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Abstract� An inventory scheduling model with forbidden time intervals is

analyzed� The objective is to minimize the long�term average cost per time unit�

Unlike most of the literature on inventory theory� no restrictive assumptions are

made apriori about the nature of optimal solutions� It is rather proved that optimal

policies exist� and that some of them are cyclic with cycles of a particular structure�

It is then shown that such optimal polices can be computed and an algorithm is

given�

�� Introduction

In the classical Economic Order Quantity �EOQ� model one seeks a policy of inventory
scheduling so as to minimize the long�term average cost per time unit� Inventory is
depleted at a known constant rate R and can be replenished instantaneously at any time�
There is a �xed cost of Cf per order	 and the inventory holding cost is proportional to

the amount of time and the amount of commodity held in stock
 Ch per time unit for
each unit of commodity� Given that an order is placed at time t	 it is straightforward to
�nd the time of the next order t � x so as to minimize the average cost per time unit
over �t� t� x�


Cf

x
� �

�ChR x �

This turns out to be x� 

q
�Cf��ChR�� A nice feature of this model is that the policy

of ordering every x� time units is optimal in the following strong sense
 it minimizes the
limsup �as T tends to in�nity� of the average cost per time unit over the interval ��� T �
among all possible schedules over an unbounded horizon�
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There is a vast literature on inventory and production models generalizing the EOQ
in numerous directions� Usually the models are stated precisely but the policies found
are only approximately optimal or optimal only within a restricted class of policies which
is more amenable for analysis �see	 for example	 ���	 ���	 ���	 ���	 ���	 ����� For example	

many authors simply assume that there exists a cyclic optimal policy and set out to �nd a
best cyclic one� Another common assumption is that orders are placed �or production is
resumed� only when the inventory level reaches zero� In many cases such an assumption
turns out to be wrong� There have been cases where authors made restrictive assumptions

that were hard to justify and several mathematical pitfalls have been pointed out ���	 ���	
����

When we started the work presented in this paper our goal was to carry out an exact
analysis of a model more general than the classical EOQ	 where it is not apriori clear

whether optimal policies exist	 or whether optimality of a given policy can be decided�
We were quite surprised to discover the complexities involved in the simple model we
were looking at� However	 it turned out to be decidable in a nontrivial way�

We consider a deterministic inventory problem over an unbounded horizon� The

objective is to minimize cost� More precisely	 setup costs and inventory holding costs are
averaged over time and a policy is evaluated by either the liminf or the limsup �as T tends
to in�nity� of the average total cost per time unit incurred during the �rst T time units�
We actually show that there exist policies where this average tends to a limit which is

equal to the in�mum of the liminfs over all policies and hence also to the in�mum of the
limsups�

A precise statement of the problem is as follows�

Problem ���� Given a real number �	 � � � � �	 a commodity can be ordered at any
time except during intervals of the form �I� I � �� where I is an integer� There is a
�xed positive cost associated with every order and there is an inventory holding cost

proportional to the amount of time and the amount of inventory� Inventory is depleted
at a constant rate	 which is called the demand rate� The order is �lled instantaneously�
A feasible solution is a policy consisting of feasible times of orders and amounts such that
the demand is always satis�ed� A policy � is called optimal if the limsup of the average

cost per time over the interval ��� T �	 denoted �c��� is minimum among all policies�

�� Preliminaries

The existence of feasible policies is obvious but we can actually prove


Proposition ���� There exist optimal policies�
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Proof� Suppose c� is the in�mumof �c��� taken over all the feasible policies �� Thus	 for
any k � � there exists a policy �k such that for every su�ciently large T 	 the average
cost per time unit of �k over the interval ��� T � is less than c� � ��k� The idea of the
proof is to generate a policy � which uses portions of the policies �k successively	 for

k 
 �� �� � � � � We construct below a sequence of positive integers f�kg which determines
an optimal policy � as follows� Over the interval ��� ���	 the policy � works essentially
like �� over the same interval	 except that if the inventory level at �� is positive	 then
the sizes of one or more orders before �� are reduced to obtain a new feasible solution

where the inventory level at �� is zero� Denote �j 

Pj

i�� �i� Over the interval ��k��� �k�	
� is essentially the same as �k during the interval ��� �k�� Without loss of generality	
assume that for every k the average cost of �k over the interval ��� T � is bounded over
all values of T � Now	 there exists �� such that for any T � ��	 the average cost over

��� T � of running �� over ��� ���	 and then the �rst T ��� time units of �� over ���� T �	 is
less than c� � �� Inductively	 suppose we have determined ��� � � � � �k��	 and the policy
� has already been speci�ed up to �k�� �and then �k is started� as explained above so

that the following is true


�i� For every � � j � k � � and for any T 	 �j � T � �j��	 the average cost over ��� T �
is less than c� � ��j�

�ii� For any T � �k��	 the average cost over ��� T � is less than c� � ���k � ���

Since the average cost of �k over ��� T � is less than c� � ��k for any su�ciently large

T 	 it follows that there exists �k such that if we start �k�� at �k 
 �k�� � �k	 then
for every T � �k	 the average cost over ��� T � is less than c� � ��k� The complete
construction gives a policy where the average cost over ��� T �	 for �j � T � �j��	 is
less than c� � ��j	 and hence the limsup of the average cost is c��

Knowing that an optimal policy exists	 the next question is how to �nd it� It is
very useful to know whether a cyclic optimal policy exists	 i�e�	 a policy which consists
of repetitions of the same behavior over some �nite interval� We note that in some

staged decision problems there exist optimal policies but no cyclic optimal ones	 as in
the following example�

Example ���� Suppose we have to choose at times i 
 �� �� � � � � numbers xi	 � � xi � ��

If xi � �	 the payo� at time i is xi� If xi 
 � the payo� is zero� An optimal policy is to
choose a sequence x�� x�� � � � that tends to �� However	 no cyclic sequence achieves � as
the long�term average�

�� Existence of cyclic optimal policies

To simplify the presentation	 we scale the data so that the following is true
 �i� The
demand rate is of one unit per time unit	 �ii� The unit holding cost is one per time unit	
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�iii� The �xed order cost is K per order�

Denote by fxg 
 x � bxc the fractional part of x� A feasible policy � involves
an in�nite sequence t�� t�� � � � � such that if ti is not integral then ftig � �	 Without
ambiguity	 denote both the interval �ti��� ti� �the i�th cycle� and its length by �i�

Remark ���� In the following propositions we prove the existence of optimal policies
with certain properties� These propositions justify our focusing on optimal policies with
these properties� In particular	 subsequent to any of these propositions	 we consider only

policies with the properties proven so far�

Proposition ���� There exists an optimal policy where orders are placed only at times
where the inventory level reaches zero�

Proof� Consider any optimal policy � where orders of sizes Q�
�� Q

�
�� � � � are placed

at times t� 
 �� t�� t� � � �	 respectively� Suppose some of the orders are placed when
the inventory level is positive� Denote �� 
 �� Inductively	 assume we have de�ned
the policy �j where orders of sizes Qj

�� Q
j
�� � � � are placed at the same times t�� t�� � � �	

respectively	 and suppose �j still has some orders placed when the inventory level is

positive� We now de�ne a policy �j�� as follows� Orders of �j�� are yet placed at the
same times t�� t�� � � �� Let ti be the �rst time in �j where an order is placed such that
the inventory levelX is positive	 so i � �� De�ne Qj��

i�� 
 Qj
i���X and Qj��

i 
 Qj
i �X	

i�e�	 reduce the amount ordered at ti�� by X	 and increase the amount ordered at ti by

X� Otherwise	 the quantities of �j�� are the same as in �j� It follows by induction that
�j�� is optimal and at ti the inventory level is zero� This construction yields an in�nite
sequence of optimal policies where in each policy orders are placed at the same sequence
of times t�� t�� � � �� For every ti	 consider the sequence of quantitiesQ�

i � Q
�
i � � � � ordered at

ti in the policies ������ � � � � respectively� Obviously	 the sequence fQj
ig�j�� increases at

most once and decreases at most once� Thus	 it eventually becomes constant� Denote
these constants corresponding to the times t�� t�� � � � by Q�

�� Q
�
�� � � �� Consider the policy

�� de�ned by ordering these quantities at times t�� t�� � � �	 respectively� Obviously	
orders in �� are placed only when the level of inventory in zero� The policy �� is
optimal since its cost is less than or equal to the cost of � over any interval ��� T ��

Proposition ���� There exists an optimal solution such that

�i� if ti is integral then �i�� � �i

�ii� if ftig 
 � then �i � �i��� and

�iii� if ti is interior to a feasible interval� then �i 
 �i���
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Proof� The proof follows from the fact that the average holding cost per time unit over
the interval �i ��i�� is proportional to

��
i ���

i�� 
 �ti � ti���
� � �ti�� � ti�

�

which is strictly convex in ti	 and the minimum is attained when �ti 
 ti�� � ti��
�equivalently	 �i 
 �i����

We now have to prove a certain property of shifts on the circle which helps proving
the existence of a cyclic optimal solution�

Lemma ���� If a process is de�ned on a circle by f��� 
 � � � �mod �	� for some
�xed � �and any starting point�� then

�i� the process is cyclic if and only if ��	 is rational�

�ii� if ��	 is irrational� then for any starting point� every point on the circle is an
accumulation point�

Proof� The proof of �i� is obvious� For the proof of �ii�	 suppose � is not an accu�
mulation point� Thus there exists an interval I� of length 
	 centered at �	 which is

not visited in�nitely many times� This can happen only if the intervals Ij�� 
 Ij � �

�j 
 �� �� � � �� are not visited in�nitely many times� For some i and j	 Ii � Ii�j �
 �
and therefore I� � Ij �
 �� If I� 
 Ij then ��	 must be rational� Otherwise	 it follows
that for some k the union of the intervals I�� � � � � Ik covers the entire circle	 which is a

contradiction�

De�nition ���� A value T is called feasible if the policy of �i 
 T for all i �i�e�	 ti 
 iT �
is feasible�

Proposition ���� A value T is feasible if and only if T is a rational number that can be
represented with a denominator less than or equal to ����

Proof� Consider a mapping from the real line onto a circle so that a point t is mapped
to the point at the angle �	t �mod �	�� If T is irrational then by Lemma ��� every
point on the circle is an accumulation point� But if the policy is feasible then there

exists an arc of positive length which is not visited and hence T is rational� Suppose
T 
 J�N where J and N are relatively prime� Obviously	 for any j	 fjTg is a multiple
of ��N � Since there exist positive integers k and � such that kJ � �N 
 �	 it follows
that

kT 
 k
J

N

 � �

�

N
�

Thus	 for feasibility it is both necessary and su�cient that ��N � ��
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Theorem ���� There exists an optimal solution where for in�nitely many i�s� ftig is
either � or ��

Proof� Consider any optimal solution �satisfying the properties discussed in Proposi�

tion ����� Suppose there is also only a �nite number of i�s such that ftig is either � or
�� Consider the tail of the sequence where for all i	 ftig �� f�� �g� By Proposition ���
we now have all the �i�s equal� We argue that in this case we can shift the tail of the
solution so that all the ti�s become integral� The proof is as follows� Since all the ��

is

are equal to some T 	 it follows by Proposition ��� that T is rational with denominator
N � ���	 and for in�nitely many values of j	 fjTg 
 ��N � It follows that we can shift
the solution by the amount ��N so that all the order times are feasible and an in�nite
number of them are integers�

Below we consider the following four ��nite� problems which we denote by P�� and
P��	 P�� and P��� These problems are useful in analyzing the optimal solutions for the

whole problem�

De�nition ��	�

�i� The problem P�� is the following
 �nd integers J and N such that the policy
of N equally spaced orders over the interval ��� J� �i�e�	 order every J�N time

units� minimizes the average cost per time unit over such intervals	 subject to the
conditions that the initial inventory level is zero and orders are not placed during
intervals of the form �I� I � ��	 where I is integer�

�ii� The problem P�� is essentially the same as P�� except that the interval ��� J� is
replaced by ��� J � ���

�iii� The problem P�� is essentially the same as P�� except that the interval ��� J� is
replaced by ��� J � ���

�iv� The problem P�� is essentially the same as P�� except that the interval ��� J� is
replaced by ��� J��

Note that in the above problems we minimize over an in�nite domain of values of T 	 so the
existence of an optimal solution is not obvious� Furthermore	 we show that the problems
P�� an P�� may not have optimal solutions� A value of T is said to be P���feasible if
there exist J and N for which the policy is feasible such that T 
 J�N �

Proposition ��
� Problem P�� has an optimal solution�

Proof� Let T denote the length of the interval between consecutive orders	 i�e� T 

J�N � The average cost per time unit is therefore

f�T � 

K

T
� �

�
T �

�



The latter is a convex function of T and has a minimum at T� 

p
�K � It follows from

Proposition ��� that T is P���feasible if and only if it is feasible �see De�nition �����
In general	 T� may not be feasible� We are interested in the in�mum of f�T � over all

feasible values of T 	 i�e�	 T 
 J�N where N � ���� Obviously	 for each N 	 there is a
minimum of f�J�N� as a function of J and hence there exists a global minimum�

Remark ����� The analysis of the problem P�� is essentially the same as P��	 namely	 T

is P���feasible if and only if it is feasible	 and hence it has an optimal solution� Moreover	
the optimal solution of P�� and P�� have the same value�

Remark ����� The problems P�� and P�� may not have optimal solutions� For example	

consider the P�� where � 
 ��� and the minimum of f�T � occurs at T� 
 ���� The latter
is not P���feasible since there do not exist integers J and N such that N�� 
 J � ����
However	 by choosing J arbitrarily large and N 
 �J ��	 we obtain P���feasible policies
with

T 

J � ���

�J � �

arbitrarily close to T��

We now analyze the sets of P���feasible and P���feasible values� Denote by � 
 �� �

�� � �� � � � � the feasible values of T �we include � 
 � for the ease of notation below��

The properties of the P���feasible values	 to be proven later �see Proposition ����� imply
that these values can enumerated in increasing order�

Proposition ����� For every i � �� if �i is not P���feasible� then there exist in�nitely
many P���feasible values between �i�� and �i and the only accumulation point of this

in�nite set is �i�

Proof� Suppose �i is not P���feasible� We �rst show that �i is an accumulation point
of P���feasible values less than �i� Let 
 � � be any number such that 
 � �i� �i��� We
argue that there exists a P���feasible value T such that �i� 
 � T � �i� Suppose �i� 


is not P���feasible� Let N be the smallest integer such that � � fN��i � 
�g � �	 and
let J 
 bN��i � 
�c � Consider any value T such that �i � 
 � T � �J � ���N 	 then
� � fNTg � �	 and hence T is not feasible� It follows that

�i � 
 � T � �i�

Since there are no feasible values between �i� 
 and �i	 it follows that for every j � N 	
jT is not an integer� Therefore	 �J � ���N is P���feasible�

Next	 we show that there is no accumulation point of this set other than �i� Con�
sider any value T �	 �i�� � T � � �i� Thus	 T � is infeasible� We claim that there are

�



only �nitely many P���feasible values T such that �i�� � T � T �� The proof is as
follows� Let N � be the smallest integer such � � fN �T �g � �	 and let J � 
 bN �T �c
� Imagine decreasing the value of T from T �� Denote T� 
 J ��N �� If T� � T � T �

then � � fN �Tg � �� Thus	 for such a T to be P���feasible	 it is necessary that the

corresponding value of N be less than N �� This implies that there are a �nite number
of P���feasible values between T� and T �� If T� is feasible then T� 
 �i�� and we
are done� Otherwise	 there exist N� and J� less than N � and J �	 respectively	 such
that J� � N�T� � J� � �� The above argument shows that there exist only �nitely

many P���feasible values of T between J��N� and T�� The same argument can now
be repeated� Every time we apply this argument the value of N � decreases� Thus	 the
process terminates in a �nite number of steps	 and the total number of P���feasible
values between �i�� and T � is �nite�

Remark ����� It follows from the second part of the above proof that if �i is P���feasible	
then there exist only a �nite number of P���feasible values between �i�� and �i�

Proposition ����� For every i � �� if �i�� is not P���feasible� then there are in�nitely
many P���feasible values between �i�� and �i and the only accumulation point of this

in�nite set is �i��� If �i�� is P���feasible� then there exist only a �nite number of P���
feasible values between �i�� and �i�

Proof� This claim is analogous to those of Proposition ���� and Remark �����

We now show that the sequences of P���feasible values between two consecutive fea�
sible values �i�� and �i have special structures


Proposition ����� If �i 
 J�N �i � �� gcd�J�N� 
 �� is not P���feasible� then there

exist numbers a 
 a�i� and b 
 b�i� such that the set of P���feasible values between �i��
and �i is the union of some �nite set Si and the set of all the values of the form

a� Jx

b�Nx
where x 
 �� �� �� � � � �

Proof� We know that if �i is not P���feasible	 then it is the only accumulation point
of P���feasible values between �i�� and �i �Proposition ������ Let 
 � � be such that

 � min��i � �i��� ��N� and let T � be a P���feasible value such that �i � 
 � T � � �i�

Denote by Si the set of all P���feasible values T �� such that �i�� � T �� � T �� This set is
�nite� Let J � and N � be such that T � 
 �J � � ���N � �thus	 note that J � � � 
 N �T ���
Since �i 
 J�N 	

fJ � � ��N�ig 
 � �

�



and for any j	 � � j � N 	 fj�ig � ��N 	 so that

fJ � � �� j�ig � �� ��N �

Since 
 � ��N 	 we have N�i � NT � � N�i �N
 � N�i � �	 so that

� � f�N �N ��T �g 
 fJ � � � �NT �g � �

and for j � N 	

f�N � � j�T �g 
 fJ � � �� jT �g � � � ��N �N
 � ��N � � �

Thus	 the least P���feasible value which is greater than T � �and yet smaller than �i� is
precisely

J � � J � �

N � �N
�

It is easy to verify that this implies the special structure we claim�

Proposition ����� If �i 
 J�N �i � �� gcd�J�N� 
 �� is not P���feasible� then there
exist numbers c 
 c�i� and d 
 d�i� such that the set of P���feasible values between �i
and �i�� is the union of some �nite set Ri and the set of all the values of the form

c� Jy

d �Ny
where y 
 �� �� �� � � � �

Proof� The proof is analogous to that of Proposition �����

Remark ����� It follows from the proof of Proposition ���� that	 given the rationals
�i��� �i	 one can construct all the P���feasible values between them	 in the sense that the

elements of a set Si can be listed and a concise description of the rest of the values can
be given in terms of a fractional linear function� The same is true for solutions of P�� �

We now consider a more complicated problem P���


De�nition ���	� The problem P��� is as follows� Find integers J�� J� and N�� N� such
that the policy consisting of N� equally spaced orders over the interval ��� J����	 followed

by N� equally spaced orders over the interval �J���� J��J��	 minimizes the average cost
per time unit over intervals of the form ��� J� � J��	 subject to the following conditions


�i� the initial inventory level is zero	

�ii� orders are equally spaced over each of the intervals ��� J� ��� and �J���� J� � J��
�including one order at J� � ��	 and

�



�iii� orders are not placed during intervals of the form �I� I � �� where I is an integer�

Remark ���
� A feasible solution of P��� can be described simply as a pair of solutions
of P�� and P�� � Problem P��� may have no optimal solution� This may happen	 for
example	 when the minimizer T� 


p
�K of f�T � is an integer	 e�g�	 if K 
 ���� Here for

any � � �	 the in�mum of P��� is f��� but the latter is not attained�

Proposition ����� If the problem P��� does not have an optimal solution then the in�
�mum of the average costs of feasible solutions of P��� is equal to the minimum of the
problem P���

Proof� It follows from Propositions ���� and ���� that the in�mum is less than or equal

to the minimum of P��	 since any value �i is either feasible or a limit of P���feasible
and P���feasible values� We now prove the other direction� Consider the problem P����
For given Ji� Ni �i 
 �� ��	 denote

T� 

J� � �

N�

T� 

J� � �

N�

�i�e�	 Ti	 i 
 �� �	 is the length of the interval between consecutive orders over the �rst
and the second interval	 respectively�� The average cost over the interval ��� J� � J�� is

�J� � ��f�T�� � �J� � ��f�T��

J� � J�
�

Let � denote the in�mum of the latter taken over all feasible choices of Ji� Ni �i 
 �� ���
Note that the claim applies to the case where the in�mum is not attained� There exist
sequences of values Jk

i � N
k
i tending to in�nity with T k

i 
 Jk
i �N

k
i such that

�i� T k
i tends to T �

i

�ii� f�T k
i � tends to some limit f�T �

i �

�iii� the average cost
�Jk

� � ��f�T k
� � � �Jk

� � ��f�T k
� �

Jk
� � Jk

�

tends to ��

By Propositions ���� and ����	 the quantities T �
i are feasible �in the sense of De�nition

���� and hence the average costs f�T �
i � are greater than or equal to the minimum of

the average cost taken over any policy with equally spaced orders� This minimum is

precisely the minimum of P���

We can now prove the desired result


��



Theorem ����� There exists a cyclic optimal policy � where the de�ning cycle is an
optimal solution of either P�� or P����

Proof� By Theorem ��� there exists an optimal solution where for an in�nite number
of i�s	 ftig � f�� �g� It su�ces to consider the following three cases


�i� For an in�nite number of i�s	 ti is integral and for all i	 ftig �
 �� In this case
the optimal value �of the long�term average cost� is a limit of weighted average of

feasible values of problems of the form P��� By Proposition ���	 the latter has an
optimal solution� Thus	 the cyclic solution consisting of repetitions of an optimal
solution of P�� must be optimal�

�ii� For an in�nite number of i�s	 ftig 
 � and for all i	 �except for ti 
 �� ti is

not integral� In this case the solution starting with an order of � at time �	 and
continuing by with repetitions of an optimal solution of P��	 must be optimal�
Moreover	 by shifting this solution we actually get the same cyclic solution as in
�i��

�iii� For an in�nite number of i�s	 ti is integral and for an in�nite number of i�s	 ftig 
 ��
Consider an interval between two consecutive integral values ti	 tj� Thus	 there exist
m values tk	 ti � tk � tj �m � �� such that ftkg 
 � and for any tk such that
ti � tk � tj	 ftkg �
 �� Suppose m � �	 and denote the points tk in �ti� tj� with

ftkg 
 � by tk� � � � � � tkm� The average cost per time unit over the interval �ti� tj�
is a weighted average of two averages
 c� over �tk�� tkm� and the c� over the union
of the intervals �ti� tk�� and �tkm� tj�� Obviously	 c� is greater than or equal to the

optimum of the problem P�� �which is in turn equal to the optimum of P���	 and c�
is greater than or equal to the optimum of P���� It follows that the cyclic solution
consisting of repetitions of the best of the optimal solutions �either of P�� or of
P���� must be optimal�

�� Computing an optimal policy

Having shown that a cyclic optimal solution exists	 the natural question is whether an

optimal cycle can be computed� The answer is not obvious since it requires a search over
an in�nite domain� For example	 we need to decide whether there exist feasible values

T� 

a� Jx

b�Nx
and T� 


c� Jy

d �Ny

�x and y integral� for P�� and P�� 	 respectively	 which together yield a solution of P���
better than J�N 	 i�e�	

�a� Jx�f�T�� � �c� Jy�f�T��

�a� Jx� � �c� Jy�
� f

�
J

N

�
�

��



This is the content of the following


Problem ���� Given a� b� c� d�K� J�N � �	 recognize whether there exist nonnegative
integers x and y such that


�x� y� 

K�b�Nx� � �

�
�a�Jx��

b�Nx
� K�d�Ny� � �

�
�c�Jy��

d�Ny

�a� Jx� � �c� Jy�
� K � N

J
� �

� �
J

N
�

Proposition ���� Problem 	�
 is decidable�

Proof� A pair x� y � � solves the inequality of Problem ��� if and only if the following

quantity is negative


K
�
b� aN

J

�
�K

�
d� cN

J

�
� �

��a� Jx�
�
a� Jx

b�Nx
� J

N

�
� �

��c� Jy�

�
c� Jy

d�Ny
� J

N

�

or	 equivalently	

�	� �
�

a� Jx

b�Nx
� aN � bJ

N
� �

�

c� Jy

d�Ny
� cN � dJ

N
� K

�
aN

J
� b
�
�K

�
cN

J
� d

�
�

The key observation here is that the function

g�x� 

a� Jx

b�Nx

is always monotone� It is increasing if J�N � a�b	 constant if J�N 
 a�b and decreasing
if J�N � a�b� As x tends to in�nity	 g�x� tends to J�N � A similar observation holds
for �c�Jy���d�Ny�� All these imply that the left�hand side of �	� amounts to the sum
of two monotone nonincreasing functions of x and y	 respectively� Thus	 the problem

can be solved by letting x and y tend to in�nity� More precisely	 the inequality of the
problem has a solution if and only if

�
� �

J�aN � bJ�

N�
� �

� �
J�cN � dJ�

N�
� K

�
aN

J
� b
�
�K

�
cN

J
� d

�
�

If one wants to minimize 
�x� y� then the following procedure can be used� First	

note the in�mum is always less than or equal to the right�hand side	 and we know how
to decide whether it is strictly less than the latter� Assuming it is	 for every value of x
it su�ces to check a �nite number of values of y� As either x or y tends to in�nity	 the
value of the left�hand side tends to that of the right�hand side	 so after a �nite number of

steps the minimum is reached� However	 we still have to develop the tools for recognizing
the minimum when it is reached�

��



Proposition ���� The in�mum of 
�x� y� �see Problem 	�
� over all nonnegative inte�
gers x� y is computable�

Proof� It follows from Proposition ��� that if the minimum does not exist then the
in�mum is equal to f�J�N� 
 KN�J � �

�J�N � Thus we now assume the minimum
exists and is less than f�J�N��

We �rst argue that for any 
 � � it can be decided whether there exist nonnegative
integers x� y such that


�x� y� � f�J�N� � 
 �

The idea is essentially the same as that in the proof of Proposition ���� The problem
is equivalent to deciding the existence of x� y such that

�		�
�
�

a� Jx

b�Nx
� aN � bJ

N
� 
�a� Jx� � �

�

c� Jy

d �Ny
� cN � dJ

N
� 
�c� Jy�

� K
�
aN

J
� b
�
�K

�
cN

J
� d

�
�

Here the left�hand side is a sum of functions g��x� 
 g��x� 
� and g��y� 
 g��y� 
��

Consider the function g��x� �the function g��y� can be analyzed in the same way�� If
a�b 
 J�N the minimum of g��x� is at x 
 �� Otherwise	 g��x� is strictly convex with
a unique minimum �over the reals� which can be derived analytically� The minimum

of g��x� over the nonnegative integers can then be found using a convexity argument�
Thus	 given any x and y we can decide whether they minimize 
�x� y�� So	 assuming
the minimum exists	 by enumeration we reach it and recognize it�

Remark ���� It is possible to develop a more e�cient procedure for minimizing 
�x� y��
The question amounts to �nding the maximum value 
� of 
 for which the value of

G�
� 
 min
x

g��x� 
� � min
y

g��y� 
�

is less than or equal to the right�hand side of �		�� As the minimum of countably

many linear functions	 G�
� is monotone increasing and concave� When the minimum
of 
�x� y� is strictly less than f�J�N�	 not only we know that but also we �nd x� y such
that 
�x� y� � f�J�N�� It follows that we can construct an interval containing 
� over

which G�
� has only �nitely many pieces and hence using binary search we can locate 
�

exactly�

Remark ���� A simpler problem can be handled essentially in the same way
 given

a� b� C�D�K� J�N � �	 recognize whether there exists a nonnegative integer x such that

K�b�Nx� � �
�
�a�Jx��

b�Nx
� C

�a� Jx� �D
� K

N

J
� �

�

J

N
�

and if so	 �nd the minimum of the left�hand side�

��



Given feasible values T� 
 �J� � ���N� and T� 
 �J� � ���N� of P�� and P�� 	
respectively	 denote by

��J�� N��J�� N�� 

�J� � ��f�T�� � �J� � ��f�T��

J� � J�

the value of the corresponding solution of P��� � Recall that T� 

p
�K minimizes

K�T � �
�
T over the reals and � 
 �� � �� � � � �	 are the feasible values	 i�e�	 rationals

with denominators less than or equal to ����

Proposition ���� Suppose �i�� � T� � �i and let T� 
 �J� � ���N� be any P���feasible

value in the interval �T�� �i�� Let T� 
 �J�����N� denote the maximal P���feasible value
in the interval ��i� �i���� Under these conditions�

��J�� N��J
�
�� N

�
�� � ��J�� N��J�� N�� �

for any P���feasible value T �
� 
 �J �� � ���N �

� such that either �i� T �
� � J� � � or �ii�

J �� � J� and T �
� � �i���

Proof� The assumptions on T� and T� imply f�T�� � f�T��� Thus � will increase if
J�	 and N� are replaced by J �� and N �

� such that J �� � J� and f�J ���N
�
�� � f�J��N��� In

case �i� the claim follows from the inequalities


J �� � � � T �
� � J� � �

and
T �
� � J� � � � T� �

The proof of case �ii� is similar�

Corollary ���� Assume the conditions of Proposition 	��� and f��i� � f��i���� Given

any P���feasible value T� 
 �J� � ���N� such that f�T�� � F��� in order to decide
whether ��J�� N��J�� N�� � F�� for some P���feasible pair �J�� N��� it su�ces to consider
candidates T� 
 �J� � ���N� only from a union of a �nite number of intervals of the
form ��k��� �k�� and except for the case k 
 i � �� in each interval only a �nite number

of values need to be considered�

Proof� The sequence of P���feasible values which lie between two consecutive values
�k�� and �k �see Proposition ����� accumulates into �k��� There are only a �nite number

of k�s such that k � i� If k � i then the value ��J�� N��J�� N�� increases as the value
T� 
 �J� � ���N� varies along the sequence� So	 it su�ces to check the �rst member
of the sequence �as well the �nite number of values not in the sequence which lie in

the same interval�� Similarly	 if k 
 i	 it su�ces to check among the members of the
structured sequence only the values of T� which are greater than or equal to T� �there
are only �nitely many of these� and the largest one which is less than T�� If k � i� �	
then the claim follows from Proposition ����

��



Remark ��	� The number of values considered in Corollary ��� can be further reduced
by noting that T 
 J�N is P���feasible if and only if T � � 
 �N � J��N is� Now	 if
T �
� � T� � � then ��J�� N�� J

�
� � N �

�� N
�
�� � ��J�� N�� J

�
�� N

�
��� Thus only values less then

T� � � need to be checked� A similar argument shows that it su�ces to consider only

values greater than T� � ��

�� Summary of the algorithm

We now sketch an algorithm for an optimal policy� Most of the e�ort in the algorithm

goes into the determination of whether F��� � F��� Indeed	 if this inequality holds and
a feasible solution with ��J�� N��J�� N�� � F�� is known then	 as we argue below	 there
remain only a �nite number of solutions of P��� that have to be checked before the
optimal solution is found� The main steps of the algorithm are as follows�

�i� The �rst step is to calculate the minimum T� 

p
�K� If T� is rational with

denominator N � ��� then the policy of ordering every T� time units is opti�
mal� Otherwise	 �nd two nonnegative rationals �i��� �i �see the de�nition preceding
Proposition ����� with denominators not greater than ���	 such that �i�� � T� � �i�

The optimal solution of P�� �see De�nition ���� is determined by either �i�� or �i	
i�e�	 F�� 
 minff��i���� f��i�g�

�ii� In this step	 we construct �in the sense of Remark ����� the sets of feasible solutions
of P�� and P�� which lie strictly between �i�� and �i� If there are feasible T �s neither

for P�� nor for P�� such that f�T � � F��	 then the optimal solution for the whole
problem is the optimal solution of P�� found in �i�	 so we stop� Otherwise	 we
continue with step �iii��

�iii� We now determine whether F��� � F��� We do this by analyzing the neighborhoods

of �i�� or �i	 or both �depending on how P�� is attained as the minimum of f��i���
and f��i��� Consider the case where f��i� 
 F�� � f��i���� the other cases are
handled analogously� Suppose there exists a feasible value T� 
 �J� � ���N� of

P�� such that f�T�� � F��	 so T� lies strictly between �i�� and �i � Given T� we
search for feasible values T� 
 �J� � ���N� of P�� so as to minimize the value
��J�� N��J�� N�� of the corresponding solution of P��� � This is done as follows�
We are interested only in T� 
 �J� � ���N� such that ��J�� N��J�� N�� � F���

Proposition ��� �case �i�� explains how to bound the number of intervals ��k��� �k�
that have to be checked	 so we can restrict attention to a �nite set of such intervals�
Suppose �rst that k �
 i��� the case k 
 i�� is discussed in �iv�� By Corollary ���	
in each interval there is only a �nite number of points that have to be considered�

For each possible value of T�	 we consider all the values of T� between �i�� and �i
which are P���feasible� Here we rely on Remark ��� for �nding the optimal T� or
concluding that the in�mum is not less than F��

��



�iv� Now we consider the case k 
 i � �� Here we have to consider an in�nite number
of values of both T� and T�� The two sequences tend to �i�� from di�erent sides�
We rely on Proposition ��� and either �nd an optimal pair T�� T� or conclude that
no such pair gives a value less than F���

�� Finding a good approximate solution

If one is satis�ed with approximately optimal policies then the following proposition is
useful� We know that the optimal value is the minimum of F�� and F���� If F�� �which

is easy to compute� is taken as an approximately optimal solution	 the error can be
estimated as follows�

Proposition ���� If Ji� Ni �i 
 �� �� de�ne an optimal solution for P��� such that

f
�
J� � �

N�

�
� f

�
J� � �

N�

�
�

then the average cost per time unit in this solution� F���� and the optimal average cost
per time unit� F��� in P�� satisfy

F�� � F��� �
�

�N�
�

Proof� Denote by �T the smallest value greater than T� 
 �J�����N� which is feasible
�for P���	 i�e�	 it is rational with denominator not greater than ���� Note that

�T � T� �
��� ��

N�

since N� times the right�hand side is an integer� Actually	 if �T 
 j�n �gcd�j� n� 
 ��	

then by the classical Dirichlet�s theorem	

�T � T� �
�

nN�
�

Since �T � T�	

F�� � F��� � f� �T �� F��� � f� �T �� f�T��



�
K
�T
� �

�
�T
�
�
�
K

T�
� �

�T�

�
� �

��
�T � T�� � �

�nN�
�
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