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Abstract� This note summarizes a report with the same title� where a
study was carried out regarding a uni�ed approach� proposed by Kojima� Mizuno
and Yoshise� for interior point algorithms for the linear complementarily problem
with a positive semi�de�nite matrix� This approach is extended to nonsymmetric
matrices with nonnegative principal minors�
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�� Introduction�

Many algorithms �see ���� for references� have been developed for mathematical pro�
gramming since Karmarkar�s paper �	�
 See ���� for a survey
 We consider here the linear
complementarity problem �LCP�� Given M � Rn�n and q � Rn
 �nd �x�y� � R�n such
that

y �Mx� q� �x�y� � � and xiyi � � �i � N � f�� 
 
 
 � ng�� �����

Kojima
 Mizuno and Yoshise ���� proposed an O�
p
nL� iteration potential reduction

algorithm
 They suggested a uni�ed interior point �UIP� method for both the path�
following and potential reduction algorithms that solve LCP�s with positive semi�de�nite

�p
s
d
� matrices
 The purpose of this note is to summarize a study which the authors
have carried out in ���� about the UIP method
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The general LCP is NP�complete ���
 In ���� we assumeM to be in the rich class P� of
matrices with nonnegative principal minors
 This class includes not only skew�symmetric
matrices
 p
s
d
 matrices and P �matrices
 but also NP�complete LCP�s


It is very insightful to consider the space �primal
 dual
 or primal�dual� in which

various interior point algorithms work
 Consider the pair of quadratic programs�

P � Minimize cTu�
�

�
uTQu subject to Au � b� u � ��

D � Maximize bTv � �

�
uTQu subject to ATv �Qu � c� v � ��

where Q is symmetric and p
s
d
 IfQ � O
 we get a symmetric primal�dual pair of linear

programs
 We can state the P and D together as an LCP ��
�� with the p
s
d
 matrix by
de�ning

M �

�
Q �AT

A O

�
� q �

�
c

�b
�
�

The UIP method serves as a primal�dual interior point algorithm if we focus our atten�
tion to LCPs arising from linear programming and convex quadratic programming
 In

fact
 the UIP method is closely related to or includes as special cases many interior point
algorithms �for example
 ���� ��� ���
 etc
� which work on the primal and dual spaces
simultaneously
 The global and the polynomial�time convergence results which are es�
tablished in ���� can be applied to a wider class of primal�dual interior point algorithms


The UIP method can also be applied to linear programming problems in standard form
�see �����


Consider �rst a smooth version of the method
 We de�ne a vector �eld
 induced by
the Newton directions towards the central trajectory
 on the set S�� of all the interior

feasible solutions of the LCP
 The vector �eld over S�� de�nes a system of di�erential
equations such that each solution forms a trajectory �smooth curve� through each point
�x��y�� � S�� toward a solution of the LCP
 Furthermore
 the Newton directions are

descent directions of the potential function whose value tends to �� as a point �x�y�
approaches a solution of the LCP along any trajectory


The potential reduction algorithm ���� can be obtained from the smooth version by
specifying the step size at each �x�y� � S�� for numerical integration of the vector �eld

using the �rst order method for di�erential equations
 If in addition we choose an initial

point su�ciently close to the trajectory and a suitably small step size
 the potential
reduction algorithm works as the path�following algorithm ����
 For more details see
Section �
� of ����


Our work is closely related to the works ���� ��� ��� by Tanabe �see ���� for a detailed

discussion�
 but the analyses are di�erent and
 in particular
 we emphasize the global and
the polynomial�time convergence of the UIP method applied to larger classes of LCP�s


�



We do not give a uni�ed view over all the interior point algorithms
 Speci�cally
 we
do not cover algorithms which work only on either primal or dual space ��� 	� �	�
 the
O�
p
nL� iteration potential reduction algorithms of ���� ��
 the �rst potential reduction

algorithm given in ���� for P� case
 We summarize the main results of ����
 In Section �


we state some classes of LCP�s to which we apply the UIP method
 Section � explains the
UIP method
 Section � gives some assumptions which are necessary for the discussion of
the theoretical computational complexity of the UIP method
 Section � presents a large
class of potential reduction algorithms as special cases of the UIP method
 and their

global and polynomial�time convergence properties


�� LCPs Covered by the UIP Method�

Let Rn
� � fx � Rn � x � �g and Rn

�� � fx � Rn � x � �g
 A pair �x�y� is called a
feasible solution if

y �Mx� q� �x�y� � ��

and an interior feasible solution if

y �Mx� q� �x�y� � ��

We denote

S� � f�x�y� � R�n
� � y �Mx� qg�

S�� � f�x�y� � R�n
�� � y �Mx� qg�

Scp � f�x�y� � S� � xiyi � � �i � N�g�

It is convenient to consider the quadratic programming problem

QP � Minimize xTy subject to �x�y� � S�� �����

The LCP is equivalent to the QP in the sense that �x�y� is a solution of the LCP if

and only if it is a minimum solution of the QP with the objective value zero
 We will
describe the UIP method in Section �
 and then derive in Section � a class of potential
reduction algorithms as special cases
 Under the condition stated below
 each algorithm
in the class converges globally
 i
e

 it generates a bounded sequence f�xk�yk�g � S��
such that lim

k��
xkTyk � �� hence the sequence has at least one accumulation point
 which

is a solution of the LCP


Condition ���� We will assume that the matrix M satis�es the following conditions�

�i� The matrixM is a P��matrix
 i
e

 has nonnegative principal minors


�



�ii� A point �x��y�� which lies in the interior S�� of the feasible region S� is known


�iii� The set St
� � f�x�y� � S� � xTy � tg is bounded for every t � �


We need �i� to guarantee the existence and uniqueness of a solution to a system of
linear equations for the search directions
 The class P� contains the following classes�

SS � skew�symmetric matricesM 
 characterized by �TM� � � for every � � Rn

PSD � positive semi�de�nite matrices


P � matrices with positive principal minors

P���� � matricesM satisfying ������

P
i�I���� �i�M��i�

P
i�I

�

��� �i�M��i � � for every
� � Rn
 where I���� � fi � N � �i�M��i � �g and I���� � fi � N � �i�M��i � �g

and � � �


P� �
S

k�� P����

CS � �column su�cient� matrices ���
 characterized by the condition that �i�M��i � �

�i � N� always implies �i�M��i �i � N�


Note that SS � PSD
 P � SS � �
 and �PSD � P � � P� � CS � P�


Requirement �ii� o�ers an initial point �x��y�� while �iii� ensures the boundedness of
the generated sequence f�xk�yk�g � S��
 Requirements �ii� and �iii� are not generally

satis�ed
 IfM is column su�cient
 the original problem �LCP� can be transformed into
an �arti�cial� problem �LCP�� of order �n such that �a� �LCP�� satis�es Condition �
�
and �b� we either obtain a solution of �LCP� by deleting the arti�cial components from

the solution of �LCP�� or conclude that �LCP� has no solution
 Thus
 the UIP method
solves the LCP if M � CS


�� The UIP Method�

One of the main ingredients of the UIP method is the function

f�x�y� � �n� �� log xTy �
nX

i��

log xiyi � n log n � �����

Here � � � is a parameter
 This type of potential function has been utilized for linear
programs in many papers �see �����
 Associated with the quadratic programming problem

into which we converted the LCP we consider the potential minimization problem�

Minimize f�x�y� subject to �x�y� � S���

Note that the term �n � �� logxTy of f comes from the objective function
 whereas

�
nX

i��

log xiyi works as a �barrier
� We rewrite the de�nition of f as�

f�x�y� � �fcp�x�y� � fcen�x�y�� ��
��

�



fcp�x�y� � log xTy�

fcen�x�y� � n log xTy �
nX

i��

log xiyi � n log n � n log
xTy�n

�
Qn

i�� xiyi���n
�

The term
xTy�n

�
Qn

i�� xiyi���n
is the ratio of the arithmetic mean and the geometric mean of

n positive numbers x�y�� x�y�� 
 
 
 � xnyn
 Hence fcen�x�y� � � for every �x�y� � S��

It follows that f�x�y� � �fcp�x�y� � � log xTy for every �x�y� � S��
 Thus we may
regard �x�y� � S�� as an approximate solution if f�x�y� is su�ciently small


The function f assists in choosing the step lengths
 It also helps establishing either

global or polynomial�time convergence
 It is worth noting that the quantity xTy may
approach zero even when f�x�y� is bounded from below
 so the design of algorithms
should not rely solely on the analysis of f 


The other main ingredient of the UIP method is the central trajectory for the LCP ����

���
 given by
Scen � f�x�y� � S�� �Xy � te for some t � �g� �����

where e � ��� 
 
 
 � ��T � Rn and X � diag x


Under certain assumptions
 the central trajectory Scen indeed constitutes a smooth

curve which leads to a solution of the LCP
 The formula for the central trajectory Scen

can be rewritten using the function fcen�

Scen � f�x�y� � S�� � fcen�x�y� � �g� �����

The search direction is chosen as follows
 Let � � � � �
 Given �x�y� � S��
 assign
�dx� dy� � R�n such that

�
Y X

�M I

��
dx

dy

�
�

�
B� �

xTy

n
e�Xy
�

�
CA � �����

Here Y � diag y
 The coe�cient matrix on the left�hand side above is nonsingular
whenever M � P�
 This matrix
 as well as the right�hand side vector
 are smooth in
�x�y� � S��
 so the �dx� dy��s form a smooth vector �eld over S��


The vector �dx� dy� is the Newton direction at �x�y� for approximating a point �x��y��
on the central trajectory such that

X �y� � �
xTy

n
e and y� �Mx� � q� ���	�

where X � � diagx�
 The system ��
	� involves the parameter � � ��� ��
 Let the
point �x��y�� on Scen denote the solution of the system of equations ��
	�
 If � � �
 the

�



point �x��y�� corresponds to the point ��x� �y� which minimizes the Euclidean distance
kXy � �X �yk from the current point �x�y� to a point ��x� �y� on the central trajectory

Thus the direction �dx� dy� � �dxc� dyc� may be regarded as a �centering direction� in
this case
 On the other hand
 if � � �
 the system ��
	� together with the nonnegativity

condition on �x��y�� coincides with the LCP itself
 Hence �dx� dy� gives the Newton
direction to the LCP without any centering
 We will call �dx� dy� � �dxa� dya� an �a�ne
scaling direction
� In general
 �dx� dy� can be represented as a convex combination of
the centering direction �dxc� dyc� and the a�ne scaling direction �dxa� dya�


�dx� dy� � ��dxc� dyc� � ��� ���dxa� dya�� �����

For � � ��� ��
 it can be shown that �dx� dy� is a descent direction of f 


Henceforth we assume an initial point �x��y�� � S�� is available
 and the initial value
of the potential function is not greater than a certain constant


The UIP Method�

Step �� Let k � � and 	 � �

Step �� Let �x�y� � �xk�yk�
 Stop if the inequality xTy � 	 is satis�ed

Step �� Let � � �k � ��� ��
 Solve the system ��
�� for a search direction �dx� dy�

Step �� Choose 
 � 
k � � so that �x�y� � 
�dx� dy� � S�� � Scp
 Let the new point

be ��x� �y� � �x�y� � 
�dx� dy�

Step �� Let �xk���yk��� � ��x� �y�
 Replace k by k � �
 and go to Step �


The stopping criterion in Step � covers the case where we have reached a solution
of the LCP
 In practice
 one can expect to obtain a su�ciently approximate solution of
the LCP when the method stops
 provided 	 � � is small enough
 In theory we choose
	 � ���L so that a solution of the LCP can be computed from the terminal point of the

UIP method �see �����


The UIP method involves two parameters� � � ��� �� and 
 � �
 The parameter �
and the current point �xk�yk� determine the direction �dx� dy� toward the new iterate
�xk���yk���
 while 
 � � controls the step length
 In ���� we explore �exible choices of

these two parameters which ensure the global convergence
 in certain cases in polynomial
time
 A summary is presented in Section �


�� Assumptions for Evaluating the Computational Complexity�

We assume all the entries ofM and q to be rational
 This is necessary to guarantee that
the LCP in the cases under consideration
 will have a solution with rational coordinates

�



which could be computed in a �nite number of arithmetic operations
 For simplicity
 we
further assume all the entries to be integral
 The size L of the LCP is de�ned by�

L �
nX

i��

nX
j��

dlog��jmijj� ��e �
nX

i��

dlog��jqij� ��e � � dlog��n� ��e � n�n� ���

�M � �mij��
 It is shown in ���� that if an approximate solution ��x� �y� � S� satis�es
�xT �y � ���L
 then there exists a solution �x��y�� such that x�i � � if �xi � ��L and
y�j � � if �yj � ��L
 Such a �x��y�� can be computed in O�n�� arithmetic operations


Under Condition �
� we can stop when xkTyk � ���L and get a solution
 In other words

it is theoretically su�cient to choose 	 � ���L
 Practically
 however
 it might be too
complicated to compute with such a small number
 We often assume�

Condition ����

�i� The entries of M and q are integral


�ii� The matrixM belongs to P���� for some � � �


�iii� A point �x��y�� � S�� with fcp�x
��y�� � O�L� and fcen�x

��y�� � � is known

where � � � is given


Condition �
� implies Condition �
�
 Hence the potential reduction algorithm of Sec�
tion � solves the problem under Condition �
�
 In ���� we present a method of transform�
ing a given LCP satisfying only �i� and �ii� of Condition �
� into an equivalent arti�cial
problem satisfying �i�
 �ii� and �iii� simultaneously


�� Globally Convergent Potential Reduction Algorithms�

A path�following algorithm traces the central trajectory numerically by generating a

sequence f�xk�yk�g in �a horn neighborhood� of Scen such that lim
k��

xkTyk � �
 Several

ways to de�ne a neighborhood of Scen are presented in ����
 Many path�following
algorithms are special cases of the UIP method ��� ��� ��� ��� ��� ���
 Speci�cally


if we de�ne the neighborhood by kXy � �xTy��n�ek � ��xTy��n with � � ��� ����

�k � � � ��

p
n
 �� � ���� � ��� and 
k � �
 we get the O�n���L� path�following

algorithm for the p
s
d
 case of ����
 A narrow neighborhood of Scen yields polynomial�
time algorithms but is not good for practical purposes
 Let � � � and consider a

neighborhood Ncen��� de�ned by fcen�x�y� � � as in ���� ��� ���
 When � � �
 we
de�ne Ncen��� � S��
 Recall that Scen corresponds to fcen�x�y� � �
 Hence Scen

coincides with Ncen���
 Since fcen is continuous
 for each � � �
 the subset �x�y� � S��
such that fcen�x�y� � � is open relative to S��


�



The potential reduction algorithm described below may be viewed as a path�following
algorithm in the sense that all its iterates lie in a certain neighborhood Ncen��bd� of Scen

with � � �bd � � or �bd � � �the case of � will discussed later�
 Its main features
are� �i� a wider neighborhood Ncen��bd� of Scen which contains any given point in S��
�speci�cally
 when Ncen��� � S�� it works as a potential reduction algorithm�
 and
�ii� each iteration reduces the value of f but not necessarily that of xTy
 When a
narrow neighborhood of Scen is taken
 the algorithm is path�following
 However
 with a
wider neighborhood of Scen
 it seems natural to regard it as a modi�cation of a potential

reduction algorithm
 This suggests �exibility in designing practically e�cient algorithms


Given an arbitrary �bd � � or � � and an initial �x��y�� � Ncen��bd�
 we want
to choose � and 
 so that the generated sequence f�xk�yk�g stays in Ncen��bd� and

lim
k��

xkTyk � �
 Thus
 we need to move toward the center by taking a larger � � � if

we are close to the boundary of Ncen��bd�
 On the other hand
 if we are far from the
boundary
 or if we are close to the Scen
 we can take a smaller � � � to get more reduction
in xTy
 To embody this idea
 we introduce parameters �cen
 ��
 �cen and �bd such that

� � �cen � �� � �bd �� or

� � �cen � �� � �bd ��

� � �cen � �
 � � �bd � ��

���
�� ������

and then choose the direction parameter � at each iteration such that

� � � � �cen if fcen�x�y� � �cen�

� � � � � if �cen � fcen�x�y� � ���

�bd � � � � if �� � fcen�x�y��

���
�� ������

The idea of taking a larger � � � when the current point is far from the central
trajectory was proposed in ��� �See also ���� ��� ���
�


The vector �dx� dy� depends on the value of �
 The function f � �fcp�fcen facilitates

the choice of 
 � 
k for the step length
 Since �x�y� lies in S�� and �dx� dy� satis�es
the Newton equation ��
��
 y � 
dy � M �x � 
dx� � q for every 
 � �
 Let 
� � �
be the minimizer of f��x�y� � 
�dx� dy�� subject to �x�y� � 
�dx� dy� � Ncen��bd�� Scp

or
 equivalently
 either fcen��x�y� � 
�dx� dy�� � �bd or �x�y� � 
�dx� dy� � Scp
 It is

generally impossible to compute 
�
 Let � � 
 � �
 and

��
 � � supf
 � � � 
dx � �
x� 
dy � �
yg�

Obviously
 for every 
 � �����
 ��
 �x�y� � 
�dx� dy� � S��
 It is possible �see Section
�
� of ����� to �nd quadratic functions G�

cen�
� and G� �
� such that

fcen��x�y� � 
�dx� dy�� � fcen�x�y��G�
cen�
� for every 
 � �����
 ���

	



G�
cen��� � ��

dG�
cen���

d

� ��

f��x�y� � 
�dx� dy�� � f�x�y��G� �
� for every 
 � �����
 ���

G� ��� � ��
dG� ���

d

� ��

Thus
 using the minimizer
 �

 of f�x�y��G� �
� subject to

fcen�x�y��G�
cen�
� � �bd and 
 � �����
 ���

we obtain a new point ��x� �y� � �x�y� � �
�dx� dy� such that

��x� �y� � Ncen��bd��

f��x�y� � 
��dx� dy�� � f��x� �y� � f�x�y��G� ��
� � f�x�y��

Theoretically
 �
 ensures either the global or the polynomial�time convergence with suit�
able choices of �
 Practically
 it gives an initial value for an inexact line search for a

better approximation of 
�


To summarize the convergence results so far
 let �cen
 ��
 �bd
 �cen and �bd satisfy

��
���
 Let �x��y�� � Ncen��bd�
 Also
 assume � is chosen so that ��
��� holds
 and that

 � � ensures

�x�y� � 
�dx� dy� � Ncen��bd��

f��x�y� � 
�dx� dy�� � f��x�y� � �
�dx� dy���

We will specify �cen and �bd to ensure the global convergence
 in polynomial�time in some
cases


First
 suppose that Condition �
� is satis�ed
 Then the sequence f�xk�yk�g is bounded
and lim

k��
xkTyk � � �See ����
�
 Three important cases are covered by this result�

�a	 � � �cen � �� � �bd ��

�b	 � � �cen � �� � �bd ��

�c	 � � �cen � �� � �bd ��


The second result is an extension of the polynomial�time convergence result of ����

for the p
s
d
 case
 Suppose the LCP satis�es Condition �
�
 Let � �
p
n
 �� � ��

and �cen � �bd � n��n � ��
 Then the potential reduction algorithm solves the LCP in

O�
p
n�� � ��L� iterations
 We may take either a �nite �bd � �� as in the case �a� or

�bd � �� as in the case �b�
 See ����


The last result we state here is a special case of the case �c� of the �rst convergence
result above
 Suppose the LCP satis�es Condition �
�
 Let � �

p
n
 Choose �cen �

�



�� � �bd �� and �cen � �
 This choice implies �k � � throughout
 The algorithm then
solves the LCP in O�expfpn�� � ��Lg� iterations �See ����
�
 This potential reduction
algorithm with �k � � �k � �� �� 
 
 
 � is a direct application of the �damped� Newton
method to the system of equations

y �Mx� q� xiyi � � �i � N�

associated with the LCP
 The algorithm may also be regarded as an a�ne scaling interior

point algorithm for the LCP because the search direction at each iteration involves no
centering force as in the a�ne scaling interior point algorithms for linear programs ����
�� ���
 etc
�
 We acknowledge a conversation with I
 Lustig on this subject
 The global

convergence of the algorithm presented here does not rely on nondegeneracy assumptions

while the global convergence of the a�ne scaling algorithms for linear programs has been
established under such assumptions


More general global convergence theorems are established in Section �
� of ���� from

which we can directly derive the results above
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