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Abstract� A new class of continuation methods is presented which� in partic�
ular� solve linear complementarity problems with copositive�plus and L��matrices�
Let a� b � Rn be nonnegative vectors� We embed the complementarity problem
with a continuously di�erentiable mapping f � Rn � Rn in an arti�cial system of
equations

F �x�y� � ��a� �b� and �x�y� � � � ���

where F � R�n � R�n is de�ned by

F �x�y� � �x�y�� � � � � xnyn�y � f�x��

and � � 	 and � � 	 are parameters� A pair �x�y� is a solution of the complemen�
tarity problem if and only if it solves ��� for � � 	 and � � 	� A general idea of
continuation methods founded on the system ��� is as follows�

�� Choose n�dimensional vectors a � � and b � � such that the system ��� has a
trivial solution �x��y�� for some ��� �� � 	�

�� Trace solutions of ��� from �x��y�� with � � �� and � � �� as the parameters
� and � are decreased to zero�

This idea provides a theoretical basis for various methods such as Lemke
s method
and a method of tracing the central trajectory of linear complementarity problems�
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�� Introduction

Let Rn denote the n�dimensional Euclidean space� and

Rn
� � fx � Rn � x � �g�

Rn
�� � fx � Rn � x � �g�

Let f � Rn � Rn be a C��mapping� i�e�� f is continuously di�erentiable� We de	ne the
complementarity problem 
�� � �� �� ��� ��� ��� ��� ��� with the mapping f �

CP�f � � Find a pair �x�y� � R�n such that

y � f�x�� �x�y� � � and xiyi � � �i � �� � � � � n��

We say that an �x�y� is a feasible solution �respectively� a strictly positive feasible so�
lution� of CP
f � if it satis	es y � f �x� and �x�y� � � �respectively� y � f �x� and
�x�y� � ��� When f �x� � Mx � q for some M � Rn�n and q � Rn� we call the

problem linear and otherwise nonlinear� We de	ne

LCP�M �q� � Find a pair �x�y� � R�n such that

y �Mx� q� �x�y� � � and xiyi � � �i � �� � � � � n��

For every x � Rn� we denote by X � diag x � Rn�n the diagonal matrix with the

coordinates of the vector x� De	ne the mapping F � R�n � R�n by

F �x�y� �

�
Xy

y � f �x�
�

� ���

Let a � � and b � � be vectors in Rn� We embed the problem CP
f � in an arti	cial
system of equations�

F �x�y� �
�

Xy

y � f �x�
�
�

�
�a

�b

�
and �x�y� �� �� � �� ���

Here � � � � R and � � � � R are parameters or arti	cial variables� Obviously� a pair
�x�y� � R�n solves CP
f � if and only if it solves ��� for � � � and � � ��

The system ��� provides us with a general theoretical framework for various homotopy
continuation methods 
��� ��� ��� ��� ��� ��� ��� which are often called path�following

methods� To design a continuation method� we need to specify

�i� how to choose an initial point �x��y�� together with initial values �� and �� of the
parameters � and � satisfying ���� and

�



�ii� how to decrease the parameters � and � from their initial values �� and �� to zero�

As we will see below� �i� and �ii� are closely related� We discuss �ii� 	rst�

In general� we prepare in advance two nonnegative continuous functions ���t� and ���t�
�t � �� such that ����� � ����� � �� The functions �� and �� control the decrease of the

parameters � and � as t tends to ��

F �x�y� �
�

Xy

y � f �x�
�
�

�
���t�a
���t�b

�
and �x�y� t� � ��

Alternatively� we can change the parameters � and � adaptively during the execution of
the algorithm� In this paper� however� we restrict ourselves to simple cases where the

change of the parameters � and � is governed by linear functions�

���t� � �t and ���t� � �t for every t � R��

Here � and � are nonnegative constants but at least one of them is positive� Rede	ning
�a to be a and �b to be b� we may assume without loss of generality that � � � if � � �
and � � � if � � �� respectively� Thus we have three typical models�

�a� � � � and � � �� In this case ��� turns out to be

F �x�y� �
�

Xy

y � f �x�
�
�

�
�

tb

�
and �x�y� t� � �� ���

This is the system of equations whose solution set is traced by Lemke�s method 
���
��� for LCP
M �q�� Since b � �� the set

f�x�y� t� � ���f��� � tb� t� � t � �� f ��� � tb � �g

forms a ray consisting of solutions of ���� from which Lemke�smethod starts� Several
classes of linear complementarity problems are known to be solvable by Lemke�s

method� See� for example� 
�� ��� for more details� The system ��� was also utilized
in 
�� ��� where the existence of solutions of CP
f � was investigated�

�b� � � � and � � �� In this case ��� turns out to be

F �x�y� �
�

Xy

y � f �x�
�
�

�
ta

�

�
and �x�y� t� � �� ���

Let a � �� Suppose f � Rn � Rn has the form f �x� � Mx � q for some
positive semi�de	nite M � Rn�n and q � Rn� That is� we consider LCP
M �q�

with a positive semi�de	nite matrixM � We assume that LCP
M �q� has a strictly
positive feasible solution� Then ��� has a unique solution ���t����t�� for every

�



t � �� which is smooth with respect to t � �� Furthermore� the solution curve
f���t����t�� � t � �g converges to a solution of LCP
M �q�� When we take a �
��� � � � � ��T � Rn� the trajectory is called the path of centers or the central trajectory�
which was originally studied in the context of linear and convex programs 
���

�� and later extended to LCP
M �q�� The existence of the path of centers leading
to a solution of LCP
M �q� was shown independently in 
�� ��� ���� See also 
���
���� The path of centers has played an essential role in the design of many interior
point path�following methods for linear programs 
��� ��� ��� ���� convex quadratic

programs 
��� ��� and LCP
M �q� 
��� ����
�c� � � � and � � �� In this case ��� turns out to be

F �x�y� �
�

Xy

y � f �x�
�
�

�
ta

tb

�
and �x�y� t� � �� ��

The homotopy continuation method given in 
��� for the nonlinear CP
f � utilizes

this system� Let x� � � and take a su�ciently large y� such that y� � f�x�� � ��
De	ne a �X�y�� b � y� � f �x�� and t� � �� Then the point �x��y�� t�� satis	es
��� The existence of the trajectory starting from �x��y�� t�� and leading to a

solution of CP
f � was shown in 
��� when f is a monotone mapping� and in 
���

when f is a uniform P �function� The existence of the trajectory as well as a
numerical method for tracing it was studied in 
��� for more general P��function
cases�

It is interesting to compare ��� of �a� with �� of �c�� Both contain the subsystem
y � f�x� � tb� The only di�erence lies in the choice of a� if we take a to be � in

Xy � ta of ��� we obtain ���� This implies that the model �a� is an extreme variant
of �c�� On the other hand� Kojima� Megiddo and Noma 
��� took a strictly positive a
in their homotopy continuation method for CP
f �� which may be regarded as another
extreme variant of �c�� One purpose of the present paper is to investigate general cases

where some components of a are zero and the others are positive�

So far� the studies of both the interior point path�following method in the model �b�
and the homotopy continuation method in the model �c� were limited to the class of
complementarity problems with P��functions �P��matrices in linear cases�� See 
��� ���

��� ���� On the other hand� Lemke�s method 
��� in �a� solves linear complementarity
problems with larger classes of matrices� some of which are not contained in the class P��
The classes of L��matrices 
�� and copositive�plus matrices 
��� fall in this category� An�
other purpose of this paper is to 	ll this gap� We will apply the model �c� to LCP
M �q�

with an L��matrixM and a copositive�plus matrixM �

�



	� Compactifying the domain of the parameter t

De	ne G � R�n � R�n by

G�x�y� �

�
Xy � a
y � b

�
�

Let H � R�n� 
�� ��� R�n be a convex homotopy between the mappings F � R�n � R�n

and G � R�n � R�n given by

H�x�y� �� � ��� ��G�x�y� � �F �x�y�

�

�
Xy � �a

y � �� � ��f �x�� �b

�
� ���

Consider the system

H�x�y� �� � �� �x�y� � � and � � 
�� ��� ���

This system serves as a continuous deformation from the arti	cial system of equations

G�x�y� � � and �x�y� � ��

which has a known solution �B��a� b� �where B � diag b� into the system

F �x�y� � � and �x�y� � ��

which is equivalent to CP
f ��

We will show below that ��� is equivalent to ��� De	ne � � R�n �R� � R�n � 
�� ��
by

��x�y� t� �
�
x� �

��t
y� t

��t

�
for every �x�y� t� � R�n �R��

Apparently� � is a di�eomorphism from R�n �R� onto R�n � 
�� ��� We have

�i� �x�y� t� is a solution of �� if and only if ��x�y� t� is a solution of ����

and

�ii� every solution �x�y� �� of ��� such that � � � is mapped di�eomorphically to a

solution ����x�y� �� �
�
x� �

���
y� �

���

�
of ���

To show the equivalence between �� and ���� we also need to consider solutions of

��� on the hyperplane f�x�y� �� � � � �g� Recall that we have assumed b � �� Hence� if
we 	x � to be �� then ��� has a unique solution ��x� �y� �� � �B��a� b� ��� This solution of





��� corresponds to a �limit� of solutions of �� rather than a particular solution thereof�
as we show below�

We observe that

DH��x� �y� �� �

�
B B��A

� I

�

�i�e�� the Jacobian matrix of the mappingH with respect to the vector �x�y� at ��x� �y� �� �
�B��a� b� ��� is nonsingular� Here A � diag a� B � diag b� and I � Rn�n is the identity�
Hence� by the implicit function theorem� for every � su�ciently close to �� ��� has a
unique solution �x����y���� ��� which is smooth in the parameter �� in a neighborhood

of ��x� �y� �� such that �x����y���� � ��x� �y�� Thus� there always exists a trajectory of the
form

T� � f�x����y���� �� � �� 	 � � � �g
in a neighborhood of the known solution ��x� �y� �� for some 	 � �� Therefore�

�iii� the set

f����x����y���� �� � �� 	 � � � �g �
n�
x���� �

���
y���� �

���

�
� �� 	 � � � �

o
forms a trajectory consisting of solutions of �� such that ��x�y� t� converges to
a unique solution ��x� �y� �� of ��� on the hyperplane f�x�y� �� � � � �g along the
trajectory as t tends to in	nity�

We can also see that

�iv� if f�xp�yp� tp�g is a sequence of solutions of �� such that tp tends to in	nity
and xp converges to some �x � Rn as p tends to in	nity� then ��xp�yp� tp� � T�

for every su�ciently large p and ��xp�yp� tp� converges to the unique solution
��x� �y� �� � �B��a� b� �� of ��� on the hyperplane f�x�y� �� � � � �g�

Roughly speaking� the domain 
���� of the parameter t in �� has been compacti	ed
into the domain 
�� �� of the parameter � in ���� In the remainder of the paper� we will

deal with ��� instead of �� since the former is mathematically easier to handle�


� Existence of a trajectory

Let S denote the set of solutions �x�y� �� of ��� such that � � ��

S � f�x�y� �� �H�x�y� �� � �� �x�y� � �� � � � � �g�
The unique solution ��x� �y� �� � �B��a� b� �� of ��� on the hyperplane f�x�y� �� � � � �g�
as well as the trajectory T� emanating from the point ��x� �y� ��� are contained in the set

S� Let T denote the connected component of S which contains T��

The following theorem ensures that the set T generically forms a trajectory�

�



Theorem 
��� Let a � Rn
� be �xed� Then� for almost every b � Rn

��� the set T forms

a trajectory� a ��dimensional manifold which is homeomorphic to ��� ��� such that

T � f���s����s�� 
 �s�� � � � s � �g
and lims�� 
 �s� � � whenever T is bounded� Here � � ��� �� � Rn� � � ��� �� � Rn and


 � ��� ��� ��� �� are piecewise C��mappings� or C��mappings when a � ��

Proof� The proof of the theorem is divided into two parts� First� we reformulate the
set S in terms of the solution set of a system consisting of n piecewise C� equations
and n � � variables� Later� we will utilize the notion of a regular value of a piecewise

C��mapping to show that generically the set of the solutions of the system of piecewise
C� equations is a disjoint union of ��dimensional piecewise smooth manifolds� The
	rst part is interesting in its own right� But the second part� which requires some
other notions such as a polyhedral subdivision of Rn and a piecewise C��mapping on

it� would be lengthy but rather standard in the theory of continuation methods 
�� ��
���� so we omit the details of the second part� See� for example� 
�� ���

For every � � R and u � �u�� � � � � un�T � Rn� we use the notation

�� � maxf�� �g� �� � minf�� �g and u� � �u�� � � � � � u
�
n ��

The correspondences u � u� and u � u� should be regarded as piecewise linear
mappings from Rn into itself� For every u � Rn� obviously�

u� � �� ��u�� � � and u�i u
�
i � � �i � �� � � � � n��

With u� and u� we can rewrite CP
f � as the system consisting of n piecewise
C� equations and n variables u�� � � � � un�

u� � f �u�� � ��

This formulation of CP
f � was given in 
��� See also 
���� When we consider LCP
M �q��
the system above turns out to be piecewise linear�

u� �Mu� � q � ��

Smale 
��� proposed a �regularization� of the piecewise linear system for applying
Newton�s Method to LCP
M �q�� According to the analysis given in 
��� on Smale�s
regularization technique� we will apply the regularization technique to CP
f �� and

derive another representation of the set S of solutions �x�y� �� of ��� such that � � ��
For every � � �� a � �a�� � � � � an�T � Rn

� � � � R and u � �u�� � � � � un�T � Rn� de	ne

������� �
� �p�� � ��

�
and

���u�a� � ����u�� a��� � � � � �
��un� an���

�



Then ���u�a� and ���u�a� are piecewise C� mappings �or C� mappings when a � ��
from Rn into itself such that

���ui� ai� � � � ����ui� ai� � � � and ���ui� ai������ui� ai�� � ai

�i � �� � � � � n�� Speci	cally�

���u��� � u� for every u � Rn�

Now we consider the system

���u� �a� � �� � ��f����u� �a�� � �b � � and �u� �� � Rn � 
�� ��� ���

The system ��� is equivalent to ��� in the sense that �u� �� is a solution of ��� if and only
if �x�y� �� � ����u� �a������u� �a�� �� is a solution of ���� To prove the theorem� we

are only concerned with the set of solutions �u� �� of ��� with � � �� Hence� de	ning
the piecewise C��mapping P � Rn � ��� ��� Rn by

P �u� ��a� �
���u� �a� � �� � ��f ����u� �a��

�
for every �u� �� � Rn � ��� ���

we will rewrite ��� as

P �u� ��a� � �b and �u� �� � Rn � ��� ���

When the vector a is strictly positive� the mapping P � Rn���� ��� Rn is C� over Rn�
When some of the components of a � � are zero� however� the mapping P is generally

a piecewise C��mapping such that it is C� on each set of the form Q� ��� ��� where Q
denotes an orthant of Rn� Let �S denote the set of solutions of the system above�

�S � f�u� �� � Rn � ��� �� � P �u� ��a� � �bg�
Then �u� �� � �S if and only if ����u� �a������u� �a�� �� � S� Note that the corre�
spondence

�u� �� � �S �� ����u� �a������u� �a�� �� � S

is one�to�one and piecewise C�� Speci	cally� the set T corresponds to the set

�T � f�u� �� � u � x� y� �x�y� �� � Tg�
Conversely� the set T can be represented as

T � f����u� �a������u� �a�� �� � �u� �� � �Tg�
We also see that T is bounded if and only if �T is�

Consequently� the theorem follows from the result on regular values of piecewise
C��mappings�

�



�a�� Almost every �b � � is a regular value of the piecewise C��mapping P �
�b�� If �b is a regular value of the piecewise C��mapping P then �S is disjoint union

of smooth ��dimensional manifolds� speci	cally its connected component �T forms a
piecewise smooth trajectory �or a smooth trajectory when a � �� such that either

kuk tends to in	nity or � tends to � along the trajectory �T �

In view of Theorem ���� we know that the set T generically forms a smooth or piece�
wise smooth trajectory� Furthermore� if the trajectory T is bounded� we guarantee that

it will lead us to a solution of CP
f �� The boundedness of S� which ensures the bound�
edness of T � will be discussed in the next section� In general� the trajectory T may not
converge to any �x�y� ��� It should be noted� however� that since T is bounded� there

exists at least one limit point as � tends to � along the trajectory� and every limit point
is a solution of CP
f ��

�� Sucient conditions for boundedness of the trajectory T

The following theorem can be derived easily from the Theorem of 
��� and the relations
�i� � �iv� of ��� and ��� which we established in Section ��

Theorem ���� Let a � � and b � �� Suppose that f � Rn � Rn is a uniform

P �function� i�e�� there exists a positive number  satisfying

max
i

�x�i � x�i ��fi�x
��� fi�x

��� � kx� � x�k� for every x�� x� � Rn�

Then the set S is bounded� Furthermore� for each �xed � � 
�� ��� ��� has a unique

solution ������������ which is continuous with respect to the parameter � � 
�� ��� hence
the set T � as well as the set S can be written as

T � S � f����������� �� � � � � � �g� ���

We call a continuous mapping f � Rn � Rn monotone if

�x� � x��T �f �x��� f �x��� � � for every x�� x� � Rn�

The problem CP
f � with a monotone function f has an important application to convex
programs� See� for example� 
��� ����

Theorem ��	� Let a � � and b � �� Suppose that the mapping f � Rn � Rn is

monotone and that CP
f � has a strictly positive feasible solution� Then S is bounded�

If a � � then� for each �xed � � ��� ��� ��� has a unique solution ������������ which is

continuous with respect to the parameter � � ��� ��� hence the set T as well as the set S

can be written as in ����

�



Proof� Let ��x� �y� be a strictly positive feasible solution of CP
f �� De	ne the positive
numbers � and � by

� � minfbi� �xi� �yi � i � �� � � � � ng�
� � maxfbi� �xi� �yi � i � �� � � � � ng�

Suppose that �x�y� �� � S� Then� by the monotonicity of f � we have

� � ��� ���x� �x�T �f �x�� f ��x��
� �x� �x�T �y � �b� ��� ���y�� ����

Let e � ��� � � � � ��T � Rn� Then

��eTx� eTy� � ��b� ��� ���y�Tx� �xTy �by the de	nition of ��

� xTy � �xT ��b� ��� ���y� �by �����

� eTa� n�� �by Xy � �a and the de	nition of ���

Thus we have shown that S is contained in the bounded set

f�x�y� �� � R�n��
� � eTx� eTy � �eTa� n������ � � �g�

The second assertion of the theorem follows from Corollary ��� of 
��� and the relations
�i� � �iv� of the ��� and ��� which we established in Section ��

In the remainder of this section� we consider LCP
M �q� withM � Rn�n and q � Rn�
Then the mapping H � R�n � 
�� ��� R�n de	ned by ��� turns out to be

H�x�y� �� �

�
Xy � �a

y � �� � ���Mx� q�� �b

�
�

The matrixM is called a P �matrix if all its principal minors are positive� and a positive

semi�de�nite matrix if xTMx � � for every x � Rn� Suppose f �x� � Mx� q �where
q � Rn�� It is well�known that M is a P �matrix �respectively� positive semi�de	nite� if

and only if f is a uniform P �function �respectively� a monotone mapping�� Therefore� as
a corollary of the theorems above� we obtain�

Corollary ��
� Let a � � and b � �� Suppose

�i� M is a P �matrix� or

�ii� M is a positive semi�de�nite matrix and LCP
M �q� has a strictly positive feasible

solution�

Then the set S � f�x�y� �� �H�x�y� �� � �� �x�y� � �� � � � � �g is bounded�

��



The results above will be generalized in Theorems �� and ����

Lemma ���� Let a � � and b � �� Suppose that the set S � f�x�y� �� � H�x�y� �� �
�� �x�y� � �� � � � � �g is unbounded� Then there exist 	 � � and ����� � R�n such

that

eT� � �� �i�i � � �i � �� � � � � n�� � �M� � 	b and ����� � �� ����

Proof� By the assumption� there exists a sequence f�xp�yp� �p�g 	 S such that
limp�� e

Txp ��� Hence� for p � �� �� � � � � we have

xp
iy

p
i � �pai �i � �� � � � � n�� ����

yp � ��� �p��Mxp � q� � �pb� ����

�xp�yp� � �� ����

Since �p lies in the interval ��� �� �p � �� �� � � � �� we can take a subsequence of

f�xp�yp� �p�g such that �p converges to some �� � 
�� �� along the subsequence� For
simplicity of notation� we assume that the sequence itself converges to some �� � 
�� ���
We 	rst deal with the case that � � �� � �� From the relations ����� ���� and ����

above� we have

xp
i

eTxp

ypi
eTxp

�
�pai

�eTxp��
�i � �� � � � � n��

yp

eTxp
�

�� � �p��Mxp � q� � �pb

eTxp
�

�xp�yp�

eTxp
� ��

Choosing an appropriate subsequence if necessary� we may assume without loss of

generality that
xp

eTxp
converges to some � � Rn such that eT� � �� Hence� taking the

limit in the above relations as p tends to in	nity� we have

�i�
�
i � � �i � �� � � � � n�� �� � ��� ���M� and ������ � �

for some ��� Thus� letting � �
��

�� ��
and 	 � �� we obtain �����

Now we deal with the case that �� � �� Assume that k�� � �p�xpk converges to
zero� Then we see from ���� that yp converges to b� Hence� it follows from ���� that xp

converges to B��a� This contradicts the assumption that the sequence f�xp�yp� �p�g is
unbounded� Therefore we only have to deal with the case where either for some � � ��

lim
p��

�� � �p�eTxp � � ���

��



or
lim
p��

�� � �p�eTxp �� ����

On the other hand� it follows from ����� ���� and ���� that

�� � �p�xp
i

�� � �p�eTxp

ypi
�� � �p�eTxp

�
��� �p��pai

���� �p�eTxp��
�i � �� � � � � n��

yp

�� � �p�eTxp
�
M�� � �p�xp � �� � �p�q � �pb

��� �p�eTxp
�

��� � �p�xp�yp�

�� � �p�eTxp
� ��

We may further assume without loss of generality that
��� �p�xp

�� � �p�eTxp
converges to some

�� Thus� taking the limit as p tends to in	nity above� we obtain ���� with 	 �
�

�
if

��� occurs and 	 � � if ���� occurs� This completes the proof�

A matrix M � Rn�n is called an L��matrix if for every nonzero � � �� there is an
index i such that �i � � and 
M��i � �� where 
M��i denotes the ith component of the
vectorM�� The corresponding class L� contains the class of P �matrices since the latter

are characterized by the condition that for every nonzero � � Rn� there is an index i such
that �i
M��i � � �see 
���� If M is an L��matrix� LCP
M �q� always has a solution for
any q �see 
����

A matrixM � Rn�n is called copositive if xTMx � � for every x � �� The matrix

M is called copositive�plus if it is copositive and

x � � and xTMx � � always imply xT �M �MT �x � � �

The class of copositive�plus matrices contains the class of positive semi�de	nite matrices�
It is well�known that LCP
M �q� has a solution if and only if it is feasible� i�e�� there is
an ��x� �y� such that �y �M �x� q and ��x� �y� � �� It should be noted that the existence

of a solution depends on the constant vector q� But Lemma ��� does not involve the
constant vector q� This suggests that we cannot apply Lemma ��� directly to LCP
M �q�
to show the boundedness of S� We need to transform LCP
M �q� into an equivalent linear
complementarity problem� to which we will apply Lemma ����

We assume below that the matrixM is either an L��matrix or a copositive�plus one�

Theorem ���� Let a � � and b � �� Suppose that M is an L��matrix� Then the set

S � f�x�y� �� �H�x�y� �� � �� �x�y� � �� � � � � �g is bounded�

��



Proof� Assume� on the contrary� that S is unbounded� By Lemma ���� there exist a
nonnegative number 	 and an ����� � R�n satisfying ����� It follows that

eT� � �� � � � and �i
M��i � ��i	bi � � �i � �� � � � � n��

This contradicts the assumption that M is an L��matrix�

Consider now the problem LCP
M �q� with a copositive�plus matrix� Let

M � �M � qqT �

The following lemma shows that LCP
M �q� is equivalent to LCP
M ��q� whenever M
is copositive�plus�

Lemma ���� Suppose M is copositive�plus�

�i� If there is a nonzero � � Rn such that

� � �� M� � �� �TM� � � and qT� � ��

LCP
M �q� has no feasible solution�

�ii� If there is a nonzero � � Rn such that

� � �� M� � �� �TM� � � and qT� � ��

LCP
M �q� has no strictly positive feasible solution�

�iii� If �x�y� is a solution of LCP
M �q� then �� qTx � � and �x��y�� �
�x�y�

� � qTx is a

solution of LCP
M ��q��

�iv� Suppose that �x��y�� is a solution of the LCP
M ��q�� If � � qTx� � � then

�x�y� �
�x��y��

� � qTx�

is a solution of the LCP
M �q�� If � � qTx� � � then LCP
M �q� has no feasible

solution�

Proof� �i� and �ii�� Since M is copositive�plus� we see from the assumption that
�M �MT �� � �� Hence� by the second relation of �i� �or �ii��� we have �TM � �� If�
on the contrary� LCP
M �q� has a feasible solution or� respectively� a strictly positive

feasible solution �x�y�� then

� � �Ty � �TMx� qT� � �

��



or� respectively�
� � �Ty � �TMx� qT� � � �

This is a contradiction� Thus we have shown �i� and �ii��
�iii�� SinceM is copositive�plus� we have xTMx � �� On the other hand� we see

� � xTy � xTMx � qTx� Hence qTx � �� which implies � � qTx � �� Obviously�
�x��y�� � � and x�iy

�
i � � �i � �� � � � � n�� We also see that

M �x� � q � M
x

�� qTx �
qTx

� � qTxq � q

� M
x

�� qTx �
�

� � qTxq � y� �

Thus we have shown that �x��y �� is a solution of the LCP
M ��q��
�iv�� The 	rst assertion of �iv� is easily veri	ed� To see the second assertion of

�iv�� assume that � � qTx� � �� Obviously qTx� � ��� By the de	nition of M ��

y� �Mx� � �� � qTx��q �

Hence

� � �x��Ty� � �x��TMx� � �� � qTx��qTx��

SinceM is copositive�plus� we also have �x��TMx� � �� Hence

� � qTx� � ��x��TMx�

qTx�
� ��

which together with � � qTx� � � implies � � qTx� � �� Therefore�

x� � �� y� �Mx� � �� �x��TMx� � � and qTx� � ��

By �i�� we conclude that LCP
M �q� has no feasible solutions�

Let
S � � f�x�y� �� � R�n

� � ��� �� �H ��x�y� �� � �g�
where

H ��x�y� �� �

�
Xy � �a

y � �� � ���M �x� q�� �b

�
�

Now we are ready to apply Lemma ��� to LCP
M ��q��

Theorem ���� Let a � � and b � �� Suppose that

�i� M is copositive�plus� and

�ii� LCP
M �q� has a strictly positive feasible solution�

��



Then S� is bounded�

Proof� Assume� on the contrary� that S� is unbounded� Then� by Lemma ���� we can
	nd a nonnegative 	 and ����� � R�n such that

eT� � �� �i�i � � �i � �� � � � � n�� � �M �� � 	b and ����� � ��

Hence� by the de	nition of M ��

� � �T� � �TM� � �qT��� � 	bT��

Each of the terms on the right�hand side is nonnegative� so they are all zeros� Since

� � b and � � � 
� �� it follows that bT� � �� Hence 	 must be zero� Therefore we
obtain

� � �� M� � �� �TM� � � and qT� � ��

By Lemma ���� we see that LCP
M �q� has no strictly positive feasible solutions� This

contradicts the assumption �ii��

It is known that LCP
M �q� has a solution� which can be computed by Lemke�s
method� under the assumption �i� above and

�ii�� LCP
M �q� has a feasible solution�

The assumption �ii�� is weaker than �ii� in the theorem� The combination of assumptions
�i� and �ii�� is not su�cient to ensure the boundedness of S�� When S� is unbounded�
either LCP
M �q� has no feasible solutions or the solution set of LCP
M �q� is unbounded�

In the remainder of this section� we will investigate these two cases in detail�

We consider a sequence f�xp�yp� �p�g 	 S�� By the de	nition of S�� each �xp�yp� �p�
satis	es

yp � �� � �p�fMxp � �� � qTxp�qg� �pb� ����

�xp�yp� � ��

xp
i y

p
i � �pai �i � �� � � � � n�� ����

It follows from the relations above that

eTa � �peTa

� �xp�Typ

� ��� �p��xp�TMxp � �� � �p��� � qTxp�qTxp � �pbTxp�

�



Each term on the last equality satis	es

��� �p��xp�TMxp � �� �sinceM is copositive�plus�

��� �p��� � qTxp�qTxp � ��� �p

�
� ��

�
�

�pbTxp � ��

Hence

�peTa�
� � �p

�
� ��� �p��xp�TMxp� ����

�peTa � ��� �p��� � qTxp�qTxp� ����

�peTa�
� � �p

�
� �pbTxp� ����

Assume now that k�xp�yp�k tends to in	nity as p tends to in	nity� We see from ����
that kxpk tends to in	nity with p� hence also bTxp tends to in	nity with p� Thus� by

�����
lim
p��

�p � � �

We know by this relation and ���� that the sequence fqTxpg is bounded and that every
limit point of the sequence lies in 
��� ���

Assuming �� is a limit point of fqTxpg� we will show that LCP
M �q� has no feasible
solutions� For simplicity of notation� we further assume that fqTxpg itself converges to
��� Since limp�� �p � �� it follows from ���� that for each i� at least one of xp

i and ypi
converges to zero as p tends to in	nity� Let

I� � fi � lim
p��

xp
i � � � I� � fi � � � i � n� i 
� I�g� ����

J� � fj � lim
p��

ypj � � � J� � fj � � � j � n� j 
� J�g� ����

Then I� � J� � f�� � � � � ng and I� � J� � � Let I j and M i denote the j�th column of

the identity and the i�th column of M � respectively� De	ne the set

A �

��
�
X
j�J�

�
Ij
�

�
�j �

X
i�I�

�
M i

�qi

�
�i � �i � � �i � I��� �j � � �j � J��

��
	 �

By ����� we see that the vector

�X
j�J�

�
Ij
�

�
ypj �

X
i�I�

�
M i

�

�
�� � �p�xp

i �

�
��� �p��� � qTxp�q � �pb

��� �p�
P

i�I� qix
p
i

�

��



is in A� Note that the vector converges to

�
�

��
�
as p��� which belongs to A since

A is closed� Therefore� there exist �i � � �i � I�� and �j � � �j � J�� such that

X
j�J�

�
I j

�

�
�j �

X
i�I�

�
M i

�qi

�
�i �

�
�

��
�
�

Letting �i � � �i � I��� we obtain the vector � � ���� � � � � �n�T such that

� � �� M� � �� �TM� � � and qT� � ���

Hence� by Lemma ���� LCP
M �q� has no feasible solutions�

Thus� we have shown that if �� is a limit point of fqTxpg� then LCP
M �q� has no
feasible solutions� This implies that if LCP
M �q� has a feasible solution then we can take

an � � � such that for all su�ciently large p� � � qTxp � �� Therefore� for all su�ciently
large p� we may regard

��xp� �yp� �

�
��� �p�xp

� � qTxp
�

yp

� � qTxp

�

as an approximate solution of LCP
M �q� because it satis	es

�yp �M �xp � �� � �p�q �
�p

� � qTxp
b�

lim
p��

�p

� � qTxp
b � �

��xp� �yp� � ��

lim
p��

�xp
i �y

p
i � � �i � �� � � � � n��

More precisely� if we de	ne the index sets I� and J� as in ���� and ����� we can similarly

prove that LCP
M �q� has a solution �x�y� satisfying xi � � �i � I�� and yj � � �j � J���

�� Concluding remarks

�A� The system ��� can be partitioned into two subsystems�

Xy � �a and �x�y� � �� ����

and

y � �� � ��f �x� � �b�

��



It was shown in 
��� that ���� is closely related to the logarithmic barrier function method�
Consider the problem�

Minimize xTy � �
nX

i��

ai log xiyi

subject to �x�y� � ��

It is easily seen that �x�y� is a global minimum solution of the problem if and only if it
satis	es ����� This implies that if ��� has a solution� then �x�y� is a solution of ��� if
and only if it is a global minimum solution of the problem�

Minimize xTy � �
nX

i��

ai log xiyi

subject to y � �� � ��f�x� � �b�

�x�y� � ��

�B� The reader may be interested in extending the framework presented so far� Recall

that the system

H�x�y� �� � ��� ��G�x�y� � �F �x�y� � � and �x�y� �� � R�n
� � 
�� �� ���

with the parameter � decreasing from � to � serves as a continuous deformation from the
arti	cial system

G�x�y� �
�
Xy � a
y � b

�
� � and �x�y� � R�n

� �

which has a known unique solution� into

F �x�y� �
�

Xy

y � f�x�
�
� � and �x�y� � R�n

� �

which is equivalent to CP
f �� As a natural extension� we may replace the mapping G

above by

G�x�y� �

�
Xy � a
y � g�x�

�
�

where g � Rn � Rn� To ensure the uniqueness of the solution of the resulting arti	cial
system

H�x�y� �� �G�x�y� �
�
Xy � a
y � g�x�

�
� � and �x�y� � R�n

� ����

and the boundedness of the set S of solutions �x�y� �� of ��� with � � �� we need to
impose appropriate assumptions on the mapping g�

��



Such an extension is especially useful when we deal with the problem LCP
M �q�
associated with a bimatrix game 
���� where M and q are of the form

M �



O A

BT O

�
and q � �e � ���� � � � � ��T � Rn�

Let a � �� and
g�x� � x� e �

Then we can easily verify that ���� has a unique solution and that the set S of all solutions
�x�y� �� of ��� is bounded�
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