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Abstract. The linear complementarity problem (LCP) can be viewed as
the problem of minimizing «’y subject to y = Mx + q and x,y > 0. We are
interested in finding a point with 7y < ¢ for a given € > 0. The algorithm proceeds
by iteratively reducing the potential function

fx.y)=pha’y—> Inajy;

where, for example, p = 2n. The direction of movement in the original space
can be viewed as follows. First, apply a linear scaling transformation to make
the coordinates of the current point all equal to 1. Take a gradient step in the
transformed space using the gradient of the transformed potential function, where
the step size is either predetermined by the algorithm or decided by line search to
minimize the value of the potential. Finally, map the point back to the original
space.

A bound on the worst-case performance of the algorithm depends on the pa-
rameter \* = A*(M, €), which is defined as the minimum of the smallest eigenvalue
of a matrix of the form

(I+Y 'MX) T+ XM'Y2PMX)y" T+ XMTy™!)

where X and Y vary over the nonnegative diagonal matrices such that e’ XYe > ¢
and X;;Y;; < n? If M is a P-matrix, A\* is positive and the algorithm solves
the problem in polynomial time in terms of the input size, |loge|, and 1/A\*. Tt
is also shown that when M is positive semi-definite, the choice of p = 2n + /2n
yields a polynomial-time algorithm. This covers the convex quadratic minimization
problem.
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1. Introduction

We consider the linear complementarity problem (LCP), that is, given a rational matrix
M € R and a rational vector ¢ € R", find vectors @,y € R" such that

y=Mxz+gq
(LCP) z,y >0
xly=0.
Equivalently, we consider the LCP as a quadratic programming problem
Minimize 'y
subject to y = Max + q
x,y>0.

The problem of recognizing whether the LCP has a solution is NP-complete.! We are
interested in the problem of finding a solution in special cases where existence is guar-
anteed. For example, if M has positive principal minors (i.e., M is a P-matrix [1]), a
unique solution exists for every q. Also, the problem of computing a Nash-equilibrium

point in a two-person game can be reduced to an LCP with ¢ = —e = (—1,---,—1)T
and .
O B
w90

where A and B have positive entries. A solution always exists for such problems. It is
shown in [5] that the P-matrix LCP and the equilibrium problems cannot be NP-hard
unless NP = coNP.

An e-complementary solution is a pair @,y > 0 such that y = M & + q and
a:Ty <e.

The question we are interested in here is the existence of an algorithm for finding an
e-complementary solution in time which is bounded by a polynomial in the input size L
(i.e., the length of the binary representation of M and ¢) and —loge. It is shown in
[4] that there exists €, where —log e is bounded by the input size, such that an exact
solution can be easily computed from an e-complementary one.

The analysis of this paper is related to the one presented by Karmarkar [3] for his
linear programming algorithm. Gonzaga [2] proves for linear programming essentially
the same result as the one presented in Section 7. Also, Ye [6] used potential functions
in a similar way.

!This is because the problem of recognizing existence of (0, 1)-solutions to Az > b can be set as an
LCP:y; =1—2;,u=Ax—-b, &, y,u,v >0, 2Ty =v"Tu=0.



2. An invariant potential function

We assume the feasible domain intersects the positive orthant, i.e., there exist @,y > 0
such that y = M + q. For brevity, we say that such points are interior.

We define a potential function f(@,y) at interior points by
fle.y)=plnaly = Inay,
7=1
where p = p(n) > n.

K

Lemma 2.1. If f(z,y) < —K, then 2Ty < ¢ 77 .

Proof: The claim follows from
fla,y) = plna’y —In ][ 2y,
=1

> plnaly —In (n_l Z l’]‘y]‘)
=1

=(p—n)ma’y+nlnn>(p—n)ha’y .
|

We use the notation p(L) for any polynomial in L. Starting from a point where the
potential function value is p(L), if the value is reduced during each step by at least n=*
for some k, then it takes a polynomial number of steps (in terms of L, n, and —loge) to
reach an e-complementary point.

We now examine the behavior of the potential function under scaling of & and y.
Given any feasible interior point (2, ¢"), let X and Y denote diagonal matrices with the
coordinates of ®° and y°, respectively, in their diagonals. Define a linear transformation

of space by
¥=X""'z , y=Yy.
Denote
M=Y'MX , ¢d=Yq,
and
wj:x?y? (j=1,---,n) and w = (wy,---,w,)" .

Also denote
W =XY .



The transformed problem is

Minimize &7 Wy’
subject to y' = M'z’' + ¢’
',y >0.

Note that feasible solutions of the original problems are mapped into feasible solutions
of the transformed problem:

y/:Y_ly:Y_l(MiL'—l—q) :M/w/_l_ql

and, obviously, the point (°, ¢°) is mapped into (e,e). Consider the transformed po-
tential function

f(®,y)=phae" Wy — > Inalw;y’ .
=1

It is easy to verify that f'(a’,y’) = f(x,y), so a reduction in one of the functions results
in the same reduction in the other one.

Obviously, the matrix M’ is a P-matrix if and only if M is a P-matrix. Now, consider
the special case where the current point (&, y) is on the “central path”, i.e., XY = ul for
some p. In this case, some important structure of M is preserved in the transformation
to M'. For example, if M arises from a linear programming problemthen M is skew-
symmetric. In this case, M’ is also skew-symmetric and arises from a transformed linear
programming problem. Obviously, if M is symmetric then so is M'. Moreover, if M
is positive semi-definitethen so is M'. This implies that if M arises from a convex
quadratic programming problem then so does M.

3. Getting an initial point

To guarantee a polynomial running time, we have to start the algorithm at an interior
point where the value of the potential function is bounded by a polynomial p(L) in the
size L of the input of the problem.

We note that any LCP can be reduced to an LCP whose feasible domain intersects
the positive orthant, by adding a pair of complementary variables xq, yo:
y=Mx+(e— Me—q)ro+gq
Yo = Zo
(LCP") x,y>0
Lo, Yo Z 0
riy; =0 (j=0,---,n),
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where the choice ® = y = e, g = yo = 1 yields an interior feasible solution. Moreover,
the value of the potential function at this point is pIn(n+1). Note that this reformulation
preserves the P-matrix property. We may view e-complementary solutions of (LC P’) as
approximate solutions to (LC P). It is important to note that given an e-complementary
solution with ¢ < 271, a simple procedure finds an exact solution (see [4]).

Another possible initialization is as follows. If the original problem has an interior
point, then any polynomial-time algorithm for linear programming can be employed to
find an interior point where the value of the potential function is bounded by a polynomial
in the input size. This can be done as follows. Solve the following linear programming

problem:
Maximize &
P) subject to y = Max + q
T,y > e
(<1.

If the problem does not have an interior feasible point, then this fact is discovered by
recognizing either that (P) is infeasible or that the optimal value £* of (P) is nonpositive.
Assuming £* > 0, we have ¢ > 277(1) and also the size of this value is bounded by a
polynomial in L. Moreover, at a basic optimal solution the x;’s and y;’s have polynomial
sizes, and hence the value of the potential function at such a solution is bounded by a
polynomial p(L). Of course, this is only a worst-case estimate and the actual initial point
may not require so many bits to specify.

4. The core of the algorithm

During a single iteration the algorithm takes a step in the direction corresponding to
steepest descent of the potential function in the transformed space. More precisely, the
algorithm transforms the current point (2", y*) into (e,e) by linear scaling, moves to
a point in the direction of steepest descent, and then transforms this point back to the
K1 gkt

current point is indeed (e, e) and the potential function has the form

original space and calls it (@ To simplify the presentation, we assume the

fle,y) =plnae™ Wy —> Inzw;y; .

7=1
We also omit the primes from M’ and ¢q'.
The gradient of f is given by
Vof(@.y) = Wy — X e

Wy
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p _
Vyf(e,y) = mww -Y e,

where X and Y denote diagonal matrices containing the coordinates of @ and y, respec-
tively, in their diagonals. Denote

g= 16) w— e
eTw
If =y = e, then
g.=V.flee)= eTsveWe —e=g
gy:Vyf(e,e):eT'éVeWe—e:g.

Denote by (Ax, Ay) the projection of Vf(e,e) on the linear space Q defined by
Ay = M Az. Thus, (Ax, Ay) minimizes

Az —g|I* + || Ay — g|I*
subject to
Ay =MAx .

It follows that
Az = (I+ MM (I + M")g

Ay =M(I+M" M) (I + Mg .
Denote d = ((Az)", (Ay)")" and h = (g7, g")".

Proposition 4.1.
h'd = ||d|* .

Proof: The vector d is a projection of h on a linear subspace, so d = Ph where P is
a symmetric matrix such that P? = P. Thus,

|d||> = " P’h = K" Ph = h'd .

Fact 4.2.
p—n

NG

el'g=p—n and hence |g| >

Fact 4.3.

lgll </p?=2p+n<p.



Proof: By definition, since w; > 0,
—1l<g, <p—1.

The vector g lies in the simplex defined by these bounds, together with e’g = p — n.
The maximum norm of a point in this simplex is attained at a vertex, so we have

lgll < ll(=1,-, =L o= 1) [ =/p? =20+ n <p.

Corollary 4.4.
max{| A, | Ay]} < V2 .

Proof: Since d is the projection of h on a linear subspace,
Il < Ikl = llgllvV2 < pv2,

which implies the claim. g

We now estimate the amount of reduction Af in the value of f as we move from
x =y = e to a point of the form &' = e —tAx, y' = e — t Ay, where { > 0. We would
like to choose ¢ so as to achieve a reduction of at least n™* for some constant k.

Proposition 4.5.

elW(Az + Ay)
eTWe

In(e"We) —In ((e — tAz)  W(e —tAy)) > t— || .

Proof: First, we have

In ((e —tAx) ' Wi(e - tAy)) =In (eTWe —te'W(Ax + Ay) + tQ(Aa:)TWAy)
elW(Az + Ay) — t(Az)TW Ay ;
e’We '

<lne'We

However,

< ||az| - |[Ay|l < |d]* .

Proposition 4.6. If M1g #+ —g, then h'd > 0.



Proof:
h'd=g" (I + M)(T+ M " M) (I + Mg

Since I + M7T M is positive-definite, our claim follows. g

Denote

t* = 5 min{(max|Az;])7", (max|Ay]) ™'}

and notice that |
7> — .
2||d|

Proposition 4.7. Fort <{*,

Z (1= tAz))(1 = tAy;) > —(e'd) t = 2||d||** .

Proof: The proof follows from the inequality

which holds for ¢ such that |d;t| < 1.

Corollary 4.8. Fort < t*,

Af = dI*t = (p+2)lld]*t .

Proof: The proot follows by combining the results of Propositions 4.1, 4.5, 4.7. Note
that
elW(Az + Ay)
eTWe

—eld=h"d=|d|*.

Lemma 4.9. There exists a t < t* for which®> Af > Q(||d||*/p). In particular, if

1
d 2
> 5o
for some k > 0, then
1
Af > :
O(pn*)

2The notation ¢(z) = Q(¥(r)) means that there exists a constant ¢ such that ¢(x) > cyo(x).



Proof: The maximum of Hdet —(p+ Z)HdH2t2 is attained at

t = !
2044
Let
t=min{t',t*} .
If
r<
then we have 2
N
4p 4+ 8

Otherwise,

Id]*

A>d2t*_ 2d2t*2>ld2t*> ]
f=1d] (p+2)[[d]I*(2")" > 5l VR

1
—||d|| >
Lld|

This implies our claim. g

5. Suitable matrices

In view of Lemma 4.9, we need to get good lower bounds on ||d||. Recall that d # 0
provided Mg # —g. However, we are interested in conditions on M which imply that
||d|| is bounded away from zero, hopefully by n=* for some k. Moreover, since the matrix
M of the preceding section is actually M’ = Y ' M X, we need to look for conditions
on M which are invariant under scaling of columns and rows by positive multipliers.

Definition 5.1. For any matrix M and any diagonal matrices (with positive diagonal
entries) X and Y, denote

S=SM,Y ' X)=I+Y 'MX)I+XM'Y*MX)""(I+XM"'Y™™).
Let A(M,Y ™', X) denote the smallest eigenvalue of S(M,Y ™', X), and let
Mo(M) = inf(\MM,Y™1, X): X,;,Y;, > 0} .
Also, let

M(M) =inf{A(M,Y',X): X,,.Y;, >0and X;;V;; <n?}.

Obviously, Ay (M) > Ao(M). The distinction between Ag and A; is crucial in the context
of P-matrices, as we show below.



Remark 5.2. For every M, X and Y, A(M,Y ", X) > 0 and A(M,Y ', X) = 0 if
and only if I +Y "' M X is singular. Thus A\o(M) > 0. Note that if M has nonnegative
principal minors, then I + RM C' is nonsingular for any nonnegative diagonal matrices
R and C. On the other hand, if M has a negative principal minor, there exist X and Y
such that I +Y "M X is singular. This can be seen as follows. Suppose S C {1,---,n}
is a set of indices of columns and rows corresponding to a negative minor. Let X and
Y be diagonal matrices where X;; = Y;;' =t for j € S and X;; = Y;' = min{¢, 1/t*}
otherwise. The determinant of I + Y ' M X tends to 1 when ¢ tends to 0, and to —oo
as t tends to infinity. It follows that for some value of ¢ this determinant equals zero.
Since X;;Y;; = 1, it follows that if M has a negative minor, then A\;(M) = 0.

Proposition 5.3. If p = 2n, then throughout the execution of the algorithm,
Hde > n)‘(Mv Y_17 X) > n)‘l(M) :

Proof: 1t follows from the analysis above (see Fact 4.2) that

ld|* = d"h = (Az + Ay)'g
=g I+ Y 'MX)IT+XM'Y?MX)' I+ XM'Y )g .
> MM, YL X)|g|* 2 nA(M, Y™, X)

To prove that actually A;(M) can be used, recall that the value of the potential
function does not increase throughout the execution of the algorithm. Thus, if the initial
value is K, then K remains an upper bound on the value of f(,y) and by Lemma 2.1,
e is an upper bound on &7y. The essential thing to note is that for every j, the value
of x;y; is bounded throughout by some K’. Actually, we have demonstrated above that

the initial value can be chosen as plnn. Therefore, if p = 2n, we can set K’ = en = nl

Thus,
Hde >n inf{)‘(MvY_le) DY > vajyj < n2} = n)‘l(M) .

6. The case of a P-matrix

Recall that a P-matrix is one that has positive principal minors. Remark 5.2 provides
some motivation for considering the performance of the algorithm on problems with P-
matrices. In this section we prove that the algorithm presented above solves the LCP with
a P-matrix. The algorithm runs until the value of 2”7y decreases below some prescribed
e > 0. For problems with rational coefficients, an € > 0 can be determined such that an
exact solution can be computed from an e-complementary one. The following proposition
is the key to the validity of the algorithm:
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Proposition 6.1. If M is a P-matriz, then for every ¢ > 0 there exvists 6 > 0 such that
for every pair ®,y produced by the algorithm, if ®Ty > ¢, then necessarily x;,y; > & for
all 5.

Proof: The proof follows from the fact that the potential function decreases monoton-
ically throughout the execution of the algorithm. In particular, there exists a constant
K~ such that f(x,y) < K* for every iterate (@,y). By Lemma 2.1, for every such
iterate, 2Ty < =3 However, it M is a P-matrix, the set of pairs @, y, such that
y=Ma+ q and 27y < t, is bounded for every t. The latter can be seen as follows.
The quantity
Y(M) = min max ————
R P

is positive for any P-matrix. Suppose, on the contrary, that the set defined above is
unbounded. In particular, the inequalities

xi(Mw)i+xiQi<t (izlv"'vn)

leave & unbounded. However, when @ tends to infinity, these inequalities, written in

the form
:z;Z(Ma:)Z X, q; t
> flel* - fle]?
give a point &* # 0 such that
* || 2 S 0
||

for all 7, which contradicts v(M ) > 0. Now, there exists ¢; > 0 such that 7y > ¢ and
fle,y) < K* imply x;y; > €;. The boundedness proven above implies the claim.

We can now define \*(M, ¢) to be the minimum of A(M,Y ™', X) where X and Y
are such that both e XYe > ¢ and X;;Y;; < n® Since X and Y vary in a compact
set, the minimum is attained in the set. In other words, A\*(M,e¢) is positive if M is
a P-matrix, and this implies that the algorithm computes an e-complementary solution
in a finite number of steps. To conclude this section, we give an upper bound on this
number. Assume p = 2n. The initial value of the potential function is O(nlogn). To
guarantee e-complementarity, this value has to be reduced to —nloge. During each step,
the value is reduced at least by Q(||d||*/p) (see Lemma 4.9), which is Q(A*(M,€)) (see
Proposition 5.3). Thus, the number of iterations is O(nlog(n/e)/X\*(M,¢)).

7. The positive semi-definite case

In this section we show that the algorithm of this paper solves linear complementarity
problems with positive semi-definite matrices in polynomial time. We derive the formulas
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in the transformed space, so the reader who wishes to use the original matrix M, has to
replace M in the formulas below by Y ™'M X . As in Section 4, consider the potential
function:

flz,y)=pha’y > Inzy;

J=1
where p > n. The vector g can be written as

g:%XYe—e.
'y

The optimality conditions in the problem of projecting h = (g,g7)? into {Ay =
M Az} are:
Az —g=MTX
Ay—g=-A
Ay =M Ax .
Thus we have
A=IT+MM")""I-M)g
Ax =g+ MTX
Ay=g—A.
Since the derivation is done in the transformed space, when we use the original matrix
M we have to write as follows.

Az =g+ L _xMTN
=Ty

Ay =g — %YX
z'y

where
T

N="Yy 1y ' MXPMTY ) NI - Y M X)g.

Thus,
Az :%X(y + MTX)—e
oy
P ’
Ay=—-Y(x—A)—e.
y=grg Y @-A)—e
We can now prove the following:
Proposition 7.1. If M is positive semi-definite and p = 2n + /2n, then ||d|| > 1.
Proof: Denote
' =z — X

yl :y_I_MTA/ )

12



We have

If either &’ # 0 or ¥y’ # 0, then at least one coordinate of d = (Ax, Ay) is less than
—1,s0 ||d]| > 1. Thus, assume @', y" > 0. Also,

(y' —y) (@ —2)=-(N)"MX <0.
Thus,
wTy’—l—yTa:’ > a:Ty—l-az’Ty’ > :ETy > (.
This implies

2

ld|? = —2— (IXy'|I? + 1Y 2'|) — 22— («Ty' + y"a') + 2n

(z7y)? xTy
> (;1322/)2 (=Y’ : ') ngy(a:Ty’ +yla)) +2n
> (wfy)Q (xTy’ ;'ng,(Tw’)2 B ngy(wTy/ +yT2) + 2n
5 (p(wTy’ +y'a) 1)2
2nely

|
Finally, we can state the following:

Theorem 7.2. If M is positive semi-definite then, starting at any interior point where
the potential value is O(nlL), the algorithm converges in O(n*L) iterations.

Proof: If M is positive semi-definite, it follows from Proposition 7.1 and Lemma 4.9

(with p = 2n 4+ +/2n) that
Af >

O(n)
Thus, by Lemma 2.1, after O(n?L) iterations we have &Ty < 272,

Initializations that fit the above theorem and the next one were given elsewhere (see,
for example, [4]).

13



Theorem 7.3. If M is skew-symmetric (including the case of the linear programming
problem) then, starting at any interior point where the potential value is O(nl), the
algorithm converges in O(nL) iterations.

Proof: In the skew-symmetric case we obtain better estimates as follows. First, in
Proposition 4.5, the quadratic term vanishes, so

elW(Az + Ay)
eTWe

In(e’We) —In ((e —tAx)"W(e — tAy)) > t.

Hence, the inequality of Corollary 4.8 becomes
Af =z |d|f*t —2||d|*t .

Following arguments similar to the ones used in the proof of Lemma 4.9, let ¢’ = 1/4
denote the maximizer of the parabola in the right-hand side. If ¥ < t*, then we have
Af > ||d||*/8. Otherwise, we get Af > ||d||/4, and the claim follows from Proposition
7.1. g
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