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Abstract.  This note corrects a certain inaccuracy in the discussion of the
projective transformation employed by Karmarkar in the reduction of a general
linear programming to the form required for his algorithm.

In his famous paper [1], Karmarkar proposes (on page 386, Step 4) a reduction of
a general problem to one on a subset of the unit simplex as follows. Given a linear
programming problemof the form

Minimize ¢’@
(1) subject to Ax = b
x>0

(where an optimal solution is assumed to exist and the optimal value is assumed to be
zero), and a point @ > 0 such that Aa = b, define a transformation &’ = (y,\) = T'(«)
by

xi/ai

>ilxj/a;) +1
A=1-— Zn:yi .
=1

It is then claimed that 7" maps the nonnegative orthant

= (t=1,---,n)

Py ={x e R": x>0}

onto the simplex

A={yg ) eR*:y>0, 120, > y+r=1}.

=1
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Obviously, this claim is wrong since if (y,A\) = T'(®) (& € P;), then A > 0. The correct
statement should be that T'(P;) is the simplex A less the facet defined by A = 0. This
fact requires more care in the discussion of the reduction of the problem. The transformed
problem considered in [1] is:

Minimize ¢! Dy

subject to ADy — Ab =0
ely+r=1
y>0,A>0,

(2)

where D € R™™" is a diagonal matrix with a diagonal consisting of the coordinates of a,
and e = (1,---,1) € R". When this problem is solved, the output might be an optimal
solution (y°, A\?) with A\° = 0, so T7(y", \Y) is not well-defined. This means that there
is a gap in the argument at the bottom of page 387 in [1]. .

A more precise argument is as follows. First, the optimal value of (2) is also zero,
since it 1s equal to the infimum over the intersection of a subspace with the simplex less
one facet, which in turn equals the optimal value of (1). Thus, for any optimal solution
x* of (1), the point (y*,\*) = T(x*) (where \* > 0) is an optimal solution of (2). If
(y°,0) is another optimal solution of (2) then the line segment o = [(y*, \*), (y°,0))
consists of optimal solutions of (2). Clearly, T~!(c) is a ray whose endpoint is @*, so it is
a set of points of the form &* + tw with ¢ > 0. Obviously, w > 0 (and uw # 0). It follows
that |

y'= eTD_luD u
or, equivalently,
u=Dy° .

In other words, the optimal solution (y°, 0) of (2) defines a direction of a ray of optimal
solutions of (1). In general, this direction alone does not determine an optimal solution of
(1). With « at hand, since ¢fu = 0 and Au = 0, the problem reduces to the following:

Minimize ¢’ @
€T
subject to Ax =b
e+itu>0.,t>0

which is equivalent to
Minimize e’
(3) subject to Ax =b
x; >0 for j such that u; =0

!Mike Todd told me he had also pointed out the same gap in his review [2]



Geometrically, if A € R™*™, problem (1) is in dimension n — m with n inequality con-
straints. If (y°,0) is a basic solution of (2) then at least n — m — 1 of the u;’s are zeros,
which means that (3) is a problem in dimension n —m with at least n —m — 1 inequality
constraints. If (2) is primal-nondegenerate then m of the u;’s are positive so (3) is easy
since it is in dimension n —m with n —m inequality constraints. If (2) is degenerate then
problem (3) may be more difficult. Solving the problem in this way adds a factor of m
to the time complexity.

At first sight, the difficulty raised above does not seem to cause a problem for interior
point methods. Interior points of Py map one-to-one onto the interior of A. The final
stage in any interior point method is to move from an approximately optimal interior
solution to an optimal one. In view of the present note, it is essential that the move from
an approximately optimal interior point to an optimal one be carried out in Py rather
than A. However, consider the following problem with three variables:

Minimize z;
subject to @1 4+ x5 = 2
1, 9,3 > 0 .
Obviously, the optimal set is the ray defined by =1 = 0, 3 = 2, and z3 > 0. Taking
a = (1,1,1), the problem in the (y, A) space is
Minimize 1
subject to y1 +y2 —2A =0
Bty tys+A=1
Yi,y2,y3 > 0.

Karmarkar’s potential function in this case is:

¢(y,\) = 4lny, — Zlnyz In A

Consider points of the form 413 = ya = A, y5 = 1 — 311 (0 < y1 < 1/3). When y; tends
to zero, the value of ¢ at such points tends to —oc and indeed the point approaches an
optimal solution. However, the inverse image, = y/\ is: @1 = 23 =1, 23 = 1/y; — 3,
where the value of the objective function does not tend to the optimum.

Thus, the argument of potential reduction alone does not suffice for proving the
claimed complexity of the algorithm for a general problem of the form (1). It is conceiv-
able though that another argument might be used to prove it. Another idea, which was
used already in the context of the ellipsoid method, is to add a constraint 3=, z; < U
which must be satisfied at every basic solution. If the size of the problem is L, and @
is a basic solution, then x; < 2F. Thus, we can take U = n2¥ and the size of the new
problem remains O(L).
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