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by iteratively reducing the potential function
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X

ln xjyj �

where� for example� � � 	n� The direction of movement in the original space
can be viewed as follows� First� apply a linear scaling transformation to make
the coordinates of the current point all equal to 
� Take a gradient step in the
transformed space using the gradient of the transformed potential function� where
the step size is either predetermined by the algorithm or decided by line search to
minimize the value of the potential� Finally� map the point back to the original
space�

A bound on the worst�case performance of the algorithm depends on the pa�
rameter �� � ���M � ��� which is de�ned as the minimum of the smallest eigenvalue
of a matrix of the form

�I � Y ��MX��I �XMTY ��MX����I �XMTY ���
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and XjjYjj � n�� If M is a P�matrix� �� is positive and the algorithm solves
the problem in polynomial time in terms of the input size� j log �j� and 
���� It
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p
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yields a polynomial�time algorithm� This covers the convex quadratic minimization
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�� Introduction

We consider the linear complementarity problem �LCP�� that is� given a rational matrix
M � Rn�n and a rational vector q � Rn� �nd vectors x�y � Rn such that

�LCP �

y �Mx� q

x�y � �

xTy � 	 �

Equivalently� we consider the LCP as a quadratic programming problem

Minimize xTy

subject to y �Mx� q

x�y � � �

The problem of recognizing whether the LCP has a solution is NP
complete�� We are
interested in the problem of �nding a solution in special cases where existence is guar

anteed� For example� if M has positive principal minors �i�e�� M is a P 
matrix ���� a

unique solution exists for every q� Also� the problem of computing a Nash
equilibrium
point in a two
person game can be reduced to an LCP with q � �e � ���� � � � ����T
and

M �

�
O BT

A O

�

where A and B have positive entries� A solution always exists for such problems� It is
shown in �� that the P 
matrix LCP and the equilibrium problems cannot be NP
hard

unless NP � coNP�

An �
complementary solution is a pair x�y � � such that y �Mx� q and

xTy � � �

The question we are interested in here is the existence of an algorithm for �nding an
�
complementary solution in time which is bounded by a polynomial in the input size L
�i�e�� the length of the binary representation of M and q� and � log �� It is shown in
�� that there exists �� where � log � is bounded by the input size� such that an exact
solution can be easily computed from an �
complementary one�

The analysis of this paper is related to the one presented by Karmarkar �� for his
linear programming algorithm� Gonzaga �� proves for linear programming essentially

the same result as the one presented in Section �� Also� Ye �� used potential functions
in a similar way�

�This is because the problem of recognizing existence of 	�� �
�solutions to Ax � b can be set as an
LCP� yj � �� xj� u � Ax� b� x�y�u�v � �� xTy � vTu � �
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�� An invariant potential function

We assume the feasible domain intersects the positive orthant� i�e�� there exist x�y � �

such that y �Mx� q� For brevity� we say that such points are interior�

We de�ne a potential function f�x�y� at interior points by

f�x�y� � � lnxTy �
nX

j��

lnxjyj

where � � ��n� � n�

Lemma ���� If f�x�y� � �K� then xTy � e�
K
��n �

Proof� The claim follows from

f�x�y� � � lnxTy � ln
nY
i��

xjyj

� � lnxTy � ln

�
n��

nX
i��

xjyj

�n

� �� � n� lnxTy � n ln n � ��� n� lnxTy �

We use the notation p�L� for any polynomial in L� Starting from a point where the
potential function value is p�L�� if the value is reduced during each step by at least n�k

for some k� then it takes a polynomial number of steps �in terms of L� n� and � log �� to
reach an �
complementary point�

We now examine the behavior of the potential function under scaling of x and y�
Given any feasible interior point �x��y��� letX and Y denote diagonal matrices with the
coordinates of x� and y�� respectively� in their diagonals� De�ne a linear transformation
of space by

x� �X��x � y� � Y ��y �

Denote
M � � Y ��MX � q� � Y ��q �

and

wj � x�jy
�
j �j � �� � � � � n� and w � �w�� � � � � wn�

T �

Also denote
W �XY �

�



The transformed problem is

Minimize x�TWy�

subject to y� �M �x� � q�

x��y� � � �

Note that feasible solutions of the original problems are mapped into feasible solutions
of the transformed problem�

y� � Y ��y � Y ���Mx� q� �M �x� � q�

and� obviously� the point �x��y�� is mapped into �e�e�� Consider the transformed po


tential function

f ��x��y�� � � lnx�TWy� �
nX

j��

lnx�jwjy
�
j �

It is easy to verify that f ��x��y�� � f�x�y�� so a reduction in one of the functions results
in the same reduction in the other one�

Obviously� the matrixM � is a P 
matrix if and only ifM is a P 
matrix� Now� consider

the special case where the current point �x�y� is on the �central path�� i�e��XY � �I for
some �� In this case� some important structure of M is preserved in the transformation
to M �� For example� if M arises from a linear programming problemthen M is skew

symmetric� In this case�M � is also skew
symmetric and arises from a transformed linear

programming problem� Obviously� if M is symmetric then so is M �� Moreover� if M
is positive semi
de�nitethen so is M �� This implies that if M arises from a convex
quadratic programming problem then so does M ��

�� Getting an initial point

To guarantee a polynomial running time� we have to start the algorithm at an interior
point where the value of the potential function is bounded by a polynomial p�L� in the
size L of the input of the problem�

We note that any LCP can be reduced to an LCP whose feasible domain intersects
the positive orthant� by adding a pair of complementary variables x�� y��

�LCP ��

y �Mx� �e�Me� q�x� � q
y� � x�

x�y � �

x�� y� � 	

xjyj � 	 �j � 	� � � � � n� �

�



where the choice x � y � e� x� � y� � � yields an interior feasible solution� Moreover�
the value of the potential function at this point is � ln�n���� Note that this reformulation
preserves the P
matrix property� We may view �
complementary solutions of �LCP �� as
approximate solutions to �LCP �� It is important to note that given an �
complementary

solution with � � ��L� a simple procedure �nds an exact solution �see ����

Another possible initialization is as follows� If the original problem has an interior
point� then any polynomial
time algorithm for linear programming can be employed to
�nd an interior point where the value of the potential function is bounded by a polynomial
in the input size� This can be done as follows� Solve the following linear programming

problem�

�P �

Maximize �

subject to y �Mx� q

x�y � �e

� � � �

If the problem does not have an interior feasible point� then this fact is discovered by

recognizing either that �P � is infeasible or that the optimal value �� of �P � is nonpositive�
Assuming �� � 	� we have �� � ��p�L�� and also the size of this value is bounded by a
polynomial in L� Moreover� at a basic optimal solution the xj�s and yj�s have polynomial
sizes� and hence the value of the potential function at such a solution is bounded by a

polynomial p�L�� Of course� this is only a worst
case estimate and the actual initial point
may not require so many bits to specify�

�� The core of the algorithm

During a single iteration the algorithm takes a step in the direction corresponding to
steepest descent of the potential function in the transformed space� More precisely� the
algorithm transforms the current point �xk�yk� into �e�e� by linear scaling� moves to

a point in the direction of steepest descent� and then transforms this point back to the
original space and calls it �xk���yk���� To simplify the presentation� we assume the
current point is indeed �e�e� and the potential function has the form

f�x�y� � � lnxTWy �
nX

j��

lnxjwjyj �

We also omit the primes fromM � and q��

The gradient of f is given by

rxf�x�y� �
�

xTWy
Wy �X��e

�



ryf�x�y� �
�

xTWy
Wx� Y ��e �

whereX and Y denote diagonal matrices containing the coordinates of x and y� respec

tively� in their diagonals� Denote

g �
�

eTw
w � e �

If x � y � e� then

gx � rxf�e�e� �
�

eTWe
We� e � g

gy � ryf�e�e� �
�

eTWe
We� e � g �

Denote by ��x��y� the projection of rf�e�e� on the linear space � de�ned by
�y �M�x� Thus� ��x��y� minimizes

k�x� gk� � k�y � gk�

subject to

�y �M�x �

It follows that
�x � �I �MTM ����I �MT �g

�y �M�I �MTM����I �MT �g �

Denote d � ���x�T � ��y�T �T and h � �gT �gT �T �

Proposition ����

hTd � kdk� �

Proof� The vector d is a projection of h on a linear subspace� so d � Ph where P is
a symmetric matrix such that P � � P � Thus�

kdk� � hTP �h � hTPh � hTd �

Fact ����

eTg � �� n and hence kgk � � � np
n

�

Fact ����

kgk �
q
�� � ��� n � � �

�



Proof� By de�nition� since wj � 	�

�� � gj � �� � �

The vector g lies in the simplex de�ned by these bounds� together with eTg � � � n�
The maximum norm of a point in this simplex is attained at a vertex� so we have

kgk � k���� � � � ���� �� ��Tk �
q
�� � ��� n � � �

Corollary ����

maxfk�xk� k�ykg � �
p
� �

Proof� Since d is the projection of h on a linear subspace�

kdk � khk � kgk
p
� � �

p
� �

which implies the claim�

We now estimate the amount of reduction �f in the value of f as we move from

x � y � e to a point of the form x� � e� t�x� y� � e� t�y� where t � 	� We would
like to choose t so as to achieve a reduction of at least n�k for some constant k�

Proposition ����

ln�eTWe�� ln
�
�e� t�x�TW �e� t�y�

�
� eTW ��x��y�

eTWe
t� kdk�t� �

Proof� First� we have

ln
�
�e� t�x�TW �e� t�y�

�
� ln

�
eTWe� teTW ��x��y� � t���x�TW�y

�

� lneTWe� e
TW ��x��y�� t��x�TW�y

eTWe
t �

However�
��x�TW�y

eTWe
� k�xk � k�yk � kdk� �

Proposition ���� If MTg �� �g� then hTd � 	�

�



Proof�
hTd � gT �I �M��I �MTM����I �MT �g �

Since I �MTM is positive
de�nite� our claim follows�

Denote
t� � �

�
minf�max

i
j�xij���� �max

i
j�yij���g �

and notice that

t� � �

�kdk �

Proposition ���� For t � t��

nX
j��

ln��� t�xj���� t�yj� � ��eTd� t� �kdk�t� �

Proof� The proof follows from the inequality

ln��� djt� � �djt� �
�

d�j t
�

�� � jdjtj��

which holds for t such that jdjtj � ��

Corollary ��	� For t � t��

�f � kdk�t� ��� ��kdk�t� �

Proof� The proof follows by combining the results of Propositions ���� ���� ���� Note
that

�
eTW ��x��y�

eTWe
� eTd � hTd � kdk� �

Lemma ��
� There exists a t � t� for which� �f � ��kdk����� In particular� if

kdk� � �

O�nk�

for some k � 	� then

�f � �

O��nk�
�

�The notation �	x
 � �	�	x

 means that there exists a constant c such that �	x
 � c�	x


�



Proof� The maximum of kdk�t� ��� ��kdk�t� is attained at

t� �
�

��� �
�

Let
t � minft�� t�g �

If
t� � t� �

then we have

�f � kdk�
��� �

�

Otherwise�

�f � kdk�t� � ��� ��kdk��t��� � �
�
kdk�t� � �

�
kdk � kdk�

�
p
��

�

This implies our claim�

�� Suitable matrices

In view of Lemma ���� we need to get good lower bounds on kdk� Recall that d �� 	
providedMTg �� �g� However� we are interested in conditions onM which imply that
kdk is bounded away from zero� hopefully by n�k for some k� Moreover� since the matrix

M of the preceding section is actually M � � Y ��MX� we need to look for conditions
on M which are invariant under scaling of columns and rows by positive multipliers�

De�nition ���� For any matrix M and any diagonal matrices �with positive diagonal
entries� X and Y � denote

S � S�M �Y ���X� � �I � Y ��MX��I �XMTY ��MX����I �XMTY ��� �

Let 	�M �Y ���X� denote the smallest eigenvalue of S�M �Y ���X�� and let

	��M � � inff	�M �Y ���X� � Xjj � Yjj � 	g �

Also� let

	��M � � inff	�M �Y ���X� � Xjj � Yjj � 	 and XjjYjj � n�g �

Obviously� 	��M � � 	��M�� The distinction between 	� and 	� is crucial in the context
of P 
matrices� as we show below�

�



Remark ���� For every M � X and Y � 	�M �Y ���X� � 	 and 	�M �Y ���X� � 	 if

and only if I �Y ��MX is singular� Thus 	��M� � 	� Note that ifM has nonnegative
principal minors� then I �RMC is nonsingular for any nonnegative diagonal matrices
R and C� On the other hand� ifM has a negative principal minor� there existX and Y
such that I �Y ��MX is singular� This can be seen as follows� Suppose S � f�� � � � � ng
is a set of indices of columns and rows corresponding to a negative minor� Let X and
Y be diagonal matrices where Xjj � Y ��

jj � t for j � S and Xjj � Y ��
jj � minft� ��t�g

otherwise� The determinant of I � Y ��MX tends to � when t tends to 	� and to ��
as t tends to in�nity� It follows that for some value of t this determinant equals zero�
Since XjjYjj � �� it follows that ifM has a negative minor� then 	��M� � 	�

Proposition ���� If � � �n� then throughout the execution of the algorithm�

kdk� � n	�M �Y ���X� � n	��M� �

Proof� It follows from the analysis above �see Fact ���� that

kdk� � dTh � ��x��y�Tg

� gT �I � Y ��MX��I �XMTY ��MX����I �XMTY ���g

� 	�M �Y ���X�kgk� � n	�M �Y ���X�

�

To prove that actually 	��M � can be used� recall that the value of the potential
function does not increase throughout the execution of the algorithm� Thus� if the initial
value is K� then K remains an upper bound on the value of f�x�y� and by Lemma ����

e
K
��n is an upper bound on xTy� The essential thing to note is that for every j� the value

of xjyj is bounded throughout by some K �� Actually� we have demonstrated above that

the initial value can be chosen as � ln n� Therefore� if � � �n� we can set K � � e
K
n � n��

Thus�
kdk� � n inff	�M �Y ���X� � xj� yj � 	� xjyj � n�g � n	��M � �

�� The case of a P �matrix

Recall that a P 
matrix is one that has positive principal minors� Remark ��� provides

some motivation for considering the performance of the algorithm on problems with P 

matrices� In this section we prove that the algorithm presented above solves the LCP with
a P
matrix� The algorithm runs until the value of xTy decreases below some prescribed
� � 	� For problems with rational coe�cients� an � � 	 can be determined such that an

exact solution can be computed from an �
complementary one� The following proposition
is the key to the validity of the algorithm�

�	



Proposition ���� If M is a P�matrix� then for every � � 	 there exists 
 � 	 such that
for every pair x�y produced by the algorithm� if xTy � �� then necessarily xj� yj � 
 for
all j�

Proof� The proof follows from the fact that the potential function decreases monoton


ically throughout the execution of the algorithm� In particular� there exists a constant
K� such that f�x�y� � K� for every iterate �x�y�� By Lemma ���� for every such

iterate� xTy � e
K�

��n � However� if M is a P
matrix� the set of pairs x�y� such that

y �Mx� q and xTy � t� is bounded for every t� The latter can be seen as follows�
The quantity

��M � � min
x��O

max
i

xi�Mx�i
kxk�

is positive for any P
matrix� Suppose� on the contrary� that the set de�ned above is
unbounded� In particular� the inequalities

xi�Mx�i � xiqi � t �i � �� � � � � n�
leave x unbounded� However� when x tends to in�nity� these inequalities� written in
the form

xi�Mx�i
kxk� �

xiqi
kxk� �

t

kxk�
give a point x� �� � such that

x�i �Mx��i
kx�k� � 	

for all i� which contradicts ��M � � 	� Now� there exists �� � 	 such that xTy � � and
f�x�y� � K� imply xjyj � ��� The boundedness proven above implies the claim�

We can now de�ne 	��M � �� to be the minimum of 	�M �Y ���X� where X and Y
are such that both eTXY e � � and XjjYjj � n�� Since X and Y vary in a compact
set� the minimum is attained in the set� In other words� 	��M � �� is positive if M is

a P
matrix� and this implies that the algorithm computes an �
complementary solution
in a �nite number of steps� To conclude this section� we give an upper bound on this
number� Assume � � �n� The initial value of the potential function is O�n log n�� To
guarantee �
complementarity� this value has to be reduced to �n log �� During each step�

the value is reduced at least by ��kdk���� �see Lemma ����� which is ��	��M � ��� �see
Proposition ����� Thus� the number of iterations is O�n log�n����	��M � ����

�� The positive semi�de�nite case

In this section we show that the algorithm of this paper solves linear complementarity
problems with positive semi
de�nite matrices in polynomial time� We derive the formulas

��



in the transformed space� so the reader who wishes to use the original matrixM � has to
replace M in the formulas below by Y ��MX� As in Section �� consider the potential
function�

f�x�y� � � lnxTy �
nX

j��

lnxjyj

where � � n� The vector g can be written as

g �
�

xTy
XY e� e �

The optimality conditions in the problem of projecting h � �gT �gT �T into f�y �

M�xg are�
�x� g �MT�

�y � g � ��
�y �M�x �

Thus we have
� � �I �MMT ����I �M �g

�x � g �MT�

�y � g � � �

Since the derivation is done in the transformed space� when we use the original matrix
M we have to write as follows�

�x �g �
�

xTy
XMT��

�y �g � �

xTy
Y ��

where

�� �
xTy

�
Y ���I � Y ��MX�MTY ������I � Y ��MX�g�

Thus�

�x �
�

xTy
X�y �MT���� e

�y �
�

xTy
Y �x� ���� e �

We can now prove the following�

Proposition ���� If M is positive semi�de�nite and � � �n �
p
�n� then kdk � ��

Proof� Denote
x� �x� ��
y� �y �MT�� �

��



We have
�x �

�

xTy
Xy� � e

�y �
�

xTy
Y x� � e �

If either x� �� � or y� �� �� then at least one coordinate of d � ��x��y� is less than
��� so kdk � �� Thus� assume x��y� � �� Also�

�y� � y�T �x� � x� � �����TM�� � 	 �

Thus�
xTy� � yTx� � xTy � x�Ty� � xTy � 	�

This implies

kdk� � ��

�xTy��

�
kXy �k� � kY x�k�

�
� �

�

xTy
�xTy� � yTx�� � �n

� ��

�xTy��
�xTy��� � �yTx���

n
� �

�

xTy
�xTy� � yTx�� � �n

� ��

�xTy��
�xTy� � yTx���

�n
� �

�

xTy
�xTy � � yTx�� � �n

� �n

�
��xTy� � yTx��

�nxTy
� �

��

� �n
�
�

�n
� �

��

� �n

�
� �

�p
�n

� �

��

� � �

Finally� we can state the following�

Theorem ���� If M is positive semi�de�nite then� starting at any interior point where
the potential value is O�nL�� the algorithm converges in O�n�L� iterations�

Proof� If M is positive semi
de�nite� it follows from Proposition ��� and Lemma ���
�with � � �n �

p
�n� that

�f � �

O�n�
�

Thus� by Lemma ���� after O�n�L� iterations we have xTy � ��L�

Initializations that �t the above theorem and the next one were given elsewhere �see�
for example� ����

��



Theorem ���� If M is skew�symmetric �including the case of the linear programming
problem� then� starting at any interior point where the potential value is O�nL�� the
algorithm converges in O�nL� iterations�

Proof� In the skew
symmetric case we obtain better estimates as follows� First� in
Proposition ���� the quadratic term vanishes� so

ln�eTWe�� ln
�
�e� t�x�TW �e� t�y�

�
� eTW ��x��y�

eTWe
t �

Hence� the inequality of Corollary ��� becomes

�f � kdk�t� �kdk�t� �

Following arguments similar to the ones used in the proof of Lemma ���� let t� � ���
denote the maximizer of the parabola in the right
hand side� If t� � t�� then we have

�f � kdk���� Otherwise� we get �f � kdk��� and the claim follows from Proposition
����
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