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Abstract

Abstract.  Several network flow problems with additional constraints are consid-
ered. They are all special cases of the linear programming problem and are shown to be
P-complete. It is shown that the existence of a strongly polynomial time algorithm for
any of these problems implies the existence of such an algorithm for the general linear
programming problem. On the positive side, strongly polynomial algorithms for some
parametric flow problems are given, when the number of parameters is fixed. These
algorithms are applicable to constrained flow problems when the number of additional
constraints is fixed.

1. Introduction

An algorithm for the linear programming problem over the real numbers is called strongly
polynomial if it performs no more than a polynomial number of elementary operations (ad-
ditions, subtraction, multiplications, divisions, comparisons, and data transfers) in terms of
the number of variables and constraints. If the problem is posed over the rationals, then it
is also required that the algorithm be polynomial in the usual sense.

Strongly polynomial algorithms are known only for special cases of the linear program-
ming problem. For example, Megiddo [24] gave a strongly polynomial algorithm for linear
programming problems with inequality constraints, where the objective function and each
of the constraints depend on at most two variables. Tardos [28] gave a strongly polynomial
algorithm for linear programming problems where the entries of the constraints matrix (but
not necessarily those of the objective function and the right-hand side vector) are integers
bounded by a polynomial in terms of the number of variables and constraints. Her algo-
rithm applies to many network flows problems. It is still not known, however, whether the
generalized max-flow problem [16] can be solved in strongly polynomial time.
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Since the general linear programming problem is known to be in the class P, it is not
interesting anymore to consider polynomial time reductions of the general problem to various
special cases [1, 10, 20], unless the reduction runs in strongly polynomial time. It is interesting
to consider strongly polynomial reductions of the general linear programming problem to
various special cases. Also, since the linear programming problem is known to be P-complete!
[9], it is interesting to consider logspace reductions. In this note we consider the following
network flows problems, and give strongly polynomial and logspace reductions from the
general linear programming problem to these problems. On the positive side, we show that
some parametric flow problems with a fixed number of parameters have strongly polynomial
algorithms. In particular, we discuss strongly polynomial special cases of problems described
below.

Problem 1.1 [Balanced Costs Circulation| Given is a digraph G = (V, E') with real costs
per unit of flow ¢. € R (e € F) associated with the edges. Find a nontrivial circulation
x = (2)ecp, l.e, 2. >0 (e € E), & # 0, and for every v € V,

§ Tiy = § LToi

(iv)EE (vi)EE

such that the “cost” is balanced at the vertices, that is, for every vertex v € V,

E LTivCiy = E LyiCoi -

(iv)EE (vi)EE

The set of circulations with balanced costs is invariant under the operation of adding the
same constant to each of the costs.

The problem of a flow in a network with pairs of homologous edges is defined as follows.
A set of pairs of edges is given and one has to find a flow where members of each pair carry
equal amounts of flow. The latter problem and a related one of networks with bundles were
studied by Berge and Ghouila-Houri [2], Ghouila-Houri [14, 15], and Hoffman [19]. The
result of [28] implies that these problems are solvable in strongly polynomial time. The
problem of a flow in a network with pairs of homologous edges can be generalized as follows
into a problem for which it is still not known whether a strongly polynomial time algorithm
exists.

Problem 1.2 [Fixed Ratios Circulation] Let G = (V, E) be a digraph, let (.,u. € Ry
(e € E) be lower and upper bounds, respectively, on the flow in an edge e, and let o : S — Ry,
where S C F x E. Find a nontrivial circulation & = (2.)ceg, ie., le < x. < u., and for

every v € V' \ {s,1},
Z Ly = Z Loi
(iv)EE (vi)EE

such that for every pair (e1,ez) € S, @, = afer, €2)x.,.

Lecomplete for the class P under logspace reductions



Remark 1.3 The constraints of the form z., = a(eq,ez)x., imply by transitivity more
constraints of this type, so we may assume without loss of generality that S is transitively
closed, so that if {(eq,e2),(e2,e3)} C 5, then (e1,e3) € S and a(ey, e3) = a(er, ea)ales, e3).
Similarly, we may assume without loss of generality that if (e1,e2) € S, then (eg,e1) € S
and a(eg, e1) = 1/afer, e2). Thus, we assume S is an equivalence relation over .

Problem 1.4 [Circulation with Fixed Forks] Given is a digraph G = (V, F), where V is
partitioned into three sets U, Fj, and F,,;. The vertices in F}, (resp., F,u) have in-degree
2 and out-degree 1 (resp., out-degree 2 and in-degree 1). Also given is a function « :
Fi, U Four — [0,1]. The vertices Fj, (resp., F,u:) are called in-forks (resp., out-forks). Find
a nontrivial circulation & such that

(i). if v € F,y and {(¢,v),(v,7),(v,k)} C E, and j < k, then

Tyj = Oz(v)l'w and  x,, = (1 - Oz(v))l'w ’

(ii). if v € F},, and {(v,%),(j,v), (k,v)} C F and j < k, then

zj, = a(v)r, and  xp, = (1 — a(v))z, .

Problem 1.5 If the graph (' is bipartite and all the edges are between U and F' = F;,UF,,;,
then we refer to the problem as the bipartite version of Problem 1.4.

We show that the existence of a strongly polynomial algorithm for any of the problems stated
above implies the existence of a strongly polynomial algorithm for Problem 1.5. Also, these
problems are P-complete. This is clearly the case for Fixed Forks. It is also easy to see that
a circulation with fixed forks is a special case of a circulation with fixed ratios. In Section 2
we give a strongly polynomial time and A'C reduction? from Problem 1.5 to the Balanced
Costs Circulation problem. In Section 3 we show that the existence of a strongly polynomial
algorithm for Problem 1.5 implies the existence of such an algorithm for the general linear
programming problem. Also, Problem 1.5 is P-complete. The combination of these results
implies the following theorem.

Theorem 1.6 For each of the following: (i) Circulation with Balanced Costs (Problem 1.1),
(ii) Clirculation with Fived Ratios (Problem 1.2), and (iii) Circulation with Fized Forks
(Problems 1.4 and 1.5), the problem has a strongly polynomial algorithm if and only if the
general linear programming problem has one. Moreover, all these problems are P-complete.

In Section 4 we review a technique developed by the authors in [6] (see also [4, 5, 7]). We
apply the technique to obtain strongly polynomial algorithms for parametric flow problems
when the number of parameters is fixed. If the number of parameters is not fixed then

ZAn NC reduction is one that can be carried out in polylogarithmic time with a polynomial number of
processors.



these parametric problems are P-complete, and the existence of a strongly polynomial algo-
rithm for any of them is equivalent to existence of such an algorithm for the general linear
programming problem. The existence of strongly polynomial algorithms for parametric prob-
lems with a fixed number of parameters has consequences as follows. If either the number
of “forks” in Problem 1.4 is fixed, or the number of equivalence classes in .S of Problem 1.2
is fixed, then the respective problems can be solved in strongly polynomial time. Moreover,
similar generalizations of the maximum flow and the minimum-cost flow problems also have
strongly polynomial algorithms. Some of the results of Section 4 also follow from a scheme
very similar to that of [6], which was introduced later by Norton, Plotkin, and Tardos [26].

2. Bipartite Fixed Forks is reducible to Balanced Costs

Proposition 2.1 The Bipartite Fized Forks problem is reducible both in strongly polynomial
time and in N'C to the Balanced Costs problem.

Proof: Consider an instance of Problem 1.4 on a graph G = (V, E) with costs ¢, (e € F),
where V = U U F;, U F,,;. We reduce the problem to an instance of Problem 1.1. Define
G' = (V' E') as follows. Let V! and V? be two copies of V, and let W' and W? be two

copies of K. Let
Vi=vViuvViuwluw? .
For every v € V we denote by v! € V! and v? € V? the corresponding vertices. For every

¢ € E we denote by w! € W' and w? € W? the vertices that correspond to e.

We now associate weights ¢ (e € F) with the edges of (G. Consider a vertex v € Fj,
(resp., v € F,y) with incident edges (v,¢), (5,v), and (k,v) (resp., (¢,v), (v,J), and (v, k)),
where j > k. Let ¢, = 1, ¢}, = a(v), and ¢, = 1 4+ a(v) (resp., ¢i, = 1, ¢}; = a(v), and

¢y = 1+ av)).

To each edge e € E there correspond five edges in E’. If e = ({,v) where ¢ € U and
v € F = F,, UF,u , then the corresponding edges are (See Figure 1.):

(i)- (
(i). (

(iii). es = (1", w
(iv). (
)- (

(v

,wy) with cost 2¢;.

If e = (v,4) with s € U and v € F, then the corresponding edges are:
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Figure 1: The replacement in G’ of an edge e € .

1 1 : *
,wh) with cost ¢,

(i)- (

(ii). (

(iii). ez = (w}, ') with cost 0,
)- (
)- (

v?) with cost ¢,

%, w?) with cost 0,

(iv , W2

= (w!, w?) with cost 2¢}.

(v

e’ €

It is easy to see that a flow & has balanced costs at the vertices w! and w? if and only if

1

Tey = Xy and ., = ¥, = ¥y = 5T,

If w € U, then all the edges of E’ incident on either u' or u? have zero cost, and hence
every flow has balanced costs at the vertices u! and u?.

Consider a vertex v € Fj, (resp., v € F,,;) with incident edges e = (v,i), ¢ = (j,v),
and e’ = (k,v) (resp., e = (¢,v), ¢ = (v,7), and " = (v, k)), where j > k. A flow @ has
balanced costs at the vertices v' and »? if and only if

(er) = a(v)e(ey) + (1 —a(v))e(e]) and  w(ez) = a(v)z(ez) + (1 — a(v))z(e3) .

It is easy to see that a flow @ = (x.) is feasible for Problem 1.4 in G if and only if the flow
@’ defined by z = x. (¢ € F) has balanced costs in G'. y

3. Linear Programming reduces to Bipartite Fixed Forks

In this section we present the following theorem.

Theorem 3.1 The Bipartite Fized Forks problem (Problem 1.5) has a strongly polynomial
algorithm if and only if the general linear programming problem has one. Moreover, the

former is P-complete.



For the proof of the theorem, we show that all the following problems have logspace and
strongly polynomial time reductions to each other:

(i). Given a matrix A € R™*? and a vector b € R™, decide whether there exists an @ such
that Az <b.

(ii). Given A and b as above, decide whether there exists an @ such that Az < b.

(iii). Given A as in (i), where for ¢ = 1,...,m, Z;l:l Ai; = 0, decide whether there is an @
such that Az < 0.

(iv). Given A as in (iii), where in addition, for z = 1,...,m, maxi<;j<q |4;;| = 1, and each
row has at most three nonzero entries, decide whether there is an @ such that Az < 0.

(v). Given A as in (iv), decide whether there is a y such that ATy =0, y > 0, and y # 0.

(vi). The Bipartite Fixed Forks problem (Problem 1.5).

Problem 1.4 is a special case of the linear programming problem, and hence (vi), as a special
case of Problem 1.4, is reducible to (i). Proposition 3.2 gives the reduction from (i) to (ii),
Proposition 3.3 reduces (ii) to (iii), Proposition 3.4 reduces (iii) to (iv), Proposition 3.5
(Gordan [17]) reduces (iv) to (v), and Proposition 3.6 reduces (v) to (vi).

Proposition 3.2 The problem of deciding feasibility of a system of weak linear inequalities
Ax < b can be reduced in strongly polynomial time to the problem of deciding feasibility of
a system of strict linear inequalities inequalities A'® < b’ Also, the latter is P-complete.

Proof: Given A € R™*? and b € R™, denote P = {® ¢ R? | Az < b}. Suppose we
have an oracle which decides for any matrix A" and any vector b’ whether A’z < b’ is
feasible. We use the oracle to decide whether Ax < b is feasible. Consider the follow-
ing iterative step. If Ax < b is feasible then obviously so is Az < b. Otherwise, there
exists a row Aj, such that Ajee = b; for all & € P, which can be found as follows. For
every k (k = 1,...,m), consider the system S, consisting of the inequalities A& < b;
(¢=1,...,k). Let j be the first index such that 5; is infeasible.

Let A" € RU"=DxU=1) and & € R™ ' be the system generated when one variable is
eliminated, using the equality A;,& = b;. The system A’ < b’ is feasible if and only if
the system Az < b is. We repeat the same process with A’ and b’. If only one variable
remains, we test the feasibility of the system directly. Otherwise, repeat the iterative step.
The P-completeness of the problem of deciding a system of strict linear inequalities follows
by a simple adaptation of the proof of [9].

Proposition 3.3 Given are a matriz A € R™*? and a vector b € R™. In O(md) time (and

(m+1)x (d+2)

in NC) we can compute a matriv A" € R with the following properties:



(i) SH2AL =0 fori=1,...,m.

(ii). There exists an & € R¥*? such that A’z < 0 if and only if there exists an @ € R such
that Az < b.

Proof: Let F' C R™? be the d-dimensional flat

d+2
F={zeR" |agp—a4p=1, > a;i=1}.
=1

Let M : R* — F be the affine transformation defined by

(M(z)); =4 —itele if i=d+1

1—%eT;13 i 1=d+2

Denote by M~! : ' — R? the inverse transformation, i.e., (M~(x)); = ; (1 = 1,...,d).
Let L : R* x R — R™? be defined as follows.

ai—l—%w—%b i 1<:<d
(L(a,b)); = w if 1=d+1
—b if 1=d+2

where w = b — d_l_%eTa. It is easy to verify that (L(a,b))!M(z) = a’x — b, and

el L(a,b) = 0. Therefore, for all vectors ,a € R? and b € R we have a’® < b if and only
if (L(a,b))TM(2x) < 0. Define A" as follows. Fori = 1,...,m, let A}, = (L(Aj,b;))T. The

(m + 1)-st row of A’ is defined so as to represent the constraint xg42 > @411.

Denote

P={xcR'| Az < b}

P ={xec R | Az <0}.
We need to show that P = () if and only if P’ = (). It is easy to verify that P = ) if and
only if PN I = (). It remains to be shown that if P’ # § then F N P’ £ (. Note that
if @ € P’ then for every a > 0, ax € P, and for any o, « — ae € P’. Suppose that

y € P, it follows that for y' = 1/(yay2 — Ya41)¥, Yips — Y = 1. 1t is easy to verify that
y' =y +((e'y —1)/d)e € P, e’y" =1, and y,, —yi,; = 1. Hence,y" € PN F. 4

Proposition 3.4 Suppose A € R™*? is a matriz where Z;l:l Ay =0, fore=1,....m. In
O(md) time (and in NC), we can compute a matriz A’ € R™*?, where m’ = O(md), such
that

(i) YL AL =0(i=1,....m),
(ii). each row of A" have at most three nonzero entries,

(iii). for every row of A', the maxzimum absolute value of an entry in the row is 1, and
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(iv). there exists an @ such that A'® < 0 if and only if there exists an @ such that Az < 0.

Proof: We first show how to convert the system to an equivalent one where each constraint

involves at most three variables, and the sum of the coefficients is 0. Consider an inequality
of the form YK a;x; < 0 where a; #0 (¢ = 1,...,k) and %, a; = 0. Without loss of
generality, assume Y%, # 0. It is easy to verify that (zy,...,2) satisfies the inequality
S¥ L a;x; < 0if and only if there exists a scalar ¢ such that

k k k
a1x1+a2x2+52a¢<0 and fZai>Zaixi.
1=3

These two latter inequalities have 3 and k — 1 variables respectively, and the sum of the
coefficients in each of them is 0. Hence, by considering all constraints with & > 3 variables
and repeating this step k — 3 times we get an equivalent system with properties (i) and
(ii). This can be done in a poly-logarithmic number of phases. To conclude, we note that
by multiplying a row by a positive constant, or omitting rows where all entries are 0, we
do not alter the feasibility of the system. Thus, we may divide any row by the largest
absolute value of an entry in the row. 4

Proposition 3.5 [Gordan [17]] For any A € R™*?, there exists an @ > 0, & # 0, such
that Az =0, if and only if there is no y such that ATy > 0.

Proposition 3.6 Suppose A € R¥*™ satisfies

(Z) 2?21 Aij = 0; f07“j = 1,...,m,
(ii). each column of A has at most three nonzero entries,

(iii). in each column, the largest absolute value of an entry in the column is 1.

Under these conditions, we can construct in O(m + d) time an instance BFF(A) of the
Bipartite Fized Forks Problem (Problem 1.5) such that there is a one-to-one correspondence
between the circulations that solve BFF(A) and vectors y > 0 for which Ay = 0.

Proof: With each matrix A as above we associate an instance BFF(A) of Problem 1.5 as
follows. The vertices of the bipartite digraph correspond to the columns and rows of A, and
the edges correspond to the nonzero entries of A. The set U (|U| = d) consists of vertices
which correspond to the rows, and the set F' = F,, U F,y: (|F| = m) consists of vertices
which correspond to the columns. If a vertex v € F' corresponds to a column of A with
exactly one positive entry, then v € F,,; otherwise, v € Fj,. If the entry A;; is positive,
(resp., negative) place an edge from the vertex which corresponds to the ith row (resp.,
Jth column) to the vertex corresponding to the jth column (resp., ith row). Construct the
function « : F' — [0, 1] as follows. Consider a column A,; and the corresponding vertex v.

Let a(v) = |Ag;| where k is the smallest number such that |Ag;| € {0,1}. If such a k does
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not exist, then the column has two nonzero entries {—1,1}, and we choose a(v) = 1.
What remains is to verify that there is a one-to-one correspondence between circulations
x: F — Ry which solve BFF(A) and vectors 0 < y € R” such that Ay = 0. Choose edges
€1,...,6n such that e; corresponds to an entry with absolute value 1 in the jth column
(j = 1,...,m). (If there are two such entries take either one.) Consider a circulation x
which solves BFF(A). It is easy to see that the flow values on the edges €1, ..., e, uniquely
determine the flow on the rest of the graph.

To conclude the proof, note the following facts: (i) The vector y, defined by y; = x(e;)
(j =1,...,m), satisfies Ay = 0. (ii) If y > 0 is a vector such that Ay = 0, then there
exists a unique solution @ for BFF(A) such that x(e;) =y; (j =1,...,m). 1

4. Algorithms for parametric flow problems

The authors have obtained in [6] a strongly polynomial time algorithm for the parametric
minimum cycle problem with a fixed number of parameters (see [5, 4] for a full version). The
scheme used in [6] is fairly general and applies to parametric extensions of other problems.
Norton, Plotkin, and Tardos [26] used a similar scheme to obtain strongly polynomial time
algorithms for various other problems. In particular, they showed how under certain con-
ditions, a strongly polynomial algorithm for a class of linear programming problems can be
extended to handle a fixed number of additional constraints and variables. When additional
variables are considered, both the scheme of [26] and a direct application of the scheme of [6],
assume the existence of a strongly polynomial algorithm that works for arbitrary right-hand
side vectors. The scheme of [26] requires, in addition, a strongly polynomial algorithm for
the dual problem for any right-hand side vector of the dual, i.e., any objective function of the
primal problem. If a fixed number of constraints are added, the scheme of [6] also requires a
strongly polynomial algorithm for the dual problem. Consider, for example, the linear pro-
gramming formulation of the max-flow problem. An arbitrary right-hand side vector can be
interpreted as a set of arbitrary supply and demand constraints associated with the vertices.
Assuming an arbitrary objective function means we are looking at the general min-cost flow
problem. In subsection 4.1 we summarize the scheme of [6] as presented in [5]. In subsection
4.2 we apply this scheme to get strongly polynomial time algorithms for some parametric
extensions of flow problems with a fixed number of parameters. The linear programming
formulations of these parametric problems yield flow problems with additional variables. It
is, however, not known how solve such problems for arbitrary right-hand side vectors, i.e.,
arbitrary vectors of supplies and demands. We demonstrate how to overcome this difficulty.

The extensions of algorithms have interesting implications with regard to the Fixed Ratios
and the generalized flow problems. In subsection 4.3 we show that strongly polynomial
algorithms exist for the generalized flow and min-cost generalized flow problems, when the
number of edges with gains or losses is fixed, and for the Fixed Ratios and min-cost with
Fixed Ratios problems, when the number of equivalence classes of edges is fixed. The max-
flow problem with a fixed number of forks is a special case of the problem of max-flow with
fixed. These problems can be represented as linear programs of max-flow with a fixed number



of additional variables. Strongly polynomial time algorithms for these problems can also be
derived using Theorem 3.1 of [26].

4.1. Review of a scheme for strongly polynomial algorithms

For the sake of completeness, we review the scheme used in [6, 5]. We also discuss how it
applies to obtain strongly polynomial algorithms for parametric extensions of problems.

An algorithm that computes a function ¢ : RY — R is called piecewise affine if all the
operations it performs on intermediate values that depend on the input vector are additions,
multiplications by constants, comparisons, and making copies.

The main tool we use can be stated as follows. Consider a piecewise affine algorithm A
that computes values of a concave function ¢ : @ — R, where the domain Q C R? is given as
an intersection of k halfspaces. We assume that A is accessible in a way which allows us to
follow the computation path for any given input. We also assume that A performs at most
T operations including C' comparisons. Furthermore, the ' comparisons can be organized
into r phases, where all the comparisons within a single phase are independent. We denote
the number of comparisons in phase ¢ by C; (1 =1,...,r.

Theorem 4.1 The function g can be maximized using

kT (Z flog cg)d

=1

operations.

The scheme given in [6, 5] integrates techniques from [23, 25].

Theorem 4.1 also holds when the range of g is R (¢ > 1) and the notions of maximum
and concavity are defined with respect to the lexicographic order as follows. The function
g is concave with respect to the lexicographic order if for every a € [0,1] and @,y € Q,

ag(x) + (1 — a)g(y) <iex g(az + (1 — a)y)).

Remark 4.2 Note that if the conditions hold for ¢ : @, then they also hold for a restriction
of g to a polyhedron Q' C Q.

We now discuss how and when Theorem 4.1 can be applied to obtain strongly polynomial
algorithms for parametric extensions of problem (with a fixed number of parameters). We
view a problem S : P — R’ as a mapping from a set P of instances into (-tuples of real
numbers. We say that S(P) is the solution of the problem for the instance P € P. A d-
parametric extension of P has the form P? = (M, Q) where (i) @ C R%is a polyhedron given
as an intersection of halfspaces, and (ii) M : @ — P is a mapping from points A € Q C R?
to instances of P. Each parametric instance P¢ € P? corresponds to a subset of instances

{MA) | A € Q} CP. We refer to M(AX) € P as the instance induced by X. By a solution

10



of the parametric problem for an instance P = (M, Q) € P? we mean as follows. Consider
the maximum relative to the lexicographic order over all possible values of the parameters
A € Q, of the solutions of the induced instance M(X). If the maximum is finite, then a
solution consists of the maximum and a vector A € R? that belongs to the relative interior of
the set of parameter values which maximize S. Formally, to solve an instance of P? € P? we
have to do the following: if either @ = §) or S(M(A)) is unbounded on Q, then these facts
have to be recognized; otherwise, a pair (m,X") € R x R?, where m = maxyco S(M(A))
and A" € relint{X | S(M(A)) = m}, has to be computed.

For a parametric instance P?, consider the function ¢ : @ — R’ defined as g(A) =
S(M(A)). Note that the solution of P? is a vector which maximizes g. Theorem 4.1 can be
applied for solving P? if we are given an algorithm A which computes S(M(A)), and the
conditions of the theorem hold for A and g.

Remark 4.3 When we attempt to apply the method described above to obtain strongly
polynomial time bounds, we may encounter a difficulty as follows. Sometimes we may have a
problem that satisfies the conditions of Theorem 4.1, but the polyhedron Q (i.e., the domain
of g) is either not given explicitly or has a super-polynomial number of facets. The latter
occurs in the parametric minimum cycle problem. A simplified version of the parametric
minimum cycle problem used in [6] is as follows.

Let G = (V, F) be a digraph where affine forms of d variables are associated with the
edges, so the corresponding function g maps sets of values for the parameters A € R?
to the value of the minimum weight cycle in the graph with the induced scalar weights.
Compute a A € R? at which the value of the minimum weight cycle relative to the
induced scalar weights is maximized.

The function ¢ is not defined at vectors A for which the graph has negative cycles relative to
the induced weights. The weight of a cycle ¢ C F is an affine form. Hence, we can compute
a halfspace H. such that the weight of the cycle relative to A is nonnegative if and only
if X € H.. The domain of ¢ is the intersection of the halfspaces H., where ¢ is a simple
cycle in G. We now show that the number of facets in the domain of ¢ may be ne™)
Carstensen [3] constructed a family of acyclic graphs, with affine forms of one parameter A
associated with the edges, such that the parametric shortest (s,#)-path function has nf(o¢")
breakpoints. We consider the graphs of Carstensen’s construction, with an additional edge
(t,s), with the affine form —pu+ ¢ (where ¢ is some constant) associated with it. The resulting
graphs have two-parameter affine forms associated with the edges and cycles which consist
of an (s,t)-path and the edge (¢, s). For each graph, consider the polygon consisting of all
the values of A and p for which there are no negative cycles. It is easy to see that we can
choose, independently for each graph, a sufficiently large constant ¢ such that these polygons
have nf0°¢™) edges. Gusfield [18] showed that the number of facets in a parametric shortest

Ollogn) - Using a similar argument, it can be shown that the same

(s,t)-path function is n
holds for parametric minimum cycle. Obviously, we want to avoid computing the domain of

g. In order to overcome this difficulty, we “extended” the domain of the function ¢ to R4,
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We note that in [6] we asked for a minimum cycle of at most n edges in the graph. This
parametric problem is well defined for any A € R?. The corresponding function ¢’ coincides
with ¢ on the domain of ¢ and is concave. Moreover, ¢’ is maximized in the domain of ¢ if
the latter is not empty. It follows that we can apply Theorem 4.1 to maximize ¢’. Below
we consider concave extensions of functions where the extended domains are polyhedra with
polynomial numbers of facets. Another way to optimize a function ¢ over a domain with
superpolynomially many facets is to construct a “separation oracle”, i.e., an algorithm that
for a given X returns a halfspace that (i) contains the domain of ¢ and (ii) has A on its
boundary. The use of a separation oracle is required by the scheme of [26] and can be easily
incorporated into the scheme of [6].

4.2. Parametric extensions of flow problems

The max-flow problem [12] has well-known strongly polynomial algorithms [8, 11]. We
consider parametric extensions of the max-flow problem where the capacities and the supplies
and demands at the vertices are replaced by affine forms of d variables. A vector A € R?
corresponds to a set of values of the parameters. We refer to the resulting capacities as the
capacities induced by A. We discuss problems such as finding A € R? which (i) maximizes
the max flow relative to the induced capacities, or (ii) allows for a feasible circulation subject
to the induced capacities. Parametric flow problems were previously considered by Gusfield

[18], and by Gallo, Grigoriadis and Tarjan [13].

We first consider the max-flow problem where the capacities are affine forms with d
variables and we want to find a A € R? that maximizes the max-flow relative to the induced
capacities.

Problem 4.4 [Max-Flow with Parametric Capacities] Let G = (V, E') be a digraph, let s, €
V be two distinguished vertices, and let ¢. (e € F) be d-variable affine forms (“parametric
capacities”) associated with the edges. Find a A € R? which maximizes the maximum
(s,t)-flow relative to the induced capacities.

Proposition 4.5 The parametric maz-flow problem (Problem 4.4) can be solved in strongly
polynomial time for any fized number of parameters.

Proof:  Let g(A) be the value of the maximum flow relative to the capacities induced by
A. The domain of ¢ is the intersection of the halfspaces which guarantee that all the edges
have nonnegative capacities. Denote the domain of ¢ by Q. We show that the function
g 1s concave. The maximum flow equals the minimum capacity of a cut. The capacity of
each cut is an affine form of A. Hence, the minimum cut is a piecewise linear and concave
function of A. It is easy to verify that all the other conditions of Theorem 4.1 are satisfied
as well. §

Consider a network with both upper and lower bounds on the flow in each edge. Both
bounds are replaced by affine forms. As in Problem 4.4, the goal is to find a vector A € R?
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relative to which the max-flow in the induced network is maximized. This problem is called
max-flow with parametric bounds.

We wish to find a strongly polynomial time algorithm for the problem that is based on a
piecewise affine max-flow algorithm. This problem, however, suffers from a difficulty similar
to the one described in Remark 4.3. The domain of the search consists of values of A € R? for
which the induced network has a feasible circulation. We require that for all edges, the upper
bounds are not smaller than the lower bounds, and they are both nonnegative. To guarantee
feasibility, we need additional requirements (see Hoffman [19]) as follows. We need to assure
that all the (s,t)-cuts allow nonnegative flow, and all other cuts allow a zero flow. The
number of cuts (and hence the number of halfspaces whose intersection defines the domain
of g) may be exponential. We overcome this difficulty by considering a concave extension
of the function ¢ to a domain with a polynomial number of facets. Later in this subsection,
we define the parametric min-discrepancy max-flow problem which is a generalization of the
problem of max-flow with parametric bounds. We then proceed to show that the latter has
a strongly polynomial time algorithm.

Definition 4.6 Let G = (V, E) be a digraph, let u, € Ry (e € E) be capacities on the
edges, and let 0, € R (v € V) be supplies or demands associated with the vertices. A
vector @ = (2.)eep such that 0 <, <wu. (e € ) is called a pseudoflow. The excess of the
pseudoflow @ at a vertex v € V is

excess(v) = Z Tip — Z T i

(iv)EE (vi)EE

The discrepancy of the pseudoflow @ is

Ae) = Z‘:/ |0, — excess(v)] .

We seek a pseudoflow which minimizes the discrepancy, and refer to its discrepancy as the
minimum discrepancy of the network.

Problem 4.7 [Minimum Discrepancy Pseudoflow]

Given a network G = (V, F) with capacities u. € Ry (e € F) on the edges, and supplies
or demands o, € R (v € V) associated with the vertices, find a minimum discrepancy
pseudoflow (see Definition 4.6) in G.

Remark 4.8 Given an instance of Problem 4.7, we construct an instance of the max-flow
problem on a network G = (V’, E’) with two distinguished vertices s’,#' € V' and capacities
ul (e € B'), where

€

Vi=vVu{st},
E'={(v,t") |veV,o; <0} U{(s,v)|veV,o;>0}UFE,
and

u. ={u. if e€ Fo, if e=(sv)—0c, i e=(v,t).
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It is easy to verify that the sum of twice the value of the max-flow in G’ plus the minimum
discrepancy in G equals y_;cy |o;|. Furthermore, it is easy to compute a min-disc pseudoflow
in G from a max-flow in G'.

Consider the parametric version of problem 4.7 where capacities, supplies, and demands
are replaced by affine forms. The algorithm that computes the minimum discrepancy relative
to the values induced by a given A is piecewise affine. This follows from the fact that the
construction of G’ is piecewise affine and leads to a max-flow problem in a network with
capacities that are affine forms of A. The final step is to apply the parametric max-flow
algorithm which is piecewise affine as well. The domain of X’s for which the problem is well-
defined has a polynomial number of facets. It follows from Theorem 4.1 that the parametric
problem can be solved in strongly polynomial time for any fixed number of parameters. A
consequence of this claim is that the problem of a feasible circulation with parametric bounds
can be solved in strongly polynomial time for any fixed number of parameters.

We now consider a generalization of Problem 4.7 where we either compute a maximum flow
or minimize the discrepancy.

Definition 4.9 Suppose a network G is as in Definition 4.6, and s,t € V are two distin-
guished vertices. The discrepancy of a pseudoflow in a network with distinguished vertices,
is redefined to be

Alz)=— > o, — excess(v)| .

veEV\{s,t}

A min-disc mazimum (s,t)-flow in G is a pseudoflow & = (z.)
excess(t) = 0 and & maximizes the pair (—=A(x), f(x)) (where f(
the lexicographic order. The value of the min-disc maximum (s, )-flow is the pair (=A, f)

ccr such that excess(s) +
x) = excess(s)) relative to

which corresponds to the optimal pseudoflow.

Problem 4.10 [Min-Disc Max-Flow]| Given a network (i as in Definition 4.9, compute a
min-disc maximum (s, )-flow in G.

Remark 4.11 Problem 4.10 can be solved by two applications of a max-flow algorithm.
First, compute a minimum discrepancy pseudoflow @ in the network GG with the edge (,s)
added to F (see Remark 4.8). Consider the pseudoflow @ on the network G. It is easy to
verify that (i) excess(s)+excess(t) = 0, and (ii) the pseudoflow & minimizes A(@). Construct
the residual network G’ with residual capacities relative to the pseudoflow . Compute a
maximum (s,?)-flow 2’ in G’. The combined pseudoflow x + 2’ is a min-disc maximum

(s,t)-flow in G.

The claim made in Remark 4.8 carries over to Problem 4.10. When the capacities and
demands are replaced by d-variable affine forms, the algorithm that computes the solution of
Problem 4.10 for a fixed A € R? is piecewise affine. See [22] for a related problem as follows.
Given a network and k pairs of sources and sinks (oy,%;) (¢ = 1,... k), compute a pseudoflow
@ such that (i) excess(v) =0ifv & {o1,..., 0%, t1,..., 1k}, (ii) excess(o;) + excess(t;) = 0 for
every ¢ (1 =1,...,k), and (iii) & maximizes the k-tuple (excess(oy),...,excess(oy)) relative
to the lexicographic order.

14



Consider the parametric version of the problem, where the capacities and the supplies
and demands at the vertices are replaced by affine forms:

Problem 4.12 [Parametric Min-Disc Max-Flow] Let G = (V, E) be a digraph, let u. for
e € F and o, for v € V be d-variable affine forms corresponding to capacities on the edges
and demands or supplies at the vertices, respectively. Find a A € R? which maximizes the
value of the min-disc maximum (s, ?)-flow in the induced network.

Proposition 4.13 The problem of parametric min-disc maz-flow (Problem 4.12) can solved
in strongly polynomial time for any fired number of parameters.

Proof: We limit the domain of the search to values of A € R? for which the induced
capacities are nonnegative. The polyhedron Q is the intersection of the m halfspaces
{ue >0} (e € E).

Denote by ¢ : @ — R? the function which maps A € Q to the solution of Problem 4.10 on
the induced network. In order to apply Theorem 4.1, we need to show that the function
g is concave. Observe that Remark 4.11 implies that the other conditions of Theorem 4.1
are satisfied. Suppose that {A;,A;} C Q. Let 2l € Ry, (e € E, i = 1,2) be the min-
disc max (s,)-flows in the induced network relative to A;, with values (—A;, fi). Let o)
(1 = 1,2, v € V\ {s,1}) be the demands induced by A;, and let u{) (e € E, i =1,2) be
the capacities induced by A;. Let a € [0,1] be any number. Let A" = aX; + (1 — a)As.
The capacities induced by A" are v’ = aul) + (1 — a)u?, and the induced demands are
o = aclV + (1 - oz)asz). We need to show that g(A') >1ex ag(A1) + (1 — a)g(Ay). Let 2/
(e € E) be the pseudoflow 2/ = az(V) + (1 — a)x?). Denote by excess'(v), excess;(v), and
excessy(v) the flow excesses at a vertex v € V relative to the pseudoflows &', ), and ()
respectively. Let g(A1) = (=Ay, f1), g(A2) = (A, f2), A" = Zev\ysy |0n, — excess'(v)]
and [ = excess'(s). It is easy to verify that @’ is a feasible pseudoflow relative to the
capacities v’ and that excess'(s) = excess'(t). Hence, g(A') >1x (—A', f’). Note that
excess' (v) = a excess1(v) + (1 — «) excessy(v), and f/ = excess'(s) = afi + (1 — a)fe. It
follows that

A = > ol — excess'(v)]
veV\{s,t}
= > lac(V) 4+ (1 — a)ol? — aexcess; (v) — (1 — a)excessy(v)]
veV\{s,t}
< > (oz|aq(]1) — excessy (V)| + (1 — a)|o? — excessz(v)o
veV\{s,t}

= a4 (1—a)A, .
Now we can show that ¢ is concave:
IN) Ziex (A f) Ziex (—ali = (1= a)Ag,afi + (1 = a)f2) = ag(Ar) + (1 — a)g(Az) .
I
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Corollary 4.14 The following parametric problems can be solved in strongly polynomial
time for any fired number of parameters:

(i). Problem 4.12 with a distiguished vertices with demand or supply, and the value of
X € R? is constrained so that the induced demands are nonnegative and the induced
supplies are nonpositive.

(ii). Maz-flow with parametric bounds.

(iii). Feasible circulation with parametric bounds.

Proof:  Part (i) follows immediately from Remark 4.2. We need to replace the search
domain @ by its intersection with the O(n) halfspaces {o, > 0} if v is a demand vertex,
and o, < 0 if v is a supply vertex. It is easy to see that the intersection of these halfspaces
equals the set of vectors relative to which the induced demands are nonnegative and the
induced supplies are nonpositive.

To prove part (ii), consider an instance of the parametric bounds max-flow problem. Let
G = (V, E) be a network, let s,¢ € V be two distinguished vertices, and let (., u. (e € F)
be d-variable affine forms. Assume, without loss of generality, that the edges incident on
the source and the sink have zero lower bounds on the flow. We define a corresponding
instance of the min-disc max (s,?)-flow problem on a network GG = (V, E), where u. and
o, are capacities and demands. The capacities are u, = u. — (. (e € F), and the demands
are o, = Y (yj(uo)er} e = Liulwuwyery bow (v € V\ {s,1}).

The search domain is the intersection of the halfspaces that guarantee that v, > (. > 0
(e € E). Consider Problem 4.12 on the network with capacities u. and demands o,.
Suppose that A € Q maximizes the min-disc maximum (s, t)-flow in the induced network,
and (—A, f) is the optimal value. Consider the original parametric bounds max-flow
problem. It is easy to see that there exists a vector A € Q for which the induced network
has a feasible flow if and only it A = 0. Furthermore, if A = 0 then A is the solution of
the original problem, and f is the value of the corresponding max flow.

Part (iii) is a special case of part (ii), where we consider only the first coordinate of the
min-disc max-flow pair. There exists a A which induces capacities allowing a feasible
circulation if and only if A =0.

Remark 4.15 Consider Problem 4.10 with parametric lower bounds on the flow. We show
that if d is fixed d, then this problem can be solved in strongly polynomial time. The solution
is based on the techniques we used to solve the parametric bounds max-flow problem. Define
the “edge-discrepancy” h(@) of a pseudoflow @ as the sum, over all the edges for which the
flow is smaller than the lower bound, of the difference between the lower bound and the
flow. For an instance of Problem 4.12 with lower bounds, let @ be the intersection of all the
halfspaces that guarantee that the bounds are nonnegative and that the upper bounds are
not smaller than the respective lower bounds. Define the function g : @ — R? as follows. For
A € Q, consider the induced network, and let g(A) be the maximum over all pseudoflows of

(—h(e),—A(x), f(2)) relative to the lexicographic order. The domain of g(A) is Q. Using
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arguments similar to the ones used for Problem 4.12, we can show that (i) the evaluation of
g can be done by a piecewise affine algorithm (see Remark 4.11), and (ii) ¢ is concave (see
the proof of Proposition 4.13). Denote by (—h, —A, f) the maximum value of ¢. It is easy
to verify that if A = 0, then the A which maximizes ¢ is the solution of the original instance
of Problem 4.12 with lower bounds, and if A # 0, then the original instance has no solution.

4.3. Applications to Fixed Ratios and generalized flow

In this subsection we discuss the relation between the parametric extensions given in the pre-
vious subsection and the fixed ratios flow and generalized flow problems. We give strongly
polynomial time reductions from these problems to Problem 4.12. It follows that the sub-
classes of the fixed ratios flow and generalized flow problems, which correspond to instances of
Problem 4.12 with a fixed number of parameters, have strongly polynomial time algorithms.

Fixed Ratios Flow.

Problem 4.16 [Fixed Ratios Flow| Consider a network GG = (V| F) where {, u, «, and 5
are as in Problem 1.2. Suppose s,t € V are two distinguished vertices. A maximum fized
ratios flow is an (s,t)-flow of maximum value, which satisfies the additional constraints of a
fixed ratios circulation (see Problem 1.2).

Problem 4.17 [Flow with Fixed Forks] Consider a network GG = (V, E') where a and V are
as in Problem 1.4. Suppose s,t € V are two distinguished vertices. A mazimum flow with
fized forks is an (s,t)-flow of maximum value, which satisfies the additional constraints of a
circulation with fixed forks (see Problem 1.4).

It is easy to see that Flow with Fixed Forks is a special case of the Fixed Ratios Flow
problem.

Proposition 4.18 There exists a linear-time reduction from instances of the fixed ratios
flow problem to instances of the maz-flow problem with parametric bounds such that (i) there
is a trivial correspondence between the solutions of the two problems, and (i) the number of
parameters equals the number of equivalence classes relative to S.

Proof: Given an instance of a fixed ratios flow problem, define the corresponding instance
of the max-flow problem with parametric bounds as follows. We use the same network G
and the same pair of distinguished vertices s, 1. Let £/, u’ (e € E) be the affine forms which
define the lower and upper bounds. If an edge e is not a member of any of the pairs in .5,
then we define . = (., u! = u.. Otherwise, we associate a parameter with each equivalence
class of edges. Suppose that {e;,...,e; } is an equivalence class. Let A be the parameter
associated with this set. The flow values on these edges are related. Hence, we can find
a vector a € R’j_ as follows. For every feasible fixed ratios flow x. (e € F), there exists a
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B € Ry such that (z., ,... 2., ) = Ba. Define the parametric bounds u’% = ﬁ’% = aj\.
Restrict the domain of the search Q to its intersection with the O(m) halfspaces given
by ﬁ% < a;jA < u, . It follows from Remark 4.2 that Theorem 4.1 still holds when we
intersect the domain with polynomially many halfspaces. To conclude the proof, note the
following. A fixed ratio flow exists in (& if and only if there exists a A € Q relative to which
the induced network has a feasible flow. Moreover, if X is the solution of the parametric
problem and @ is the max-flow in the network induced by A, then @ is a maximum fixed
ratios flow in GG.

Corollary 4.19 The problem of Fized Ratios Flow can be solved in strongly polynomial time
for any fired number of equivalence classes relative to S.

Corollary 4.20 The problem of Flow with Fized Forks can be solved in strongly polynomial
time for any fized number of forks.

Generalized Flow.

The generalized flow problem [21, 16] is as follows. A network G = (V| F) is given with lower
and upper bounds /., u. (e € E), respectively, on the flow, a distinguished vertex s € V', and
a vectors ¥ = (7. )ecr of gain factors. Find a pseudoflow & that maximizes

Z L — Z YisTis

(s, )eE :(1,5)€E

under the generalized flow conservation conditions

S = D, vaerw=0 (veV\{s}).

(vi)EE (iv)EE

It is not known whether the generalized flow problem can be solved in strongly polynomial
time. We show that if the number of edges e with 4. # 1 is fixed, then the problem can be
solved in strongly polynomial time. This result holds even when the vertices have supplies
or demands and edges have lower bounds on the flow.

Proposition 4.21 There exists a linear-time reduction from instances G of the generalized
flow network problem with d edges with gains or losses to instances G' of the parametric
min-disc maz (s,t)-flow network problem with d parameters, such that if X and (=A, f)
constitute the solution of the parametric problem and @ is the min-disc max (s,1)-pseudoflow
relative to the capacities and demands induced by X, then: (i) A =0, (i) [ is the value of
the maz-flow in G, and (iii) given X and @, a maz-flow in G can be constructed easily.

Proof: Consider an instance of the generalized flow problem on a network G = (V, ), with
capacities u. € Ry (e € F), and two distinguished vertices s,t € V. Let ¢; = (v;,w;) € E
(¢ =1,...,d) be the edges with gains or losses, and let 4; be the gain factor associated
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with e;. Define the corresponding instance of the parametric min-disc max-flow problem
on a network G' = (V, E'), with s and t as the distinguished vertices, where the capacities
ue (e € E') are scalars, and the demands o, (v € V') are affine forms. Associate a
parameter \; with the edge ¢; (: = 1,...,d). In the network G': (i) E' = F'\ {e1,...,eq},
(ii) the capacities are u. = u. (e € E'), and (iii) the demands o, for v € V are o, =
D fijri=v} Aes = 2 filws=v} Vide,- Replace @ by its intersection with the halfspaces A; < u,.
To prove correctness, consider any A € Q. Let (=A, f) be the value of the min-disc max-
flow, and let @, (e € E’) be a feasible min-disc pseudoflow (i.e., A(z) = A), relative to
the capacities and demands induced by A. Let @’ be a pseudoflow in G, where 2/ = =,
(e € E'), and z,. = A\; (2 = 1,...,d). It is easy to see that A = 0 if and only if &' is a
generalized flow in G.

Corollary 4.22 The generalized flow problem, with a fired number of edges with gain factors
other than 1, can be solved in strongly polynomial time algorithm.

Remark 4.23 Tardos [27] gave a strongly polynomial time algorithm for the min-cost cir-
culation problem. Consider the parametric extension of the problem where the bounds on
the flow on some edges are parameterized. Tardos’ algorithm is piecewise affine in these
bounds. Hence, the parametric extension of the min-cost flow problem, where the number of
parameters is fixed, can be solved in strongly polynomial time. Interesting applications are
strongly polynomial time algorithms for the min-cost generalizations of (i) the fixed ratios
flow problem, where the number of equivalence classes of edges is fixed, and (ii) the gen-
eralized flow problem, where only a constant number of edges have gain factors other than
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