
�� Introduction

The primal�dual infeasible�interior�point algorithm which we will discuss has stemmed
from the primal�dual interior�point algorithm �Megiddo ����� Kojima� Mizuno� and Yoshise

���� Monteiro and Adler ����� Tanabe �		�
 for linear programs� It has already been studied
by many researchers �Lustig ��	�� Lustig� Marsten� and Shanno ����� Marsten� Subrama�
nian� Saltzman� Lustig� and Shanno ��
�� Tanabe �		� 	��� Vanderbei and Carpenter �	
��
etc�
� and is known as practically e�cient algorithms among numerous variations and ex�

tensions of the primal�dual interior�point algorithm�� Many numerical studies show that
the algorithm solves large scale practical problems very e�ciently ���	� ��� �
�� etc�
�
Theoretically� however� neither polynomial�time nor global convergence of the algorithm
has been shown� The aim of the present paper is to propose a rule of controlling step

lengths to ensure its global convergence�

Let A be an m� n matrix� b � Rm� and c � Rn� Consider the standard form linear
program

P� Minimize cTx

subject to Ax � b� x � ��

and its dual
D� Maximize bTy

subject to ATy � z � c� z � ��

Throughout the paper� we assume that the matrixA has full row rank� i�e�� rank A � m�

If feasible solutions x of P and �y�z
 of D satisfy x � � and z � �� we call them interior
feasible solutions of P and D� respectively� We also say that �x�y�z
 is a feasible solution
�resp� an interior feasible solution� an optimal solution
 of the primal�dual pair of P and
D if x and �y�z
 are feasible solutions �resp� interior feasible solutions� optimal solutions

of the problems P and D� respectively�
Let �x��y��z�
 be an initial point such that x� � � and z� � �� At each iterate

�xk�yk�zk
 of a primal�dual infeasible�interior�point algorithm� we compute a Newton
direction ��x��y��z
 towards a point on the central trajectory �the path of cen�

ters� Megiddo ����� see also Fiacco and McCormick ���
� and then generate a new point
�xk���yk���zk��
 such that

xk�� � xk � �k
p�x � ��

yk�� � yk � �k
d�y�

zk�� � zk � �k
d�z � ��

Here �k
p � � and �k

d � � denote primal and dual step lengths� Thus the infeasible�interior�
point algorithm shares this basic structure with many of the primal�dual interior�point

�Mehrotra ���� proposed more e�cient methods using a predictor�corrector strategy�

�



algorithms developed so far �Choi� Monma� and Shanno �	�� Kojima� Megiddo� Noma�
and Yoshise ���� Kojima� Mizuno� and Yoshise ��� ��� Lustig ���� �	�� McShane� Monma�
and Shanno ����� Mizuno� Todd� and Ye ����� Tanabe �		� 	��� Monteiro and Adler ���� 	���
Ye �	��� Ye� G�uler� Tapia� and Zhang �	��� etc�
�

The generated sequence f�xk�yk�zk
g is� however� not restricted to the interior of the
feasible region� an iterate �xk�yk�zk
 is required to satisfy neither the equality constraints
Ax � b of P nor ATy�z � c of D� but only the positivity x � � and z � �� Therefore�
we can start from arbitrary �x��y��z�
 with strictly positive x� and z� to approach

optimal solutions moving through not only the interior but also the outside of the feasible
region of the primal�dual pair of P and D�
The distinctive feature of the infeasible�interior�point algorithm mentioned above is a

main advantage over primal�dual interior�point algorithms� When we apply a primal�dual

interior�point algorithm to the problems P and D� we usually need to prepare an arti�cial
primal�dual pair of linear programs having a known interior feasible solution from which
the algorithm starts� Lustig ��	� pointed out a drawback of this approach that the
arti�cial primal�dual pair of linear programs involves large constants called the big M

and arti�cial dense columns which often cause numerical instability and computational
ine�ciency� He derived the limiting feasible direction �Newton direction
 as the constant
�big M� tends to in�nity� and showed that the primal�dual interior�point algorithm using
the limiting feasible direction leads to the infeasible�interior�point algorithm� Lustig�

Marsten and Shanno ���� showed the equivalence of the the limiting feasible direction
and the Newton direction to the Karush�Kuhn�Tucker condition for the linear program
P and D� To mitigate the drawback of interior�point algorithms� Kojima� Mizuno� and
Yoshise ��� recently proposed an arti�cial self�dual linear program with a single big M

as well as a numerical method for updating the big M � But the computation of the
Newton direction in each iteration of a primal�dual interior�point algorithm applied to
the arti�cial self�dual linear program is still a little more expensive than that of the

infeasible�interior�point algorithm� We also mention that the infeasible�interior�point
algorithm can be interpreted as an application of an interior�point algorithm to the
arti�cial self�dual linear program �see Section 
 of ���
�

This paper proposes a rule for controlling the step length with which the primal�dual
infeasible�interior�point algorithm takes large distinct step lengths �k

p in the primal space

and �k
d in the dual space� and generates a sequence f�xk�yk�zk
g satisfying the following

properties�

�a
 For any accuracy � � � required for the total complementarity� any tolerance �p � �
for the primal feasibility� any tolerance �d for the dual feasibility and any large
��� there exists a number k such that after k iterations the algorithm using the

rule generates a point �xk�yk�zk
 which is either an approximate optimal solution

	



�xk�yk�zk
 satisfying

�xk
Tzk � �� kAxk � bk � �p and kATyk � zk � ck � �d ��


or satis�es
k�xk�zk
k� � �� � �	


Here kuk� denotes the ��norm of a vector u � R�� i�e�� kuk� �P�
i�� j ui j�

�b
 If �	
 holds� we can derive information on the infeasibility such that the primal�dual
pair of P and D has no feasible solution in a certain wide region of the primal�
dual space� �See ��� for a method of getting such information in interior�point

algorithms�


In Section 	 we give the details of the primal�dual infeasible�interior�point algorithm
using the step length control rule� where the inequalities ��
 and �	
 serve as stopping

criteria� In Section � we establish that the algorithm enjoys property �a
� In Sections 

and �� we discuss property �b
�

�� An Infeasible�Interior�Point Algorithm

It is convenient to denote the feasible region of the primal�dual pair of P and D as Q��S�
where

Q� � f�x�y�z
 � Rn�m�n � x � �� z � �g�
S � f�x�y�z
 � Rn�m�n � Ax � b� ATy � z � cg�

We also denote by Q�� the interior of the set Q��

Q�� � f�x�y�z
 � Rn�m�n � x � �� z � �g�
The interior of the feasible region Q� � S can be denoted by Q�� � S�

Let � � � � �� �p � �� and �d � �� The algorithm generates a sequence f�xk�yk�zk
g
in the neighborhood

N � f�x�y�z
 � Q�� � xizi � �xTz�n �i � �� 	� � � � � n
�

xTz � �pkAx� bk or kAx� bk � �p�

xTz � �dkATy � z � ck or kATy � z � ck � �dg
of the central trajectory �the path of centers
 consisting of the solutions �x�y�z
 � Q��

to the system of equations �
B�

Ax� b
ATy � z � c
Xz � 	e

�
CA � � ��


�



for all 	 � �� HereX denotes the n�n diagonal matrix with the coordinates of a vector
x � Rn and e � ��� � � � � �
T � Rn�

Let � � 
� � 
� � 
� � �� At each iteration� we assign the value 
��xk
Tzk�n to the

parameter 	� and then compute the Newton direction ��x��y��z
 at �xk�yk�zk
 for
the system ��
 of equations� More precisely� ��x��y��z
 is the unique solution of the
system of linear equations

�
B�
A � �

� AT I

Zk � Xk

�
CA
�
B�
�x

�y

�z

�
CA � �

�
B�

Axk � b
ATyk � zk � c
Xkzk � 	e

�
CA � �



The parameters 
� and 
� control the primal and dual step lengths�

We can take an arbitrary initial point f�x��y��z�
g with x� � � and z� � �� but we
must choose the parameters �� �p� �d and �� such that

�x��y��z�
 � N and k�x��z�
k� � ���

All the parameters �� �p� �d� �� �p� �d� ��� 
�� 
� and 
� may or may not depend on
the input data for the problems P and D�
Now we are ready to state our algorithm�

Algorithm ���� Step �� Let k � ��

Step 	� If ��
 or �	
 holds then stop�

Step �� Let 	 � 
��xk
Tzk�n� Compute the unique solution ��x��y��z
 at

�xk�yk�zk
 of the system �

 of equations�

Step 
� Let ��k be the maximum of ���s � � such that the relations
�xk�yk�zk
 � ���x��y��z
 � N �

�xk � ��x
T �zk � ��z
 � �� � ���� 
�

�xk
Tzk

�
��


hold for every � � ��� ���� See Remark ��� for the computation of ��k�

Step �� Choose a primal step length �k
p � ��� ��� a dual step length �k

d � ��� �� and a
new iterate �xk���yk���zk��
 such that

�xk���yk���zk��
 � �xk � �k
p�x�y

k � �k
d�y�z

k � �k
d�z
 � N �

�xk��
Tzk�� � ��� ��k��� 
�

�xk
Tzk�

�
��


Step �� Increase k by �� Go to Step 	�

Since � � 
� � 
� � �� the common value ��k is always available for both the primal

step length �k
p and the dual step length �k

d although we can assign distinct values to
them� In the next section� we will show existence of a positive number �� such that ��k is






not less than �� for every k as long as the iteration continues� This will lead to a �nite
termination of the algorithm at Step 	�

We consider how large step lengths �k
p and �

k
d we can choose subject to the condition

��
 at Step � of the algorithm� The second inequality of ��
 requires a reduction �����k���

�

 in the total complementarity xTz� By the de�nition of ��k and � � 
� � 
� � ��
a bigger reduction �� � ��k�� � 
�

 than �� � ��k�� � 
�

 is always possible� So the
inequality seems reasonable� If we take a positive 
� less than but su�ciently close to ��

the inequality does little harm to take large step lengths�

Now we focus our attention on the �rst constraint of ��
 which the step lengths �k
p

and �k
d must satisfy� The de�nition of N consists of three kinds of relations

xizi � �xTz�n �i � �� 	� � � � � n
� ��


xTz � �pkAx� bk or kAx� bk � �p� ��


xTz � �dkATy � z � ck or kATy � z � ck � �d� ��


As in the primal�dual interior�point algorithms �Kojima� Mizuno� and Yoshise ���� Mizuno�
Todd� and Ye ����� etc�
� the inequalities ��
 prevent the generated sequence f�xk�yk�zk
g
from reaching the boundary of Q�� before the total complementarity �x

k
Tzk attains ��
The other relations ��
 and ��
 play the role of excluding the possibility that the gen�

erated sequence f�xk�yk�zk
g might converge to an infeasible complementary solution
�x��y��z�
 � Q�� �x�
Tz� � � such that

kAx� � bk � �p and�or kATy� � z� � ck � �d�

Besides the primal feasibility tolerance �p � � and the dual feasibility tolerance �d � ��
which we assume �xed in what follows� the set N involves the positive parameters ��
�p� and �d� To clarify the dependency on these parameters� we will write the set as

N ��� �p� �d
� Then
N ��� �p� �d
 � N ���� ��p� ��d
 if � � ��� �p� �d
 � ���� ��p� ��d
�
�fN ��� �p� �d
 � ��� �p� �d
 � �g � Q���

Therefore� as we take smaller positive �� �p and �d� the set N ��� �p� �d
 covers a larger
subregion of Q��� hence� we can take larger step lengths �p and �d satisfying ��
�

McShane� Monma� and Shanno ����� proposed taking large step lengths �k
p and �k

d

such that
�k
p � ��������

k
p and �

k
d � ��������

k
d � ���


where

��k
p � maxf� � xk � ��x � �g�
��k
d � maxf� � zk � ��z � �g�

�



This choice of the step lengths is known to work very e�ciently in practice ���	� ��� �
� ����
etc�
� but has not been shown to ensure the global convergence� The above observation
on the set N ��� �p� �d
 suggests a combination of their step lengths with ours to ensure
the global convergence� Take the large step lengths �k

p and �k
d given in ���
 when they

satisfy ��
� and the common step length �k
p � �k

d � ��
k otherwise� If we choose su�ciently

small positive �� �p and �d� we can expect that the large step lengths �k
p and �k

d given
in ���
 usually satisfy ��
�

Remark ���� Kojima� Megiddo� and Noma ��� proposed a continuation method that
traces a trajectory leading to a solution of the complementarity problem� If we take a

positive � less than but close to � and small positive �p� �d� then the set N constitutes
a narrow neighborhood of the central trajectory� In this case our infeasible�interior�point
algorithm may be regarded as path�following or continuation method� which generates
a sequence f�xk�yk�zk
g tracing the central trajectory in its narrow neighborhood� It
makes a main di�erence between the Kojima�Megiddo�Noma continuation algorithm and
our algorithm that the trajectory traced by their algorithm runs through the outside of
the feasible region while the central trajectory traced by our algorithm runs through the
interior of the feasible region� See also Kojima� Megiddo� and Mizuno �
� for a more

general framework of continuation methods for complementarity problems�

Remark ���� If we restricted N to the set S� N would turn out to be

f�x�y�z
 � Q�� � S � x � �� z � ��
xizi � �xTz�n �i � �� 	� � � � � n
g�

This type of neighborhood of the central trajectory relative to S has been utilized in many

primal�dual interior�point algorithms ���� �� �� ��� ��� 	�� 		� 	��� etc�
� Speci�cally� it
coincides with the one used by Mizuno� Todd� and Ye �����

The generated sequence f�xk�yk�zk
g satis�es the following relations which will be
used in the succeeding sections�

A�xk � ��x
� b � �� � �
�Axk � b

AT �yk � ��y
 � �zk � ��z
� c

� �� � �
�ATyk � zk � c


���
�� for every � � �� ���


�xk��
Tzk�� � ��� ��k��� 
�

�xk
Tzk � �x�
Tz�� ��	


xki z
k
i � ��xk
Tzk�n �i � �� 	� � � � � n
�

�xk
Tzk � �pkAxk � bk or kAxk � bk � �p�

�xk
Tzk � �dkATyk � zk � ck or kATyk � zk � ck � �d�

���
�� ���


�xk
T z � xTzk � ��� � 
�
�xk
Tzk�
xki zi � xiz

k
i � 
��xk
Tzk�n � xki z

k
i �

�
��



�



Here the equalities in ���
 follow from the Newton equation �

� the inequality ��	

follows from Step � of the algorithm �see the last inequality of ��

� the inequalities in
���
 follow from �xk�yk�zk
 � N � and the equalities in ��

 follow from the Newton
equation �

 with 	 � 
��xk
Tzk�

�� Global Convergence

In this section we show that the algorithm presented in the previous section terminates
at Step 	 in a �nite number of iterations for any positive �� �p� �d and �� associated with
its stopping criteria ��
 and �	
� We assume� on the contrary� that the algorithm never

stops and derive a contradiction�

We �rst observe that in addition to ���
 � ��

 the inequalities
�xk
Tzk � �� and k�xk�zk
k� � �� ���


hold for every k �k � �� 	� � � �
� where

�� � minf�� �p�p� �d�dg� ���


because otherwise �xk�yk�zk
 would satisfy either of the stopping criteria ��
 and �	
 for

some k� Hence� the entire sequence f�xk�yk�zk
g lies in the compact set
N � � f�x�y�z
 � N � xTz � �� and k�x�z
k� � ��g�

On the other hand� the Newton direction ��x��y��z
 determined by the system �



of equations is a continuous function of the location of �xk�yk�zk
 � N �� This is easily
seen because the coe�cient matrix on the left hand side of �

 is nonsingular for any
�xk�yk�zk
 � N �� and the coe�cient matrix as well as the right hand side of the system
�

 is continuous in �xk�yk�zk
 � N �� Therefore the Newton direction ��x��y��z
 is

uniformly bounded for all �xk�yk�zk
 over the compact set N �� Therefore we can �nd a
positive constant � such that the Newton direction ��x��y��z
 computed at Step �
of every iteration satis�es the inequalities

j  xi zi � ��xT�z�n j� � and j�xT�z j� �� ���


which will be utilized below�

Let k be �xed arbitrarily� De�ne the real�valued quadratic functions fi �i � �� 	� � � � � n
�

gp� gd� and h as follows�

fi��
 � �x
k
i � � xi
�z

k
i � � zi
� ��xk � ��x
T �zk � ��z
�n�

gp��
 � �x
k � ��x
T �zk � ��z
� �p�� � �
kAxk � bk�

gd��
 � �x
k � ��x
T �zk � ��z
� �d�� � �
kATyk � zk � ck�

h��
 � ��� ��� � 
�

�x
k
Tzk � �xk � ��x
T �zk � ��z
�

�



By ���
� we see that the terms

�� � �
kAxk � bk and �� � �
kATyk � zk � ck
coincide with

kA�xk � ��x
� bk and kAT �yk � ��y
 � �zk � ��z
� ck�
respectively� Hence� we can rewrite the relation ��
 to determine the ��k as

fi��
 � � �i � �� 	� � � � � n
�
gp��
 � � or �� � �
kAxk � bk � �p�

gd��
 � � or ��� �
kATyk � zk � ck � �d�

h��
 � ��

Remark ���� Since all the functions in the inequalities above are linear or quadratic�
we can easily compute the value of ��k by solving them for ��

We can verify that for every i �i � �� 	� � � � � n
 and � � ��� ���
fi��
 � xki z

k
i � ��zki xi � xki zi
 � �� xi zi

��
�
�xk
Tzk � ���zk
T�x� �xk
T�z
 � ����x
T�z

	
�n

� xki z
k
i � ��xki z

k
i � 
��x

k
Tzk�n
 � �� xi zi

��
�
�xk
Tzk � ��� � 
�
�x

k
Tzk
 � ����x
T�z
	
�n �by ��




� xki z
k
i ��� �
 � �
��x

k
Tzk�n� �� xi zi

��
�
�xk
Tzk�� � �
 � �
��x

k
Tzk
 � ����x
T�z
	
�n

� �xki z
k
i � ��xk
Tzk�n
�� � �
 � 
���� �
��xk
Tzk�n

�

�� xi zi � ��xT�z�n
��

� 
���� �
����n
� � ��� �by ���
� ���
 and ���



Similarly� for every � � ��� ���
gp��
 � 
��

��� ��� if gp��
 � �x
k
Tzk � �pkAxk � bk � ��

�� � �
kAxk � bk � �p if gp��
 � ��

gd��
 � 
��
�� � ��� if gd��
 � �x

k
Tzk � �dkATyk � zk � ck � ��
�� � �
kATyk � zk � ck � �d if gd��
 � ��

h��
 � �
� � 
�
�
��� ����

Hence� letting

�� � min



��


��� � �
��

n�
�

��

�

�
�
�
� � 
�
�

�

�

�
�

�



we obtain that the inequalities

fi��
 � � �i � �� 	� � � � � n
�
gp��
 � � if gp��
 � ��
��� �
kAxk � bk � �p if gp��
 � ��

gd��
 � � if gd��
 � ��
��� �
kATyk � zk � ck � �d if gd��
 � ��
h��
 � �

hold for every � � ��� ���� By the construction of the real�valued functions fi �i �

�� 	� � � � � n
� gp� gd� and h� this can be restated as� the relation ��
 holds for every � �
��� ���� Thus we have shown that the inequality ��k � �� holds for every k �k � �� 	� 	 	 	
�
Finally� by the inequality ��	
 and ��k � ���

�xk
Tzk � �� � ���
��� 
�


k���x�
Tz� �k � 	� �� � � � 
�

Obviously� the right�hand side of the inequality converges to zero as k tends to
� hence�
so does the left�hand side� This contradicts the �rst inequality of ���
�

�� Detecting Infeasibility � I

We showed in the previous section that the algorithm stops at Step 	 in a �nite number of

iterations for any small � � �� �p � �� �d � �� and any large �� � �� If the algorithm stops
with the stopping criterion ��
� we obtain an approximate optimal solution �xk�yk�zk

of the primal�dual pair of P and D� In this section and the next one we will derive
information on the infeasibility of the primal�dual pair of P and D when the algorithm
stops with the criterion �	
�

For every pair of nonnegative real numbers � and �� de�ne

S��� �
 � f�x�y�z
 � Q� � �e � x� �e � z and k�x�z
k� � �g�

We will be concerned with the question whether the region S��� �
 contains a feasible

solution �x�y�z
 of the primal�dual pair of P and D�

Theorem ���� Take positive numbers �� �� and �� satisfying

�x��y��z�
 � S��� �
 and
��
� � �x�
Tz�

�
� ���

Assume that the algorithm has stopped at Step � with the stopping criterion ���� i�e�

k�xk�zk
k� � ��� Then� the region S��� �
 contains no feasible solution �x�y�z
 of the
primal�dual pair of P and D�

�



In the remainder of this section we prove Theorem 
��� It is convenient to introduce
the following primal�dual pair of parametric linear programs with parameters 
p� 
d �
��� ���

P�
p� 
d
 Minimize c�
d
Tx

subject to Ax � b�
p
� x � ��

D�
p� 
d
 Maximize b�
p
Ty
subject to ATy � z � c�
d
� z � ��

Here�

b�

 � 
Ax� � ��� 

b�

c�

 � 
�ATy� � z�
 � �� � 

c�

We obtain from ���
 that

Axk � b �
k��Y
j��

�� � �j
p
�Ax

� � b
�

and that

ATyk � zk � c �
k��Y
j��

��� �j
d
�A

Ty� � z� � c
�

These properties were shown in the paper ���� Geometrically� this implies that the point
Axk�b lies in the line segment connecting the point Ax��b and the origin � � Rm� and
that the point ATyk�zk�c lies in the line segment connecting the point ATy��z��c
and the origin � � Rn� Speci�cally� we know that

Axk � b � � for every k � � if Ax� � b � ��

ATyk � zk � c � � for every k � � if ATy� � zk � c � ��

Hence� by de�ning


kp �


 kAxk � bk�kAx� � bk if kAx� � bk � ��
� if kAx� � bk � �� �


kd �


 kATyk � zk � ck�kATy� � z� � ck if kATy� � z� � ck � ��
� if kATy� � z� � ck � ��

we have
Axk � b � 
kp�Ax

� � b
�
ATyk � zk � c � 
kd�A

Ty� � z� � c

�

���


for each k� Thus� we can measure the primal and dual infeasibilities of the k�th iterate
�xk�yk�zk
 in terms of 
kp and 
kd� respectively� It should be noted that both of the

��



sequences f
kpg and f
kdg are monotone nonincreasing� The relation ���
 together with
xk � � and zk � � implies that �xk�yk�zk
 is an interior feasible solution of the primal�
dual pair of P�
kp� 
kd
 and D�
kp � 
kd
� We also observe that if �k

p � � � or �
k
d � � 
 holds

at a k�th iteration then� for every j �j � k � �� k � 	� � � �
� xj is a feasible solution of P
and 
jp � � � �y

j�zj
 is a feasible solution of D and 
jd � � 
�
The following lemma plays an essential role in proving not only Theorem 
�� but also

the theorems in the next section�

Lemma ���� Suppose that k�xk�zk
k� � ��� Assume that �x�y�z
 is a feasible solution
of the primal�dual pair of P�
kp� 
kd
 and D�
kp � 
kd
 satisfying

kxk� � �p� kzk� � �d� �e � x� �e � z� ���


Then
�p�d � �x

�
Tz� � ����

Proof� By ���
 and the assumption of the lemma� we see that both �xk�yk�zk
 and
�x�y�z
 are feasible solutions of the primal�dual pair of P�
kp� 
kd
 and D�
kp � 
kd
� It
follows that

A�x� xk
 � � and z � zk � �AT �y � yk
�
Hence�

�x� xk
T �z � zk
 � ��
or

xTz � �xk
Tzk � xTzk � �xk
Tz�

Thus we obtain

�p�d � �x
�
Tz� � xTz � �xk
Tzk

�since �p � kxk�� �d � kzk� and �x�
Tz� � �xk
Tzk


� xTzk � �xk
Tz

� �eTzk � �eTxk �since x � �e and z � �e


� �k�xk�zk
k� � ���

Proof of Theorem ���� Assume� on the contrary� that the region S��� �
 contains
a feasible solution ��x� �y� �z
 of the primal�dual pair of P and D� Let

x � ��� 
kp
�x� 
kpx
�� �y�z
 � ��� 
kd
��y� �z
 � 
kd�y

��z�
 and �p � �d � ��

��



Then� we can easily verify that �x�y�z
 is a feasible solution of the primal�dual pair
of P�
kp� 
kd
 and D�
kp � 
kd
� satisfying all the assumptions in ���
 of Lemma 
�	� Hence�
by Lemma 
�	� we have

��
� � �x�
Tz� � ����

which contradicts the assumption of the theorem� This completes the proof�

The conclusion of Theorem 
�� does not necessarily imply the infeasibility of the
primal problem P nor the dual problem D� That is� there may exist a feasible solution
�x�y�z
 of the primal�dual pair of P and D outside of S��� u
� Speci�cally� Theorem 
��
can not be applied to degenerate cases where both problems P and D are feasible but
P or D has no interior feasible solution� In such cases� there exists no feasible solution
�x�y�z
 � S��� �
 of the primal�dual pair of P and D for any small positive ��

	� Detecting Infeasibility � II

In order to overcome the shortcomings of Theorem 
��� we need to somewhat modify the
algorithm� The modi�cation is done by replacing Step � by Step �� below� It is designed
so that once the primal feasibility error kAxk � bk becomes less than or equal to the
tolerance �p �or the dual feasibility error kATyk � zk � ck becomes less than or equal to
the tolerance �p
 at some iteration k� the error will never be improved but maintained
from then on�

kAxj � bk � kAxk � bk if kAxk � bk � �p and j � k�

kATyj � zj � ck � kATyk � zk � ck if kATyk � zk � ck � �p and j � k�

Step ��� Let 	 � 
��x
k
Tzk�n� In the system �

 of equation� replace Axk � b by � if

kAxk�bk � �p� and replaceA
Tyk�zk�c by � if kATyk�zk�ck � �d�Compute the

unique solution ��x��y��z
 at �xk�yk�zk
 of the system �

 or its modi�cation
mentioned just above when kAxk � bk � �p and�or kATyk � zk � ck � �d�

It is easily seen that all the relations in ��	
 through ��

 and ���
 remain valid for the

sequence f�xk�yk�zk
g generated by the modi�ed algorithm� Hence� each �xk�yk�zk
 is
an interior feasible solution of the primal�dual pair of P�
kp� 
kd
 and D�
kp � 
kd
� so that
Lemma 
�	 also remains valid� The equalities in ���
� however� need some modi�cation�

For every � � ��

A�xk � ��x
� b �


�� � �
�Axk � b
 if kAxk � bk � �p�

Axk � b if kAxk � bk � �p�

AT �yk � ��y
 � �zk � ��z
� c
�



��� �
�ATyk � zk � c
 if kATyk � zk � ck � �d�

ATyk � zk � c if kATyk � zk � ck � �d�

�	



Furthermore� we can show that the modi�ed algorithm stops at Step 	 in a �nite number
of iterations� The proof is omitted here� it is similar but needs some additional arguments
to the proof given in Section � for the original algorithm�

Let

��p �



�p�kAx� � bk if kAx� � bk � ��
�
 if kAx� � bk � ��

��d �



�d�kATy� � z� � ck if kATy� � z� � ck � ��
�
 if kATy� � z� � ck � ��

Then� the stopping criterion ��
 can be rewritten as

�xk
Tzk � �� 
kp � ��p and 

k
d � ��d� �	�


Along the sequence generated by the modi�ed algorithm� we de�ne

�k � maxf� � �e � xk� �e � zkg�
�k � k�xk�zk
k� � eTxk � eTzk�

We now assume that the modi�ed algorithm has stopped at an s�th iteration with satis�
fying the criterion �	
 but not ��
� Then

k�xs�zs
k� � �� and �xs
Tzs � ���

where �� denotes the positive constant given in ���
� and one of the following four cases
occurs�


a� kAxs � bk � �p and kATys � zs � ck � �d �i�e�� 
sp � ��p and 

s
d � ��d
�


b� kAxs � bk � �p and kATys � zs � ck � �d �i�e�� 
sp � ��p and 

s
d � ��d
�


c� kAxs � bk � �p and kATys � zs � ck � �d �i�e�� 
sp � ��p and 

s
d � ��d
�


d� kAxs � bk � �p and kATys � zs � ck � �d �i�e�� 
sp � ��p and 

s
d � ��d
�

Let q be the number of the �rst iteration such that 
qp � ��p in the cases �a
 and �b
�
and r the �rst iteration number such that 
rd � ��d in the cases �a
 and �c
�

We �rst deal with the case �a
� In this case� we have

kb�
qp
� bk � �p� Ax
k � b�
qp
 for every k � q�

kc�
rd
� ck � �d� A
Tyk � zk � c�
rd
 for every k � r�

Letting � � maxfq� rg� we see that for every k � �� the modi�ed algorithm works as
Mizuno�Todd�Ye�s interior�point algorithm ���� applied to the primal�dual pair of the

��



linear programs P�
qp� 
rd
 and D�
qp� 
rd
 starting from �x��y��z�
� Their algorithm is
known to reduce the duality gap �xk
Tzk by a constant factor which is independent of
the location of the iterate �xk�yk�zk
� Hence� if we neglect the stopping criterion �	

and continue running the modi�ed algorithm beyond the s�th iteration� we eventually

obtain an �xk�yk�zk
 satisfying the stopping criterion ��
� �xk�yk�zk
 gives a desired
approximate optimal solution of the primal�dual pair of P and D�
In the case �b
� we obtain that

kb�
qp
� bk � �p�

Axk � b�
qp
 for every k � q�

kATys � zs � ck � 
sdkATy� � z� � ck � �d �i�e�� 

s
d � ��d


The second relation above together with xk � � �k � q
 implies that xk is a feasible

solution of a common primal problem P�
qp� �
 for every k � q�

Theorem 	��� Suppose that the case �b� occurs� Let � � �� and � � minf��d��� �qg�
Assume that

�� � �q� � �x�
Tz�

�
�

Then there is no feasible solution ��y� �z
 of the problem D such that k�zk� � ��

Proof� Assume� on the contrary� that there exists a feasible solution ��y� �z
 of the

problem D such that k�zk� � �� Let

x � xq� �y�z
 � �� � 
sd
��y� �z
 � 
sd�y
��z�
�

�p � �q and �d � ��

Then� we can easily verify that �x�y�z
 is a feasible solution of the primal�dual pair
of P�
sp� 
sd
 and D�
sp� 
sd
� satisfying all the assumptions in ���
 of Lemma 
�	� Hence�

�q� � �x�
Tz� � ����

which contradicts the assumption of the theorem�

Similarly� we obtain the following result�

Theorem 	��� Suppose that the case �c� occurs� Let � � �� and � � minf��p��� �rg�
Assume that

�� � �r� � �x�
Tz�

�
�

Then� there is no feasible solution �x of the problem P such that k�xk� � ��

�




It should be noted that �q and �q in Theorem ��� ��r and �r in Theorem ��	
 are not
known prior to the starting the algorithm� So� to apply Theorems ��� or ��	� we need
to adjust the values of �� and�or � during the execution of the algorithm� Finally� we
consider the case �d
�

Theorem 	��� Suppose that the case �d� occurs� Let � � �� and � � minf��p��� ��d��g�
Assume that

�� � ��

� � �x�
Tz�

�
�

Then� the set
S��� �
 � f�x�y�z
 � Q� � k�x�z
k� � �g

contains no feasible solution of the primal�dual pair of P and D�

Proof� In the case �d
� we have

kAxs � bk � 
spkAx� � bk � �p �i�e�� 

s
p � ��p
�

kATys � zs � ck � 
sdkATy� � z� � ck � �d �i�e�� 

s
d � ��d
�

Now assume� on the contrary� that there exists a feasible solution ��x� �y� �z
 of the

primal�dual pair of P and D such that k��x� �z
k� � �� Let

x � ��� 
sp
�x� 
spx
�� �y�z
 � �� � 
sd
��y� �z
 � 
sd�y

��z�
�

�p � �d � ��

Then� �x�y�z
 is a feasible solution of the primal�dual pair of P�
sp� 
sd
 and D�
sp� 
sd

satisfying all the assumptions in ���
 of Lemma 
�	� Hence�

��
� � �x�
Tz� � ����

which contradicts the assumption of the theorem�

�� Concluding Remarks�

The primal�dual interior�point algorithm for linear programs has been extended to var�
ious mathematical programming problems such as convex quadratic programs� convex

programs� linear and nonlinear complementarity problems ��
� �� �� ��� 	�� 	��� etc�
� It
is possible to apply the basic idea of controlling the step length in the way proposed
in this paper to infeasible�interior�point algorithms for such problems� Among others�
we can easily modify the infeasible�interior�point algorithm using the step length control

rule� which has been described in Section 	� so as to adapt it to the linear complemen�
tarity problem with an n � n positive semi�de�nite matrixM � �nd �x�z
 � R�n such

��



that �x�z
 � �� z � Mx � q and xTz � �� In fact� we de�ne the central trajectory
�Megiddo ����
 as the set of solutions �x�z
 � � to the system of equations

z �Mx� q and Xz � 	e

for every 	 � �� the Newton direction at a k�th iterate �xk�zk
 � � as the unique solution
��x��z
 of the system of linear equations

�z �M�x � �zk �Mxk � q�

Zk�x�Xk�z � �Xkzk � �
��x
k
Tzk�n
e�

and the neighborhood N of the central trajectory as

N � f�x�z
 � � � xizi � �xTz�n �i � �� 	� � � � � n


xTz � ��kz �Mx� qk or kz �Mx� qk � ��g�

where � � 
� � �� � � � � �� � � �� and � � ��� Starting from an arbitrary point
�x��z�
 in N � the algorithm iteratively generates a new point �xk���zk��
 such that

�xk���zk��
 � �xk�zk
 � �k��x��z
 � N �

�xk��
Tzk�� � �� � ��k�� � 
�

�xk
Tzk�

where ��k be the maximum of ���s � � such that the relations
�xk�zk
 � ���x��z
 � N �

�xk � ��x
T �zk � ��z
 � ��� ��� � 
�

�xk
Tzk�

and � � 
� � 
� � 
� � �� We could show similar results to the ones stated in Sections ��

 and �� but the details are omitted�

We called an infeasible�interior�point algorithm �an exterior point algorithm� in the
original manuscript� But many people have pointed out to us that the terminology �exte�
rior� is inappropriate because the algorithm still generates a sequence of points within the
interior of the region determined by the nonnegativity constraints and an exterior point

algorithm usually means an algorithm that relaxes the nonnegativity constrains �see� for
example� ���
� Y� Zhang proposed to use the new name �an infeasible interior�point al�
gorithm�� But it may give an impression �an infeasible algorithm� to the readers� To
avoid such an impression� we have modi�ed it to �an infeasible�interior�point algorithm��
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