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Abstract

Abstract� Several network �ow problems with additional constraints are consid�

ered� They are all special cases of the linear programming problem and are shown to be

P�complete� It is shown that the existence of a strongly polynomial time algorithm for

any of these problems implies the existence of such an algorithm for the general linear

programming problem� On the positive side� strongly polynomial algorithms for some

parametric �ow problems are given� when the number of parameters is �xed� These

algorithms are applicable to constrained �ow problems when the number of additional

constraints is �xed�

�� Introduction

An algorithm for the linear programming problem over the real numbers is called strongly
polynomial if it performs no more than a polynomial number of elementary operations �ad�

ditions� subtraction� multiplications� divisions� comparisons� and data transfers� in terms of
the number of variables and constraints� If the problem is posed over the rationals� then it
is also required that the algorithm be polynomial in the usual sense�

Strongly polynomial algorithms are known only for special cases of the linear program�

ming problem� For example� Megiddo �	
� gave a strongly polynomial algorithm for linear
programming problems with inequality constraints� where the objective function and each
of the constraints depend on at most two variables� Tardos �	�� gave a strongly polynomial
algorithm for linear programming problems where the entries of the constraints matrix �but

not necessarily those of the objective function and the right�hand side vector� are integers
bounded by a polynomial in terms of the number of variables and constraints� Her algo�
rithm applies to many network 
ows problems� It is still not known� however� whether the
generalized max�
ow problem ���� can be solved in strongly polynomial time�
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Since the general linear programming problem is known to be in the class P� it is not
interesting anymore to consider polynomial time reductions of the general problem to various

special cases ��� ��� 	��� unless the reduction runs in strongly polynomial time� It is interesting
to consider strongly polynomial reductions of the general linear programming problem to
various special cases� Also� since the linear programming problem is known to be P�complete�

���� it is interesting to consider logspace reductions� In this note we consider the following

network 
ows problems� and give strongly polynomial and logspace reductions from the
general linear programming problem to these problems� On the positive side� we show that
some parametric 
ow problems with a �xed number of parameters have strongly polynomial

algorithms� In particular� we discuss strongly polynomial special cases of problems described
below�

Problem ��� �Balanced Costs Circulation� Given is a digraph G � �V�E� with real costs
per unit of 
ow ce � R �e � E� associated with the edges� Find a nontrivial circulation
x � �xe�e�E� i�e�� xe � � �e � E�� x �� �� and for every v � V �

X
i��i�v��E

xiv �
X

i��v�i��E

xvi �

such that the �cost� is balanced at the vertices� that is� for every vertex v � V �

X
i��i�v��E

xivciv �
X

i��v�i��E

xvicvi �

The set of circulations with balanced costs is invariant under the operation of adding the
same constant to each of the costs�

The problem of a 
ow in a network with pairs of homologous edges is de�ned as follows�

A set of pairs of edges is given and one has to �nd a 
ow where members of each pair carry
equal amounts of 
ow� The latter problem and a related one of networks with bundles were
studied by Berge and Ghouila�Houri �	�� Ghouila�Houri ��
� ���� and Ho�man ����� The
result of �	�� implies that these problems are solvable in strongly polynomial time� The

problem of a 
ow in a network with pairs of homologous edges can be generalized as follows
into a problem for which it is still not known whether a strongly polynomial time algorithm
exists�

Problem ��� �Fixed Ratios Circulation� Let G � �V�E� be a digraph� let �e� ue � R�

�e � E� be lower and upper bounds� respectively� on the 
ow in an edge e� and let � � S � R��
where S � E � E� Find a nontrivial circulation x � �xe�e�E� i�e�� �e � xe � ue� and for

every v � V n fs� tg� X
i��i�v��E

xiv �
X

i��v�i��E

xvi �

such that for every pair �e�� e�� � S� xe� � ��e�� e��xe� �

�complete for the class P under logspace reductions

	



Remark ��� The constraints of the form xe� � ��e�� e��xe� imply by transitivity more
constraints of this type� so we may assume without loss of generality that S is transitively

closed� so that if f�e�� e��� �e�� e��g � S� then �e�� e�� � S and ��e�� e�� � ��e�� e����e�� e���
Similarly� we may assume without loss of generality that if �e�� e�� � S� then �e�� e�� � S

and ��e�� e�� � ����e�� e��� Thus� we assume S is an equivalence relation over E�

Problem ��� �Circulation with Fixed Forks� Given is a digraph G � �V�E�� where V is
partitioned into three sets U � Fin and Fout� The vertices in Fin �resp�� Fout� have in�degree
	 and out�degree � �resp�� out�degree 	 and in�degree ��� Also given is a function � �
Fin � Fout � ��� ��� The vertices Fin �resp�� Fout� are called in�forks �resp�� out�forks�� Find

a nontrivial circulation x such that

�i�� if v � Fout and f�i� v�� �v� j�� �v� k�g � E� and j � k� then

xvj � ��v�xiv and xvk � ��� ��v��xiv �

�ii�� if v � Fin and f�v� i�� �j� v�� �k� v�g � E and j � k� then

xjv � ��v�xvi and xkv � ��� ��v��xvi �

Problem ��� If the graph G is bipartite and all the edges are between U and F � Fin�Fout�
then we refer to the problem as the bipartite version of Problem ��
�

We show that the existence of a strongly polynomial algorithm for any of the problems stated

above implies the existence of a strongly polynomial algorithm for Problem ���� Also� these
problems are P�complete� This is clearly the case for Fixed Forks� It is also easy to see that
a circulation with �xed forks is a special case of a circulation with �xed ratios� In Section 	
we give a strongly polynomial time and NC reduction� from Problem ��� to the Balanced

Costs Circulation problem� In Section � we show that the existence of a strongly polynomial
algorithm for Problem ��� implies the existence of such an algorithm for the general linear
programming problem� Also� Problem ��� is P�complete� The combination of these results

implies the following theorem�

Theorem ��� For each of the following� �i� Circulation with Balanced Costs �Problem �����
�ii� Circulation with Fixed Ratios �Problem ����� and �iii� Circulation with Fixed Forks

�Problems ��� and ��	�� the problem has a strongly polynomial algorithm if and only if the
general linear programming problem has one� Moreover� all these problems are P�complete�

In Section 
 we review a technique developed by the authors in ��� �see also �
� �� ���� We

apply the technique to obtain strongly polynomial algorithms for parametric 
ow problems
when the number of parameters is �xed� If the number of parameters is not �xed then

�An NC reduction is one that can be carried out in polylogarithmic time with a polynomial number of

processors�

�



these parametric problems are P�complete� and the existence of a strongly polynomial algo�
rithm for any of them is equivalent to existence of such an algorithm for the general linear

programming problem� The existence of strongly polynomial algorithms for parametric prob�
lems with a �xed number of parameters has consequences as follows� If either the number
of �forks� in Problem ��
 is �xed� or the number of equivalence classes in S of Problem ��	
is �xed� then the respective problems can be solved in strongly polynomial time� Moreover�

similar generalizations of the maximum 
ow and the minimum�cost 
ow problems also have
strongly polynomial algorithms� Some of the results of Section 
 also follow from a scheme
very similar to that of ���� which was introduced later by Norton� Plotkin� and Tardos �	���

�� Bipartite Fixed Forks is reducible to Balanced Costs

Proposition ��� The Bipartite Fixed Forks problem is reducible both in strongly polynomial

time and in NC to the Balanced Costs problem�

Proof� Consider an instance of Problem ��
 on a graph G � �V�E� with costs ce �e � E��
where V � U � Fin � Fout� We reduce the problem to an instance of Problem ���� De�ne
G� � �V �� E�� as follows� Let V � and V � be two copies of V � and let W � and W � be two

copies of E� Let
V � � V � � V � �W � �W � �

For every v � V we denote by v� � V � and v� � V � the corresponding vertices� For every
e � E we denote by w�

e � W � and w�
e � W � the vertices that correspond to e�

We now associate weights c�e �e � E� with the edges of G� Consider a vertex v � Fin

�resp�� v � Fout� with incident edges �v� i�� �j� v�� and �k� v� �resp�� �i� v�� �v� j�� and �v� k���
where j � k� Let c�vi � �� c�jv � ��v�� and c�kv � � � ��v� �resp�� c�iv � �� c�vj � ��v�� and
c�vk � � � ��v���

To each edge e � E there correspond �ve edges in E�� If e � �i� v� where i � U and
v � F � Fin � Fout � then the corresponding edges are �See Figure ����

�i�� e� � �w�
e � v

�� with cost c�e�

�ii�� e� � �v�� w
�
e� with cost c�e�

�iii�� e� � �i�� w�
e� with cost ��

�iv�� e� � �w�
e � i

�� with cost ��

�v�� e� � �w�
e � w

�
e� with cost 	c�e�

If e � �v� i� with i � U and v � F � then the corresponding edges are�






e � �i� v�� v � F � i � U
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Figure �� The replacement in G� of an edge e � E�

�i�� e� � �v�� w�
e� with cost c�e�

�ii�� e� � �w�
e � v

�� with cost c�e�

�iii�� e� � �w�
e � i

�� with cost ��

�iv�� e� � �i�� w�
e� with cost ��

�v�� e� � �w�
e � w

�
e� with cost 	c�e�

It is easy to see that a 
ow x has balanced costs at the vertices w�
e and w�

e if and only if
xe� � xe� and xe� � xe� � xe� �

�
�
xe� �

If u � U � then all the edges of E� incident on either u� or u� have zero cost� and hence
every 
ow has balanced costs at the vertices u� and u��

Consider a vertex v � Fin �resp�� v � Fout� with incident edges e � �v� i�� e� � �j� v��
and e�� � �k� v� �resp�� e � �i� v�� e� � �v� j�� and e�� � �v� k��� where j � k� A 
ow x has
balanced costs at the vertices v� and v� if and only if

x�e�� � ��v�x�e��� � ��� ��v��x�e���� and x�e�� � ��v�x�e��� � �� � ��v��x�e���� �

It is easy to see that a 
ow x � �xe� is feasible for Problem ��
 in G if and only if the 
ow
x� de�ned by x�e� � xe �e � E� has balanced costs in G��

�� Linear Programming reduces to Bipartite Fixed Forks

In this section we present the following theorem�

Theorem ��� The Bipartite Fixed Forks problem �Problem ��	� has a strongly polynomial
algorithm if and only if the general linear programming problem has one� Moreover� the

former is P�complete�

�



For the proof of the theorem� we show that all the following problems have logspace and
strongly polynomial time reductions to each other�

�i�� Given a matrix A � Rm�d and a vector b � Rm� decide whether there exists an x such
that Ax � b�

�ii�� Given A and b as above� decide whether there exists an x such that Ax � b�

�iii�� Given A as in �i�� where for i � �� � � � �m�
Pd

j	�Aij � �� decide whether there is an x
such that Ax � ��

�iv�� Given A as in �iii�� where in addition� for i � �� � � � �m� max��j�d jAijj � �� and each
row has at most three nonzero entries� decide whether there is an x such that Ax � ��

�v�� Given A as in �iv�� decide whether there is a y such that ATy � �� y � �� and y �� ��

�vi�� The Bipartite Fixed Forks problem �Problem �����

Problem ��
 is a special case of the linear programming problem� and hence �vi�� as a special

case of Problem ��
� is reducible to �i�� Proposition ��	 gives the reduction from �i� to �ii��
Proposition ��� reduces �ii� to �iii�� Proposition ��
 reduces �iii� to �iv�� Proposition ���
�Gordan ����� reduces �iv� to �v�� and Proposition ��� reduces �v� to �vi��

Proposition ��� The problem of deciding feasibility of a system of weak linear inequalities

Ax � b can be reduced in strongly polynomial time to the problem of deciding feasibility of
a system of strict linear inequalities inequalities A�x � b� Also� the latter is P�complete�

Proof� Given A � Rm�d and b � Rm� denote P � fx � Rd j Ax � bg� Suppose we
have an oracle which decides for any matrix A� and any vector b� whether A�x � b� is

feasible� We use the oracle to decide whether Ax � b is feasible� Consider the follow�
ing iterative step� If Ax � b is feasible then obviously so is Ax � b� Otherwise� there
exists a row Aj� such that Aj�x � bj for all x � P � which can be found as follows� For
every k �k � �� � � � �m�� consider the system Sk� consisting of the inequalities Ai�x � bi
�i � �� � � � � k�� Let j be the �rst index such that Sj is infeasible�

Let A� � R�m�����d��� and b� � Rm�� be the system generated when one variable is
eliminated� using the equality Aj�x � bj� The system A�x � b� is feasible if and only if

the system Ax � b is� We repeat the same process with A� and b�� If only one variable
remains� we test the feasibility of the system directly� Otherwise� repeat the iterative step�
The P�completeness of the problem of deciding a system of strict linear inequalities follows
by a simple adaptation of the proof of ����

Proposition ��� Given are a matrix A � Rm�d and a vector b � Rm� In O�md� time �and
in NC� we can compute a matrix A� � R�m�����d��� with the following properties�

�



�i��
Pd��

j	� A
�
ij � � for i � �� � � � �m�

�ii�� There exists an x � Rd�� such that A�x � � if and only if there exists an x � Rd such

that Ax � b�

Proof� Let F � Rd�� be the d�dimensional 
at

F � fx � Rd�� j xd�� � xd�� � � �
d��X
i	�

xi � �g �

Let M � Rd � F be the a�ne transformation de�ned by

�M�x��i �

���
��

xi if � � i � d

��
�
eTx if i � d� �

� � �
�
eTx if i � d� 	

Denote by M�� � F � Rd the inverse transformation� i�e�� �M���x��i � xi �i � �� � � � � d��
Let L � Rd �R� Rd�� be de�ned as follows�

�L�a� b��i �

���
��
ai �

�
�w �

�
�b if � � i � d

w if i � d� �
�b if i � d� 	

where w � b � �
d��

eTa� It is easy to verify that �L�a� b��TM�x� � aTx � b� and

eTL�a� b� � �� Therefore� for all vectors x�a � Rd and b � R we have aTx � b if and only
if �L�a� b��TM�x� � �� De�ne A� as follows� For i � �� � � � �m� let A�

i� � �L�Ai�� bi��T � The
�m� ���st row of A� is de�ned so as to represent the constraint xd�� � xd���

Denote
P � fx � Rd j Ax � bg

P � � fx � Rd�� j A�x � �g �

We need to show that P � 	 if and only if P � � 	� It is easy to verify that P � 	 if and
only if P � 
 F � 	� It remains to be shown that if P � �� 	 then F 
 P � �� 	� Note that
if x � P �� then for every � � �� �x � P �� and for any �� x � �e � P �� Suppose that
y � P �� it follows that for y� � ���yd�� � yd���y� y�d�� � y�d�� � �� It is easy to verify that

y�� � y� � ��eTy� � ���d�e � P �� eTy�� � �� and y��d�� � y��d�� � �� Hence� y�� � P � 
 F �

Proposition ��� Suppose A � Rm�d is a matrix where
Pd

j	�Aij � �� for i � �� � � � �m� In

O�md� time �and in NC�� we can compute a matrix A� � Rm��d� where m� � O�md�� such
that

�i��
Pd

j	�A
�
ij � � �i � �� � � � �m���

�ii�� each row of A� have at most three nonzero entries�

�iii�� for every row of A�� the maximum absolute value of an entry in the row is �� and

�



�iv�� there exists an x such that A�x � � if and only if there exists an x such that Ax � ��

Proof� We �rst show how to convert the system to an equivalent one where each constraint
involves at most three variables� and the sum of the coe�cients is �� Consider an inequality

of the form
Pk

i	� aixi � � where ai �� � �i � �� � � � � k� and
Pk

i	� ai � �� Without loss of
generality� assume

Pk
i	� �� �� It is easy to verify that �x�� � � � � xk� satis�es the inequalityPk

i	� aixi � � if and only if there exists a scalar � such that

a�x� � a�x� � �
kX

i	�

ai � � and �
kX
i	�

ai �
kX

i	�

aixi �

These two latter inequalities have � and k � � variables respectively� and the sum of the
coe�cients in each of them is �� Hence� by considering all constraints with k � � variables
and repeating this step k � � times we get an equivalent system with properties �i� and

�ii�� This can be done in a poly�logarithmic number of phases� To conclude� we note that
by multiplying a row by a positive constant� or omitting rows where all entries are �� we
do not alter the feasibility of the system� Thus� we may divide any row by the largest
absolute value of an entry in the row�

Proposition ��� �Gordan ��	

 For any A � Rm�d� there exists an x � �� x �� �� such

that Ax � �� if and only if there is no y such that ATy � ��

Proposition ��� Suppose A � Rd�m satis
es

�i��
Pd

i	�Aij � �� for j � �� � � � �m�

�ii�� each column of A has at most three nonzero entries�

�iii�� in each column� the largest absolute value of an entry in the column is ��

Under these conditions� we can construct in O�m � d� time an instance BFF�A� of the
Bipartite Fixed Forks Problem �Problem ��	� such that there is a one�to�one correspondence
between the circulations that solve BFF�A� and vectors y � � for which Ay � ��

Proof� With each matrix A as above we associate an instance BFF�A� of Problem ��� as
follows� The vertices of the bipartite digraph correspond to the columns and rows ofA� and

the edges correspond to the nonzero entries of A� The set U �jU j � d� consists of vertices
which correspond to the rows� and the set F � Fin � Fout �jF j � m� consists of vertices
which correspond to the columns� If a vertex v � F corresponds to a column of A with

exactly one positive entry� then v � Fout� otherwise� v � Fin� If the entry Aij is positive�
�resp�� negative� place an edge from the vertex which corresponds to the ith row �resp��
jth column� to the vertex corresponding to the jth column �resp�� ith row�� Construct the
function � � F � ��� �� as follows� Consider a column A�j and the corresponding vertex v�

Let ��v� � jAkjj where k is the smallest number such that jAkjj �� f�� �g� If such a k does

�



not exist� then the column has two nonzero entries f��� �g� and we choose ��v� � ��
What remains is to verify that there is a one�to�one correspondence between circulations

x � E � R� which solve BFF�A� and vectors � � y � Rm such thatAy � �� Choose edges
e�� � � � � em such that ej corresponds to an entry with absolute value � in the jth column
�j � �� � � � �m�� �If there are two such entries take either one�� Consider a circulation x

which solves BFF�A�� It is easy to see that the 
ow values on the edges e�� � � � � em uniquely

determine the 
ow on the rest of the graph�
To conclude the proof� note the following facts� �i� The vector y� de�ned by yj � x�ej�
�j � �� � � � �m�� satis�es Ay � �� �ii� If y � � is a vector such that Ay � �� then there

exists a unique solution x for BFF�A� such that x�ej� � yj �j � �� � � � �m��

�� Algorithms for parametric �ow problems

The authors have obtained in ��� a strongly polynomial time algorithm for the parametric

minimum cycle problem with a �xed number of parameters �see ��� 
� for a full version�� The
scheme used in ��� is fairly general and applies to parametric extensions of other problems�
Norton� Plotkin� and Tardos �	�� used a similar scheme to obtain strongly polynomial time
algorithms for various other problems� In particular� they showed how under certain con�

ditions� a strongly polynomial algorithm for a class of linear programming problems can be
extended to handle a �xed number of additional constraints and variables� When additional
variables are considered� both the scheme of �	�� and a direct application of the scheme of ����
assume the existence of a strongly polynomial algorithm that works for arbitrary right�hand

side vectors� The scheme of �	�� requires� in addition� a strongly polynomial algorithm for
the dual problem for any right�hand side vector of the dual� i�e�� any objective function of the
primal problem� If a �xed number of constraints are added� the scheme of ��� also requires a
strongly polynomial algorithm for the dual problem� Consider� for example� the linear pro�

gramming formulation of the max�
ow problem� An arbitrary right�hand side vector can be
interpreted as a set of arbitrary supply and demand constraints associated with the vertices�
Assuming an arbitrary objective function means we are looking at the general min�cost 
ow

problem� In subsection 
�� we summarize the scheme of ��� as presented in ���� In subsection

�	 we apply this scheme to get strongly polynomial time algorithms for some parametric
extensions of 
ow problems with a �xed number of parameters� The linear programming
formulations of these parametric problems yield 
ow problems with additional variables� It

is� however� not known how solve such problems for arbitrary right�hand side vectors� i�e��
arbitrary vectors of supplies and demands� We demonstrate how to overcome this di�culty�

The extensions of algorithms have interesting implications with regard to the Fixed Ratios
and the generalized 
ow problems� In subsection 
�� we show that strongly polynomial

algorithms exist for the generalized 
ow and min�cost generalized 
ow problems� when the
number of edges with gains or losses is �xed� and for the Fixed Ratios and min�cost with
Fixed Ratios problems� when the number of equivalence classes of edges is �xed� The max�

ow problem with a �xed number of forks is a special case of the problem of max�
ow with

�xed� These problems can be represented as linear programs of max�
ow with a �xed number

�



of additional variables� Strongly polynomial time algorithms for these problems can also be
derived using Theorem ��� of �	���

���� Review of a scheme for strongly polynomial algorithms

For the sake of completeness� we review the scheme used in ��� ��� We also discuss how it

applies to obtain strongly polynomial algorithms for parametric extensions of problems�

An algorithm that computes a function g � Rd � R is called piecewise a�ne if all the

operations it performs on intermediate values that depend on the input vector are additions�
multiplications by constants� comparisons� and making copies�

The main tool we use can be stated as follows� Consider a piecewise a�ne algorithm A
that computes values of a concave function g � Q � R� where the domain Q � Rd is given as
an intersection of k halfspaces� We assume that A is accessible in a way which allows us to
follow the computation path for any given input� We also assume that A performs at most

T operations including C comparisons� Furthermore� the C comparisons can be organized
into r phases� where all the comparisons within a single phase are independent� We denote
the number of comparisons in phase i by Ci �� � �� � � � � r�

Theorem ��� The function g can be maximized using

kT

�
rX

i	�

dlogCie

�d

operations�

The scheme given in ��� �� integrates techniques from �	�� 	���

Theorem 
�� also holds when the range of g is R� �� � �� and the notions of maximum

and concavity are de�ned with respect to the lexicographic order as follows� The function
g is concave with respect to the lexicographic order if for every � � ��� �� and x�y � Q�
�g�x� � �� � ��g�y� �lex g��x� �� � ��y���

Remark ��� Note that if the conditions hold for g � Q� then they also hold for a restriction
of g to a polyhedron Q� � Q�

We now discuss how and when Theorem 
�� can be applied to obtain strongly polynomial
algorithms for parametric extensions of problem �with a �xed number of parameters�� We
view a problem S � P � R� as a mapping from a set P of instances into ��tuples of real

numbers� We say that S�P � is the solution of the problem for the instance P � P� A d�
parametric extension of P has the form Pd � �M�Q� where �i�Q � Rd is a polyhedron given
as an intersection of halfspaces� and �ii� M � Q � P is a mapping from points � � Q � Rd

to instances of P� Each parametric instance P d � Pd corresponds to a subset of instances

fM��� j � � Qg � P� We refer to M��� � P as the instance induced by �� By a solution

��



of the parametric problem for an instance P d � �M�Q� � Pd we mean as follows� Consider
the maximum relative to the lexicographic order over all possible values of the parameters

� � Q� of the solutions of the induced instance M���� If the maximum is �nite� then a
solution consists of the maximum and a vector � � Rd that belongs to the relative interior of
the set of parameter values which maximize S� Formally� to solve an instance of P d � Pd we
have to do the following� if either Q � 	 or S�M���� is unbounded on Q� then these facts

have to be recognized� otherwise� a pair �m���� � R � Rd� where m � max��QS�M����
and �� � rel intf� j S�M���� � mg� has to be computed�

For a parametric instance P d� consider the function g � Q � R� de�ned as g��� �
S�M����� Note that the solution of P d is a vector which maximizes g� Theorem 
�� can be
applied for solving P d if we are given an algorithm A which computes S�M����� and the
conditions of the theorem hold for A and g�

Remark ��� When we attempt to apply the method described above to obtain strongly

polynomial time bounds� we may encounter a di�culty as follows� Sometimes we may have a
problem that satis�es the conditions of Theorem 
��� but the polyhedron Q �i�e�� the domain
of g� is either not given explicitly or has a super�polynomial number of facets� The latter
occurs in the parametric minimum cycle problem� A simpli�ed version of the parametric

minimum cycle problem used in ��� is as follows�

Let G � �V�E� be a digraph where a�ne forms of d variables are associated with the

edges� so the corresponding function g maps sets of values for the parameters � � Rd

to the value of the minimumweight cycle in the graph with the induced scalar weights�
Compute a � � Rd at which the value of the minimum weight cycle relative to the

induced scalar weights is maximized�

The function g is not de�ned at vectors � for which the graph has negative cycles relative to

the induced weights� The weight of a cycle c � E is an a�ne form� Hence� we can compute
a halfspace Hc such that the weight of the cycle relative to � is nonnegative if and only
if � � Hc� The domain of g is the intersection of the halfspaces Hc� where c is a simple
cycle in G� We now show that the number of facets in the domain of g may be n
�logn��

Carstensen ��� constructed a family of acyclic graphs� with a�ne forms of one parameter �
associated with the edges� such that the parametric shortest �s� t��path function has n
�logn�

breakpoints� We consider the graphs of Carstensen�s construction� with an additional edge
�t� s�� with the a�ne form�	�c �where c is some constant� associated with it� The resulting

graphs have two�parameter a�ne forms associated with the edges and cycles which consist
of an �s� t��path and the edge �t� s�� For each graph� consider the polygon consisting of all
the values of � and 	 for which there are no negative cycles� It is easy to see that we can

choose� independently for each graph� a su�ciently large constant c such that these polygons
have n
�logn� edges� Gus�eld ���� showed that the number of facets in a parametric shortest
�s� t��path function is nO�logn�� Using a similar argument� it can be shown that the same
holds for parametric minimum cycle� Obviously� we want to avoid computing the domain of

g� In order to overcome this di�culty� we �extended� the domain of the function g to Rd���

��



We note that in ��� we asked for a minimum cycle of at most n edges in the graph� This
parametric problem is well de�ned for any � � Rd� The corresponding function g� coincides

with g on the domain of g and is concave� Moreover� g� is maximized in the domain of g if
the latter is not empty� It follows that we can apply Theorem 
�� to maximize g�� Below
we consider concave extensions of functions where the extended domains are polyhedra with
polynomial numbers of facets� Another way to optimize a function g over a domain with

superpolynomially many facets is to construct a �separation oracle�� i�e�� an algorithm that
for a given � returns a halfspace that �i� contains the domain of g and �ii� has � on its
boundary� The use of a separation oracle is required by the scheme of �	�� and can be easily

incorporated into the scheme of ����

���� Parametric extensions of �ow problems

The max�
ow problem ��	� has well�known strongly polynomial algorithms ��� ���� We
consider parametric extensions of the max�
ow problem where the capacities and the supplies
and demands at the vertices are replaced by a�ne forms of d variables� A vector � � Rd

corresponds to a set of values of the parameters� We refer to the resulting capacities as the
capacities induced by �� We discuss problems such as �nding � � Rd which �i� maximizes
the max 
ow relative to the induced capacities� or �ii� allows for a feasible circulation subject
to the induced capacities� Parametric 
ow problems were previously considered by Gus�eld

����� and by Gallo� Grigoriadis and Tarjan �����

We �rst consider the max�
ow problem where the capacities are a�ne forms with d

variables and we want to �nd a � � Rd that maximizes the max�
ow relative to the induced
capacities�

Problem ��� �Max�Flow with Parametric Capacities� Let G � �V�E� be a digraph� let s� t �
V be two distinguished vertices� and let ce �e � E� be d�variable a�ne forms ��parametric
capacities�� associated with the edges� Find a � � Rd which maximizes the maximum
�s� t��
ow relative to the induced capacities�

Proposition ��� The parametric max��ow problem �Problem ���� can be solved in strongly
polynomial time for any 
xed number of parameters�

Proof� Let g��� be the value of the maximum 
ow relative to the capacities induced by

�� The domain of g is the intersection of the halfspaces which guarantee that all the edges
have nonnegative capacities� Denote the domain of g by Q� We show that the function
g is concave� The maximum 
ow equals the minimum capacity of a cut� The capacity of
each cut is an a�ne form of �� Hence� the minimum cut is a piecewise linear and concave

function of �� It is easy to verify that all the other conditions of Theorem 
�� are satis�ed
as well�

Consider a network with both upper and lower bounds on the 
ow in each edge� Both

bounds are replaced by a�ne forms� As in Problem 
�
� the goal is to �nd a vector � � Rd

�	



relative to which the max�
ow in the induced network is maximized� This problem is called
max��ow with parametric bounds�

We wish to �nd a strongly polynomial time algorithm for the problem that is based on a

piecewise a�ne max�
ow algorithm� This problem� however� su�ers from a di�culty similar
to the one described in Remark 
��� The domain of the search consists of values of � � Rd for
which the induced network has a feasible circulation� We require that for all edges� the upper
bounds are not smaller than the lower bounds� and they are both nonnegative� To guarantee

feasibility� we need additional requirements �see Ho�man ����� as follows� We need to assure
that all the �s� t��cuts allow nonnegative 
ow� and all other cuts allow a zero 
ow� The
number of cuts �and hence the number of halfspaces whose intersection de�nes the domain

of g� may be exponential� We overcome this di�culty by considering a concave extension
of the function g to a domain with a polynomial number of facets� Later in this subsection�
we de�ne the parametric min�discrepancy max�
ow problem which is a generalization of the
problem of max�
ow with parametric bounds� We then proceed to show that the latter has

a strongly polynomial time algorithm�

De�nition ��� Let G � �V�E� be a digraph� let ue � R� �e � E� be capacities on the
edges� and let 
v � R �v � V � be supplies or demands associated with the vertices� A
vector x � �xe�e�E such that � � xe � ue �e � E� is called a pseudo�ow� The excess of the

pseudo
ow x at a vertex v � V is

excess�v� �
X

i��i�v��E

xiv �
X

i��v�i��E

xvi�

The discrepancy of the pseudo
ow x is

��x� �
X
v�V

j
v � excess�v�j �

We seek a pseudo
ow which minimizes the discrepancy� and refer to its discrepancy as the
minimum discrepancy of the network�

Problem ��	 �Minimum Discrepancy Pseudo
ow�
Given a network G � �V�E� with capacities ue � R� �e � E� on the edges� and supplies
or demands 
v � R �v � V � associated with the vertices� �nd a minimum discrepancy

pseudo
ow �see De�nition 
��� in G�

Remark ��
 Given an instance of Problem 
��� we construct an instance of the max�
ow

problem on a network G� � �V �� E�� with two distinguished vertices s�� t� � V � and capacities
u�e �e � E��� where

V � � V � fs�� t�g �

E� � f�v� t�� j v � V� 
i � �g � f�s�� v� j v � V� 
i � �g � E �

and

u�e � f ue if e � E
v if e � �s�� v�� 
v if e � �v� t�� �

��



It is easy to verify that the sum of twice the value of the max�
ow in G� plus the minimum
discrepancy in G equals

P
i�V j
ij� Furthermore� it is easy to compute a min�disc pseudo
ow

in G from a max�
ow in G��

Consider the parametric version of problem 
�� where capacities� supplies� and demands
are replaced by a�ne forms� The algorithm that computes the minimumdiscrepancy relative
to the values induced by a given � is piecewise a�ne� This follows from the fact that the

construction of G� is piecewise a�ne and leads to a max�
ow problem in a network with
capacities that are a�ne forms of �� The �nal step is to apply the parametric max�
ow
algorithm which is piecewise a�ne as well� The domain of ��s for which the problem is well�

de�ned has a polynomial number of facets� It follows from Theorem 
�� that the parametric
problem can be solved in strongly polynomial time for any �xed number of parameters� A
consequence of this claim is that the problem of a feasible circulation with parametric bounds
can be solved in strongly polynomial time for any �xed number of parameters�

We now consider a generalization of Problem 
�� where we either compute a maximum 
ow
or minimize the discrepancy�

De�nition ��� Suppose a network G is as in De�nition 
��� and s� t � V are two distin�
guished vertices� The discrepancy of a pseudo
ow in a network with distinguished vertices�
is rede�ned to be

��x� � �
X

v�V nfs�tg

j
v � excess�v�j �

A min�disc maximum �s� t���ow in G is a pseudo
ow x � �xe�e�E such that excess�s� �

excess�t� � � and x maximizes the pair ����x�� f�x�� �where f�x� � excess�s�� relative to
the lexicographic order� The value of the min�disc maximum �s� t��
ow is the pair ���� f�
which corresponds to the optimal pseudo
ow�

Problem ���� �Min�Disc Max�Flow� Given a network G as in De�nition 
��� compute a
min�disc maximum �s� t��
ow in G�

Remark ���� Problem 
��� can be solved by two applications of a max�
ow algorithm�
First� compute a minimum discrepancy pseudo
ow x in the network G with the edge �t� s�

added to E �see Remark 
���� Consider the pseudo
ow x on the network G� It is easy to
verify that �i� excess�s��excess�t� � �� and �ii� the pseudo
ow xminimizes��x�� Construct
the residual network G� with residual capacities relative to the pseudo
ow x� Compute a
maximum �s� t��
ow x� in G�� The combined pseudo
ow x � x� is a min�disc maximum

�s� t��
ow in G�

The claim made in Remark 
�� carries over to Problem 
���� When the capacities and
demands are replaced by d�variable a�ne forms� the algorithm that computes the solution of

Problem 
��� for a �xed � � Rd is piecewise a�ne� See �		� for a related problem as follows�
Given a network and k pairs of sources and sinks �
i� ti� �i � �� � � � k�� compute a pseudo
ow
x such that �i� excess�v� � � if v �� f
�� � � � � 
k� t�� � � � � tkg� �ii� excess�
i�� excess�ti� � � for
every i �i � �� � � � � k�� and �iii� x maximizes the k�tuple �excess�
��� � � � � excess�
k�� relative

to the lexicographic order�

�




Consider the parametric version of the problem� where the capacities and the supplies
and demands at the vertices are replaced by a�ne forms�

Problem ���� �Parametric Min�Disc Max�Flow� Let G � �V�E� be a digraph� let ue for

e � E and 
v for v � V be d�variable a�ne forms corresponding to capacities on the edges
and demands or supplies at the vertices� respectively� Find a � � Rd which maximizes the
value of the min�disc maximum �s� t��
ow in the induced network�

Proposition ���� The problem of parametric min�disc max��ow �Problem ����� can solved
in strongly polynomial time for any 
xed number of parameters�

Proof� We limit the domain of the search to values of � � Rd for which the induced
capacities are nonnegative� The polyhedron Q is the intersection of the m halfspaces
fue � �g �e � E��

Denote by g � Q � R� the function which maps � � Q to the solution of Problem 
��� on
the induced network� In order to apply Theorem 
��� we need to show that the function
g is concave� Observe that Remark 
��� implies that the other conditions of Theorem 
��

are satis�ed� Suppose that f�����g � Q� Let x�i�e � R�� �e � E� i � �� 	� be the min�
disc max �s� t��
ows in the induced network relative to �i� with values ���i� fi�� Let 
�i�

v

�i � �� 	� v � V n fs� tg� be the demands induced by �i� and let u�i�e �e � E� i � �� 	� be
the capacities induced by �i� Let � � ��� �� be any number� Let �� � ��� � �� � �����

The capacities induced by �� are u�e � �u���e � �� � ��u���e � and the induced demands are

�v � �
���

v � �� � ��
���
v � We need to show that g���� �lex �g���� � ��� ��g����� Let x�e

�e � E� be the pseudo
ow x�e � �x���e � �� � ��x���e � Denote by excess��v�� excess��v�� and
excess��v� the 
ow excesses at a vertex v � V relative to the pseudo
ows x�� x���� and x���

respectively� Let g���� � ����� f��� g���� � ����� f��� �� �
P

v�V nfs�tg j

�
v � excess��v�j

and f � � excess��s�� It is easy to verify that x� is a feasible pseudo
ow relative to the
capacities u� and that excess��s� � excess��t�� Hence� g���� �lex ����� f ��� Note that
excess��v� � � excess��v� � �� � �� excess��v�� and f � � excess��s� � �f� � �� � ��f�� It

follows that

�� �
X

v�V nfs�tg

j
�v � excess��v�j

�
X

v�V nfs�tg

j�
���
v � �� � ��
���

v � �excess��v�� ��� ��excess��v�j

�
X

v�V nfs�tg

�
�j
���

v � excess��v�j� �� � ��j
���
v � excess��v�j

�

� ��� � ��� ���� �

Now we can show that g is concave�

g���� �lex ����� f �� �lex ����� � ��� ����� �f� � ��� ��f�� � �g���� � �� � ��g���� �

��



Corollary ���� The following parametric problems can be solved in strongly polynomial
time for any 
xed number of parameters�

�i�� Problem ���� with a distiguished vertices with demand or supply� and the value of
� � Rd is constrained so that the induced demands are nonnegative and the induced
supplies are nonpositive�

�ii�� Max��ow with parametric bounds�

�iii�� Feasible circulation with parametric bounds�

Proof� Part �i� follows immediately from Remark 
�	� We need to replace the search

domain Q by its intersection with the O�n� halfspaces f
v � �g if v is a demand vertex�
and 
v � � if v is a supply vertex� It is easy to see that the intersection of these halfspaces
equals the set of vectors relative to which the induced demands are nonnegative and the
induced supplies are nonpositive�

To prove part �ii�� consider an instance of the parametric bounds max�
ow problem� Let
G � �V�E� be a network� let s� t � V be two distinguished vertices� and let �e� ue �e � E�
be d�variable a�ne forms� Assume� without loss of generality� that the edges incident on
the source and the sink have zero lower bounds on the 
ow� We de�ne a corresponding

instance of the min�disc max �s� t��
ow problem on a network G � �V�E�� where u�e and

v are capacities and demands� The capacities are u�e � ue � �e �e � E�� and the demands
are 
v �

P
fuj�u�v��Eg �uv �

P
fuj�v�u��Eg �vu �v � V n fs� tg��

The search domain is the intersection of the halfspaces that guarantee that u�e � �e � �

�e � E�� Consider Problem 
��	 on the network with capacities u�e and demands 
v�
Suppose that � � Q maximizes the min�disc maximum �s� t��
ow in the induced network�
and ���� f� is the optimal value� Consider the original parametric bounds max�
ow

problem� It is easy to see that there exists a vector � � Q for which the induced network
has a feasible 
ow if and only if � � �� Furthermore� if � � � then � is the solution of
the original problem� and f is the value of the corresponding max 
ow�
Part �iii� is a special case of part �ii�� where we consider only the �rst coordinate of the

min�disc max�
ow pair� There exists a � which induces capacities allowing a feasible
circulation if and only if � � ��

Remark ���� Consider Problem 
��� with parametric lower bounds on the 
ow� We show
that if d is �xed d� then this problem can be solved in strongly polynomial time� The solution

is based on the techniques we used to solve the parametric bounds max�
ow problem� De�ne
the �edge�discrepancy� h�x� of a pseudo
ow x as the sum� over all the edges for which the

ow is smaller than the lower bound� of the di�erence between the lower bound and the


ow� For an instance of Problem 
��	 with lower bounds� let Q be the intersection of all the
halfspaces that guarantee that the bounds are nonnegative and that the upper bounds are
not smaller than the respective lower bounds� De�ne the function g � Q � R� as follows� For
� � Q� consider the induced network� and let g��� be the maximum over all pseudo
ows of

��h�x�����x�� f�x�� relative to the lexicographic order� The domain of g��� is Q� Using

��



arguments similar to the ones used for Problem 
��	� we can show that �i� the evaluation of
g can be done by a piecewise a�ne algorithm �see Remark 
����� and �ii� g is concave �see

the proof of Proposition 
����� Denote by ��h���� f� the maximum value of g� It is easy
to verify that if h � �� then the � which maximizes g is the solution of the original instance
of Problem 
��	 with lower bounds� and if h �� �� then the original instance has no solution�

���� Applications to Fixed Ratios and generalized �ow

In this subsection we discuss the relation between the parametric extensions given in the pre�

vious subsection and the �xed ratios 
ow and generalized 
ow problems� We give strongly
polynomial time reductions from these problems to Problem 
��	� It follows that the sub�
classes of the �xed ratios 
ow and generalized 
ow problems� which correspond to instances of

Problem 
��	 with a �xed number of parameters� have strongly polynomial time algorithms�

Fixed Ratios Flow�

Problem ���� �Fixed Ratios Flow� Consider a network G � �V�E� where �� u� �� and S

are as in Problem ��	� Suppose s� t � V are two distinguished vertices� A maximum 
xed

ratios �ow is an �s� t��
ow of maximum value� which satis�es the additional constraints of a
�xed ratios circulation �see Problem ��	��

Problem ���	 �Flow with Fixed Forks� Consider a network G � �V�E� where � and V are
as in Problem ��
� Suppose s� t � V are two distinguished vertices� A maximum �ow with


xed forks is an �s� t��
ow of maximum value� which satis�es the additional constraints of a
circulation with �xed forks �see Problem ��
��

It is easy to see that Flow with Fixed Forks is a special case of the Fixed Ratios Flow
problem�

Proposition ���
 There exists a linear�time reduction from instances of the 
xed ratios
�ow problem to instances of the max��ow problem with parametric bounds such that �i� there
is a trivial correspondence between the solutions of the two problems� and �ii� the number of
parameters equals the number of equivalence classes relative to S�

Proof� Given an instance of a �xed ratios 
ow problem� de�ne the corresponding instance
of the max�
ow problem with parametric bounds as follows� We use the same network G

and the same pair of distinguished vertices s� t� Let ��e� u
�
e �e � E� be the a�ne forms which

de�ne the lower and upper bounds� If an edge e is not a member of any of the pairs in S�
then we de�ne ��e � �e� u�e � ue� Otherwise� we associate a parameter with each equivalence
class of edges� Suppose that fei�� � � � � eikg is an equivalence class� Let � be the parameter
associated with this set� The 
ow values on these edges are related� Hence� we can �nd

a vector a � Rk
� as follows� For every feasible �xed ratios 
ow xe �e � E�� there exists a

��



� � R� such that �xei� � � � � � xeik � � �a� De�ne the parametric bounds u�eij � ��eij
� aj��

Restrict the domain of the search Q to its intersection with the O�m� halfspaces given
by �eij � aj� � ueij � It follows from Remark 
�	 that Theorem 
�� still holds when we
intersect the domain with polynomially many halfspaces� To conclude the proof� note the

following� A �xed ratio 
ow exists in G if and only if there exists a � � Q relative to which
the induced network has a feasible 
ow� Moreover� if � is the solution of the parametric
problem and x is the max�
ow in the network induced by �� then x is a maximum �xed
ratios 
ow in G�

Corollary ���� The problem of Fixed Ratios Flow can be solved in strongly polynomial time
for any 
xed number of equivalence classes relative to S�

Corollary ���� The problem of Flow with Fixed Forks can be solved in strongly polynomial
time for any 
xed number of forks�

Generalized Flow�

The generalized 
ow problem �	�� ��� is as follows� A network G � �V�E� is given with lower
and upper bounds �e� ue �e � E�� respectively� on the 
ow� a distinguished vertex s � V � and

a vectors � � ��e�e�E of gain factors� Find a pseudo
ow x that maximizes

X
i��s�i��E

xsi �
X

i��i�s��E

�isxis

under the generalized 
ow conservation conditions

X
i��v�i��E

xvi �
X

i��i�v��E

�ivxiv � � �v � V n fsg� �

It is not known whether the generalized 
ow problem can be solved in strongly polynomial

time� We show that if the number of edges e with �e �� � is �xed� then the problem can be
solved in strongly polynomial time� This result holds even when the vertices have supplies
or demands and edges have lower bounds on the 
ow�

Proposition ���� There exists a linear�time reduction from instances G of the generalized
�ow network problem with d edges with gains or losses to instances G� of the parametric

min�disc max �s� t���ow network problem with d parameters� such that if � and ���� f�
constitute the solution of the parametric problem and x is the min�disc max �s� t��pseudo�ow
relative to the capacities and demands induced by �� then� �i� � � �� �ii� f is the value of
the max��ow in G� and �iii� given � and x� a max��ow in G can be constructed easily�

Proof� Consider an instance of the generalized 
ow problem on a networkG � �V�E�� with
capacities ue � R� �e � E�� and two distinguished vertices s� t � V � Let ei � �vi� wi� � E

�i � �� � � � � d� be the edges with gains or losses� and let �i be the gain factor associated

��



with ei� De�ne the corresponding instance of the parametric min�disc max�
ow problem
on a network G� � �V�E��� with s and t as the distinguished vertices� where the capacities

ue �e � E�� are scalars� and the demands 
v �v � V �� are a�ne forms� Associate a
parameter �i with the edge ei �i � �� � � � � d�� In the network G�� �i� E� � E n fe�� � � � � edg�
�ii� the capacities are u�e � ue �e � E��� and �iii� the demands 
v for v � V are 
v �P

fijvi	vg �ei �
P

fijwi	vg �i�ei � Replace Q by its intersection with the halfspaces �i � uei �

To prove correctness� consider any � � Q� Let ���� f� be the value of the min�disc max�

ow� and let xe �e � E�� be a feasible min�disc pseudo
ow �i�e�� ��x� � ��� relative to
the capacities and demands induced by �� Let x� be a pseudo
ow in G� where x�e � xe
�e � E��� and x�ei � �i �i � �� � � � � d�� It is easy to see that � � � if and only if x� is a
generalized 
ow in G�

Corollary ���� The generalized �ow problem� with a 
xed number of edges with gain factors
other than �� can be solved in strongly polynomial time algorithm�

Remark ���� Tardos �	�� gave a strongly polynomial time algorithm for the min�cost cir�

culation problem� Consider the parametric extension of the problem where the bounds on
the 
ow on some edges are parameterized� Tardos� algorithm is piecewise a�ne in these
bounds� Hence� the parametric extension of the min�cost 
ow problem� where the number of
parameters is �xed� can be solved in strongly polynomial time� Interesting applications are

strongly polynomial time algorithms for the min�cost generalizations of �i� the �xed ratios

ow problem� where the number of equivalence classes of edges is �xed� and �ii� the gen�
eralized 
ow problem� where only a constant number of edges have gain factors other than
��

References�

��� G� M� Adel�son�Velskii� E� A� Dinic� and A� V� Karzanov� Flow algorithms� Science�
Moscow� ����� In russian�

�	� C� Berge and A� Ghouila�Houri� Programming� games and transportation networks�
John Wiley � Sons� New York� �����

��� P� J� Carstensen� The complexity of some problems in parametric� linear� and combina�
torial programming� PhD thesis� Department of Mathematics� University of Michigan�

Ann Arbor� Mich�� �����

�
� E� Cohen� Combinatorial Algorithms for Optimization Problems� PhD thesis� Depart�

ment of Computer Science� Stanford University� Stanford� Ca�� �����

��� E� Cohen and N� Megiddo� Strongly polynomial time and NC algorithms for detecting

cycles in periodic graphs� J� Assoc� Comput� Mach� To appear�

��



��� E� Cohen and N� Megiddo� Strongly polynomial and NC algorithms for detecting cycles
in dynamic graphs� In Proc� ��st Annual ACM Symposium on Theory of Computing�

pages �	����
� ACM� �����

��� E� Cohen and N� Megiddo� Maximizing concave functions in �xed dimension� Technical

Report RJ ���� �������� IBM Almaden Research Center� San Jose� CA ���	�������
August �����

��� E� A� Dinic� Algorithm for solution of a problem of maximum 
ow in networks with
power estimation� Soviet Math� Dokl�� ����	����	��� �����

��� D� P� Dobkin� R� J� Lipton� and S� P� Reiss� Linear programming is Log�Space hard for
P� Information Processing Let�� ��	�������� �����

���� D� P� Dobkin and S� P� Reiss� The complexity of linear programming� Theoretical
Computer Science� �������� �����

���� J� Edmonds and R� M� Karp� Theoretical improvements in algorithmic e�ciency for
network 
ow problems� J� Assoc� Comput� Mach�� ���	
��	�
� ���	�

��	� L� R� Ford Jr� and D� R� Fulkerson� Flows in networks� Princeton Univ� Press� Princeton�
NJ� ���	�

���� G� Gallo� M� D� Grigoriadis� and R� E� Tarjan� A fast parametric maximum 
ow
algorithm and applications� SIAM J� Comput�� ��������� �����

��
� A� Ghouila�Houri� Recherche du 
ot maximum dans certains r�eseaux lorsqu�on impose
une condition de bouclage� In Proc� of the �nd Int� Conf� on Oper� Res�� London� page

���� American Mathematical Society� �����

���� A� Ghouila�Houri� Une g�en�eralisation de l�algorithme de Ford�Fulkerson� C� R� Acad�

Sci�� Paris� 	���
��� �����

���� A� V� Goldberg� �E� Tardos� and R� E� Tarjan� Network 
ow algorithms� Technical

Report STAN�CS�����	�	� Stanford University� �����

���� P� Gordan�  Uber die au
 osung linearer gleichungen mit reelen coe�cienten� Mathema�

tische Annalen� ��	��	�� �����

���� D� Gus�eld� Parametric combinatorial computing and a problem of program module

distribution� J� Assoc� Comput� Mach�� ����������� �����

���� A� J� Ho�man� A generalization of max�
ow min�cut� Math� Prog�� ����	����� ���
�

�	�� A� Itai� Two�commodity 
ow� J� Assoc� Comput� Mach�� 	��
���������� �����

�	�� E� L� Lawler� Combinatorial optimization� networks and matroids� Holt� Reinhart� and
Winston� New York� �����

	�



�		� N� Megiddo� A good algorithm for lexicographically optimal 
ows in multi�terminal
networks� Bulletin of the AMS� ���
���
��� �����

�	�� N� Megiddo� Applying parallel computation algorithms in the design of serial algorithms�
J� Assoc� Comput� Mach�� ��������
�� �����

�	
� N� Megiddo� Towards a genuinely polynomial algorithm for linear programming� SIAM
J� Comput�� �	��
������ �����

�	�� N� Megiddo� Linear programming in linear time when the dimension is �xed� J� Assoc�

Comput� Mach�� �����
��	�� ���
�

�	�� C� H� Norton� S� A� Plotkin� and �E� Tardos� Using separation algorithms in �xed

dimension� In Proc� �st ACM�SIAM Symposium on Discrete Algorithms� pages ����
���� ACM�SIAM� �����

�	�� �E� Tardos� A strongly polynomial minimum cost circulation algorithm� Combinatorica�
�����	
��	��� �����

�	�� �E� Tardos� A strongly polynomial algorithm to solve combinatorial linear programs�
Oper� Res�� �
�	���	��� �����

	�


