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�� Introduction

Let A � Rm�n� b � Rm and c � Rn� Consider the primal�dual pair of linear programming
problems�

�P� Minimize cTx

subject to x � P � fx � Ax � b� x � �g�
�D� Maximize bTy

subject to �y�z� � D � f�y�z� � ATy � z � c� z � �g�
De�ne

P�� � fx � Ax � b� x � �g�
D�� � f�y�z� � ATy � z � c� z � �g�
S�� � P�� �D�� � f�x�y�z� � x � P��� �y�z� � D��g�

We assume throughout that the rank of the matrix A is m�

This paper studies a class of primal�dual interior point algorithms which originated
from a fundamental analysis by Megiddo ���� on the central trajectory for the problems

�P� and �D�� The central trajectory is de�ned as the set Scen � f�x����y����z���� � � �

�g of solutions �x����y����z���� to the system of equations with a parameter � � ��

Xz � �e� Ax � b� ATy � z � c� x � � and z � �� ���

Here X � diag�x� � Rn�n denotes a diagonal matrix with the coordinates of a vector

x � �x�� x�� � � � � xn�T � and e � ��� � � � � ��T � Rn� By de�nition� �x����y����z���� � S��
for every � � �� It was shown by Megiddo ���� that� as the parameter � � � tends to
zero� x��� � P�� and �y����z���� � D�� converge to optimal solutions of �P� and �D��
respectively� We also refer to the book ��� by Fiacco and McCormick� who described the

trajectory in terms of a logarithmic penalty function� and discussed some properties of the
trajectory� Thus� optimal solutions of �P� and �D� can be approximated by tracing the
trajectory Scen until the parameter � becomes su	ciently small� The �rst polynomial�
time algorithm based on this idea was given by Kojima� Mizuno and Yoshise �����

We describe a generic primal�dual interior point method �abbreviated to the GPD
method�� which provides a general framework for many existing primal�dual interior
point algorithms ��� �� ��� �
� ��� �
� ��� 
�� 

� 
�� �
� ���� The GPD method generates
a sequence f�xk�yk�zk�g � S��� Assuming we have obtained the kth iterate �xk�yk�zk��

we will show how the method computes the �k � ��th iterate �xk���yk���zk��� � S���
Let fk � �xk�Tzk�n� If �xk�yk�zk� lies on the central trajectory Scen� then xki z

k
i � �

�i � �� 
� � � � � n� for some �� hence fk � �� We can easily verify that nfk � �xk�Tzk

coincides with the duality gap cTxk � bTyk� hence

fk �
�xk�Tzk

n
�
cTxk � bTyk

n
� �
�

We now consider the Newton direction ��x��y��z� at the current iterate �xk�yk�zk� �
S�� for approximating a point �x����y����z���� with � � �fk on the central trajectory



Scen� where � � ��� �� denotes a parameter to be speci�ed later� More precisely� the
direction ��x��y��z� is given as a unique solution of the Newton equation

Zk�x�Xk�z � �fke�Xkzk�

A�x � ��

AT�y ��z � ��

���
�� ���

Finally� we choose step lengths �p and �d to generate a new iterate �xk���yk���zk���
such that

xk�� � xk � �p�x � P���

�yk���zk��� � �yk�zk� � �d��y��z� � D���

���
�� ���

The GPD method depends on three parameters� a search direction parameter ��
a primal step length �p and a dual step length �d� If we choose an initial solution
�x��y��z�� � S�� and assign appropriate values to these parameters at each iteration of

the GPD method� we obtain a particular primal�dual interior point algorithm� which we
abbreviate as a PD algorithm�

The parameter � determines a target point �x��fk��y��fk��z��fk�� on the central

trajectory Scen which we want to approximate by the new iterate �xk���yk���zk��� �
S��� When we take � � �� the target point �x�fk��y�fk��z�fk�� � Scen minimizes the
Euclidean distance kXz �Xkzkk from the current iterate �xk�yk�zk� � S�� to points
�x�y�z� on Scen� Thus� the resulting Newton direction ��x��y��z� � ��xc��yc��zc�

may be regarded as a �centering� direction� On the other hand� when we take � � ��
the system ��� with � � �fk � � turns out to be the necessary and su	cient Karush�
Kuhn�Tucker optimality condition for the problems �P� and �D��

Xz � �� Ax � b� ATy � z � c� x � � and z � ��

Hence the Newton direction ��x��y��z� � ��xa��ya��za� from the current point

�xk�yk�zk� aims at optimal solutions x of �P� and �y�z� of �D�� We call the direction
��xa��ya��za� an �a	ne scaling direction� ���� 
�� since� as in the primal a	ne scaling
algorithm ��� 
� ���� it does not involve any centering direction� In general� each direction

��x��y��z� with a � � ��� �� can be represented as a convex combination of the
centering direction ��xc��yc��zc� and the a	ne scaling direction ��xa��ya��za�
such that

��x��y��z� � �� � ����xa��ya��za� � ���xc��yc��zc��

The parameters �p and �d determine step lengths in the primal and dual spaces�
respectively� Kojima� Mizuno and Yoshise ���� showed that if the same step length
�p � �d � � is chosen in the primal and dual spaces� then the new duality gap
�xk���Tzk�� � cTxk�� � bTyk�� � cT �xk � ��x�� bT �yk ��y� satis�es

cT �xk � ��x�� bT �yk � ��y� � �� � ��� � ����cTxk � bTyk�� ���

See Lemma ���� It follows from this equality that



�i� � has to be less than or equal to � in order for the duality gap not to increase�
�ii� the smaller � and the larger �� the larger the reduction in the duality gap�

Theoretically� we can choose any � � ��� ��� On the other hand� in order to keep the new
iterate �xk���yk���zk��� in S��� we need to take the step lengths �p and �d smaller than

��p � maxf� � xk � ��x � �g and ��d � maxf� � zk � ��z � �g�
respectively� Hence� if we choose �p � �d � �� it is bounded from above by

�� � minf��p� ��dg � maxf� � xk � ��x � �� zk � ��z � �g�
The bounds ��p� ��d and �� depend on the location of the current iterate �xk�yk�zk� and

the value of the search direction parameter �� It is known that we can guarantee a large
�� when the current point �xk�yk�zk� � S�� is not too far from the central trajectory
Scen� See Lemma ���� In fact� many of the existing PD algorithms ��� �� ��� �
� 

� 
��

�� generate a sequence f�xk�yk�zk�g in a prescribed horn neighborhood of the central

trajectory Scen� so that the bound �� remains larger than some positive constant�

Kojima� Mizuno and Yoshise ���� used � � ��
 and �p � �d � � to generate a
sequence f�xk�yk�zp�g � S�� which eventually moves into a prescribed neighborhood

of the central trajectory Scen� The algorithm runs in O�nL� iterations� In other papers�
Kojima Mizuno and Yoshise ��
� and Monteiro and Adler �
�� improved the complexity
O�nL� to O�

p
nL�� Their algorithms assign in advance small neighborhoods to the

central trajectory Scen� and generate sequences f�xk�yk�zk�g � S�� in the neighborhood

by taking arti�cial initial solutions �x��y��z�� in the neighborhood and the parameters
� � � � ��

p
n and �p � �d � � for some positive number � � �� Their theoretical

improvements� however� do not lead directly to improvements in the practical e	ciency

of PD algorithms� In fact� from ��� we see that the duality gap reduces at least linearly
with a ratio of ��� ��

p
n� in every iteration� Hence� the convergence of the duality gap

to zero is too slow in practice when n is large�

In view of the above� a smaller search direction parameter � seems necessary to
increase the e	ciency of the GPD method� Lustig ���� discussed a region in the space
of the search direction and step length parameters in which the GPD method converges
globally� Mizuno� Todd and Ye �
�� proposed an O�nL� iteration PD algorithm where

they took � � �� in every iteration with an arbitrary �xed �� � ��� �� and a larger
neighborhood of the central trajectory Scen than the ones used in ���� �
� 
��� If �� were
of the form n�p for some positive number p� we could prove that their PD algorithm
would require O�np��L� total iterations�

In all the PD algorithms mentioned so far� the same step length � is chosen in the
primal and dual spaces� so that the new iterate �xk���yk���zk��� � S�� remains in a

certain horn neighborhood of the central trajectory Scen� The notion of a neighborhood
plays a key role in gaining su	cient reduction in the duality gap at each iteration to ensure
the polynomial�time convergence� There has been another development in PD algorithms�
namely� an O�

p
nL� iteration PD potential reduction algorithm given by Kojima� Mizuno

and Yoshise ����� They have taken a search direction parameter � � n��n �
p
n� and



a step length � such that in each iteration there is at least a constant reduction in the
primal�dual potential function of Todd and Ye �
��� rather than the duality gap� Kojima�
Megiddo� Noma and Yoshise ��� generalized the PD potential reduction algorithm in a
uni�ed way to a wider class of primal�dual potential reduction algorithms including a

globally convergent a	ne scaling PD algorithm� Ye ��
� ��� investigated the range of the
search direction parameter � which guarantees the polynomial�time convergence of the
PD potential reduction algorithm�

The introduction of the potential function in the GPD method has opened up the
possibilities of taking a larger step length � because the new iterate �xk���yk���zk��� �
S�� is not required anymore to be in a given neighborhood of the central trajectory
Scen� Ye ��
� discussed the use of di�erent step lengths in the primal and dual spaces for
primal�dual potential reduction algorithms� Theoretically� however� it is not clear how

large a step length � we can take even if we perform a line search along a search direction
to gain a big reduction in the potential function�

McShane� Monma� and Shanno ���� proposed taking � � ��n and di�erent step
lengths �p and �d in the primal and dual spaces such that

�p � ���p and �d � ���d �
�

for � � ������� They reported that the GPD method using this choice of the parameters
solved the NETLIB set of test problems very e	ciently� See also ��
��

The authors feel that there still remain the following di�erences between the theoreti�
cal PD algorithms ��� �� ��� �
� ��� 

� 
�� 
�� which enjoy the global and�or polynomial�

time convergence and the practically e	cient implementations ��
� ��� of PD algorithms�

�i� Values of the search direction parameter � in the practically e	cient implementa�
tions are smaller than those in the theoretical algorithms�

�ii� Most of the theoretical algorithms use the same step length � in the primal and
dual spaces� while the practical implementations take di�erent step lengths �p in
the primal space and �d in the dual space given by �
��

�iii� The di�erent step lengths �p and �d are usually much larger than the common step

length � used in the theoretical algorithms�
�iv� The PD potential reduction algorithm ��� ��� requires a line search to get a larger

reduction in the potential function�
�v� There has been no proof for the global convergence of the practical implementation

��
� ����

The goal of the present paper is to �ll these gaps� We propose two sets of rules for
controlling the parameters �� �p and �d in the GPD method� The �rst� Rule G� ensures

global convergence �Theorem ��
�� while the second� Rule P� ensures polynomial�time
complexity �Theorem ����� Both rules depend only on the step lengths ��p and ��d from
the current iterates to the boundaries of the primal and dual feasible regions� respectively�
They rely neither on any neighborhood of the central trajectory Scen nor on the potential

function� These rules allow taking large steps without performing any line search�



Under Rule G� we choose constants ��� �	� ��� �� and �� in advance so that

� � �� 
 �� � 
 �	 � �� � 
 �� � �� 
 � and � 
 ��� ���

These constants can depend arbitrarily on n� At each iteration we choose a search
direction parameter � � ��� ���� We have two independent conditions for choosing step

length parameters �p and �d� One is

� � �p � ����p� � � �d � ����d�

cTxk�� � bTyk��

cTxk � bTyk
�
cT �xk � �p�x�� bT �yk � �d�y�

cTxk � bTyk � �� �	�

������
�����

���

and the other is
�� � � � ���

�p � �d � � �

�
��� if �� � ���

������� otherwise�

���
�� ���

In a practical implementation of the GPD method� ��� should be preferred over ���� We
can easily check whether there exist some �p and �d satisfying ��� by calculating a pair

��p� �d� which minimizes the duality gap

cT �xk � �p�x�� bT �yk � �d�y� ����

subject to the constraints

� � �p � ����p and � � �d � ����d�

We take the same step length �p � �d � � determined by ��� only when the minimizer
��p� �d� does not satisfy the last inequality of ���� Theoretically� however� the global
convergence of the GPD method using Rule G holds even if we always use the same step

length �� It should be noted that the same step length � always satis�es � 
 ��� hence�
the resulting new iterate �xk���yk���zk��� lies in S���

As a simple illustrative example of Rule G� we may take

� � �� �
�

n
� �	 � ����� � � �� � �� � ������ and �� � �����

In this case the conditions ��� and ��� turn out to be

�p � ��������p� �d � ��������d�

cTxk�� � bTyk��
cTxk � bTyk �

cT �xk � �p�x�� bT �yk � �d�y�

cTxk � bTyk
� �������

������
�����

����

and

�p � �d � � �

�
�������� if �� � �����

������� otherwise�
��
�

respectively�



If we take the same step length �p � �d � � in the primal and dual spaces� we
know from ��� that the duality gap ���� decreases as the step length � increases� If�
however� we take di�erent step lengths �p and �d� then the duality gap ���� does not
necessarily decrease with either �p or �d� We show in the Appendix that the duality gap

may increase with �p �or �d�� Furthermore� the step length �p � ���p �or �d � ���d�� used
by McShane� Monma and Shanno ���� in the implementation of the GPD method� is not
always well�de�ned because ��p �or ��d� can be in�nite� Therefore� the last inequality of
the condition ��� �or ����� works as a reasonable safeguard against such a di	culty�

The condition ��� in Rule G is moderate and �exible� One can expect that there
exist step lengths �p and �d satisfying ��� whenever we take �	 su	ciently small and the

current iterate �xk�yk�zk� � S�� is not too close to the boundary of S��� In fact� we
know from the de�nition of �� � minf��p� ��dg and ��� that if we take � � ���� then

� � � � ����p� � � � � ����d�

cT �xk � ��x�� bT �yk � ��y�

cTxk � bTyk � � � ������� ����

Hence� if �� � �	������ � ����� then the same step length �p � �d � � � ���� satis�es ����
If� in addition� the duality gap ���� decreases in both �p and �d� we may take �p � ����p

and �d � ����d as in �
� used in �����

Now� suppose that some step lengths �p and �d do not satisfy ��� with a small �	�
Then� �� � maxf� � x� ��x � �� z � ��z � �g must be smaller than �	������ � ����

because otherwise the common step length � � ���� would satisfy the condition ��� as
we have observed above� Hence� we know that the current iterate �xk�yk�zk� lies near
the boundary of S��� Then� Rule G tells us to take a common step length � of the order
of ���� In such a case� however� it might be better in practice to try another direction

��x��y��z� with a larger � so as to move away from the boundary� although Rule G
certainly ensures the global convergence�

Under Rule G we can even take � � � in every iteration� In this case we have a
globally convergent a	ne scaling PD algorithm�

A remark on generalizing Rule G� In the GPD method using Rule G described
above� after choosing a search direction parameter � � ��� ���� we try to �nd a new
iterate �xk���yk���zk��� � S�� �along the search directions �x in the primal space and

��y��z� in the dual space� so as to decrease the duality gap at least by a constant
factor � � �	� See ���� This part can be generalized signi�cantly by eliminating the
restriction �along the search directions � � � in the dual space�� That is� we can take
a new iterate �xk���yk���zk��� anywhere in S�� as long as the condition

cTxk�� � bTyk��
cTxk � bTyk � �� �	

is ful�lled� The global convergence of the GPD method using Rule G �Theorem ��
� and

its proof remain valid under this generalization� This generalization makes it possible



to incorporate various techniques to increase the practical e	ciency of the interior point
algorithms such as higher order predictor methods ��� ��� 
�� 

� and multidimensional
searches ��� 
��� Also� we can incorporate some techniques ��� ��� ��� developed for
accelerating the local convergence of the GPD method�

We now describe Rule P� Let

� 
 �� � ���� ��� � �� 
 � and � 
 �� � �� ����

We can allow ��� �� and �� to depend on n as long as ���� � ���� ���� and ���� are

polynomial in n� At each iteration� we take parameters �� �p and �d such that

�� � � � ���� ��� � � � ��� ����

� � �p � �d �

�
��� if �� � ���

������� otherwise�
����

For example� Rule P allows us to take

�� � � �
�

n
� �� � � � ������ and �� � �����

Then� the common step length � is given as in ��
��

Obviously� Rule P is a special case of Rule G� Compared with Rule G and �
� used
by McShane� Monma and Shanno ���� in the implementation of the GPD method� Rule
P is restrictive in the sense that it always requires taking a common step length in the

primal and dual spaces� In Section � we establish the polynomial�time convergence of
the GPD method using Rule P�

In ��� �� �
� ��� 

� PD algorithms were presented for the complementarity problem�
rather than pairs of primal and dual linear programs� All the results obtained there

can be easily adapted to the primal�dual pair of linear programs �P� and �D�� See the
concluding remarks of ����� Many interior point algorithms have been proposed which
work on the primal�dual pair of problems �P� and �D� but are not covered by the GPD
method� Among others� we refer to the following�

�i� An O�n�L� algorithm using a sequence �
���
�ii� An O�

p
nL� iteration potential reduction algorithm ����� See also �
��

�iii� A potential reduction algorithm for the linear complementarity problem with P�
matrices �����

We also mention that Tanabe s centered Newton method �
�� 
�� is closely related to the
GPD method�

�� Notation

We summarize below the notation which we use throughout�



�xk�yk�zk� � the kth iterate of the GPD method�

fk �
�xk�Tzk

n
�
cTxk � bTyk

n
�

��x��y��z� � the search direction at the kth iterate�
��p � supf� � xk � ��x � �g�
��d � supf� � zk � ��z � �g�
�� � minf��p� ��dg�
� � a common step length in the primal and dual spaces� � � � � ���
�p � a step length in the primal space� � � �p � ��p�
�d � a step length in the dual space� � � �d � ��d�

� � ��� �� � a search direction parameter�
��� �	� ��� ��� �� �� � constants �xed in Rules G and P� See ��� and �����
� � a parameter used in Rules G and P� See ���� ���� and �����

��x�y�z� � min

�
xjzj
xTz�n

� j � �� 
� � � � � n

�
for every �x�y�z� � S���

�k � ��xk�yk�zk��

In general� the superscript k stands for the kth iterate� The values of ��� ��p� ��d�
�� �� �p� �d and � can vary from one iteration to another� but we usually omit their

dependence on k�

�� Global convergence of the GPD method using Rule G

Throughout this section� we assume that the parameters ��� �	� ��� �� and �� associated

with Rule G satisfy ���� We also assume �xk�yk�zk� � S��� and that � � ��� ���� We begin
by proving the equality ��� which we have used in our discussion in the Introduction�
The following results were essentially due to �����

Lemma ���� Assume that we take a common step length � � �p � �d 
 ��� Then�

cTxk�� � bTyk�� � �� � ���� ����cTxk � bTyk� � ��

fk�� � ��� ��� � ���fk � ��

� 
 �� ��� � �� 
 ��

Proof� By ���� �xk���yk���zk��� � S�� and � 
 ��� we have

� 
 cTxk�� � bTyk��
� �xk���Tzk��

� �xk � ��x�T �zk � ��z�

� �xk�Tzk � ���zk�T�x� �xk�T�z� � ���xT�z

� �cTxk � bTy� � ���zk�T�x� �xk�T�z� � ���xT�z�



Here ��x��y��z� is a solution of the system ��� of linear equations� Hence the
second and third terms in the last line above can be rewritten as

���zk�T�x� �xk�T�z� � �eT �Zk�x�Xk�z�

� �eT ��fke�Xkzk�

� ��n�fk � �xk�Tzk�

� ���� � ���cTxk � bTyk��
and

���xT�z � ���xT ��AT�y� � ����yTA�x � ��

respectively� Thus we have shown the �rst relation of the lemma� The second relation

follows from the �rst and the de�nition �
� of fk� Since cTxk � bTyk � �� we obtain
the last inequality of the lemma�

The theorem below establishes the global convergence of the GPD method using
Rule G�

Theorem ���� Suppose that �x��y��z�� � S��� Let f�xk�yk�zk�g � S�� be a sequence
generated by the GPD method using Rule G� Then� the duality gap cTxk�bTyk converges
to � as k tends to in�nity�

The remainder of this section is devoted to proving the theorem� We need to introduce
a quantity ��x�y�z� to measure a deviation from the central path Scen at each �x�y�z� �
S���

��x�y�z� � min

�
xjzj
xTz�n

� j � �� 
� � � � � n

�
for every �x�y�z� � S��� ��
�

Obviously� � is a continuous function in �x�y�z� � S��� It is easily veri�ed that

� 
 ��x�y�z� � � for every �x�y�z� � S���

��x�y�z� � � if and only if �x�y�z� � Scen�

We may say that ��x�y�z� decreases from � to zero as �x�y�z� � S�� moves away
from the central path Scen and approaches the boundary of S��� Thus� � � ��x�y�z�

represents a deviation from Scen� For simplicity of notation� we use �k for ��xk�yk�zk��

Remark� Kojima� Mizuno and Yoshise ���� and Lustig ���� used ���� which they denoted
by �� to measure a deviation from the central path Scen� See also ��� for some other

quantities to measure a deviation from the central path Scen and their relation to ��

It follows from the Newton equation ���� which is satis�ed by ��x��y��z�� that

nX
j��

!xj!zj � �xT�z � �� ����

zkj !xj � xkj!zj � �fk � xkj z
k
j for every j � �� 
� � � � � n� ����



These inequalities will be utilized in the lemmas below� The next Lemma is a modi�cation
of Lemma � in �
��

Lemma ����

��� � min

�
�

�
�


��k��

��� � 
��k � �k�n

�
� min

�
�

�
�


��k��

n

�
�

Proof� It follows from ���� that� for every j � �� 
� � � � � n�

�zkj !xj��x
k
j!zj� �

�
�fk � xkj z

k
j




��
�

which implies

!xj!zj �
��fk � xkj z

k
j ��

�xkj z
k
j

�

Using ���� and the inequality above� we have that

�!xi!zi �
X
j ��i

!xj!zj

� X
j ��i

��fk � xkj z
k
j ��

�xkj z
k
j

� �

�

nX
j��

�
��fk��

xkj z
k
j

� 
�fk � xkj z
k
j

�

� �

�

�
n��fk��

�kfk
� 
n�fk � nfk

�
�

hence

�!xi!zi � ��� � 
��k � �k�nfk

��k
� ����

On the other hand� by the de�nition of ��� we can �nd an index i such that

� � �xki � ��!xi��z
k
i � ��!zi�

� xki z
k
i � ���xki !zi � zki !xi� � ���!xi!zi

� xki z
k
i � ����fk � xki z

k
i � � ���!xi!zi �by �����

� ��� ���xki z
k
i � ���fk � ���!xi!zi�

If �� � ��
� the equality above implies

� � �� � ���xki z
k
i � ���!xi!zi

� �



xki z

k
i � ���!xi!zi

� �



minfxkj zkj � j � �� 
� � � � � ng� ���!xi!zi

�
�



�kfk � ���!xi!zi�



Hence we see that

��� � min

�
�

�
�

�kfk

�
!xi!zi

�
�

Substituting the inequality ���� in the inequality above� we obtain the �rst inequality
of the lemma� Since � 
 �k � � and � � � � �� 
 ��

� 
 �� � �k�� � �k��� �k�

� �� � 
��k � �k

� � � ��k � �k

� �� ��� ����� �k�

� ��

Thus the second inequality of the lemma follows�

Lemma ���� Assume that � � �p � �d 
 ��� and that

�� �� ��� ���
�
�

��

	�
� ��

Then

xk��j zk��j �
�

� � �� ��� ���
�
�

��

	��
�kfk �

�
� � ��

�
�

��

	��
�fk

for every j � �� 
� � � � � n�

Proof� Let j be �xed� Then�

� � �xkj � ��!xj��z
k
j � ��!zj�

� xkj z
k
j � ���zkj !xj � xkj!zj� � ���!xj!zj

� xkj z
k
j � ����fk � xkj z

k
j � � ���!xj!zj� �by �����

Hence

!xj!zj � �xkj z
k
j � ����fk � xkj z

k
j �

���
�

By the de�nition of �k� we also see xkj z
k
j � �kfk� It follows that

xk��j zk��j � �xkj � �!xj��z
k
j � �!zj�

� xkj z
k
j � ���fk � xkj z

k
j � � ��!xj!zj �by �����

� xkj z
k
j � ���fk � xkj z

k
j � �

�
�

��

	� 

�xkjzkj � ����fk � xkj z

k
j �
�

�

�
� � �� ��� ���

�
�

��

	��
xkj z

k
j �

�
� � ��

�
�

��

	��
�fk

�
�

� � �� ��� ���
�
�

��

	��
�kfk �

�
�� ��

�
�

��

	��
�fk�



Lemma ���� De�ne

� � min

�

��� ���

��
q

�� ��


��

��
� and 
 �

��

����� ���
� �
��

Assume that �k � ��� and �� � �� Take a common step length � � �p � �d according
to ���� Then

�k�� � ��� ��� � ������k�

Proof� By the assumption� � � ������� 
 �� � � � �� It follows that

�� � � �� � ���
�
�

��

	�
� �� ��� �� � ��� � ��

�� ��
�
�

��

	�
� � � ��

��
� �� �
��

Let j be �xed� By the inequalities above and Lemma ���� we see that

xk��j zk��j �
�

�� � � �� � ���
�
�

��

	��
�kfk �

�
�� ��

�
�

��

	��
�fk�

By Lemma ���� fk�� � �� � ��� � ���fk� Hence

xk��j zk��j

fk��
� ���� �

����

����
�

where � � ��� �� � R and � � ��� �� � R are functions such that

���� �

�
� � � � ��� ���

�
�

��

	��
�k �

�
�� ��

�
�

��

	��
��

���� � � � ���� ���

We now prove that ���� � ���� by showing that

����� �
��������� � ���������

�����
� � for every � � ��� ��

whenever the assumptions of the lemma are satis�ed� By Lemma ���� the denominator
����� is positive for every � � ��� ��� Evaluating the numerator ��������� � ���������

for each � � ��� ��� we have

���������� ���������

�

�
� � ��

�
�

��

	��
�� � ���� ���

��
��

� � �� ��� ���
�
�

��

	��
�k �

�
�� ��

�
�

��

	��
�

�

�
�
� � ��

�
�

��

	��
�� � �� �

�
�� ��

�
�

��

	��
�� � �



�k � ��

�



�by � 
 � 
 �� � � � �� � 
 �k and � � ��

� �
�

�� �

��

	
��� �� � ���k � �� �by �
�� and � � � 
 ��

� �
�

�� �

��
� �� �k � �

	

� �
�

�



� ��

��

	
�since �� � � � � and �k � ����

� �

�
�



� �����

��

�
�since ���� � ������ � ��������

� �� �since �� � � �
�
��
q

�� ��
	
��
��� � ����
����

Thus� we have shown ����� � � for all � � ��� ���� Hence

xk��j zk��j

fk��
� ���� � ����

�

�
� � �� ��� ���



�

��

��	
�k

�� �

�
�

��
�
�

��

	��
�k �since � � � � � � ���

�
�

�� ���

��

�
�k �since � � ������� � �������� �

�
�

�� ��� �����

��� �����

�
�k �since � � � � � � ���

� ��� ��� ���
��k�

Hence� we have shown
xk��j zk��j

fk��
� �� � 
���� ����k�

This inequality holds for every j � �� 
� � � � � n� From the de�nition

�k�� � ��xk���yk���zk��� � min

�
xk��j zk��j

fk��
� j � �� 
� � � � � n

�

of �k��� we obtain
�k�� � ��� 
��� � ����k�

On the other hand� � 
 ��� � �� 
 � by Lemma ���� We also see

��� � �� � � �since � � � � �� 
 ��

� �����

��
�since � � ������� � ���������

� ����� ���

�
��
�since �� � � �

�
��
q

� � ��
	
��
����

� �

�


� �since ����� ������ � ��
�



Finally� using the inequality

��� 
�� � ��� ����

with � � � � ��� � �� � minf�� ���

�g� we obtain

�k�� � �� � 
��� � ����k � �� � ���� ������k�

Now we are ready to prove Theorem ��
�

Proof of Theorem ����

We need to designate the dependence of �� �p� �d� ��� � and �� which are used in Rule G�
on the iteration explicitly in the proof below� So we will write �k� �k

p� �k
d� ��k� �k

and �k� Since the duality gap cTxk � bTyk decreases monotonically� the duality gap

apparently converges to � if we can take di�erent step lengths �k
p and �k

d satisfying ���
for in�nitely many k s� Hence� we only have to deal with the case where the same step
length �k � �k

p � �k
d is chosen according to ��� for every k � �k and some �k� Assume

that ��k � � or �k � �� for some �� � ��� ����� where � is de�ned by �
��� If we denote

� � min

�
�

�
�


���

n
� ��

�
� min

��

��

�

�
�


���

n
� ������

�
���

q
� � ��


��

�
A
�
���
�� �

we see by Lemmas ��� that ���k�� � �� Hence

cTxk�� � bTyk��
cTxk � bTyk

� �� ��� �k��k �by Lemma ����

� �� ��� �����

�
min

�
��k�

���k��

��

��
�by �k � ��� � 
 �� � � and ����

� �� ��� �����

�
min

�
���

���k��

��

��
�since ��k � ���k����� if �� � ��k�

� �� ��� �����

�
min

�
���

�

��

��
� �by ���k�� � ��

If the inequality above holds for in�nitely many k s� the duality gap cTxk�bTyk converges
to �� So we may further restrict ourselves to the case where

lim
k��

�k � �� ��k � � and �k � ��� for every k � � and some � � �k�

Applying Lemma ���� we now obtain

�k�� � �� � �k�� � �k�����k



for every k � �� It follows that

���r �
��r��Y
k��

��� �k��� �k������

�

�
��r��Y
k��

��� �k��� �k��

���
��

�

�
��r��Y
k��

cTxk�� � bTyk��
cTxk � bTyk

���
�� �by Lemma ����

�

�
cTx��r � bTy��r
cTx� � bTy�

���
��

for every r � �� 
� � � � � Thus� we obtain

���r�cTx� � bTy����
��

� �cTx��r � bTy��r���

for every r � �� 
� � � � � Since limr�� ���r � �� we can conclude from the inequality above

that the duality gap cTxk � bTyk converges to � as k tends to in�nity� This completes
the proof of Theorem ��
�

�� Polynomial�time convergence of the GPD method with Rule P

Throughout this section� we assume that the parameters ��� �� and �� associated with

Rule P satisfy �����

Theorem ���� Let � � �� Suppose that �x��y��z�� � S��� De�ne

� � log

�
cTx� � bTy�

�

�
�

� � min

�
��� �������



� ��

�
�

"� � min

�
��



�
��

n��

�
�

Let f�xk�yk�zk�g � S�� be a sequence generated by the GPD method using Rule P� Then

�i� �k � � for all k � �� �� 
� � � � �

�ii� cTxr � bTyr � � if r � 
��"��

From �i�� the generated sequence f�xk�yk�zk�g lies in a neighborhood f�x�y�z� �
S�� � ��x�y�z� � �g of the central trajectory Scen although Rule P does not explicitly
require the sequence to remain in any prescribed neighborhood of Scen� If we let � � ����

the neighborhood f�x�y�z� � S�� � ��x�y�z� � �g coincides with the neighborhood



N�
���� � f�x�y�z� � S�� � kXz � �ek�� � ��� � � xTz�ng introduced by Mizuno�

Todd and Ye �
��� Once we know that the sequence lies in the neighborhood N�
����� we

can deduce the computational complexity of the algorithm from the results of �
��� But
we will show the entire proof of Theorem ����

The theorem also shows that if all the quantities ���� � ���� ����� ���� and ����

are polynomial in n� then the GPD method with Rule P computes approximate optimal
solutions xr of �P� and �yr�zr� of �D� with the duality gap not greater than �� within time
polynomial in n� Speci�cally� when they are of the order O��� we obtain the following
corollary�

Corollary ���� In addition to the assumption in Theorem 	�
� suppose that ����� ����
����� ���� and ���� are all O���� Then� the duality gap cTxr�bTyr becomes not greater
than � in O�n�� iterations�

Preparing an arti�cial initial point �x��y��z�� � S�� such that

log�cTx� � bTy�� � O�L� and �� � ��x��y��z�� � O����

and setting � � � such that log � � �O�L�� we can prove under the conditions of Corollary
��
 that the GPD method using Rule P enjoys the O�nL� iteration complexity� where L
denotes the input size of the problem �P�� But the details are omitted here� See Kojima�

Mizuno� and Yoshise ��
� and Monteiro and Adler �
�� for such an arti�cial initial point�

We need the following lemma to prove Theorem ����

Lemma ���� Let � � ��� �� � ��������
� be a constant� If �k � � then �k�� � ��

Proof� By Lemma ���� �� � ���� � ��� � �� By assumption ����� � � ���� so �� �
���� � �� � 
� We also know � 
 �� by the assumption� Hence�
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 ���

Thus we can apply Lemma ���� and obtain

xk��j zk��j �
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�
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�kfk �

�
�� ��

�
�
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	��
�fk

for j � �� 
� � � � � n� By Lemma ���� we also know that

fk�� � �� � ���� ���fk�



It follows from the two relations above and �k � � that

xk��j zk��j � �fk��

�
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If �� � �� then � � ���� hence

xk��j zk��j � �fk��
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�fk �
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�� � ������ ��
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�fk � �� � ������fk
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� �� �since � � �� 
 ��

On the other hand� if �� 
 �� then � � �������� hence
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Thus we have shown the inequality

xk��j zk��j � �fk�� � �

both for the case of �� � �� and for the case of �� 
 ��� This inequality holds for
j � �� 
� � � � � n� Therefore�

�k�� � min

�
xk��j zk��j

fk��
� j � �� 
� � � � � n

�
� ��



Proof of Theorem 	�


As in the proof of Theorem ��
� we will use the symbols �k� ��k� �k and �k instead of
�� ��� � and �� respectively� By Lemma ��� and the de�nition of �� we obtain �i�� By

the assumption ���� on the parameters ��� �� and ��� we have

� � ��� �������



� �

�
�

By Lemma ���� we have
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Hence� the step length �k determined by ���� satis�es
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�k���k��

��

�
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�since �k � ����

� "��

Thus we have shown �k � "�� To prove �ii�� assume that r � 
��"�� Then

cTxr�� � bTyr��

� �cTx� � bTy��
rY

k��

��� �k��� �k�� �by Lemma ����

� �cTx� � bTy��
rY

k��

��� ���"�� �since �k � ��� and "� � �k�

� �cTx� � bTy���� � ���"��r�

Hence

log�cTxr�� � bTyr��� � log�cTx� � bTy�� � r log�� � ���"��

� log�cTx� � bTy��� ���"�r

� log�cTx� � bTy��� ���"� � 
�

"�
� log�cTx� � bTy��� �

� log�cTx� � bTy��� log

�
cTx� � bTy�

�

�

� log ��



Thus the assertion �ii� follows� This completes the proof of Theorem ����

Appendix� Inconsistency of the step length control rule �
��

We will show by an example that the step length control rule �
� used by McShane�
Monma and Shanno ���� in the implementation of the GPD method is theoretically
incomplete� We consider linear programming problems �P� and �D� with n � 
� m � ��

A � ������� b � ���� and c � ��� ��T � Let xk � ����� �� � P�� and �yk�zk� �
��� �� �� � D��� Take � � ��n � ��� as in ����� Then the Newton direction calculated as
the solution of the system ��� turns out to be

�x � �������� �������T �

�y � ������
�z � ������������T �

Since �x � �� we have ��p � �� Hence the primal step length �p � ���p determined by

�
� is in�nite� We also see cT�x � �� so that the duality gap cTxk�� � bTyk�� given in
���� increases monotonically as the primal step length �p increases�
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