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Abstract. This note summarizes a report with the same title, where a
study was carried out regarding a unified approach, proposed by Kojima, Mizuno
and Yoshise, for interior point algorithms for the linear complementarily problem
with a positive semi-definite matrix. This approach is extended to nonsymmetric
matrices with nonnegative principal minors.
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1. Introduction.

Many algorithms (see [10] for references) have been developed for mathematical pro-
gramming since Karmarkar’s paper [8]. See [22] for a survey. We consider here the linear
complementarity problem (LCP): Given M € R**" and q € R", find (&,y) € R*" such
that

y=Mz+gq, (2,y) >0 and x4, =0 (i € N={1,...,n}). (1.1)

Kojima, Mizuno and Yoshise [14] proposed an O(y/nl) iteration potential reduction
algorithm. They suggested a unified interior point (UIP) method for both the path-
following and potential reduction algorithms that solve LCP’s with positive semi-definite
(p.s.d.) matrices. The purpose of this note is to summarize a study which the authors
have carried out in [10] about the UIP method.
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The general LCP is NP-complete [3]. In [10] we assume M to be in the rich class Py of
matrices with nonnegative principal minors. This class includes not only skew-symmetric
matrices, p.s.d. matrices and P-matrices, but also NP-complete LCP’s.

It is very insightful to consider the space (primal, dual, or primal-dual) in which
various interior point algorithms work. Consider the pair of quadratic programs:

1
P : Minimize ¢'u + §uTQu subject to Au > b, u > 0.
. T L 7 . T
D : Maximize b v — 7 Qu subjectto A"v—Qu <c¢, v >0,

where @ is symmetric and p.s.d. If Q@ = O, we get a symmetric primal-dual pair of linear
programs. We can state the P and D together as an LCP (1.1) with the p.s.d. matrix by

defining
(@ -A" (e
M_(A o )17\ b )

The UIP method serves as a primal-dual interior point algorithm if we focus our atten-
tion to LCPs arising from linear programming and convex quadratic programming. In
fact, the UIP method is closely related to or includes as special cases many interior point
algorithms (for example, [12; 16; 17], etc.) which work on the primal and dual spaces
simultaneously. The global and the polynomial-time convergence results which are es-
tablished in [10] can be applied to a wider class of primal-dual interior point algorithms.
The UIP method can also be applied to linear programming problems in standard form

(see [14]).

Consider first a smooth version of the method. We define a vector field, induced by
the Newton directions towards the central trajectory, on the set Sy, of all the interior
feasible solutions of the LCP. The vector field over S, defines a system of differential
equations such that each solution forms a trajectory (smooth curve) through each point
(2% y°) € S,y toward a solution of the LCP. Furthermore, the Newton directions are
descent directions of the potential function whose value tends to —oo as a point (@, y)
approaches a solution of the LCP along any trajectory.

The potential reduction algorithm [14] can be obtained from the smooth version by
specifying the step size at each (@,y) € Sy4 for numerical integration of the vector field,
using the first order method for differential equations. If in addition we choose an initial
point sufficiently close to the trajectory and a suitably small step size, the potential
reduction algorithm works as the path-following algorithm [13]. For more details see

Section 4.3 of [10].

Our work is closely related to the works [19; 20; 21] by Tanabe (see [10] for a detailed
discussion), but the analyses are different and, in particular, we emphasize the global and
the polynomial-time convergence of the UIP method applied to larger classes of LCP’s.



We do not give a unified view over all the interior point algorithms. Specifically, we
do not cover algorithms which work only on either primal or dual space [5; 8; 18], the
O(y/nL) iteration potential reduction algorithms of [25; 7], the first potential reduction
algorithm given in [11] for Py case. We summarize the main results of [10]. In Section 2,
we state some classes of LCP’s to which we apply the UIP method. Section 3 explains the
UIP method. Section 4 gives some assumptions which are necessary for the discussion of
the theoretical computational complexity of the UIP method. Section 5 presents a large
class of potential reduction algorithms as special cases of the UIP method, and their
global and polynomial-time convergence properties.

2. LCPs Covered by the UIP Method.

Let R ={x € R" : 2 >0} and R}, = {2 € R": 2 > 0}. A pair (2,y) is called a
feasible solution if
y=Mz+gq, (2y) =0,

and an interior feasible solution if

y=Mz+gq, (z,y)>0.

We denote

Sy ={(z,y) € R} :y = Mz + ¢},
Sty ={(z,y) € B, 1y = M= + g},
Sep ={(@,y) € 54 raiy; =0 (i € N)}.

It is convenient to consider the quadratic programming problem
QP : Minimize @’y subject to (x,y) € 5. (2.2)

The LCP is equivalent to the QP in the sense that (@,y) is a solution of the LCP if
and only if it i1s a minimum solution of the QP with the objective value zero. We will
describe the UIP method in Section 3, and then derive in Section 5 a class of potential
reduction algorithms as special cases. Under the condition stated below, each algorithm
in the class converges globally, i.e., it generates a bounded sequence {(x*, y*)} C S,,

kT

such that lim %" y* = 0; hence the sequence has at least one accumulation point, which

k—oo
is a solution of the LCP.

Condition 2.1. We will assume that the matrix M satisfies the following conditions:

(i) The matrix M is a FPy-matrix, i.e., has nonnegative principal minors.
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(ii) A point (', y') which lies in the interior Sy of the feasible region S, is known.
(iii) The set St = {(=,y) € 54 : @’y < t} is bounded for every ¢ > 0.

We need (i) to guarantee the existence and uniqueness of a solution to a system of
linear equations for the search directions. The class Fy contains the following classes:

SS i skew-symmetric matrices M, characterized by €T M & = 0 for every € € R".

PSD : positive semi-definite matrices.

P : matrices with positive principal minors.

P.(x) : matrices M satisfying (1+4x) X er, ) Gi[MELi +Xicr_e) &M E]: > 0 for every
€ R", where [ (&) ={t € N:&[ME]; >0} and 1_(§) ={1 € N : {[ME]; < 0},
and & > 0.

P.: Ukso P.(r).

CS : “column sufficient” matrices [4], characterized by the condition that &[M¢]; <0
(1 € N) always implies {;[ME]; (¢ € N).

Note that SS C PSD, PNSS =0, and (PSDUP)C P, CCS C F,.

Requirement (ii) offers an initial point (&', y"') while (iii) ensures the boundedness of
the generated sequence {(x*,y*)} C S,,. Requirements (ii) and (iii) are not generally
satisfied. If M is column sufficient, the original problem (LCP) can be transformed into
an “artificial” problem (LCP’) of order 2n such that (a) (LCP’) satisfies Condition 2.1
and (b) we either obtain a solution of (LCP) by deleting the artificial components from
the solution of (LCP’) or conclude that (LCP) has no solution. Thus, the UIP method
solves the LCP if M € CS.

3. The UIP Method.

One of the main ingredients of the UIP method is the function
fle,y) = (n+v)loga"y —> logzy; —nlogn . (3.3)
=1
Here v > 0 is a parameter. This type of potential function has been utilized for linear

programs in many papers (see [10]). Associated with the quadratic programming problem
into which we converted the LCP we consider the potential minimization problem:

Minimize f(@,y) subject to (@,y) € Si4.
Note that the term (n + v)logzTy of f comes from the objective function, whereas

— Zlog x;y; works as a “barrier.” We rewrite the definition of f as:
=1

f(wvy) = ch(wvy)—l_fcen(wvy)v (34)
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fo(z,y) = logaly,

n a:Ty/n
feen(2,y) = nlogaly — g log z;y; — nlogn = nlog —————— .
( ) i=1 (ITi=y @iy

xly/n
(I wiya)'/
n positive numbers x1y1, TaYa, . .., TnYn. Hence fe,(@®,y) > 0 for every (x,y) € Syq.
It follows that f(®,y) > vf.,(x,y) = viogaTy for every (,y) € S;,. Thus we may
regard (@,y) € S;4 as an approximate solution if f(@,y) is sufficiently small.

The term is the ratio of the arithmetic mean and the geometric mean of

The function f assists in choosing the step lengths. It also helps establishing either
global or polynomial-time convergence. It is worth noting that the quantity &’y may
approach zero even when f(x,y) is bounded from below, so the design of algorithms
should not rely solely on the analysis of f.

The other main ingredient of the UIP method is the central trajectory for the LCP [15;
13], given by
Seen = {(2,y) € Sy : Xy =te for somet > 0}, (3.5)

where e = (1,...,1)T € R” and X = diage.

Under certain assumptions, the central trajectory S.., indeed constitutes a smooth
curve which leads to a solution of the LCP. The formula for the central trajectory S..,
can be rewritten using the function f..,:

Soen = {(@,9) € Sy ¢ foonl,y) = O}, (3.6)

The search direction is chosen as follows. Let 0 < g < 1. Given (@,y) € 544, assign
(de,dy) € R*™ such that

xly
Y oX ) (de)_ 5 Te-Xy | (3.7)
-M I dy 0
Here Y = diagy. The coefficient matrix on the left-hand side above is nonsingular

whenever M € Fy. This matrix, as well as the right-hand side vector, are smooth in
(z,y) € Sy, so the (de,dy)’s form a smooth vector field over S, ;.

The vector (de, dy) is the Newton direction at (@, y) for approximating a point (&', y’)
on the central trajectory such that

T

X’y’zﬂa3 Ye and y =Mz +q, (3.8)

n

where X' = diaga’. The system (3.8) involves the parameter 5 € [0,1].  Let the
point (&’,y’) on S.., denote the solution of the system of equations (3.8). If 3 =1, the
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point (@', y’) corresponds to the point (&,y) which minimizes the Euclidean distance
| Xy — X@H from the current point (@,y) to a point (&,y) on the central trajectory.
Thus the direction (de,dy) = (dx°, dy°) may be regarded as a “centering direction” in
this case. On the other hand, if 3 = 0, the system (3.8) together with the nonnegativity
condition on (@', y’) coincides with the LCP itself. Hence (dx,dy) gives the Newton
direction to the LCP without any centering. We will call (de,dy) = (de*, dy®) an “affine
scaling direction.” In general, (de,dy) can be represented as a convex combination of
the centering direction (de°, dy°) and the affine scaling direction (de®, dy*).

(d, dy) = B(de’,dy°) + (1 — §)(da", dy"). (3.9)

For 3 € [0,1], it can be shown that (de,dy) is a descent direction of f.

Henceforth we assume an initial point (&', y') € S, is available, and the initial value
of the potential function is not greater than a certain constant.

The UIP Method.

Step 1: Let k=1 and ¢ > 0.

Step 2: Let (z,y) = (2", y"). Stop if the inequality Ty < ¢ is satisfied.

Step 3: Let § = 3 € [0,1]. Solve the system (3.7) for a search direction (de, dy).

Step 4: Choose § = 0, > 0 so that (@,y) + 0(de,dy) € S;1 U S.,. Let the new point
be (z,y) = (z,y) + 0(dx, dy).

Step 5: Let (xf+!, y**!) = (2, y). Replace k by k + 1, and go to Step 2.

The stopping criterion in Step 2 covers the case where we have reached a solution
of the LCP. In practice, one can expect to obtain a sufficiently approximate solution of
the LCP when the method stops, provided € > 0 is small enough. In theory we choose
€ = 272 50 that a solution of the LCP can be computed from the terminal point of the

UIP method (see [10]).

The UIP method involves two parameters: # € [0,1] and § > 0. The parameter 3
and the current point (2%, y*) determine the direction (dz,dy) toward the new iterate
(2" y**1), while § > 0 controls the step length. In [10] we explore flexible choices of
these two parameters which ensure the global convergence, in certain cases in polynomial
time. A summary is presented in Section 5.

4. Assumptions for Evaluating the Computational Complexity.

We assume all the entries of M and q to be rational. This is necessary to guarantee that
the LCP in the cases under consideration, will have a solution with rational coordinates



which could be computed in a finite number of arithmetic operations. For simplicity, we
further assume all the entries to be integral. The size L of the LCP is defined by:

n

S Tlogy([ma] + 1)1 + 3 Moga(Jg:] + 1) + 2 [logy(n + 1] + nln + 1),

15=1 =1

L =

(M = (m;;)). It is shown in [13] that if an approximate solution (&,4) € Sy satisfies
@7y < 27%F then there exists a solution (x*,y*) such that z7 = 0 if & < 27F and
y: =0if g; < 271 Such a (2*,y*) can be computed in O(n?®) arithmetic operations.

kTyk < 27 and get a solution. In other words,

Under Condition 2.1 we can stop when
it is theoretically sufficient to choose ¢ = 272%. Practically, however, it might be too

complicated to compute with such a small number. We often assume:
Condition 4.1.

(i) The entries of M and g are integral.
(ii) The matrix M belongs to P.(x) for some & > 0.
(iii) A point (z',y') € Si4 with fo(2',y') = O(L) and fe..(2',y') < a is known,
where o > 0 is given.

Condition 4.1 implies Condition 2.1. Hence the potential reduction algorithm of Sec-
tion 5 solves the problem under Condition 4.1. In [10] we present a method of transform-
ing a given LCP satisfying only (i) and (ii) of Condition 4.1 into an equivalent artificial
problem satisfying (i), (ii) and (iii) simultaneously.

5. Globally Convergent Potential Reduction Algorithms.

A path-following algorithm traces the central trajectory numerically by generating a

k

sequence {(2*, y*)} in “a horn neighborhood” of S..,, such that klim x Tyk = 0. Several

ways to define a neighborhood of S.., are presented in [10]. Many path-following
algorithms are special cases of the UIP method [6; 12; 13; 16; 17; 23]. Specifically,
if we define the neighborhood by || Xy — (®7y)/n)e|| < a(x’y)/n with a € (0,0.2],
Br = 1—358/vn, (6§ = a/(1 —a)) and 0 = 1, we get the O(n*?L) path-following
algorithm for the p.s.d. case of [13]. A narrow neighborhood of S.., vields polynomial-
time algorithms but is not good for practical purposes. Let o > 0 and consider a
neighborhood N..,(a) defined by f...(z,y) < a as in [19; 20; 21]. When a = oo, we
define N..,(o0) = Syi. Recall that S, corresponds to f..(x,y) = 0. Hence S..,
coincides with N, (0). Since f.., is continuous, for each o > 0, the subset (@,y) € Sy4
such that f...(®,y) < a is open relative to Sy4.



The potential reduction algorithm described below may be viewed as a path-following
algorithm in the sense that all its iterates lie in a certain neighborhood N.c,(asq) of Seen
with 0 < apg < 00 or apg = 0o (the case of oo will discussed later). Its main features
are: (i) a wider neighborhood N..,(asq) of S, which contains any given point in Sy
(specifically, when N.,(oc) = S;i it works as a potential reduction algorithm), and
(ii) each iteration reduces the value of f but not necessarily that of @’y. When a
narrow neighborhood of S.., is taken, the algorithm is path-following. However, with a
wider neighborhood of S..,, it seems natural to regard it as a modification of a potential
reduction algorithm. This suggests flexibility in designing practically efficient algorithms.

Given an arbitrary ayy > 0 or = oo and an initial (&', y') € N..(aw), we want

to choose 3 and f so that the generated sequence {(z*,y*)} stays in N..,(aw) and

k

lim Tyk = (0. Thus, we need to move toward the center by taking a larger § < 1 if

k—o0
we are close to the boundary of N, (apq). On the other hand, if we are far from the
boundary, or if we are close to the S..,, we can take a smaller 3 > 0 to get more reduction

in 7y. To embody this idea, we introduce parameters cen, a1, Been and Bpg such that

0 < e, Ky < apg < 00 Or
0 < Qeen < aq < apg = 00, (5.10)
0§6cen<17 0<6bd§17

and then choose the direction parameter 3 at each iteration such that

0 S 6 S 6cen 1f fcen(way) < Aeeny
0 S 6 S 1 1f Qeen S fcen(way) S ., (511)

6bd§6§ 1 if aq <fcen(w7y)'

The idea of taking a larger # < 1 when the current point is far from the central
trajectory was proposed in [2] (See also [26; 27; 14].).

The vector (da, dy) depends on the value of 3. The function f = v f.,+ f.n facilitates
the choice of § = 6§, for the step length. Since (@,y) lies in S;4 and (de, dy) satisfies
the Newton equation (3.7), y + 0dy = M (@ + 0dx) + q for every § > 0. Let 6* > 0
be the minimizer of f((x,y)+ 6(dx,dy)) subject to (&,y) + 0(de,dy) € Neep(pq) U Sep
or, equivalently, either f...((x,y) + 0(dx,dy)) < apg or (@,y) + 0(de,dy) € S.p. It is
generally impossible to compute 8*. Let 0 < 7 < 1, and

O(r) =sup{d > 0:0de > —7t2, 0dy > —1y}.

Obviously, for every 6 € [0,0(7)], (z,y) + 0(de,dy) € Si4. It is possible (see Section
4.4 of [10]) to find quadratic functions G7_ (#) and G7(0) such that

cen

Jeen((2,y) + 0(dz, dy)) < feen(®,y) — G, (0) for every 6 € [0,0(7)],



dT
G, (0) =0, M>07

cen o
f((z,y) +0(dz,dy)) < f(z,y) — G"(d) for every 0 € [0,0(7)],
G (0) = 0, dcze(()) >0,

Thus, using the minimizer, é, of f(z,y) — G7(0) subject to
feen(®,y) = GL,(0) < cva and 0 € [0,0(7)],
we obtain a new point (&,y) = (®,y) + é(da:, dy) such that

(®,9) € Neen(ana), )
f((x,y) + 0" (de,dy)) < f(®,y) < f(e,y) — G (0) < f(z,y).

Theoretically, 0 ensures either the global or the polynomial-time convergence with suit-
able choices of 3. Practically, it gives an initial value for an inexact line search for a
better approximation of #*.

To summarize the convergence results so far, let agen, 1, apg, Been and [y satisty
(5.10). Let («',y') € Neen(apa). Also, assume 3 is chosen so that (5.11) holds, and that
# > 0 ensures

(z,y) + 0(de,dy) € Neen(apa), A
fl(z,y) +0(dz,dy)) < f((z,y) + 0(dz, dy)).

We will specify (.., and By; to ensure the global convergence, in polynomial-time in some
cases.

First, suppose that Condition 2.1 is satisfied. Then the sequence {(2*, y*)} is bounded

and lim a:kTyk = 0 (See [10].). Three important cases are covered by this result:

k—o0

(a) 0 < Qeen < < apg < 0.
(b) 0 < een < < apg = 0.
(¢) 0< een <ap =apg = o0.

The second result is an extension of the polynomial-time convergence result of [14]
for the p.s.d. case. Suppose the LCP satisfies Condition 4.1. Let v = /n, oy < +00
and Been, = Bpa = n/(n 4+ v). Then the potential reduction algorithm solves the LCP in
O(\v/n(1 4+ k)L) iterations. We may take either a finite ayg > «y as in the case (a) or
apg = +0oo as in the case (b). See [10].

The last result we state here is a special case of the case (c) of the first convergence
result above. Suppose the LCP satisfies Condition 4.1. Let v = \/n. Choose o, =
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a1 = apg = o0 and e, = 0. This choice implies F; = 0 throughout. The algorithm then
solves the LCP in O(exp{y/n(1 + k)L}) iterations (See [10].). This potential reduction
algorithm with 8y = 0 (k = 1,2,... ) is a direct application of the (damped) Newton
method to the system of equations

y=Mx+q, zy;,=0( €N)

associated with the LCP. The algorithm may also be regarded as an affine scaling interior
point algorithm for the LCP because the search direction at each iteration involves no
centering force as in the affine scaling interior point algorithms for linear programs ([1;
5; 24], etc.). We acknowledge a conversation with I. Lustig on this subject. The global
convergence of the algorithm presented here does not rely on nondegeneracy assumptions,
while the global convergence of the affine scaling algorithms for linear programs has been
established under such assumptions.

More general global convergence theorems are established in Section 6.2 of [10] from
which we can directly derive the results above.
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