of the pro�

gram about an in�nite number of events� Since the program is �nite� it cannot have all
its beliefs readily available� Thus it may have to compute some of its beliefs during the
decision making process� Of course� the computation is invoked by some signal from the
outside� and there are in�nitely many possible signals�

The players in our model are programs residing in computers� Recall that we restrict

attention to games with two players� Denote by M��M�� � � � the sequence of all possible
programs� These programs do not have to exist in the physical sense of the word� They are

�



merely strings of characters� It is easy to construct a one�to�one mapping from programs
to natural numbers� G�odel constructed such a mapping �for a di�erent purpose� so it is
quite common to talk about the 	G�odel number
 of a program �or� equivalently� a Turing
machine�� The details of the mapping are not relevant� However� the important property

is that there exists an e�ective procedure for translating numbers into programs and vice
versa�

In our model there are two computers C�� C�� In the beginning these computers
are empty �like the 	empty shells
 in ����� They are then loaded with programs X��X��

respectively� The symbolsX��X� should be interpreted as random variables whose values
are names of programs� or G�odel numbers� The latter interpretation is appealing since it
makes X� and X� random variables in the usual sense� Note that we allow for X� � X�

since there is no limit on the number of copies of the same program which may be involved

in a game�

We do not impose any restriction on the 	thinking power
 of our players beyond the
fact that they are �nite programs� We will always assume they are su�ciently smart
to compute whatever is needed and computable� Thus� we are aiming at a de�nition

a class S of those programs which qualify as 	smart
� In particular� smart programs
have complete beliefs about their opponents� If the class S is �nite then questions about
computability become trivial� so we assume S is in�nite� Note that for every program
there are in�nitely many programs that are equivalent to it in the sense that they react

in the same way to any input�

The measurable space underlying our discussion is therefore as follows� The points
of the space are pairs �M i�M j� of programs where M i and M j are members of a certain
subset S of the set of all possible programs� Since the space is enumerable there is no

problem in assuming that all the subsets of S � S are measurable� Each program in S
has well�de�ned beliefs� so a pair �M i�M j� entails a complete description of the state of
the world�

�� An example

To explain what we mean by computation of beliefs� consider a simple example where
S � fM��M�g and� furthermore� suppose M� and M� have the same prior beliefs about
the pair �X��X��� Thus� each of them contains a certain joint probability distribution
for the random variables X�� X�� Since each of the variables has two possible values�

M� and M�� this distribution is given by four numbers p��� p��� p��� p�� � � such thatP
pij � �� where pij is the probability of the event fX� � M ig � fX� � M jg� It is not

di�cult to see what ought to be the beliefs of such programs� For example� consider the
query� 	Given you are residing in C�� what are your beliefs about the program residing

in C��
 It is easy to see that the answer has to be a probability of p����p��� p��� for the
event fX� �M�g and a probability of p����p�� � p��� for the event fX� �M�g�
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We denote by F �X� the probability distribution which each of the programs has with
respect to a random variable X� As we shall see in a moment� the variable X may attain
values which are themselves possible probability distribution functions of another random
variable� We have already computed F �X�jX� � M��� The unconditional distribution

F �X�� obviously gives a probability of p���p�� to the event fX� �M�g and a probability
of p�� � p�� to the event fX� � M�g� Another example is F �X�jX� � M�� which gives
p����p�� � p��� to fX� �M�g and p����p�� � p��� to fX� �M�g�

In general� denote by FM i�X� the distribution which the programM i has with respect

to a random variable X� If we write FX��X� we get a random variable whose values are
probability distributions� namely� it is the probability distribution which the program
residing in the computer C� has with respect to the random variable X� For example�
FX��X�� is the distribution which X� has with respect to X�� which is computed as

follows� With probability p�� � p��� we have X� �M�� in which case the distribution of
X� gives p����p���p��� to fX� �M�g and p����p���p��� to fX� �M�g� with probability
p�� � p��� we have fX� �M�g� in which case the distribution of X� gives p����p�� � p���

to fX� � M�g and p����p�� � p��� to fX� � M�g� It is quite obvious to see how higher
levels of beliefs of the programs about each other can be extracted from the numbers pij�

�� The model

As noted above� we would like eventually to have de�ned a class S of programs which
would include only programs of a certain degree of sophistication� These programs would
be considered 	rational players
� The set S would be countable� and we expect it to be

in�nite�

Our main assumption is that rational players have consistent beliefs� Thus� we assume
the following�

A�� Each of the programs in S contains an implicit description of a probability distri�
bution over the 	states of the world
 �or 	possible worlds
�� i�e�� a joint probability

distribution of the random variables X��X�� signifying the programs residing in the
computers C�� C��

The implicit presence of a distribution is considered one of the axioms that would char�
acterize programs in the class S� This distribution is an inherent part of the program� It

re�ects the program�s prior probabilities before it is informed of the computer in which
it resides� For any program Mk � S� denote by pkij the probability which M

k ascribes to
the event fX� � M ig � fX� � M jg� This probability may be viewed as a function of
two variables� i� j�

In traditional game theory it is informally assumed to be common knowledge among
the players that they are all rational� Accordingly� we assume�
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A�� Each program in S ascribes probability zero to any event in which any of the
computers C�� C� stores a program which is not in S�

We do not assume that programs in S can decide whether a given program belongs to

the class S�

The objects of belief are events� Recall that the events are precisely the subsets of
S� S� Such a subset E represents all instances in which �X��X�� � E� However� events
are usually described without specifying the sets E directly� In order for a program to

	understand
 what the event is� there must be an e�ective procedure which tells for
each pair �i� j� whether� say� �M i�M j� � E� In such a case we say that the event E is
	computable
� Obviously there cannot exist more that �� computable events�

When an event is described verbally� we can attach to the description a 	level number


as follows� First� direct descriptions of the set E will be considered of level �� On the
other hand� a description in the form of a sentence such as� 	X� ascribes probability
greater than �� to the event that X� believes with probability greater than !� that
X� �M��
 is to be considered of level �� Essentially� descriptions of level ��� are stated

in terms of beliefs of players about events with descriptions of level less than or equal to
�� Note that the level numbers are associated with descriptions of events rather than the
events themselves� An event may have descriptions of di�erent levels�

It is trivial to see that the prior distributions fpkijg determine the beliefs of the pro�

grams with respect to any event� Obviously� for every S�� S� � S�

pk�S� � S�� �
X
i�S�
j�S�

pkij �

The latter may constitute an in�nite series� convergent� of course� By cardinality argu�
ments� not all the beliefs are computable�

An interesting question is the relation between the description of an event and the
computability of its probability� Consider the following example� Denote by E an event
in which player �� say� believes with probability greater than �� that a certain event
E� with a description of level � has occurred� Let pi denote the probability which Mk

ascribes to fX� �M ig� and let �i � pi�E�jX� �M i�� i�e�� �i is the conditional probability
which M i ascribes to the event E�� given that X� � M i� Let S� denote the set of all
indices i such that �i � ��� Then� obviously�

pk�E� �
X
i�S�

pi �

The quantities pi and �i are determined by the pkij�s but there may not exists programs

which compute their exact values�
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We prefer not to restrict the probabilities pkij to be rational numbers� However� since
our players are �nite programs� we must assume the probabilities are computable� One
can distinguish two approaches to computation of beliefs of programs� namely� exact and
approximate computation� However� there is a di�culty with the exact computation

approach� We might insist that the pkij �s be rational numbers but that does not imply

that numbers of the form
P

j p
k
ijp

j

h� � which are typically involved in the computation of
beliefs� will also be rational� It is seems unjusti�ed to require that the probabilities of all

events be rational numbers� so we adopt the approximate computation approach� which
means that the program computes its beliefs with any prescribed precision�

More formally� we assume that given i� j and a rational � � �� the program Mk

computes a nonnegative rational number �pkij��� such that

j�pkij���� pkij j � � �

Thus the exact belief pkij is the limit �as � tends to zero� of the approximate beliefs �p
k
ij���

whichMk computes given the prescribed precision� We of course assume that
P

i�j p
k
ij � ��

A stronger assumption� namely�
P

i�j �p
k
ij � � is reasonable yet not necessary�

�� Facts about computable numbers

In this section we present some elementary facts about computable numbers�

De�nition ���� A real number a is said to be computable if there is a program A such
that� given any rational number � � �� A computes a rational number �a � �a��� such that

j�a���� aj � � �

Proposition ���� The computable real numbers constitute a �eld�

Proof� The theme in what follows is that the quality of the required approximation
can be computed in advance� First note that if a is computable then so is �a� Suppose
there exist programs which compute rational ��approximations �a��� and �a��� for a and

b� respectively� for any rational � � �� Thus j�a���� aj � � and
����b���� b

��� � �� To
approximate a� b� consider the estimate�����a��� � �b����� �a� b�

��� � j�a���� aj�
����b���� b

��� � 
� �
It implies that a rational ��approximation for a � b can be computed by adding up
�

�
�approximations of a and b� To approximate ab� consider the estimate����a����b���� ab

��� � ����a����b���� �a��� b���� j�a��� b� abj

� j�a���j �
����b���� b

���� j�a���� aj � jbj �
�
j�a���j� j�b���j� �

�
� �
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As � tends to zero� this computable upper bound tends to zero� Thus� an ��approximation
of a � b can be computed by adding up �a��� � �b���� where � � �

n
and n is the �rst

integer such that �
j�a���j� j�b���j� �

�
� � � �

Suppose a 	� �� To approximate a��� assume without loss of generality that for any ��
�a��� 	� � and consider the estimate

����� ��a��� �
�

a

����� �
j�a���� aj

jaj � j�a���j
�

For � su�ciently small� since a 	� � and �a��� tends to a� we have

����� ��a��� �
�

a

����� �
�

j�a���j � �j�a���j � ��

which implies that a�� is computable� We have thus shown that the set of the com�
putable numbers is closed under the arithmetic operations�

De�nition ���� Let a � a�i� �i � �� 
� � � �� be a function which assigns to every positive
integer i� a real number a�i�� The function a is called computable if there exists a program

A which approximates a�i� with arbitrary precision� Speci�cally� when the program A

receives i and any rational � � �� it computes a rational number �a�i� �� such that

j�a�i� ��� a�i�j � � �

Proposition ���� If a � a�i� and b � b�i� �i � �� 
� � � �� are computable nonnegative
functions such that

�X
i��

a�i� �
�X
i��

b�i� � �

then the number

c �
�X
i��

a�i� b�i�

is computable�

Proof� Suppose A and B are approximation programs for a and b� and let �a�i� �� and
�b�i� �� denote the approximate values which they compute for a�i� and b�i�� respectively�
given the requirement � on the approximation�

j�a�i� ��� a�i�j � j�b�i� ��� b�i�j � � �
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We sketch an approximation program for the number c� Given any �� we need to
compute a number �c��� such that

j�c���� cj � � �

Let n denote any positive integer and let � � o�n���� Obviously������
nX
i��

�a�i� ���
nX
i��

a�i�

����� � �n � o���

and �����
nX
i��

�b�i� ���
nX
i��

b�i�

����� � �n � o��� �

Moreover������
nX
i��

�a�i� ���b�i� ���
nX
i��

a�i� b�i�

����� �

�

�����
nX
i��

�a�i� �� b�i��
nX
i��

a�i� b�i�

������
�����
nX
i��

�a�i� �� b�i��
nX
i��

�a�i� ���b�i� ��

�����
� �

nX
i��

b�i� � �
nX
i��

�a�i� �� � � �
 � �n� � o�n��� �

Also������
�X
i��

a�i� b�i��
nX
i��

�a�i� ���b�i� ��

����� �
�X

i�n��

a�i� b�i� �

�����
nX
i��

a�i� b�i��
nX
i��

�a�i� ���b�i� ��

�����
�

�
� �X
i�n��

a�i�

�
A
�
� �X
i�n��

b�i�

�
A� o�n���

�

�
��

nX
i��

a�i�

��
� �

nX
i��

b�i�

�
� o�n���

�

�
� �

nX
i��

�a�i� �� � n��

��
��

nX
i��

�b�i� �� � n��

�
� o�n���

�

�
� �

nX
i��

�a�i� ��

��
� �

nX
i��

�b�i� ��

�
� 
�n� ��n� � o�n��� �

It is obvious that when n tends to in�nity� the error�����
nX
i��

�a�i� ���b�i� ���
�X
i��

a�i� b�i�

�����
tends to zero� This means that c can be approximated by

nX
i��

�a�i� ���b�i� ��

!



with arbitrary precision� An e�ective procedure for achieving a bound of � on the error
is to compute for increasing values of n the upper bound

�
��

nX
i��

�a�i� n���

��
��

nX
i��

�b�i� n���

�
� 
n�� � n�� � n��

�

 � n��

�
�

and as soon as a value of n is found such that the latter is less than �� the corresponding

approximation for c is guaranteed to be good enough�

�� Examples of what a program computes as beliefs

In this section we give some examples of computable beliefs�

Proposition ���� The probability which Mk ascribes to an event E � fX� � M ig is
computable�

Proof� Obviously� the probability stated in the proposition is

pki� � pk�fX� �M ig� �
�X
j��

pkij �

Recall that for any rational � � �� the program Mk computes a rational number �pkij���
such that ����pkij���� pkij

��� � � �

For any positive integer n� let � � o�n���� We have

������
nX

j��

�pkij���� pki�

������ �
������
nX
j��

�pkij����
nX

j��

pkij

�������
�
�pki� �

nX
j��

pkij

�
A � �n�

�
�pki� �

nX
j��

pkij

�
A �

It follows that when we let n tend to in�nity�
Pn

j�� �p
k
ij��� tends to p

k
i�� Now� in order

to compute an ��approximation� note that

������
nX
���

nX
j��

�pk�j ����
nX
���

nX
j��

pk�j

������ � �n� � o���

��



so the sum
Pn

���

Pn
j�� �p

k
�j��� tends to � as n tends to in�nity� We thus have������

nX
j��

�pkij���� pki�

������ � o�n��� �

�
�pki� �

nX
j��

pkij

�
A

� o�n��� �

�
B��� nX

j��

pkij �
�X
���
���i

�X
j��

pk�j

�
CA

� o�n��� �

�
��� nX

���

nX
j��

pk�j

�
A

� o�n��� �

�
��� nX

���

nX
j��

�pk�j���

�
A� �n� �

Thus� by evaluating all the �pk�j��� �� � 	� j � n� for increasing values of n� the program

can actually compute an upper bound on the error in this approximation� which tends
to zero with n� Thus� pki� can be approximated with arbitrary precision�

Corollary ���� A program Mk � S can approximate its prior belief for the event that it
will be loaded into C� �	 � �� 
�� e�g��

pk�fX� �Mkg� �
�X
i��

pkik �

Proposition ���� For every set S� � S� if there is an e�ective procedure for deciding
whether M i � S�� then the probability pk�fX� � S�g� is computable�

Proof� By Proposition ���� for every i and every rational � � �� the program Mk

computes an approximation �pki���� such that����pki����� pki�

��� � � �

SupposeMk is provided with a decision procedure for testing for any i whetherM i � S��

Thus the program can compute for any n the sum

nX
i��

Mi�S�

�pki� �

and also estimate the di�erence between the latter and the exact probability� It is easy
to see how this implies that the exact probability is computable�

If the programMk itself is involved in the game� it computes conditional probabilities�
These also turn out to be computable�
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Proposition ���� The conditional probability which Mk ascribes to the event that the
program residing in computer C� is M i� given that Mk is residing in C�� is computable�

Proof� This conditional probability is given by

pk�fX� �M igjfX� �Mkg� �
pkikP�
��� p

k
�k

�

Thus our claim follows from Propositions ��� and ��
�

It is interesting to note that some expected values are computable�

Proposition ���� Let Y denote a random variable whose value is the conditional prob�
ability which the program residing in X� ascribes to the event fX� � Mkg� given that
it knows it is residing in C�� Let 
 denote the conditional expected value of Y � rela�
tive to Mk�s beliefs� given that Mk knows that X� � Mk� Under these conditions� 
 is

computable�

Proof� Let

��k�i� � pk�fX� �M igjfX� �Mkg�

and

� ��i �k� � pi�fX� �MkgjfX� �M ig� �

By Proposition ��� both ��k�i� and �
��
i �k� are computable� Now�


 �
�X
i��

��k�i��
��
i �k�

so by arguments similar to those of Proposition ��� it is computable� We note that
the quantity ���i �k� is not well�de�ned if M

i 	� S� However� since in this case ��k�i� � �
there is no problem�

Remark ���� Although the expected value of the variable Y of Proposition ��� is com�

putable� some other numbers related to its distribution are not computable� This is due
to the fact that� for example� there is no general e�ective procedure for deciding whether
a computable real number a is greater than �� We can compute ��approximations �a��� of
a for any rational � � �� The case a 	� � is decidable since� if we let � � �

n
for n � �� 
� � � ��

when we reach � � �
�ja� �j� we observe that j�a���� �j � � and we then know that a � �

if and only if �a��� � �� On the other hand� if a � � we may never be able to conclude
anything� In fact� there does not exist a general program which can decide� given the
description of a program which computes a number a �in the asymptotic sense� with no

input�� whether a � �� The proof of this claim is standard and goes as follows� Suppose�
to the contrary� there exists such a program� Then there exists a program that decides

�




for any program x and any input y whether the number x�y� computed by x in the
asymptotic sense� given the input number y� is �� Furthermore� there exists a program
z which computes the number z�x� � � given the input x if x�x� 	� �� and z�x� � �
otherwise� It turns out that if z�z� � � then z�z� 	� � and if z�z� 	� � then z�z� � ��

The di�culty pointed out in Remark ��� is interesting in its own right� In the tra�

ditional theory� when a person wants to �nd out what is his�her subjective probability
p�E� for some an event� s�he tries to compare p�E� in a binary search fashion with num�
bers such as ���� ����� ������ and so on� so as to get a good approximation� However� a
program can compute approximations but cannot in general perform a single comparison�

Note that it is still possible to perform comparisons in an approximate sense as follows�

Proposition ���� If a and b are computable then there exists a program which recognizes
for any given rational � � � either that a � b� � or that a � b� ��

Proof� Let c � b � a and suppose C is a program which computes for any rational
� � �� a rational number �c��� such that j�c��� � cj � �� Obviously� if �c��� � � then
c � ��� and if �c��� � � then c � ��

Remark ��	� Despite the positive tone of Proposition ���� there is still a di�culty in
computing probabilities as in the following example� Let �k denote the conditional

probability �given that X� � Mk� which Mk ascribes to the event that X� ascribes
probability of at least !� to the event that X� �Mk� The conditional probability

���i �k� � pi�fX� �MkgjfX� �M ig� �

is computable� Let Sk denote the set of indices i such that ���i �k� � ��!� Then

�k �
X
i�Sk

pk�fX� �M igjfX� �Mkg� �

However� we do not have an e�ective procedure for deciding whether i � Sk� So� it seems

that �k cannot in general be approximated with an arbitrarily small error�

	� Computable random variables and their distributions

In this section we present some facts about computability of the probability distribution
of certain random variables�

De�nition 	��� Consider a discrete random variable Y which attains values yi with
respective probabilities pi � � �i � �� 
� � � ��� Thus�

P�
i�� pi � �� We say that Y is

computable if there exists a program A that computes ��approximations �pi��� and �yi���
of pi and yi� respectively� for any i and any rational � � ��

��



Denote
S�t� � fi � yi � tg �

The cumulative distribution function �c�d�f�� of Y is given by

F �t� �
X

i�S�t�

pi �

We now consider the problem of approximating the c�d�f� of a computable random
variable� For any rational � � � and any positive integer n� denote

S�
n ��� t� � fi � �yi��� � t� � � � � i � ng

and
S�n ��� t� � fi � �yi��� � t� � � � � i � ng �

Let
F��t� �� n� �

X
i�S�n ���t�

�pi���

and
F��t� �� n� �

X
i�S�n ���t�

�pi��� �

Fact 	���

F��t� �� n�� �n � F �t� � F��t� �� n� �

�
� �

nX
i��

�pi���

�
� 
�n �

Proof� The lower bound follows from

F �t� �
nX
i��
yi�t

pi �

The upper bound follows from

F �t� �
nX
i��
yi�t

pi �
�X

i�n��

pi � F��t� �� n� � �n�

�
� �

nX
i��

�pi���

�
� �n �

Corollary 	��� If � � o�n��� then

lim
n��

F��t� �� n� � F �t� � lim
n��

F��t� �� n� �

��



Proposition 	��� For every computable t such that t 	� yi for all i� the value F �t� is
computable�

Proof� Given t such that t 	� yi for all i� denote

S�
n��� t� � f i � t� � � �yi��� � t� � � � � i � ng �

Thus�
" 
 F��t� �� n�� F��t� �� n� �

X
i�S�n���t�

�pi��� �

Obviously� as � tends to zero� the sum

X
t���yi�t��

pi

tends to zero� It is thus easy to see that " tends to zero if � does� and hence the
di�erence between the bounds stated in Fact ��
 tends to zero when n tends to in�nity
and � � o�n���� Since these bounds are computed exactly by a program� the program
can approximate F �t� with any prescribed precision�

De�nition 	��� We say that the c�d�f� F �t� of a random variable is computable in the
weak sense if the following is true� There exists a program A such that� given any

computable t and any rational � � �� A �nds values t�� t� such

t� � � t� � t � t� � t� �

and values �F �t�� �� and �F �t�� �� such that��� �F �t�� ��� F �t��
��� � �

and ��� �F �t�� ��� F �t��
��� � � �

Proposition 	��� If Y is a computable random variable then its c�d�f� is computable in
the weak sense�

Proof� Consider the computation of t� and �F �t�� ��� the computation of t� and
�F �t�� �� is analogous� Since t is computable� the program can compute a sequence ftjg
of pairwise distinct rational numbers which converges to t from below� For any n let

� � ��n� � � be smaller than half the minimum distance between any ti 	� tj such that
i� j � n� Thus the intervals �ti� �� ti� �� �i � �� � � � � n� are pairwise disjoint� It follows
that

nX
i��

�
F��ti� �� n�� F��ti� �� n�

�
�

nX
i��

�pi��� � � � �n �

��



This means that the minimum

min
��i�n

�
F��ti� �� n�� F��ti� �� n�

�

tends to zero as n tends to in�nity� By choosing t� to be a minimizer ti �for su�ciently
large n�� we get an ��approximation for F �t�� for a value t� arbitrarily close to t�

Corollary 	��� If Y is a computable random variable� then there exists a programA such
that for every computable number y and every rational � � �� A computes an interval I

of length jIj � � which contains y� and an ��approximation to the probability that Y is in
I�

Remark 	�	� If fI�g is a family of intervals containing y� such that jI�j � �� then for
any random variable Y and any probability measure p�

lim
���

p�fY � I�g� � p�fY � yg� �

Thus� the ��approximations claimed in Corollary ��� converge to the probability of fY �
yg� Nevertheless� the program cannot compute ��approximations to the latter with a

prescribed ��

Remark 	�
� As noted above� the beliefs of programs with respect to certain random
variables may be determined by some consistency requirements even though the programs
cannot compute them� Thus we may denote by pk�fY � yg� the probability ascribed by

Mk to the event fY � yg whenever this value is determined by probabilities ascribed by
Mk to some other events� We have seen examples of such cases where pk�fY � yg� is
the sum of a well�de�ned in�nite series� The conclusion of Corollary ��� suggests that
we might relax the de�nition of computability of a random variable as follows� Let�s say

that a random variable Y is pseudo�computable for Mk if the probability distribution
ascribed to Y by Mk is well�de�ned� discrete� and has the following property� Given any
computable y and rational � � �� Mk computes an interval I� jIj � �� which contains
y� and an ��approximation to the probability pk�fY � Ig�� Unfortunately� it seems that

this notion is yet too restrictive� To clarify this point� suppose Y is pseudo�computable
for everyMk and let y be any computable number� Denote by Z the probability ascribed
by Xi �i�e�� the program residing in Ci� to the event fY � yg� Here Z is not even pseudo�
computable since we have to replace not only values z of Z by small intervals� but also

values y of Y by such intervals� We propose below a weaker notion of computability
which seems more �t�

��




� Computable beliefs

We �rst introduce some notation for discussing more general computable beliefs� Let
E be any computable event� For any interval I �which may consist of a single point t�
denote by E�I� i� the event in which the probability ascribed by Xi to the event E lies in
the interval I� Inductively� let

E�I�� � � � � I�� i�� � � � � i�� �
n
pXi� �E�I�� � � � � I���� i�� � � � � i����� � I�

o
�

De�nition 
��� If

lim
x���

� � � lim
xn��

f�x�� � � � � xn� � lim
x���

� � � lim
xn��

f�x�� � � � � xn�

then we denote the common value of these limits by

Lim
x������xn��

f�x�� � � � � xn� �

To simplify notation� we omit the indices i�� � � � � i�� Also� let #I and $I denote� respectively�

the interior and the closure of an interval I� The following proposition is an extension of
Remark ����

Proposition 
��� For any family of intervals Ij��� �j � �� � � � � 	� � � ��� if tj � #Ij���
and jIj���j � � then

Lim
�����������

pk�E�I������ � � � � I������� � pk�E�t�� � � � � t��� �

Proof� The proof goes by induction on 	� The case 	 � � was already mentioned in
Remark ���� For the inductive step� note that

pk�E�I�� � � � � I��� � pk
�n
pXi� �E�I�� � � � � I����� � I�

o�
�

X
m�R�I������I�	

pk �fXi� �Mmg� �

where

R�I�� � � � � I�� � f m � pm�E�I�� � � � � I����� � I�g �

By the induction hypothesis�

Lim
�������������

pm�E�I������ � � � � I������� � pm�E�t�� � � � � t��� �

It follows that

lim
������

� � � lim
����

pk�E�I������ � � � � I������� �
X

m�R�t������t����
I�	

pk �fXi� �Mmg�

��



and

lim
������

� � � lim
����

pk�E�I������ � � � � I������� �
X

m�R�t������t�����I�	

pk �fXi� �Mmg� �

It is easy to see that� as �� tends to zero� the right�hand sides of the latter inequalities
tend to the sums taken over

R�t�� � � � � t���� t��

and this implies our claim�

Remark 
��� It is interesting to note the complications associated with the limits dis�
cussed in Proposition !�
� It seems that the limit would behave more regularly if we
replaced the general families of intervals Ij��� �a family for each j� satisfying tj � Ij���
and jIj���j � �� by sequences of the form Ij��� � �tj� �� tj � ��� However� this simpli�ca�

tion implies a limit in the usual sense �	simultaneous
� only if 	 � 
� More speci�cally�
�rst recall that for 	 � � we always have

lim
����

pk�E�I������� � pk�E�t��� �

since
pk�E�I������� � pk

�n
pXi� �E� � I�

o�
�

Moreover� if fI�����g is a nested family of intervals� then for every k� the function

fk���� � pk�E�I�������

decreases monotonically to pk�E�t��� as �� tends to �� Now� consider the case 	 � 
� We
know that

pk�E�I������ I������� �
X

m�R�I��I�	

pkfXi� �Mmg

where
R�I�� I�� � fm � pm�E�I��� � I�g �

For any �xed I�� let �� tend to zero� and consider the varying set R�I�� I��� Obviously�
in this process every m enters this set at most once and leaves it at most once� The
contribution of m to pk�E�I������ I������� is pk�fXi� � Mmg� and the sum of all these
values is of course bounded� Thus� this contribution tends to zero as m tends to in�nity�

It follows that� as �� tends to zero� the size of the jumps in the value of pk�E�I������ I�������
tends to zero� This means that the limit exists� However� monotonicity is not guaranteed
since there can be in�nitely many values of m entering and leaving the set R�I�� I�� in the
limit process� during which I� is �xed� and this may happen for in�nitely many intervals

I�� Since monotonicity is not guaranteed� it may happen that in the case 	 � 
 a limit
in the usual sense will not exist�

��



Proposition !�
 provides the justi�cation for an approximate computation of
pk�E�t�� � � � � t��� in a sense de�ned below� We �rst consider the case 	 � ��

Proposition 
��� There exists a program A which does the following� It receives a
program Mk� a computable event E� an index i� and rational numbers t and � � �� It
then computes an interval I such that t � I and jIj � �� and an ��approximation to the

probability pk�E�I� i���

Proof� First� note that

pk�E�I� i�� �
X

m � pm�E��I

pk�fXi �Mmg� �

Consider intervals of the form I��� � �t � 
�� t � 
��� Denote by �pm�E� �� the ��

approximation computed by Mm for pm�E�� Let U��� denote the set of m�s such that

j�pm�E� ��� tj � � �

Obviously� if m � U��� then pm�E� � I���� Let W ��� denote the set of m�s such that
either

�pm�E� �� � t� ��

or
�pm�E� �� � t� �� �

Similarly� if m � W ��� then pm�E� 	� I���� The remaining values of m are those for
which either

t� � � �pm�E� �� � t� ��

or
t� �� � �pm�E� �� � t� � �

Denote the set of these m�s by V ���� We claim that for everym� there exists �� � ���m�
such that for all � � ��� m 	� V ���� For if pm�E� � t then m � U��� and if pm�E� 	� t

then for all � su�ciently small m � W ���� Now� for every n

nX
m��

m�U���

�pk�fXi �Mmg� �� � pk�E�I� i��

�
nX

m��
m�U����V ���

�pk�fXi �Mmg� �� �

�
� �

nX
m��

�pk�fXi �Mmg� ��

�
� �n �

These estimates suggest how to e�ectively choose n and � so as to compute the ap�
proximations as required� Speci�cally� if � � o�n��� the di�erence between the these
lower and upper bounds on pk�E�I� i�� tends to zero as n tends to in�nity� Note that
both these bounds can be computed exactly�

We now consider the general case�

�!



Proposition 
��� There exists a program A which does the following� It receives a
program Mk� a computable event E� indices i�� � � � � i�� rational numbers t�� � � � � t�� and
� � �� It then computes open intervals I�� � � � � I� such that tj � Ij and jIjj � � �j �
�� � � � � 	�� and an ��approximation to the probability

pk�E�I�� � � � � I��� � pk�E�I�� � � � � I�� i�� � � � � i��� �

Proof� We sketch a program which recurses on the value of 	� The case 	 � � was

proven in Proposition !��� Suppose 	 � � and let the inputsMk� E� ij� tj �j � �� � � � � 	�
and � be given� Recall from the proof of Proposition !�
 that

pk�E�I�� � � � � I��� �
X

m�R�I������I�	

pk �fXi� �Mmg� �

where

R�I�� � � � � I�� � f m � pm�E�I�� � � � � I����� � I�g �

Our program works by recursing to problems of approximating pm�E�I�� � � � � I����� for

m � �� � � �n� where n is determined by the program� The complete algorithm therefore
computes approximations for pmj �E�I�� � � � � Ij�� for mj � �� � � � � nj �where nj is deter�
mined by the program� for j � �� � � � � 	 � �� the intervals Ij turn out to be the same
for all values of mj� depending on j� We compute intervals of the form

Ij � �tj � 
�j � tj � 
�j� �

Actually� the value of ���� is determined with respect to ��� the value of ���� is deter�
mined with respect to ����� and so on� Thus we actually prove the following�
Claim� There exists a program that computes positive rationals ��� � � � � �� �where
�� � ��� positive integers n�� � � � � n�� intervals Ij as de�ned above� and approximations

as follows�
�i� a �j���approximation for pmj��

�
fXij �Mmjg

�
�mj � �� � � � � nj��

�pmj��

�
fXij �Mmjg� �j��

�
�

�ii� a �j���approximation for pmj�� �E�I�� � � � � Ij���

�pmj���E�I�� � � � � Ij�� �j��� �
njX

mj��

mj�U ���������j �

�pmj���fXij �Mmjg� �j� �

where
U ���� � � � � �j� � fmj � j�p

mj �E�I�� � � � � Ij���� �j�� tjj � �jg �

To prove the claim� suppose we have established the existence of a program which does
all the above for the values �� � � � � j � �� and consider the case of the value j� Note


�



that only part �ii� of the claim has to be proven� We rely on estimates similar to
those made in the proof of Proposition !��� First� note that if mj � U ���� � � � � �j� then
pmj �E�I�� � � � � Ij���� � Ij� Now� let W ���� � � � � �j� denote the set of values of mj such
that either

�pmj �E�I�� � � � � Ij���� �j� � tj � ��j

or

�pmj �E�I�� � � � � Ij���� �j� � tj � ��j �

It follows that if mj � W ���� � � � � �j� then pmj �E�I�� � � � � Ij���� 	� Ij� The remaining
values of mj are those for which either

tj � �j � �p
mj �E�I�� � � � � Ij���� �j� � tj � ��j

or

tj � ��j � �p
mj �E�I�� � � � � Ij���� �j� � tj � �j �

We denote the set of these values of mj by V ���� � � � � �j�� Given a set of values

��� � � � � �j��� for every value of mj� there exists ��j � ��j �mj� ��� � � � � �j��� such that
for all �j � ���

mj 	� V ���� � � � � �j��� �j� �

Now� for every nj we have

pmj���E�I�� � � � � Ij�� �
njX

mj��

mj�U ���������j �

�pmj�� �fXij �Mmjg� �j�

and

pmj���E�I�� � � � � Ij�� �

njX
mj��

mj�U�V

�pmj�� �fXij �Mmjg� �j� �

�
��� njX

mj��

�pmj���fXij �Mmjg� �j�

�
A� �jnj

�where U � U ���� � � � � �j� and V � V ���� � � � � �j��� These estimates suggest how to e�ec�
tively choose nj and �j so as to compute the approximations as required� Speci�cally�
given the requirement �j��� we run over values of nj � taking �j � o�n��

j �� For every
�j we recurse and �nd the approximations and ��s from smaller problems� We then

observe the di�erence between the upper and lower bounds derived above� When the
latter becomes less than the given �j��� an approximation as required in �ii� has been
found�

Remark 
��� It is clear that a stronger result can be proven as follows� Instead of
the rational numbers t�� � � � � t� in Proposition !��� we could use sets T�� � � � � T� which are

computable in some obviously de�ned sense� For every j� the interval Ij would then be
interpreted as a �j�neighborhood of the set Tj�


�



As pointed out earlier� beliefs about computable events are themselves computable�
On the other hand� there exist noncomputable events� Among the noncomputable events
we are especially interested in events de�ned in terms of beliefs about beliefs �and so on�
about computable events� The above results indicate that these can be approximated in

a natural well�de�ned sense� A class E of such events is de�ned as follows� Recall that
the sample space �or the space of 	states of the world
� or 	possible worlds
� consists
of combinations of programs� Thus� we consider a pair of random variables �X��X���
specifying the programs residing in the two computers which play the game�

We start with the set E� of computable events� Recall that a subset E of the sample
space is called a computable event if there exists a program A which decides for any
point x of the space whether x � E� The program A may be considered the description
of the event E� It was shown in Proposition ��� that the probability ascribed byMk to a

computable event is a computable real number� The set of computable events is of course
closed under �nite union and complementation� Since every subset of the sample space is
a countable union of computable events �namely� singleton sets�� it follows by a cardinality
argument that there exist noncomputable events which are themselves countable unions

of computable ones�

Next� we de�ne a set E� as follows� A basic event E� � E� is a set of points de�ned
by an inequality of the form

pXi�E� � �

�where E � E�� which reads� 	The probability ascribed to the event E by the program
residing in the computer Ci is at least ��
 The set E� is the algebra spanned by the basic
events E� �by �nite unions and complementations�� We could de�ne E� to be larger by
allowing E� to be de�ned by more general predicates than the inequality given above�

but we prefer� for simplicity� not to do so�

As indicated above� events in E� are in general not computable� Moreover� the prob�
ability which a program has to ascribe �in order to be consistent� to an event of the type
E� may be noncomputable� However� as pointed out in Proposition !��� the program

can approximate its belief with respect to some event �E 	close
 to E� �for example�
�E � fpXi�E� � ��g where �� is arbitrarily close to ��� Inductively� Ej�� is the algebra
spanned by events of the form pXi�E� � � where E � Ej� Finally� E � ��j��Ej�

It is easy to see that every event E � E can be represented by some computable

events� some logical connectives� and some numerical parameters ��� � � � � �q� The sense
of the approximate computation is that� given any � � �� the program computes an event
�E which is close to E in the sense that the numerical parameters are changed by amounts
up to �� Furthermore� it also computes an ��approximation to the belief with respect to �E�

Replacing E by �E can be easily justi�ed in practice� Notice that the computable events
involved in the de�nitions of E and �E are the same� Only the numerical parameters
which signify probabilities are di�erent� It seems that in every practical situation there







exists an � � � such that changes in probabilities within � do not really matter�

��� Conclusion

Since a computer program is necessarily limited in what it can do� there must be some

freedom in de�ning a class of rational programs� It is expected that di�erent classes
of programs could serve as candidates� We have considered two properties A� and A�
of what we see as candidates� Speci�cally� in a candidate set S each member has a
joint probability distribution with respect to the identities of the other players� ascribing

probability zero to the event that any player is not in S�

In view of the results proven in this paper� we can say that if a class S has these
properties then there exists a class S� as follows� For every member M of S� there
exists a member M� of S� which 	emulates
 M and is also capable of computing its

beliefs with respect to events in E in the approximate sense discussed above� This is true
because we have proven the existence of a program for carrying out these computations
so this program can be 	added
 to each member of S� Thus� we might add a third
requirement which would say that only classes of the form S� qualify as rational� Our

result indicate that this third requirement is not too restrictive� To narrow the set of
candidate classes even further� one would have to introduce more axioms� Our proposal
should be considered a �rst step away from the classical abstract assumption that all
players are rational and that this fact is common knowledge� We have not considered

here situations where some players are allowed to be 	irrational
� Such situations could
be di�cult for programs to handle since sometimes a 	rational
 program M i might
ascribe a positive probability to an event where another programM j does not halt when
it attempts to calculate its beliefs� In such a case� the 	rational
 program would have to

compute its belief about whether another program halts in a certain computation�
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