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Abstract� A complementarity problem with a continuous mapping f from
the n�dimensional Euclidean space Rn into itself can be written as the system of
equations

F �x�y� � � and �x�y� � ��

Here F is the mapping from R�n into itself de�ned by

F �x�y� � �x�y�� x�y�� � � � � xnyn�y � f�x�� for every �x�y� � ��

Under the assumption that the mapping f is a P��function� we study various aspects
of homotopy continuation methods that trace a trajectory consisting of solutions
of the family of systems of equations

F �x�y� � t�a� b� and �x�y� � �

until the parameter t � � attains �� Here �a� b� denotes a �n�dimensional constant
positive vector� We establish the existence of a trajectory which leads to a solution
of the problem� and then present a numerical method for tracing the trajectory�
We also discuss the global and local convergence of the method�
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�� Introduction

Let Rn denote the n�dimensional Euclidean space� We use the notation Rn
� for the

nonnegative orthant fx � Rn � x � �g and Rn
�� for the positive orthant fx � Rn � x �

�g of Rn� The complementarity problem CP �f � with respect to a continuous mapping
f � Rn � Rn �see	 for example	 Cottle ���	 Karamardian �
�	 Kojima ���	 Lemke and
Howson ����	 etc�
 is de�ned to be the problem of �nding a z � R�n such that z �

�x�y
 � �� y � f �x
 and xiyi � � �i � �� �� � � � � n
� Under the nonnegativity condition
z � �x�y
 � �	 the complementarity condition xiyi � � �i � �� �� � � � � n
 can be rewritten
as the condition that the inner product x � y � xTy is equal to zero� We say that the
CP �f � is linear if the mapping f is a linear mapping of the form f �x
 � Mx � q for

some n � n matrix M and q � Rn	 and nonlinear otherwise� A feasible solution is a
z � �x�y
 � R�n satisfying the nonnegativity condition z � �x�y
 � � and the equality
y � f �x
� To distinguish a solution of the CP �f � from a feasible solution	 we often call
a solution of the CP �f � a complementary solution� We use the symbols S��f � for the

set of all the feasible solutions	 and S���f � for the set of all the strictly positive feasible
solutions�

S��f � � fz � �x�y
 � R�n
� � y � f �x
g�

S���f � � fz � �x�y
 � S��f � � �x�y
 � �g�

This paper studies homotopy continuation methods for nonlinear complementarity
problems	 which were originally developed for linear programs �Gonzaga ���	 Kojima	
Mizuno and Yoshise ����	 Monteiro and Adler ����	 Renegar ����	 Vaidya ��
�	 etc�
	 and

then extended to linear complementarity problems �Kojima	 Mizuno and Yoshise ����	
Megiddo ����
 and nonlinear complementarity problems �Kojima	 Mizuno and Noma ����
���
� See also Jarre ���	 Mehrotra and Sun ����	 Monteiro and Adler ����	 Ye ���� for
extensions to quadratic programs� A common basic idea of the algorithms in this class

is tracing the path of centers �or analytic centers
 of polytopes which leads to solutions�
This idea was proposed by Sonnevend ����	 and the �rst polynomial time algorithm in
this class was given by Renegar ����� We also refer to Megiddo ���� who generalized the
idea to linear complementarity problems and	 in particular	 to linear programs in the

primal�dual setting�

We describe an outline of the homotopy continuation method for the CP �f �� Let
X � diag x denote the n � n diagonal matrix with the coordinates of a vector x � Rn�

De�ne the mapping F from R�n
� into Rn

� �Rn by

F �z
 � �Xy�y � f �x

 for every z � �x�y
 � � ��


to rewrite the CP �f � into the system of equations�

F �z
 � � and z � �x�y
 � �� ��


�



Let c � �a� b
 � Rn
�� �Rn� Consider the family of systems of equations with a nonneg�

ative real parameter t�
F �z
 � tc and z � �x�y
 � �� ��


Obviously	 the system ��
 with the parameter t � � coincides with the system ��
 or the
CP �f �� Let

C � ftc � t � �g�
Under certain assumptions	 the system ��
 has a unique solution z�t
 for each positive t
such that z�t
 is continuous in the parameter t� hence the set

F���C
 � fz � R�n
� � F �z
 � tc for some t � �g � fz�t
 � t � �g

forms a trajectory	 a one�dimensional curve� Furthermore	 z�t
 leads to a solution of the
system ��
 as t tends to �� Suppose that we know a point z�t�
 � F ���C
 in advance�

Thus	 if we start from the known point z�t�
 and trace the trajectory F���C
 until the
parameter t attains zero	 we get a solution of the system ��
 or a complementary solution
of the CP �f ��

There are several questions arising from the continuation method described above�
Theoretically	 we have to establish the existence of a trajectory consisting of solutions
of the system ��
� We have to study the limiting behavior of the trajectory as the
parameter t approaches zero� In addition	 we need to show how to prepare an initial

point z�t�
 � F���C
 as well as how to trace the trajectory F���C
 numerically� Global
and local convergence of the method should be discussed too� These questions have been
answered partially for some special cases�

We �rst consider the case where f is a linear mapping	 f�x
 � Mx � q	 with a
positive semi�de�nite matrix M 	 i�e�	 x � �Mx
 � � for every x � Rn� As a special case
of ��
	 consider the family of systems of equations with a nonnegative real parameter t�

F �z
 � t�e��
 and z � �x�y
 � �� ��


Here e � ��� � � � � �
 � Rn� Suppose that the set S���f � of all the strictly positive feasible
solutions of the CP �f � is nonempty� Then the set of the solutions z of the system ��
 with
the positive t�s forms a trajectory fz�t
 � t � �g which converges to a complementary

solution of the CP �f � as t tends to zero �Megiddo ����
� In this case the trajectory can
be regarded as a generalization of the path of centers of a system of linear inequalities�
The algorithm given by Kojima	 Mizuno and Yoshise ���� computes a complementary

solution of the CP �f � by tracing the path of centers numerically�

The system ��
 can be rewritten as

y �Mx� q� Xy � te and z � �x�y
 � ��

Hence the solution z�t
 of the system ��
 is restricted to running in the relative interior
S���f � of the �xed feasible region S��f �� This lacks the �exibility in choosing an initial

�



point� Theoretically	 we can construct an arti�cial problem which has an initial point
z� � S���f � su�ciently close to the path of centers �See Section 
 of ����
� However the
magnitude of such a theoretical initial point is too large for implementation on computers
�Lustig ��
�	 Mizuno	 Yoshise and Kikuchi ����
� The family of systems of equations ��


gives us more freedom in choosing initial points than the family ��
�

We consider now more general nonlinear cases� If the system ��
 has a solution for
every t � �	 we must have

tb � B���f � � fu � Rn � u � y � f �x
 for some �x�y
 � �g

for every t � �� Hence it is necessary to take a vector b � Rn such that tb � B���f � for
every t � �� When we describe a numerical method in Section �	 we will assume b � � to

meet this necessary condition� In fact	 by the de�nition of the sets S���f � and B���f �	
we see that if the CP �f � has a strictly positive feasible solution	 i�e�	 S���f � �� �	 then
there exists an ��x� �y
 � � such that � � �y � f ��x
� hence

Rn
� 	 fu � Rn

� � u � y � f ��x
 for some y � Rn
��g 	 B���f � �

This ensures that tb � B���f � for every t � �� It should be noted that even in this

case	 we can start from any x� � Rn
�� in the x�space by taking appropriate y� � Rn

��

and c � �a� b
 � Rn
�� such that a � �x��y

�
�� x

�
�y

�
�� � � � � x�ny�n
 and b � y� � f �x�
 � ��

This �exibility in choosing initial points is very important especially when we apply the
continuation method with the use of the family ��
 to nonlinear problems where �nding

a feasible solution is generally as di�cult as solving them�

Kojima	 Mizuno and Noma ���� ��� presented two conditions to ensure the existence
of a trajectory consisting of solutions of the family of systems of equations ��
�

Condition ���� �Kojima	 Mizuno and Noma ����

The mapping f is a uniform P �function	 i�e�	 there exists a positive number � such that

max
i

�xi � yi
�fi�x
� fi�y

 � �kx� yk� for every x�y � Rn�

Condition ���� �Kojima	 Mizuno and Noma ����


�i
 The mapping f is a monotone function	 i�e�	

�x� y
 � �f �x
� f �y

 � � for every x�y � Rn�

�ii
 The set S���f � of all the strictly positive feasible solutions of the CP �f � is nonempty�

�



Remark ���� When f is a linear mapping from Rn into itself with an n�n matrixM 	 it
is monotone if and only ifM is a positive semi�de�nite matrix	 and a uniform P �function
if and only if M is a P �matrix	 i�e�	 all the principal minors of M are positive �Fiedler
and Pt�ak ���
� It is well�known that the Karush�Kuhn�Tucker optimality conditions for

linear and convex quadratic programs can be formulated as a positive semi�de�nite linear
complementarity problem�

Conditions ��� and ��� above can be uni�ed as follows�

Lemma ���� If Condition ��� or ��� holds then Condition ��� does�

Condition ����

�i
 f is a P��function	 i�e�	 for every x�y � Rn with x �� y	 there is an index i such

that
xi � yi �� � and �xi � yi
�fi�x
� fi�y

 � ��

�ii
 The set S���f � of all the strictly positive feasible solutions is nonempty�

�iii
 The set
F���D
 � fz � �x�y
 � R�n

� � F �z
 � Dg
is bounded for every compact �i�e�	 bounded and closed as a subset of R�n
 subset
D of Rn

� �B���f ��

Remark ���� As we have already seen	 Rn
� 	 B���f � follows from �ii
 of Condition ����

Hence	 Condition ��� implies that the set

F���D
 � fz � �x�y
 � R�n
� � F �z
 � Dg

is bounded for every bounded subset D of R�n
� � We will often use this fact later�

After listing in Section � some symbols and notation	 which will be used throughout
this paper	 we give a proof of Lemma ��� in Section �� In Section � we show some basic
properties of the mapping F � R�n

� � Rn
� �Rn de�ned by ��
� Speci�cally	 we establish

under Condition ��� the existence of the unique trajectory F���C
 leading to solutions
of the CP �f �� This result is an extension of the results given by Kojima	 Mizuno and
Noma ���� ���� In Section � we present an algorithm for tracing the trajectory� This
algorithm is a modi�cation and extension of the primal�dual algorithm given by Kojima	

Mizuno and Yoshise ���� for linear programs� See also the papers ���� ��� ���� Although
we can apply the algorithm to linear complementarity problems	 the main emphasis will
be placed on nonlinear cases� In Section 
 we show the global convergence property of
the algorithm� In Section � we discuss the local convergence property of the algorithm

under a nondegeneracy condition	 and present a modi�ed algorithm which has a locally
quadratic convergence property�

�



�� Symbols and Notation

Rn � the n�dimensional Euclidean space�
Rn
� � fx � Rn � x � �g � the nonnegative orthant of Rn�

Rn
�� � fx � Rn � x � �g � the positive orthant of Rn�

e � ��� � � � � �
 � Rn�
f � a continuous mapping from Rn into itself�
X � diag x � the n� n diagonal matrix with the coordinates of a vector x � Rn�
F �z
 � �Xy�y � f �x

 for every z � �x�y
 � R�n

� �

CP �f � �the complementarity problem
 �

Find a z � �x�y
 � R�n such that F �z
 � �� z � ��

S��f � � fz � �x�y
 � R�n
� � y � f �x
g � the feasible region of the CP �f ��

S���f � � fz � �x�y
 � R�n
�� � y � f �x
g�

B���f � � fu � Rn � u � y � f�x
 for some z � �x�y
 � �g�
c � �a� b
 � Rn

�� �B���f �� It will be assumed that c � R�n
�� and kck � ��

C � ftc � t � �g�
U 	 R�n

��

 f�g � a closed convex cone whose interior contains the half�line C�

U� � fu � U � c � u � �g�
U�t
 � fu � U � c � u � tg �t � �
�
�� � ��� �
� � � ��� �
 � constant scalars such that �� � �
 �� � ��

�� Proof of Lemma ���

First we deal with the case where the mapping f satis�es Condition ���� The statement
�i
 of Condition ��� directly follows from the de�nition of a uniform P �function� It has
been shown in ���� that F maps R�n

� onto Rn
��Rn homeomorphically� In particular there

exists an ��x� �y
 � R�n
� such that F ��x� �y
 � �e��
� Recall that e � ��� � � � � �
 � Rn� Since

�xi�yi � � �i � �� �� � � � � n
	 we have ��x� �y
 � R�n
��� hence ��x� �y
 � S���f �� Thus we have

shown �ii
 of Condition ���	 i�e�	 S���f � �� �	 or equivalently	 � � B���f �� By a similar
argument	 we can easily show that B���f � � Rn� If D is a compact subset of Rn

� �Rn	

then F ���D
 is also compact since F is a homeomorphism� Thus	 �iii
 of Condition ���
is satis�ed�

Now we consider the case where the mapping f satis�es Condition ���� The state�
ments �i
 and �ii
 of Condition ��� follow immediately� To show �iii
 of Condition ���	

assume	 on the contrary	 that the set

E � F���D
 � f�x�y
 � R�n
� � F �x�y
 � Dg






is unbounded for some compact subset D of Rn
� �B���f �� Then we can take a sequence

of points f�xk�yk
 � E � k � �� �� � � �g such that

lim
k��

k�xk�yk
k ��

and
lim
k��

�yk � f �xk

 � �u for some �u � B���f ��

Since B���f � is an open subset of Rn	 we can �nd a �u � B���f � such that

yk � f �xk
 � �u

for every su�ciently large k� By the de�nition of the set B���f �	 there is an ��x� �y
 � R�n
��

satisfying �y�f��x
 � �u� Furthermore	 �Xkyk�yk�f �xk

 lies in the bounded set D for
every k	 where Xk � diag xk� So we can �nd positive numbers � and � such that

xk � yk � � and �x � �yk � f �xk
� �u� �y
 � � �k � �� �� � � �
�

Hence	 for every su�ciently large k	 we have

� � �xk � �x
 � �f �xk
� f ��x

 �by �i
 of Condition ���


� �xk � �x
 � �yk � �yk � f �xk
� �u� �y

 �by �y � �u � f ��x
 


� xk � yk � �x � yk � xk � �yk � f �xk
� �u� �y
 � �x � �yk � f �xk
� �u� �y


� xk � yk � �x � yk � xk � �y � �x � �yk � f �xk
� �u� �y


�since xk � � and yk � f �xk
� �u � � 


� � � �x � yk � xk � �y � ��

Thus we have obtained
�x � yk � xk � �y � � � �

for every su�ciently large k� Since �xk�yk
 � R�n
� �k � �� �� � � �
	 the inequality above

ensures that the bounded set f�x�y
 � R�n
� � �x � y � x � �y � � � �g contains �xk�yk


for every su�ciently large k� But this contradicts the fact that limk�� k�xk�yk
k � ��
This completes the proof of Lemma ����

�� The Existence of the Trajectory F���C


In the remainder of the paper we assume Condition ���� The main assertion of this
section is Theorem ���	 which establishes that the set F���C
 consisting of the solutions

of the system ��
 for all positive t forms a trajectory leading to solutions of the CP �f ��
This result will give a theoretical basis to the homotopy continuation method described

�



in Section �� To prove the theorem	 we need three lemmas� The �rst two lemmas ensure
the existence and uniqueness of a solution of the system of equations

F �z
 � �a� b
 and z � �x�y
 � R�n
� ��


for every �a� b
 � Rn
�� �B���f �	 where

B���f � � fu � Rn � u � y � f �x
 for some �x�y
 � R�n
��g�

Lemma ���� The mapping F is one�to�one on R�n
���

Proof� Assume on the contrary that F �x��y�
 � F �x��y�
 for some distinct �x��y�
� �x��y�
 �
R�n
��� Then

f �x�
� f�x�
 � y� � y� and x�iy
�

i � x�i y
�

i � � �i � �� �� � � � � n
�

Since the mapping f is a P��function	 we can �nd an index k such that

x�k �� x�k and � � �x�k � x�k
�fk�x
�
� fk�x

�

 � �x�k � x�k
�y
�

k � y�k
�

We may assume without loss of generality that x�k � x�k� Then the inequality above

implies that y�k � y�k� This contradicts the equality x�ky
�
k � x�ky

�
k � ��

Lemma ���� The system ��� has a solution for every �a� b
 � Rn
� �B���f ��

Proof� Let �a� b
 � Rn
� � B���f �� It follows from b � B���f � that �y � f��x
 � b

for some ��x� �y
 � R�n
��� Let �a � ��x��y�� �x��y�� � � � � �xn�yn
 � Rn

��� Now we consider the
family of systems of equations with the parameter t � ��� ���

F �x�y
 � ��� � t
�a� ta� b
 and �x�y
 � R�n
� � �



Let �t � � be the supremum of �t�s such that the system �

 has a solution for every
t � ��� �t �� Then there exists a sequence f�xk�yk� tk
g of solutions of the system �

 such
that limk�� tk � �t� Since the right�hand side ���� t
�a� ta� b
 of the system �

 lies in

the compact convex subset D � f���� t
�a� ta� b
 � t � ��� ��g of Rn
� �B���f � for all

t � ��� ��	 �iii
 of Condition ��� ensures that the sequence f�xk�yk
g is bounded� Hence
we may assume that it converges to some ��x� �y
� By the continuity of the mapping
F 	 the point ��x� �y� �t
 satis�es the system �

� Hence if �t � � then the desired result

follows� Assume on the contrary that �t � �� Then we have �xi�yi � �� � �t
�ai � �tai � �
for every i � �� �� � � � � n� Hence ��x� �y
 � R�n

��� It follows from Lemma ��� that the
mapping F is a local homeomorphism at ��x� �y
� �See the domain invariance theorem
in Schwartz �����
 Hence the system �

 has a solution for every t su�ciently close to
�t� This contradicts the de�nition of �t�

�



Lemma ����

�i
 Rn
� 	 B���f ��

�ii
 F maps R�n
�� onto Rn

�� �B���f � homeomorphically�

Proof� As we have already seen in Section �	 the assertion �i
 follows from �ii
 of

Condition ���� We will show the assertion �ii
� By the de�nition	 we immediately see
F �R�n

��
 	 Rn
�� � B���f �	 and Rn

�� � B���f � 	 F �R�n
��
 by Lemma ���� Hence F

mapsR�n
�� onto Rn

���B���f �� By Lemma ���	 the continuous mapping F is one�to�one
on the open subset R�n

�� of R�n� Thus �ii
 follows from the domain invariance theorem

�see Schwartz ����
�

We remark here that if a continuous mapping f satis�es Condition ��� then F maps
R�n
� onto Rn

� � Rn homeomorphically �Kojima	 Mizuno and Noma ����
� Now we are
ready to establish the existence of the trajectory F���C
 consisting of solutions of the
system ��
 for all positive t�

Theorem ���� Let c � �a� b
 � Rn
�� �Rn

�� and C � ftc � t � �g�

�i
 For every t � �� the system �	� has a unique solution z�t
� which is continuous in

t
 hence the set F ���C
 � fz�t
 � t � �g forms a trajectory�

�ii
 For every t� � �� the subtrajectory fz�t
 � � � t � t�g is bounded
 hence there is at
least one limiting point of z�t
 as t� ��

�iii
 Every limiting point of z�t
 as t� � is a complementary solution of the CP �f ��

�iv
 If f is a linear mapping of the form f �x
 � Mx � q� then z�t
 converges to a
solution of the CP �f � as t� ��

Proof� By �i
 of Lemma ���	 we �rst observe that

tc � C 	 Rn
�� �Rn

� 	 Rn
�� �B���f �

for every t � �� Hence the assertion �i
 follows from �ii
 of Lemma ���� If we take
D � ftc � � � t � t�g	 we see by Remark ��
 that the set

F ���D
 � fz � R�n
�� � F �z
 � Dg � fz�t
 � � � t � t�g

is bounded� Thus we obtain �ii
� By the continuity of the mapping F 	 if z is a limiting

point of z�t
 as t � �	 we have F �z
 � � and z � �� hence z is a complementary
solution of the CP �f �� Thus we have shown �iii
� Finally	 to see the assertion �iv
	
we will utilize some result on real algebraic varieties� We call a subset V of Rm a real
algebraic variety if there exist a �nite number of polynomials gi �i � �� �� � � � � k
 such
that

V � fx � Rm � gi�x
 � � �i � �� �� � � � � k
g�

�



We know that a real algebraic variety has a triangulation �see	 for example	 Hironaka
���
� That is	 it is homeomorphic to a locally �nite simplicial complex� Let

V � f�x�y� t
 � R�n�� � y �Mx� q � tb� xiyi � tai �i � �� �� � � � � n
g�
Obviously	 the set V is a real algebraic variety	 so it has a triangulation� Let �z � ��x� �y

be a limiting point of z�t
 as t� �� Then the point v � ��x� �y� �
 lies in V � Since the

triangulation of V is locally �nite	 we can �nd a sequence ftp � �g and a subset 	 of
V which is homeomorphic to a one�dimensional simplex such that

lim
p��

tp � � � lim
p��

z�tp
 � �z � z�tp
 � 	 �p � �� �� � � � 
�

But we know that V 
R�n��
�� coincides with the one�dimensional curve f�z�t
� t
 � t � �g�

Thus	 the subset f�z�t
� t
 � tp�� � t � tpg of the curve must be contained in the set 	

for every p	 since otherwise 	 is not arcwise connected� This ensures that z�t
 converges
to �z as t� ��

Remark ���� One of the referees suggested another proof of the assertion �iv
 of the
theorem using the well�known result that every real algebraic variety contains only �nitely
many connected components� Indeed	 for every 
 � �	 the algebraic variety V 
f�x�y� t
 �
R�n�� � k�x�y� t
 � vk� � 
�g has �nitely many connected components� It follows that
z�t
 must be within distance 
 of v for all su�ciently small t � ��

�� A Numerical Method for Tracing the Trajectory F ���C


In the previous section	 we have shown the existence of the trajectory F���C
 leading
to solutions of the CP �f � for every c � R�� � R� and C � ftc � t � �g� In general	

the trajectory F���C
 is nonlinear	 so that exact tracing is di�cult even if we know an
initial point on the trajectory� Of course	 exact tracing is not necessary since our aim
is only to get an approximate solution of the CP �f �� We will control the distance from
the trajectory in such a way that kF �z
� tck tends to zero as the right�hand side of the

system ��
 tends to zero along the half�line C � ftc � Rn � t � �g� For this purpose	
we will introduce a �cone�neighborhood� U of the half�line C� To develop a numerical
method that traces the trajectory F���C
	 we further assume in the remainder of the
paper�

Condition ����

�i
 The mapping f associated with the CP �f � is continuously di�erentiable�

�ii
 c � �a� b
 � R�n
�� and kck � �� hence the half�line C � ftc � t � �g lies in R�n

���

�iii
 U 	 R�n
�� 
 f�g is a closed convex cone whose interior int U contains the half�line

C�

�iv
 We know a point z� � �x��y�
 such that F �z�
 � U in advance�

��



It is always possible to choose c � �a� b
	 U and �x��y�
 satisfying �ii
	 �iii
 and �iv
 of
Condition ���� For example	 choose x� � �	 y� � � and b� � � such that b� � y��f�x�
�
Let a� � �x��y

�
�� x

�
�y

�
�� � � � � x�ny�n
� Let c � �a�� b�
�k�a�� b�
k	 and � be a positive number

such that ci � � �i � �� �� � � � � �n
� De�ne U � fu � ku� tck � t� for some t � �g� Then
the set of c � �a� b
	 U and �x��y�
 satis�es Condition ����

The lemma below shows some properties of the neighborhood U of the half�line C	
which will be utilized in the succeeding discussions�

Lemma ����

�i
 The set U� � fu � U � c � u � �g is bounded�

�ii
 There exists a positive number 
 such that ku� �c �u
ck � �c �u

 for each u � U �

�iii
 There is a positive number 	 such that if ku � tck � t	 for some t � � then
u � int U �

Proof� �i
 One can easily see that the set fu � R�n
� � c � u � �g	 which contains the

set U�	 is bounded because c � R�n
���

�ii
 Since the set U� � fu � U � c � u � �g is bounded	 there is a positive number 

such that the ball B � fu � R�n � ku � ck � 
g contains the set U�� Let u � U �
Obviously c � u � � because c�u � R�n

� � If c � u � � then the point u��c � u
 belongs
to the set U� 	 B� hence the inequality

ku� �c � u
ck � �c � u



follows� Now suppose that u � U and c � u � �� Then u � � because c � R�n
�� and

u � R�n
� � Hence the inequality above holds trivially�

�iii
 By Condition ���	 the point c lies in the interior int U of the cone U � Hence	
we can �nd a positive number 	 such that int U contains the ball B� � fu � R�n �

ku� ck � 	g� Suppose that ku� tck � t	 for some t � �� Then u�t belongs to the
ball B�� Since U is a cone	 we have u � int U �

The set F���U
 will serve as an admissible region in which we will generate a sequence
fzk � R�n

��g	 to approximate the trajectory F���C
	 such that limk�� c � F �zk
 � ��
Such a sequence fzkg leads to complementary solutions of the CP �f � as we will see in
the theorem below�

Theorem ���� Suppose fzk � F���U
g is a sequence such that limk�� c � F �zk
 � ��

Then the sequence fzkg is bounded and any limiting point of the sequence is a comple�
mentary solution of the CP �f ��

��



Proof� Since F �zk
 � U �k � �� �� � � � 
 holds from the assumption	 we see by Lemma
��� that

kF �zk
 � �c � F �zk

ck � �c � F �zk


 �k � �� �� � � � 
�
Hence limk�� F �zk
 � �� Furthermore	 the sequence fF �zk
g is bounded� By Re�

mark ��
	 so is the sequence fzkg� Therefore we see from the continuity of the mapping
F that F ��z
 � � for any limiting point �z of the sequence fzkg�
Assuming that we are at some point �z � F���U
 
 R�n

��	 i�e�	 �z � F���U � f�g
	
we show how to generate a new point z � F���U
 such that c � F �z
 � c � F ��z
� This
process corresponds to one iteration of the algorithm described below� Let �� � ��� �
 and
� � � be �xed such that

�� � �
 �� � �� ��


Let � � ��� ���	 and �t � c � F ��z
 � �� We apply a Newton iteration with a step length
� � ��� �� to the system of equations� F �z
 � ��tc� at the point �z� That is	 we solve the
Newton equation	 the system of linear equations in the variable vector �z

DF ��z
�z � F ��z
� ��tc� ��


Here DF ��z
 denotes the Jacobian matrix of the mapping F at �z� We call �z the

Newton direction� The step length � will be determined later by an inexact line search
such that

c � F ��z � ��z
 � ���� �
 � ��� � �
�
�t�

Thus we de�ne a new point z � R�n by z � �z���z� The lemma below ensures that the
�n��n coe�cient matrix on the left hand side of the system ��
 is nonsingular whenever
�x�y
 � R�n

��� Hence the system ��
 consistently and uniquely determines the Newton
direction �z �DF ��z
���F ��z
� ��tc
�

Lemma ����

�i
 The Jacobian matrix Df �x
 is a P��matrix at every x � Rn� i�e�� for every nonzero
u � Rn� there is an index i such that

ui �� � and ui�Df �x
u�i � ��

�ii
 The Jacobian matrix DF �z
 is nonsingular at every z � �x�y
 � R�n
���

Proof� �i
 Let x � Rn and � �� u � Rn� We consider a sequence fx � ���k
u � k �
�� �� � � �g� For every k � �� �� � � � � there is an index i such that

�

k
ui �� � and

�

k
ui�fi�x�

�

k
u
� fi�x

 � ��

��



Since the index set f�� �� � � � � ng is �nite	 we can �nd an index i such that the relation
above holds for this i and in�nitely many k�s� For such i and k	 we have

ui �� � and ui�Df�x
u�i � o�
�

k

�

�

k
� ��

Here o�h
�h� � as h� �� Taking the limit as k ��	 we obtain

ui �� � and ui�Df�x
u�i � ��

�ii
 Let z � �x�y
 � R�n
��� The Jacobian matrixDF �z
 is written as

DF �z
 �

�
Y X

�Df �x
 I

�
�

where X � diagx	 Y � diag y	 and I stands for the n � n identity matrix� To see
that the matrix DF �z
 is nonsingular	 assume on the contrary that

DF �z


�
u

v

�
� �

or

Y u�Xv � � and �Df �x
u� v � �

for some nonzero �u�v
 � R�n� It follows that

u �� � and Df�x
u � �X��Y u�

Hence

u �� � and ui�Df�x
u�i � �yiu
�
i

xi
�i � �� �� � � � � n
�

This contradicts �i
�

Remark ���� From �ii
 of Lemma ��� and �ii
 of Lemma ���	 we see that F maps R�n
��

onto Rn
�� �B���f � di�eomorphically�

Recall that �� � ��� �
 and � � � are constants satisfying ��
	 and that �z is a unique
solution of the Newton equation ��
 at �z � F���U
 with the parameter � � ��� ����

Assume for the time being that z � �z � ��z � F���U
 for every su�ciently small
nonnegative �� Ideally	 we want to choose the step length �� such that

F ��z
 � F ��z � ���z
 � U�

c �F ��z
 � min fc � F ��z � ��z
 � � � ��� ��g�

��



However	 the computation of the exact value of the ideal step length �� is generally
impossible in a �nite number of steps� In the algorithm presented below	 we will use an
inexact line search� Find the smallest nonnegative integer �� such that

F ��z � �
���z
 � U� ��


c � F ��z � �
���z
 �

�
��� �

��
 � �
���� � �
�

�
�t� ���


Here � � ��� �
 denotes a constant and �
�� stands for the ���th power of ��

Now we are ready to describe the algorithm�

ALG��U� �� �� ���

Step �� Let t� � c � F �z�
 and k � ��
Step �� Let �z � zk and �t � tk�

Step �� Compute the direction �z by solving the Newton equation ��
�
Step �� Let �� be the smallest nonnegative integer satisfying ��
 and ���
� De�ne

zk�� � �z � �
���z and tk�� � c � F �zk��
�

Step �� Replace k by k � �� Go to Step ��

If it happens that tk � � for some k in the algorithm above	 then c � F �zk
 � �� hence

F �zk
 � �� In this case we may stop the algorithm because we have obtained zk as a
complementary solution of the CP �f �� So it is implicitly assumed in the algorithm above
that tk � � for every k�

�� Global and Monotone Convergence

Let f�zk� tk
g be a sequence generated by the ALG��U� �� �� ��� We will show in Theorem

�� that limk�� tk � �� hence	 by Theorem ���	 the sequence fzkg is bounded and any
limiting point of the sequence is a complementary solution of the CP �f �� For this purpose
we prove the lemma below�

Lemma ���� Suppose that �z � F���U
 and �t � c � F ��z
 � �� Let �� � ��� �
 and � � �

be constants satisfying ���� and let �z be the solution of the Newton equation ��� at �z
with the parameter � � ��� ��� �

�i
 De
ne

�� � maxf� � ��� �� � �z � ��z � R�n
� g� ���


e��
 � F ��z � ��z
� F ��z
 � �DF ��z
�z for every � � ��� ���� ���


��



Then

lim
���

ke��
k�� � �� ���


F ��z � ��z
 � �� � �
F ��z
 � ����tc� e��
��
 for every � � ��� ���� ���


c � F ��z � ��z
 � �� � �
�t� ����t� ke��
k��
 for every � � ��� ���� ���


�ii
 De
ne

�� � supf�� � ��� ��� � ke��
k�� � �minf	� �g���t for every � � ��� ���g� ��



Then

� � �� � �� � � ���


and

ke��
k�� � �minf	� �g���t� ���


F ��z � ��z
 � int U� ���


c � F ��z � ��z
 � ��� � �
 � ��� � �
�
 �t ���


for every � � ��� ��
�

Proof� �i
 It should be noticed that �� � ��� ��� The relation ���
 follows directly from
the continuous di�erentiability of the mapping F � By the de�nition	

F ��z � ��z
 � F ��z
� �DF ��z
�z � e��
 for every � � ��� ����

Since �z is the solution of the Newton equation ��
	 we also have

F ��z
� �DF ��z
�z � �� � �
F ��z
 � ���tc for every � � ��� ����

Hence the equality ���
 follows from these two equalities� Taking the inner product of
each side of ���
 and the vector c	 we have that

c � F ��z � ��z
 � �� � �
c � F ��z
 � ����tkck� � c � e��
��

� �� � �
�t� ����t� ke��
k��


for every � � ��� ���� Thus we have shown the inequality ���
�
�ii
 The inequality ���
 follows from the de�nitions ���
	 ��

 of ��	 �� and the relation

���
� The inequality ���
 is obvious by the de�nition ��

 of ��	 too� Let � � ��� ��
� By
Lemma ���	 the point ���tc � e��
��
 lies in int U � Since the point F ��z � ��z
 is a
convex combination of the point F ��z
 in the convex set U and the point ���tc�e��
��

in int U 	 it lies in int U � Thus we have shown ���
� The inequality ���
 follows from

���
 and ���
�

Lemma 
�� guarantees that we can consistently �nd the smallest nonnegative integer
�� satisfying ��
 and ���
 at Step � of ALG��U� �� �� ��� We are now ready to prove the
global and monotone convergence property of ALG��U� �� �� ���

��



Theorem ���� Let �� � ��� �
 and � � � be constants satisfying ���� Suppose that
� � ��� ��� and � � ��� �
� Let f�zk� tk
g be a sequence generated by the ALG��U� �� �� ���

�i
 The sequence ftkg is monotone decreasing and converges to zero as k ���

�ii
 The sequence fzkg is bounded and its limiting points are complementary solutions
of the CP �f ��

Proof� In view of Theorem ���	 it su�ces to prove the assertion �i
� By applying

Lemma 
�� at each �z � zk	 we see that tk � tk�� �k � �� �� � � �
� Hence the sequence
ftkg is monotone decreasing� Since each tk is nonnegative	 there exists a nonnegative
number �t to which the sequence converges� If �t � �	 we obtain the desired result�
Assume on the contrary that �t � �� De�ne the compact subset

V � fu � U � �t � c � u � t�g

of R�n
�� �see Lemma ���
� Then we see by �ii
 of Lemma ��� that the set F���V 
 which

contains the sequence fzkg is a compact subset of R�n
�� since V 	 R�n

�� 	 Rn
���B���f ��

Taking a subsequence if necessary	 we may assume that the sequence fzkg converges
to some �z � F���V 
� Then it is easily seen that �t � c � F ��z
� Now	 applying Lemma


�� to the point �z	 we can �nd a positive number �� such that for every � � ��� ��
	

F ��z � �g�z
 � int U�

c � F ��z � �g�z
 � ��� � �
 � ��� � �
�
 �t �

Here g�z denotes the Newton direction determined by the equation ��
 with �z � �z and
�t � �t� On the other hand	 the Jacobian matrix DF �z
 is nonsingular and continuous
at z � �z �see �ii
 of Lemma ���
� This implies that the Newton direction generated at
the k�th iteration	 �zk	 converges to g�z� Therefore	 for a nonnegative integer � such

that �� � ��� ��
	 we have

F �zk � ���zk
 � int U and

c � F �zk � ���zk
 �
�
�� � ��
 � ���� � �
�

�
tk

for every su�ciently large k� Let ��k be the nonnegative integer determined at Step � of
the k�th iteration in ALG��U� �� �� ��� Then	 for every su�ciently large k	 we see that
��k � �� hence

tk�� �
�
��� �

��k
 � �
��k�� � �
�

�
tk

�
�
��� ��
 � ���� � �
�

�
tk�

This contradicts the fact that the sequence ftkg converges to �t�

�




	� Local Convergence

We will assume the condition below in addition to Conditions ��� and ��� throughout
this section	 which is divided into two subsections	 ��� and ���� Subsection ��� is devoted
to a locally linear convergence property of ALG��U� �� �� ��� In Subsection ��� we will

modify ALG��U� �� �� �� to get a locally quadratic convergence�

Condition 	���

�i
 At each complementary solution z � �x�y
 of the CP �f �	 the set of the columns
I i �i � I��y

 and �Df �x
�j �j � I��x

 forms a basis of Rn� Here I i denotes
the i�th column of the n � n identity matrix I	 �Df �x
�j the j�th column of the
n � n Jacobian matrix Df�x
 of the mapping f 	 I��y
 � fi � yi � �g	 and

I��x
 � fj � xj � �g�
�ii
 The Jacobian matrix Df �x
 of the mapping f is Lipschitz continuous on each

bounded subset E 	 Rn
�	 i�e�	 there is a positive constant � such that

kDf �x�
�Df�x�
k � �kx� � x�k for every x�� x� � E�

where kAk denotes the matrix norm max fkAwk � w � Rn� kwk � �g for every

n� n matrix A�

We note that �i
 of Condition ��� implies the strict complementarity	 i�e�	 xi � � if and
only if yi � � �i � �� �� � � � � n
� By using the well�known implicit function theorem	 we

can also derive the local uniqueness of each solution of the CP �f � from �i
 of Condition
���� Furthermore we will see in Lemma ��� below that the CP �f � has a unique solution�

	�� Locally Linear Convergence

Now we state the locally linear convergence of ALG��U� �� �� ���

Theorem 	��� Let �� � ��� �
 and � � � be constants satisfying ���� Suppose that
� � ��� ��� and � � ��� �
� Let f�zk� tk
g be a sequence generated by the ALG��U� �� �� ���

Then there is a positive number K such that

tk�� � �� � �
�tk for every k � K�

We will prove a series of lemmas which leads us to Theorem ����

Lemma 	���

��



�i
 The Jacobian matrixDF �z
 of the mapping F is nonsingular at every z � �x�y
 �
R�n
�� 
 F ����
�

�ii
 The CP �f � has a unique solution�

�iii
 There are positive constants � and � such that

kDF �z
k � �� ���


kDF �z
��k � � ���


for every z � F ���U�t�

 and

kF �z�
� F �z�
k � �kz� � z�k� ���


kz� � z�k � �kF �z�
� F �z�
k ���


for every z��z� � F ���U�t�

�

�iv
 There is a positive constant � such that

kF �z�
� F �z�
�DF �z�
�z� � z�
k � �kz� � z�k�

for every z��z� � F ���U�t�

�

Here U�t�
 � fu � U � c � u � t�g�

Proof� �i
 Recall the de�nition ��
 of the mapping F � R�n
� � Rn

� � Rn� If z �
R�n
�� 
 F����
 then we have either

z � �x�y
 � R�n
��

or
F �z
 � �� z � �x�y
 � R�n

� �

Note that z is a complementary solution of the CP �f � in the latter case� We have shown
in Lemma ��� that the Jacobian matrixDF �z
 is nonsingular at every z � R�n

��� Now
suppose that F �z
 � � and z � R�n

� � By �i
 of Condition ���	 we can easily verify that
if DF �z
w � � for some w � R�n then w � �� hence DF �z
 is nonsingular�

�ii
 By Theorem ���	 we know that the CP �f � has a complementary solution� On the
other hand	 by applying the implicit function theorem �see	 for example	 Ortega and
Rheinboldt ����
 to the system ��
 at each complementary solution �z of the CP �f �

and �t � �	 we see that the unique trajectory F ���C
	 whose existence is ensured by
Theorem ���	 converges to �z as t � �� Hence the solution of the CP �f � must be
unique�
�iii
 Let z� be the unique solution of the CP �f �� Since

U�t�
 	 U 	 R�n
�� 
 f�g 	 �Rn

�� �B���f �
 
 f�g �

��



we know F���U�t�

 	 R�n
��
fz�g� Noting �ii
 of Lemma ��� and extending slightly the

argument in �ii
 above	 we can show that F is a homeomorphism between F���U�t�


and U�t�
� On the other hand	 the set U�t�
 is compact by Lemma ���� Therefore
the set F���U�t�

 is compact	 too� Let W be the convex hull of the compact set
F���U�t�

� Then W is also compact and W 	 R�n

��
fz�g� We have seen by �i
 above

that the Jacobian matrixDF �z
 is nonsingular at every z in the set R�n
��
fz�g� Thus	

by the continuity of the Jacobian matrix DF �z
	 there exist positive numbers � and
� such that ���
 Holds for every z � W and that ���
 holds for every z � F ���U�t�

�

Since the sets W and U�t�
 are convex	 the inequalities ���
 and ���
 follow from ���
	
���
 and Theorem ����� of ���� �
�iv
 It follows from �ii
 of Condition ��� that the Jacobian matrixDF �z
 is Lipschitz
continuous on the bounded convex set W 	 i�e�	 there is a positive number � such that

kDF �z�
�DF �z�
k � ��kz� � z�k for every z�� z� � W�

The assertion �iv
 follows from Theorem ������ of �����

Lemma 	��� Let �z � F���U�t�

� �t � c � F ��z
 � �� and let �z be the solution of the
Newton equation ��� at �z with the parameter � � ��� ���� De
ne e��
 and �� by ���� and
����� respectively� Then

ke��
k � � ���
 � �� �
�t�
� for every � � ��� ���� ���


Proof� Let � � ��� ��
� Since �z is the solution of the Newton equation ��
	 we have

k�zk � kDF ��z
���F ��z
� ��tc
k
� kDF ��z
��k �kF ��z
� �tck� ��� �
�tkck

� � �kF ��z
� �tck� �� � �
�t
 �by Lemma ��� and kck � � 


� � �
�t� ��� �
�t
 �by Lemma ���
�

Thus we have seen that
k�zk � ��
 � � � �
�t� ��



On the other hand	 by the relation ���
	 ���
 in Lemma 
�� and the continuity	 we see

for every � � ��� ��� that

F ��z � ��z
 � U�

c �F ��z � ��z
 � ���� �
 � ��� � �
�
 �t � �t � t��

hence
�z � ��z � F���U�t�

�

��



Therefore	 by the de�nition ���
 of e��
 and �iv
 of Lemma ���	 we have

ke��
k � �k��zk��
The desired inequality follows from ��

 and the inequality above�

For each t � � and � � ��� ���	 de�ne

���t� �
 � min

�
�minf	� �g

� ���
 � �� �

� t
� �

�
�

For every � � ��� ���	 let

s��
 � maxft� � � � ���t� �
 � � for every t � ��� t��g � �minf	� �g
� ���
 � �� �

�

� ���


Here 
 and 	 are the positive constants that were introduced in Lemma ����

Lemma 	��� Let �z � F���U�t�

� �t � c � F ��z
 � �� and let �z be the solution of the

Newton equation ��� at �z with the parameter � � ��� ���� Then

F ��z � ��z
 � U� ���


c � F ��z � ��z
 � ���� �
 � ��� � �
�
 �t ���


for every � � ��� ����t� �
��

Proof� De�ne e��
 and �� by ���
 and ��

	 respectively� If ����t� �
 � �� then the
relations ���
 and ���
 follow from ���
	 ���
 in Lemma 
�� and the continuity� Thus

it su�ces to show that ����t� �
 � ��� We may assume �� � �� Suppose that

ke���
k��� � �minf	� �g���t� ���


Then from the de�nition ��

 of �� and the continuity of e��
 it follows that �� � ���

Just as we derived ���
 from ���
 in the proof of Lemma 
��	 we see from ���
 that

F ��z � ���z
 � int U�

This contradicts the de�nition ���
 of �� since �� � �� � �� Thus we have shown that

ke���
k��� � �minf	� �g���t�
By the inequality ���
 in Lemma ��� and the inequality above	 we have

�minf	� �g���t � � ���
 � �� �
�t
� ���

hence ����t� �
 � ���

��



Lemma 	��� Let �z � F���U�t�

� �t � c � F ��z
 � �� and let �z be the solution of the

Newton equation ��� at �z with the parameter � � ��� ���� If �t � s��
 then

F ��z ��z
 � U�

c � F ��z ��z
 � �� � �
��t�

Proof� By the de�nition ���
 of s��
 and Lemma ���	 the relations ���
 and ���
 hold
for every � � ��� ���

We are now ready to prove Theorem ���� We have already shown in Theorem 
�� that
the sequence ftkg converges to zero as k � �� Let K be a positive integer such that

tk � s��
 for every k � K� Then	 by Lemma ��
	 the inequality in the theorem holds for
every k � K� This completes the proof of Theorem ����

	�� A Modi
cation of ALG��U� �� �� �� and Its Locally Quadratic Convergence

The integer K in Theorem ��� depends on the positive number �	 but we can take any
positive value of � � ��� ��� although K may diverge as � tends to zero� This suggests
that the sequence ftkg converges to zero at least super�linearly if we suitably decrease the
value of the parameter � as the iteration proceeds� In fact	 we can modify the algorithm

so that the sequence converges to zero quadratically�

Let �z � F ���U�t�

 and �t � c � F ��z
 � �� In the remainder of the section we denote
the solution of the Newton equation ��
 at �z with the parameter � � ��� ��� by �z��
�

We will be concerned with the following two sets of relations�

F ��z � �
���z� ��

 � U� ���


c �F ��z � �
���z� ��

 �

�
��� �

��
 � �
���� � �
 ��

�
�t� ���


and

F ��z ��z� ��m

 � U� ���


c �F ��z ��z� ��m

 � �� � �
 ��m�t� ���


Here �
�� and ��m represent the ���th power of � � ��� �
 and the m�th power of �� � ��� �
	

respectively� Now we are in position to state a modi�cation of ALG��U� �� �� �� whose

local convergence will be investigated later�

ALG��U� ��� �� ���

Step �� Let t� � c � F �z�
 and k � ��
Step �� Let �z � zk and �t � tk�

��



Step �� Let �z� ��
 be the direction determined by the Newton equation ��
 with the
parameter � � ��� Let �� be the smallest nonnegative integer satisfying the relations
���
 and ���
� If �� � � then go to Step ��

Step �� De�ne

zk�� � �z � �
���z� ��
�

Go to Step ��

Step �� Let �m be the largest positive integer such that the relations ���
 and ���
 hold
for all m � �� �� � � � � �m� De�ne

zk�� � �z ��z� �� �m
�

Step �� Let tk�� � c � F �zk��
� Replace k by k � �� Go to Step ��

Let f�zk� tk
g be a sequence generated by ALG��U� ��� �� ��� Then	 in a way similar to

the proof of Theorem 
��	 we can show that the sequence f�zk� tk
g converges to �z�� �
�
Here z� is the unique solution of the CP �f � �see �ii
 of Lemma ���
� Furthermore	
ALG��U� ��� �� �� has a locally quadratic convergence property as we will see in Theorem
��� below�

Lemma 	�	� Let �z � F���U�t�

 and �t � c � F ��z
 � �� Suppose that �t � s� ��
� where
s � ��� ��� � R�� is de
ned by ����� Then the relations �	�� and �	�� hold for �� � ��
i�e�� the relations �		� and �	�� hold for m � �� Let �m be the largest positive integer such
that the relations �		� and �	�� hold for m � �� �� � � � � �m� Then

c � F ��z ��z� �� �m

 � ����
 � �

��� � �

��minf	� �g

�t��

Proof� Let �m be the largest integer such that

�t � s� ��m


for every m � �� �� � � � � �m� Then �m � � since �t � s� ��
� From Lemma ��
	 we see that
the relations ���
 and ���
 hold for m � �� �� � � � � �m� Hence �m � �m� On the other

hand	 it follows from the de�nition of �m that

�t � s� �� �m��


�
�� �m�� minf	� �g

�
�
��
 � � � �� �m��


��
or equivalently

�� �m �
�
�
��
 � �� �� �m��


��
�t

��minf	� �g �

��



Since �m � �m	 we have

�� �m �
� ���
 � �

� �t
��minf	� �g �

Therefore we obtain

c � F ��z ��z� �� �m

 � �� � �
 �� �m�t

�
� ���
 � �

� �� � �


��minf	� �g
�t��

Theorem 	��� Let f�zk� tk
g be a sequence generated by the ALG��U� ��� �� ��� Then the
convergence of the sequence f�zk� tk
g to �z�� �
 is locally quadratic� More precisely�

tk�� � � ���
 � �

� �� � �

��minf	� �g �tk
�� ���


kzk�� � z�k � ��� ���
 � �

� �� � �

��minf	� �g kzk � z�k� ��



for every su�ciently large k� Here z� is the unique solution of the CP �f ��

Proof� As we have noted above	 the sequence f�zk� tk
g converges to �z�� �
 as k ���

Let K � be a positive integer such that tk � s� ��
 for every k � K �� Then	 the inequality
���
 �for every k � K �
 follows directly from Lemma ���� Furthermore	 we have

kzk�� � z�k � �kF �zk��
k �by ���
 and F �z�
 � � 


� ��kF �zk��
� tk��ck� ktk��ck

� ��
 tk�� � tk��
 �by Lemma ��� and kck � � 


� ��
 � �
tk��

� � ���
 � �

� �� � �

��minf	� �g �tk
� �by ���



� � ���
 � �

� �� � �

��minf	� �g kF �zk
k� �since tk � c � F �zk
 and kck � � 


� � ���
 � �

� �� � �

��minf	� �g ��kzk � z�k� �by F �z�
 � � and ���



for every k � K �� Thus we have shown ��

�

��



�� Concluding Remarks

We have formulated the complementarity problem CP �f � as a system of equations with
a nonnegativity condition on a variable vector z � Rm�

F �z
 � � and z � �� ���


and proposed a homotopy continuation method	 ALG��U� �� �� ��	 founded on a one�
parameter family of systems of equations�

F �z
 � tc and z � ��

Here m � �n� Supposing that the CP �f � satis�es Condition ��� and �i
 of Condition ���	

we have seen that the system above enjoys the following properties�

�a
 We can choose a c � �	 a closed convex cone U 	 Rm
��
f�g and a point z� � F ���U


such that �ii
	 �iii
 and �iv
 of Condition ��� hold�
�b
 Rm

�� 	 F �Rm
��
�

�c
 F maps Rm
�� onto F �Rm

��
 di�eomorphically�

�d
 the set F ���D
 is bounded for every bounded subset D of Rm
� �

Generally	 ALG��U� �� �� �� computes an approximate solution of the system ���
 if

all the conditions above are satis�ed� This may remind the readers of applications of
ALG��U� �� �� �� to some other problems which are converted into systems of the form
���
�

The algorithms ALG��U� �� �� �� and ALG��U� ��� �� �� as well as their global and
local convergence results in this paper can apply to linear complementarity problems

satisfying Condition ���� We could modify the ALG��U� �� �� �� to derive the path�
following algorithm ����� ���
 which solves linear complementarity problems with positive
semi�de�nite matrices in O�

p
nL
 iterations� Furthermore we could prove the globally

linear convergence of the modi�ed algorithm when it is applied to linear complementarity

problems with P �matrices� These results on the positive semi�de�nite and P �matrix
cases	 which were presented in the original version of the paper ��� but cut in the revised
version	 will be further extended to a wider subclass of linear complementarity problems
with P��matrices in the paper ��� where we explore a uni�ed approach �����
 to both the

path�following algorithm ����� ���
 and the potential reduction algorithm �����
 for linear
complementarity problems�
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