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Abstract. The analytic center of a polytope P, = { > 0: Az =b, e’z =1}
is characterized by a saddle point condition

min max ¢(x = max min ¢g(x
yeRmmeSHg( ,Y) w65++yeng( ' Y)

on the Lagrangian function
g(@.y) =y (Az — b)+ > _logz;
i=1

where A € R™", b € R™, and Sy = {z > 0 : 3" ;x; = 1}. This paper
presents properties of the marginal function f(y) = max{g(x,y): x € 544} and
explores the possibilities of a Lagrangian relaxation method for approximating the
analytic center.

1. Introduction

The problem of approximating the analytic center [6] of a polytope underlies many
interior-point algorithms (see [7] and the references therein) for linear programming.
For a polytope P defined by

ale=o; (1=1,2,...,0) and bjTa: </ (3=12,....,m),
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the analytic center @ is the maximizer of
> log(; —bj )
=1

subject to
ale=o; (1=1,2,...,0) and bjTa: <B;(1=1,2,...,m).

Here @; € R", a; € R, b; € R" and j3; € R.

Consider the linear program: Minimize e¢’@ subject to & € P, where ¢ € R" and
P C R" is a polyhedral set. We assume the set of minimal solutions of the latter is
nonempty and bounded. Denote the minimal value by p*. For every p > p*, the level
set P(p) = {& € P:cle < u} is nonempty and the set consisting of the analytic centers
x(p) of the level set P(p) is a smooth curve converging to a minimal solution of the linear
program as p — p*. The set {@&(p) : ¢ > p*} is called the central trajectory or the path
of centers. Thus, tracing the central trajectory numerically, we obtain an approximate
minimal solution of the linear program. Renegar [5] proposed a polynomial-time algo-
rithm for linear programming based on successive approximations of the analytic center
x(p) for an appropriate sequence {u* > p*} converging to u*. Many other algorithms
have since then been developed along similar lines (see, e.g., the survey article [7] and its
references).

In each iteration of Newton’s method one needs to solve a linear system of equations
induced by a local linearization of the problem, which generally requires O(n?) arithmetic
operations, where n denotes the dimension of the linear system. Various numerical
methods have been developed which require O(n?) arithmetic operations per iteration
and often work on large scale nonlinear problems more efficiently than Newton’s method.

This note presents a Lagrangian relaxation method which transforms the problem of
approximating the analytic center of a polytope into an unconstrained minimization of a
strictly convex C'*° function f : R™ — R over R™. This transformation itself is standard.
It may not be powerful enough for developing a theoretically more efficient algorithm for
linear programming. Practically, however, this transformation seems attractive in the
sense that it makes possible to incorporate various unconstrained minimization methods
such as conjugate gradients methods and quasi-Newton methods into the problem of
finding the analytic center of a polytope.

2. Main Results

Let A € R™" b€ R™ and e = (1,...,1)T € R*. Consider a polytope of the form

Pi={xcR':Ax=0b, e'x =1, >0} .



Any nonempty bounded feasible region can be easily transformed into such a form. We
assume P, satisfies the following condition:

Condition 2.1. (i) Py = {® € Py : & > 0} is nonempty.

(ii) The rows of l j ] € R are linearly independent.

The analytic center of P, is defined to be the maximizer of 3°7_, logx; in P, . Define

Sy={zecR" :e'e=1,2>0 , S, ={xcS,:x>0)}
g(@,y) =y (Ax —b)+ > logz; ((,y) € Spy x B"). (1)
7=1

Here y € R™ is the Lagrange multiplier associated with Az = b. The function ¢ is the
Lagrangian. The vector & is the analytic center of Py if and only if there exists a y € R™
such that the saddle point condition

g(wvg) S g(ivg) S g(;ivy) for every Yy € R™ and ® € S-I—-I— (2)
holds. Define

¢(y) = argmax{g(z,y) : @ € Si1} and f(y) = max{g(z,y) : @ € S;+}.
Then

F(y) = o($(y),9) = 47 (Ad(y) — b) + Y log oy(y) foreveryye B*,  (3)

i=1

fy) =9z, y) <g(z,y) < f(y) forevery y € R and & = ¢(y).

The marginal function f has some nice properties given in the following theorem:

Theorem 2.2. (i) f is a C*™.

(ii) V/(y) = Ag(y) - b.
(iii) If & = ¢(y) and X = diag(x) (i.e., X is the diagonal matric with the components

of ® in its diagonal), then V*f(y) = AX (I — —) x AT,

(iv) VZf(y) is positive-definite at every y € R™, hence f is strictly convex.

Proof: See Appendix. y

We now show how to compute ¢(y). For every (x,u,y) € R} x R'"™, define

F(%u,y):(Vng(a:,y)—l-ue):(X;_le—l—ATy—l-ue)' n

etx —1 etx —1



Then the maximizer ¢(y) of g(-,y) in 5S4 is characterized by the stationarity condition

F(¢p(y),¥(y),y) =0 and &(y) >0, (5)

where (y) denotes the Lagrange multiplier associated with el = 1. The above is
reduced to

1 o )
¢](y) d](y)—¢(y) (] _1727"'7 )7 (6)
L 1
= and d — = 1 7
]Z:; T — o i(y)—¢(y) >0 =1,2,...,n) (7)
where d(y) = —A'y. The solution ¥ (y) of the equation in (7) lies in the interval

[din(y) — 1, dmin(y) — 1], where dpin(y) = min{d;(y) : 7 = 1,2,...,n}, and can be
computed by binary search over [dmin(y) —n, dimin(y)— 1] (or by Newton method practi-
cally). Therefore, given y € R™, it is easy to compute ¢(y). Both f(y) and V f(y) can
be calculated in O(n?) arithmetic operations. The computation of the V?f(y), however,
requires O(n”) operations. Also, given y € R™ and Ay, the quadratic approximation
fly) + 0V fy)' Ay + %HszTVQf(y)Ay of f(y +0Ay) in terms of the step size 6§

takes O(n?) arithmetic operations.

To summarize, the Lagrangian relaxation method transforms the problem of comput-
ing the analytic center into the unconstrained minimization of f over R™, so that & is
the analytic center if and only if y is the minimizer of f and & = @(y) is the maximizer

of g(x,y) in Sy

We now restrict attention to the steepest descent method for minimizing f.

Step 0: Let £ =1 and y' € R™.
Step 1: Let 2* = ¢(y*) and d" = -V f(y*) = —(Az* — b).
Step 2: Choose 6% > 0. Set y"™' = y" + 6*d", k =k + 1, and go to Step 1.

The following theorem indicates great flexibility with regard to step-lengths # that
ensure global convergence to y.

Theorem 2.3. If the sequence {0% > 0} is bounded, then so is {y*}.

Proof: See Appendix. y

We mention two ways of choosing #* that ensure global convergence.

Rule 1: Fix 0* > 0 and «,x € (0,1). For every k, choose 0% = x*0*, where p > 0 is the
smallest integer such that f(y* 4+ x?0<d*) < f(y*) — ax?0*||d"|>.



Rule 2: Fix 0' > 0 and « and y as in Rule 1. For every k& > 2 let

) { O f) > ft ) - afdb ),

gr—1 otherwise,

Rule 1 is Armijo’s rule (see Luenberger [3]). Rule 2 is simpler since it requires only
one evaluation of f per iteration. In both cases, {#*} is bounded. By Theorem 2.3, there
exists a compact D C R™ such that y* € D for all k. Since f is continuous, there is a
such that

f(yk)Z/i (k=1,2,...). (8)

On the other hand, since f is C, there is a positive number  such that
fly+0V1(y) < fly) = 0al|[VF(y)lPiftyc D and 0 <0 <0.
Therefore, the inequalities
0" > X0 and f(y**!) = fy" +0"d") < f(y*) - 0*al|d"|? (9)

hold for all £ in the case of Rule 1, and for every & > £* > 0 in the case of Rule 2.
Let & = 1 in the case of Rule 1. Suppose, on the contrary, that ||d*|| = ||V f(y")||
does not converge to zero. Then, we can find a 6 > 0 and an infinite subsequence K of

{k=Fk*k*41,... } such that ||d*|| > ¢ for every k € K. Hence we have by (9) that

Fy*) < f(y") — x0as® for every k € K,
Fy™") < J(y") for every k= k™.
This implies f(yk) — —o0 as k — oo, which contradicts (8). Thus, Hdk” - va(yk)H

converges to zero. Since f is strictly convex and >, we conclude that {y*} converges
to the unique minimizer of f.

3. Concluding Remarks

We obtain —V?*f(y) ™' (A¢(y) — b) as a search direction if we apply Newton’s method for
minimizing f. We can derive this direction from the stationarity condition for & € R,
to be the analytic center, i.e.,

F(x,u,y)=0, Az=b and >0 (10)

If @ = ¢(y) then all the relations in (10), except perhaps Az = b, hold for some
u € R. Hence Newton’s equations for approximating a solution of the equations in (10)
at (@, u,y) are

ATAy - X?Az + (du)e =0, AAx=b— Az and e’ Az =0.



It can be easily verified that Ay coincides with the direction —V?f(y)™'(Ad(y) — b).
This direction is closely related to the one used in the primal-dual infeasible-interior-point
algorithms of [4] and [1].

The problem of minimizing the logarithmic barrier function ¢fa — p Z logz; (@€
i=1

Piy) over Py is directly related with interior-point methods for linear programs. Here

c € R" is a constant vector and p > 0 is a parameter. We can easily adapt the Lagrange

relaxation method to this problem. In fact, if we replace the Lagrangian function ¢ (see

(1)) by

g(e,y) =y (Az —b) —c'e + ) logz; ((®,y) € S4q x REL),

i=1
all the results presented so far remain valid subject to minor modifications as follows.

T

1
e Replace the Hessian matrix of f by V*f(y) = —AX (I — g) X AT,
7 xlx

e Replace d(y) = —ATy by d(y) = ¢ — ATy, and (4), (6) and (7) by

Vzgle,y)+ ue —c+puX e+ ATy + ue
F(wvuvy):(eTi£1 ) ):(eTa:—l )

() = — P . .
¢](y)_ d](y)_¢(y) (]_1727"‘7 )7

=1 and d;(y) —¥(y) >0(=1,2,...,n)

n
J=

Y R
1 di(y) —P(y)

respectively. The solution ¥ (y) of the last equation now lies in the interval
[drin(Yy) = pts dmin(y) — p-

The efficiency of the Lagrangian relaxation method is determined by how efficiently
we can approximate y. We have shown the global convergence of the steepest descent
method. In practice, however, the steepest descent method is not expected to work
as efficiently as sophisticated methods such as conjugate directions and quasi-Newton
methods. Thus, it would be very interesting to investigate how such techniques can be
combined effectively with the Lagrangian relaxation method.
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Appendix

Proof of Theorem 2.2:

For the proof of (i), recall that @ = ¢(y), the unique maximizer of ¢(-,y) in ® € Sy4,
satisfies the stationarity condition (5). The Jacobian matrix DF (e, u,y) of F with
respect to (&, u) is

-X? e
DF(wvuvy)_( eT 0)7
which is nonsingular for & € R . Thus, by the implicit function theorem, ¢ is €.

Since f can be written as in (3), and ¢ is C*°, it follows that fis C*°. See, e.g., Appendix
A of [3].

(ii) Differentiating the equality in (3) with respect to y;, we get

f(y) dg(p(y),y) 0x;(y) N dg(P(y),y)

|
™=

dy; = Oz dy; dy;
= 0g(9(y),y) 0z;(y)
‘I’ Az - biv
]2 o, o ®(y)



where A; is the ¢th row of A. On the other hand, it follows from (5) that

Wﬂb@):@ (Gj=12,...,n)
a(p:f ) . for every y € R™.
Dy =0 (t=1,2,...,m)
Therefore,
0 n_H |
gg) - Ww); Q;J;Z)JFA@S( )= bi=Aply) —bi (1=1,2,....m)

(iii) Differentiating the equality in (5) with respect to y;

2 08(y) | 9(y)
OF($(y). v(y)y) _ | ~(2W) =5 =t 5,
Ay; eTaQb(y)
Dy

Here @(y) = diag(¢(y)). By solving the linear equations for dv(y)/dy; and d¢(y)/dy;,

we obtain that

My  oly"
" )] 2yl

e+ A

=0.

(t=1,2,...,m)

dé(y) _ _ d(y)e(y) T
o= (1- S0 >) Pl
On the other hand, we see from (ii) that
af(g;i y)) =Ap(y)—b (1=1,2,...,m).
Hence, for every ¢ (1 = 1,2,...,m) and k (k=1,2,...,m),
Pfloly) _ , 9oly) _ Yy’ T
T (I (y)%(y)) P

This implies (iii).
(iv) Let y € R™ and & = ¢(y). Obviously, V*f(y) is symmetric and positive
semi-definite. It suffices to show that there is no 0 # v € R™ for which

T T T

(1) x ATy = X (AT - T 2AY,)
T xTax

Assume, on the contrary, that such a v exists. Since X = diag(®),

T T
ATy _ T XAV _
xTx

8



This contradicts (ii) of Condition 2.1.

Proof of Theorem 2.3:

Fory € B ={y € R™ : ||ly|]| = 1}, let &(y) be the minimizer of ||£]|* subject to
A¢ =y and e'€ = 0. It follows that € : B — R" is continuous. So there is v > 0 such
that

x +v€&(y) > 0 for every y € B. (11)

Here & denotes the analytic center of Py. Since & € P, .,

Az +7€(y) —b=ry and e'(z++€(y)) =1 foreveryye B. (12)

Define positive numbers 6%, o, § and A* such that

0 = sup{#":k=1,2,...1}, (13)
a = min{zlog(l’ﬂrv&(y)):yeB}, (14)
f = max{||[Az —b|: x € 5;}, (15)
0*3* —a —nlogn
v o= {2 2, ). (16)
~
We show that
y' (Ap(y) —b) > 075% if |[y| > 1", (17)

Suppose y € B and A > A*; hence || Ay|| > A*. Since ¢(Ay) € Sy is by definition the
maximizer of g(&, A\y) in S;1, and & + v€(y) € Si+ (see (11) and (12), we get
Ay' (A(o(\y) —b)

n

> 3 log 6y () + AuT(A(® + () — b)+ 3 los(z; + 16(y))

J=1 7=1

>~ S log(1/n) + AT (1) +a (by B\y) € Sivr, (12) and (14)
7=1

> nlogn+ AX"y+a (by A > X and y € B)

> 0°3. (by (16))

Thus we have proven (17).

Now we prove that

ly*|| < A+ 078 for every k (k=1,2,...). (18)

9



By the definition (16) of A* and 6*3 > 0, we know that ||y']] < A* + 6*3. Assuming that
ly*]| < A+ 073, we will show that ||yt < \* + 0*3. By definition,

y' =yt — 0" (Ad(y") - b).
If ||ly*|| < A%, we see from (13) and (15) that
ly™ I < lly*)l + 0%l A(y") — bl < A" + 075,

If A < |jy*|| < A* + 673, then

T A 07 PYCYLS I 31
< |ly"l1? —20"(y")" (Ag(y") — b) + (0" Ag(y") — b]|)°
< ly"|I* — 200" 3% + (0" 3)* (by (15) and (17) )
< y*II* (by (13))
< N4 076.

Thus we have proven (18). This completes the proof of Theorem 2.3.
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