
A Deterministic Poly�log log N��Time N�Processor Algorithm

for Linear Programming in Fixed Dimension

Miklos Ajtai� and Nimrod Megiddoy

February ����� revised November ����

Abstract� It is shown that for any �xed number of variables� the linear pro�
gramming problems with n linear inequalities can be solved deterministically by
n parallel processors in sub�logarithmic time� The parallel time bound �counting
only the arithmetic operations� is O��log logn�d� where d is the number of vari�
ables� In the one�dimensional case this bound is optimal� If we take into account
the operations needed for processor allocation� the time bound is O��log logn�d�c�
where c is an absolute constant�

�� Introduction

The general linear programming problem is known to be P�complete ��� so it is interesting
to investigate the parallel complexity of special cases	 One important case is when the
number of variables 
the dimension� d is �xed while the number of inequalities n grows	
Megiddo ���� showed that this problem can be solved in O
n� time for any �xed d	

Clarkson ��� and Dyer �
� improved the dependence of the constant on d	 The general
search technique proposed in ���� provides poly�logarithmic algorithms with n processors
for any �xed d 
see �����	 Deng ��� gave an O
log n� algorithm with n� log n processors
for the case d � �	 It was not known previously whether the problem can be solved in

o
log n� time with n processors for any d � �	 Alon and Megiddo ��� showed� however�
that on a probabilistic CRCW�PRAM with n processors the problem can be solved by a
Las Vegas algorithm almost surely in constant time	 In this paper we show for the �rst
time that for any d the problem can be deterministically solved in O

log log n�d� time

on n processors� if we count only the arithmetic operations	 If we take into account the
steps necessary for processor allocation then our time bound is O

log log n�d�c�� where

�IBM Almaden Research Center� ��� Harry Road� San Jose� California �����������
yIBM Almaden Research Center� ��� Harry Road� San Jose� California ����������� and School of

Mathematical Sciences� Tel Aviv University� Tel Aviv� Israel� Research supported in Part by ONR

Contracts N����	����C����� and N����	��	�C����
�

�



c is an absolute constant	 We describe our model of computation in section �	 We note
that the simple case of d � � is equivalent to the problem of �nding the maximum of n
elements� which requires �
log log n� time on n processors	

�� Preliminaries

We �rst review some known facts about expander graphs	 Let G � 
V�E� be any graph	
For any nonnegative integer r� denote by Gr � 
V�Er� a graph where 
u� v� � Er if and
only if in G there exists a path of length less than or equal to r from u to v	 For any

S � V � the r�neighborhood of S� Nr
S� � Nr
S�G�� is de�ned to be the set of all vertices
v such that either v � S or there exists a u � S with 
u� v� � Er	

De�nition ���� A graph G � 
V�E� is called an expander with expansion coe�cient �
if for every S � V such that jSj � �

�
jV j� we have jN�
S�j � �jSj	

The work of Gabber and Galil ��� provides for every n � m�� m � �� �� ���� an explicit

construction of a ��regular graph which is a �����expander	 For any su�ciently large n

we can get a �����expander graph on n vertices with maximum degree less than �� by
taking �rst ��regular �����expander on n� vertices� where n� is the smallest square greater

than n and then discarding n� � n arbitrary vertices from it	 Let � � ����

Proposition ���� For every su�ciently large positive integer n and for every positive

integer r� there exists a graph G � 
V�E� on n vertices with maximum degree less than
�r� such that for every S � V �

jN�
S�G�j � minf
� � ��rjSj� n��g �

Proof� Let G� be a graph on n vertices with a maximum degree of � with expansion
coe�cient � � ���	 As we have noted already an explicit construction for such a
graph is given in ���	 In section � we describe how the construction can be carried

out on a CRCW � PRAM with n processors in a constant number of steps where
each processor can perform arithmetic operations on numbers not greater than n	 Let
G � 
G��r	 The maximum degree dr in Gr is not greater than

Pr
i�� �i � �r	 Moreover�

for every j� if jNj
S�G�j � n�� then jNj��
S�G�j � 
� � ��jNj
S�G�j� and the proof

follows by induction	

Corollary ���� In the graph 
G��r� if A and B are sets of vertices with cardinalities
greater than n�
� � ��r��� then there exists an edge between them�

�



Proof� It follows from Corollary �	� that

jNr��
A�G��j � minf
� � ��r��jAj� n��g � minfn� n��g � n��

and similarly� Nr��
B�G�� � n��	 This implies that Nr��
A�G�� � Nr��
B�G�� �� �
and hence in G� there is a path of length less than or equal to r between A and B or�
equivalently� an edge of 
G��r	

Let c � � log��� �� so that 
� � ��c�� � �	

Proposition ���� For every su�ciently large n and for every positive integer r� there
exists a graph G of degree less than d � �r with the following property� if tc � d� then
every two disjoint sets A and B of vertices of G� such that jAj � jBj � n�t� are connected
by an edge�

Proof� The proof follows directly from Corollary �	� since t � d��c � �r�c � 
� � ��r��	

Corollary ���� In the expander of Proposition ���� for every two disjoint sets of vertices
A and B of vertices such that jAj � jBj � �n�t� there exist more than n�t edges between

A and B�

Proof� Suppose� on the contrary� that the number of edges between A and B is less
than or equal to n�t	 Let A� be the subset of A consisting of those vertices that are
not adjacent to any vertex in B	 Since jA�j � n�t� by Proposition �	� there is an edge

between A� and B� hence a contradiction	

�� Linear programming in the plane

Consider the linear programming problem with two variables in the form�


P ��

Minimize y

subject to y � aix � bi 
i � N��

y � aix � bi 
i � N��

� � x � h �

where jN�j � jN�j � n and f�� hg � ������	 Any two�variable linear programming
problem can be reduced to this form in O
log log n� time with n processors	 The algorithm
proposed by Dyer ��� and Megiddo ���� provides a method of discarding ��� of the set of

constraints with an e�ort of computing one median and two maxima in sets of at most
n elements	 It was shown by Ajtai� Koml�os� Steiger� and Szemer�edi ��� that selection

�



can be done in O
log log n� time in Valiant�s parallel comparison tree model with n

processors	 The selection steps of our algorithm are implemented in this model	 All the
other steps can be implemented on a CRCW�PRAM	 Deng ��� gave a parallel algorithm
which runs in O
log n� time� using O
n� log n� processors	 In fact� his algorithm applies

the procedure of ��� ��� until the number of remaining constraints allows for computation
of the entire convex hull in O
log n� time with O
n� log n� processors	 Such an approach
cannot yield an o
log n� time bound	 Our approach discards increasing proportions of the
set of remaining constraints without resorting to the computation of the entire convex

hull of the remaining set at a relatively early stage	

Suppose we are left with the lines

Li � f
x� y� j y � aix � big 
i � N �
� 	N �

��

where N �
� � N� and N �

� � N�	 Let n � jN�j � jN�j denote the revised number
of constraints� and we continue to employ p processors 
where p is the initial number

of constraints�	 We now describe how a large number of constraints can be further
discarded	 Denote q � p�n 
where p is the initial number of processors�	 The treatment
of the two classes of constraints is very similar so we describe just the case of N �

�	

Let d be the largest power of � that is smaller than qc��c���	 Let t be de�ned by
tc � d	 Consider an expander graph G � 
V�E� of degree smaller than d� with vertices

corresponding to the lines in N �
�� that has the properties asserted in Proposition �	� and

Corollary �	�	

For every edge 
i� j� � E 
i� j � N �
��� if Li and Lj are not parallel� consider the

intersection coordinate �ij � �
bi�bj��
ai�aj�	 Denote by C the set of these intersection

points	 Obviously� jCj � �
�nd � p� so all the points in C can be computed in constant

time with our p processors	 Partition C into intervals by points �� � a� � x� � x� �


 
 
 � xs � �� so that each interval �xi��� xi� 
i � �� 	 	 	 � s� contains less than n�t points	

This can be achieved with s � nd�
n�t� � tc�� � q	

�



Proposition ���� If A and B are disjoint sets of lines� each containing at least �n�t
elements� then there does not exist a k 
� � k � s� such that �ij � �xk��� xk� for all
Li � A and Lj � B�

Proof� The proof follows from the fact that the number of such intersection points that
are also in C is at least n�t by Corollary �	�� while each interval contains less than n�t

points of C	

Given the set C� we wish to determine in which of the intervals �xk��� xk� an optimal
solution x� might lie	 Denote

f�
x� � maxfaix � bi j i � N �
�g

f�
x� � minfaix � bi j i � N �
�g �

Note that an optimal solution must satisfy x� � ��� h�� f�
x�� � f�
x��� and f�
x�� is
minimal	 Since f�
x� and f�
x�� f�
x� are convex� we can test any value of x with at

most three computations of a maximum in a set of cardinality n 
see ������ and conclude
with one of the following possibilities� 
i� the problem has no feasible solution� 
ii� x is
an optimal solution� 
iii� if x� is an optimal solution� then x� � x� 
iv� if x� is an optimal
solution� then x� � x	 Since p�s � n� we have at least n processors per point xk� so in

O
log log n� time we can locate the optimum in one of our intervals	

Suppose we have identi�ed an interval �u� v� where the minimum is attained� and there
are less than n�t intersection points of C over �u� v�	 Consider the orders induced on the

�



set of lines by their intersections with the lines fx � ug and fx � vg	 Call them the
u�order the v�order� respectively	 For every k 
k � �� 	 	 	 � n�� denote by Uk the set of the
k lowest lines in the u�order and denote by Vk the set of the k lowest lines in the v�order	

Proposition ���� For every k 
k � �� 	 	 	 � n�� the symmetric di�erence

Uk � Vk � 
Uk n Vk� 	 
Vk n Uk�

contains at most �n�t lines�

Proof� Since jUk n Vkj � jVk n Ukj� it follows that if� on the contrary� jUk � Vkj � �n�t�
then

jUk n Vkj � jVk n Ukj � �n�t �

Note that all the intersections �ij of a line Li � Uk n Vk with a line Lj � Vk n Uk must

be in �u� v�� in contradiction to �	�

	

Let �Uk and �Vk be the complements of Uk and Vk� respectively� in the set of all n lines	

Proposition ���� For k � n� �n�t� there exists at least one line in �Uk � �Vk�

Proof� The claim is trivial if Uk � Vk� otherwise� since Uk�Vk � �Uk� �Vk� by Proposition
�	��

j �Uk � �Vkj � j �Uk 	 �Vkj � jUk � Vkj � 
�n�t � ��� �n�t � � �

�



Enter Figure � here

Proposition ���� Let k � n � �n�t� If L is any line in �Uk � �Vk� then over the interval
�u� v�� the line L lies above at least n� 
n�t lines�

Proof� The line L lies above every other line� except possibly for some lines in �Uk 	 �Vk�
but j �Uk 	 �Vkj � 
n�t	

Corollary ���� The number of lines can be reduced from n to no more than 
n�t in
O
log log n� time�

Proof� A line L � �Uk � �Vk 
k � n � �n�t� can be found as follows	 Compute the set
�Uk by selecting the k�th smallest element relative to the u�order� and then �nd the line
L which is the maximum in the �Uk relative to the v�order	 Given L� we can compare

it with all of the other lines and discard those lines which are smaller in both orders	
The number of remaining lines will be at most 
n�t	

Theorem ���� The linear programming problem with two variables can be solved in
O

log log n��� time�

�



Proof� The scheme we have described so far reduces the number of constraints from n

to 
n�t
n�� so it works only when 
n�t
n� � n	 In order to satisfy the latter condition�
we start the algorithm by running a constant number of iterations of the algorithm of
��� ���� where ��� of the set of constraints is discarded in each iteration	 This constant

number is determined from t
n� � 
p�n����c��� � 
� i�e�� n�p � 
�c�� and the number
is log��� 
�c��	
Recall that t � t
n� � 
p�n����c���� so the value of n is reduced in one iteration to

n� � 
n�������c�p����c��� �

so the next value of t is

t� �
�
�
	
p�����c���n��������c�

����c���
� 
����c���t�������c� �

Thus� after k iterations� the value of t is

t�k� � 	���������k��
t�

k

�

where 	 � 
����c��� and 
 � ����
c���� and this implies that the number of iterations
is O
log log n�	

�� The three�dimensional case

The linear programming problem with three variables is formulated as follows	


P ��

Minimize z

subject to z � aix � biy � ci 
i � N��

z � aix � biy � ci 
i � N��

� � aix � biy � ci 
i � N�� �

where jN�j� jN�j� jN�j � n	

As in the two�dimensional case� we proceed by discarding increasing proportions of
the set of constraints	 The three sets N�� N�� and N� can be handled independently	

We describe only the processing of N�	 Suppose we are currently left with n planes

Pi � f
x� y� z� j z � aix � biy � cig 
i � N �
� � N��

and there are p processors	 For every pair of planes 
Pi� Pj�� if the planes are not parallel�
let

Lij � f
x� y� j aix � biy � ci � ajx � bjy � cjg �
i�e�� Lij is the projection of the line of intersection of Pi and Pj into the 
x� y��plane	






We now use an expander graph G � 
N �
�� E� of maximum degree less than tc� 
the

dependence of t� on n and p will be explained later� whose vertices represent the planes�
with the property that if A and B are disjoint subsets of N �

�� each of cardinality of at
least �n�t�� then the number of edges between A and B is at least n�t�	 Let

D � fLij j 
i� j� � Eg �

Note that the number of pairs 
i� j� such that Lij � D is less than ntc�	

We now use an expander graph G� � 
D�E�� 
i�e�� the vertices correspond to the lines
in D� with maximum degree less than tc� 
the dependence of t� on n and p will be explained
later� so that between any two sets� each of cardinality of at least �jDj�t�� the number
of edges is at least jDj�t�	 In view of Corollary �	�� this is true if t� � 
p�
ntc���

���c����

since jDj � ntc�	

Denote by C the set of intersection points of pairs of lines corresponding to the edges
of G�	 We proceed as in the two�dimensional case 
as if D were the total set of lines�	
We partition the x�axis into tc��� intervals in the same way� and �nd one interval �u� v�

of the partition such that� without loss of generality� the given instance of 
P �� may be
restricted to the stripe� f
x� y� j u � x � vg	 The testing algorithm that we use to select
the required stripe is described in detail in ���� section �� pp	 ��������	 We can decide
with this testing algorithm where is the solution of 
P d� relative to a given hyperplane�

that is� whether there is a solution on the hyperplane and if not then which of the two
halfspace determined by the hyperplane contains the solution	 The algorithm uses only
the solution of three instances of the d���dimensional problem if the hyperplane is in the

d�dimensional space	 
We will use this algorithm for the solution of the d�dimensional
problem too�	 Now we may conclude that the required stripe can be selected by solving
at most � instances of the ��dimensional problem	 We also know that the two orders on
D 
induced by the intersection points with f
x� y� j x � ug and f
x� y� j x � vg� are

almost the same� in the sense that for every k 
k � �� 	 	 	 � jDj��

jUk � Vkj � �jDj�t�

see Proposition �	��	

�Note that we may have u � �� or v ���

�



Enter Figure � Here

Consider the following two partitions of D into r � t��
 intervals of length � �


jDj�t�� 
i� intervals I�� 	 	 	 � Ir relative to the u�order� and 
ii� intervals J�� 	 	 	 � Jr relative

to the v�order	

Proposition ���� For every k 
k � �� 	 	 	 � r�� Ik � Jk �� ��

Proof� Since jUk � Vkj � �jDj�t� 
k � �� 	 	 	 � jDj�� and

Ik � Uk� n U�k���� and Jk � Vk� n V�k���� �

it follows that

jIk � Jkj � j
Uk� � Vk�� 	 
U�k���� � V�k�����j � �
�jDj�t�� � � �

so

jIk � Jkj � jIk 	 Jkj � jIk � Jkj � � �

��



It follows that for each k 
k � �� 	 	 	 � r�� there exists a line �k � Ik � Jk� so that the
members of M � f��� 	 	 	 � �rg do not intersect in the stripe f
x� y� j u � x � vg	 These
lines partition the stripe into �trapezoids	�

Remark ���� A suitable set M can be constructed on a CRCW�PRAM in O
log log n�
time	 First� the intervals are constructed by solving r selection problems	 Suppose each

member of D knows the intervals it belongs to relative to the two orders	 Each member
of Ik � Jk now attempts to write its name in a cell representing �k� and one succeeds	

Proposition ���� There are at most �� pairs 
i� j� �not necessarily in E� such that the
trapezoid bordered by the �k and �k�� is intersected by Lij �

Proof� The proof follows from the fact that this trapezoid may intersect only the lines
in the set

Ik 	 Ik�� 	 Jk 	 Jk�� 	 
U�k���� � V�k����� 	 
U�k���� � V�k�����

whose cardinality is at most �� � �
�jDj�t��	

��



Next� we identify one trapezoid to which the problem 
P �� may be restricted without
loss of generality	 Furthermore� we can divide this trapezoid into two triangles and
restrict attention to one of them which we denote by T 	

Proposition ���� If �� � n�t�� then for every pair 
A�B� of disjoint sets of planes�
such that jAj� jBj � �n�t�� there is at least one line Lij such that Pi � A and Pj � B�

and Lij does not intersect T �

Proof� We know that for such A and B� there are at least n�t� lines Lij in D such

that Pi � A and Pj � B	 On the other hand� by Proposition �	� T is intersected by at
most �� lines Lij 	

Thus� we need to choose t� and t� so that ��jDj�t� � n�t�	 Hence� we require

��tc��t� � ��t�� i�e�� ��tc��� � t�� and since t� � 
p�jDj����c���� it su�ces that

t� �
�
��

�
p

n

� �
�c����c���

and t� �
�
p

n

� �
�c���

�

At each of the three vertices� of T � there is a natural linear order on the set of
hyperplanes induced by the z�coordinate	 We may apply the argument we used in the

two�dimensional case to any pair of orders as we did with the u�order and the v�order	
For every k 
k � �� 	 	 	 � n�� let Uk� Vk� and Wk denote the sets of k lowest planes relative
to these three orders	

Proposition ���� For every k 
k � �� 	 	 	 � n�� the set

Sk � 
Uk � Vk� 	 
Uk �Wk� 	 
Vk �Wk�

contains at most ��n�t� elements�

Proof� Each member of Uk nVk intersects each member of Vk nUk in T � each member of
Vk nWk intersects each member of Wk nVk in T � and each member of Wk nUk intersects
each member of Uk nWk in T 	 Since jUk n Vkj � jVk n Ukj� jVk nWkj � jWk n Vkj� and

jWk n Ukj � jUk nWkj� it follows from our choice of t� that the cardinality of each of
these six sets is not greater than �n�t�	

Proposition ���� For k � n� ��n�t�� �Uk � �Vk � �Wk �� ��

Proof� If Uk � Vk � Wk the claim is trivial� otherwise�

j �Uk � �Vk � �Wkj � j �Uk 	 �Vk 	 �Wkj � jSkj � 
��n�t� � �� � ��n�t� � � �

�The case of an �in
nite� triangle can be easily handled too�

��



Proposition ��	� If k � n � ��n�t� and P � �Uk � �Vk � �Wk� then over the triangle T �
the plane P lies above at least n� ��n�t� planes�

Proof� The plane P lies above every plane in Uk � Vk �Wk� but

jUk � Vk �Wkj � n� j �Uk 	 �Vk 	 �Wkj � n � �
��n�t�� �

Enter Figure � Here

Corollary ��
� The number of planes can be reduced from n to no more than ��n�t� in

O

log log n��� time�

Proof� The sets �Uk� �Vk� and �Wk can be computed with a selection algorithm and then
it can be decided separately 
and simultaneously� for each member of the union of these

sets whether it satis�es the conditions of Proposition �	�	 Since we need to solve linear
programming problems with two variables and we have enough processors for solving
all these problems in parallel� Theorem �	� applies� so the e�ort for one iteration is

O

log log n���	

��



Theorem ���� The linear programming problem with three variables can be solved in
O

log log n��� time�

Proof� The value of n is reduced in one iteration to ��n�t�� where t� � 
p�n�����c����c����	
As in the proof of Theorem �	�� the next value of t�� is

t�� � �������c����c����t������c����c����� �

so the number of iterations is O
log log n�	 This implies our claim	

�� The general d�dimensional case

We now consider the general linear programming problem with d variables� which we
formulate as follows	


P d�

Minimize y

subject to y � a
T
i x� bi 
i � N��

y � a
T
i x� bi 
i � N��

� � a
T
i x� bi 
i � N�� �

where ai � Rd�� 
i � N� 	N� 	N� and jN�j� jN�j� jN�j � n�	

��� Hyperplane queries

In general� our algorithm works recursively in the dimension	 First� as explained in �����
a linear programming algorithm for problems with d � � variables can be used as an

oracle for deciding the position of the set of optimal solutions� if any� relative to any
given hyperplane	 More precisely� it can be used to solve the following problem�

Problem ���� Given an instance of 
P d� and a hyperplane H � fx � Rd�� j aTx �
bg� decide whether 
i� the optimal solutions of 
P d�� if any� may be assumed to lie in
H� � fx � Rd�� j aTx � bg� 
ii� the optimal solutions of 
P d�� if any� may be assumed
to lie in H� � fx � Rd�� j aTx � bg� or 
iii� a �nal conclusion can be reached that

either H contains an optimal solution� the problem is unbounded on H� or the problem
is infeasible	

The conclusion in 
iii� is reached when the solution of 
P d� with the additional con�
straint x � H yields a solution of 
P d�� or the problem is infeasible and the �amount of
infeasibility� is minimized on H	

��



��� Locating the solution in a �small
 simplex

We now introduce a problem that plays the key role in the algorithm� but we �rst need
to de�ne an oracle for minimizing a function�

De�nition ���� Consider a function f � Rd�� � R	f��g	 By an oracle for f we mean
a mechanism that� when presented with a hyperplane H in Rd��� returns information in
one of the following forms� 
i� either the minimum of f lies in H� or f is unbounded

from below on H�� 
ii� either the minimum of f lies in H� or f is unbounded from below
on H�� 
iii� either the minimum of f lies in H or f is unbounded from below on H	

Problem ���� Given are� an oracle for a function f as in De�nition �	�� a number p

of processors�� and hyperplanes Hk � f
x� y� � Rd j y � a

T
k x � bkg 
k � �� 	 	 	 � n�	

Either �nd some hyperplane H in Rd�� such that the minimum of f lies in H 
or f is
unbounded on H�� or �nd d halfspaces Fk � fx � Rd�� j cTk x � dk � �g 
k � �� 	 	 	 � d�
such that


i� either the minimum of f lies in the �simplex�� � � F��
 
 
�Fd or f is unbounded
from below on �� and


ii� at most n�t 
t � t
p�n� d�� pairs 
Hi�Hj� of hyperplanes intersect over �	 
The

value of t
p�n� d� will be derived later	�

Enter Figure � Here

�In general� this intersection may be unbounded�

��



Remark ���� When d � �� the polyhedron is an interval which may extend to in�nity
in one direction	 In higher dimensions� the polyhedron can be either a simplex or a
simplicial cone	 In any case� there will be at most d linear orders on the set of Hk�s such
that if Hi is above Hj in each of these linear orders� then Hi lies above Hj at every point

of �	

Recall that in the case d � �� we located an interval with t� � 
p�n����c���� and in the case
d � �� we located a �triangle� T such that the number of pairs of planes that intersected

over T was at most n�t�� where t� � 
p�n�����c����c����	

Denote
Lij � fx � Rd�� j aTi x� bi � a

T
j x� bjg �

If Hi and Hj are not parallel� then Lij is a hyperplane in Rd��	

Let G � 
V�E� be an expander graph with maximum degree less than � c� 
the value

of �� will be determined later�� whose vertices correspond to the hyperplanes Hk� with
the property that every two disjoint subsets A�B � V of cardinality n��� are connected
by an edge	 Hence� if A and B are subsets of V of cardinality at least �n���� then the
number of edges between A and B is at least n���	 Let

D � fLij j 
i� j� � Eg �
We have jDj � n� c� 	 Consider the function f � � Rd�� � R 	 f��g de�ned by

f �
x�� 	 	 	 � xd��� � inf
xd��

f
x�� 	 	 	 � xd��� �

An oracle for f 
in the sense of De�nition �	�� provides an oracle for f � when we extend
any hyperplane H in Rd�� into a hyperplane in Rd�� described by the same equation	

Thus� recursively� we can either 
i� �nd a hyperplane H � Rd�� which contains the
minimum of f �� and hence its extension into a hyperplane in Rd�� contains the minimum
of f � or 
ii� �nd d� � halfspaces Fk � fx � Rd�� j cTkx� dk � �g 
k � �� 	 	 	 � d� �� with
the properties described in Problem �	� with respect to the hyperplanes Lij in D�


i� either the minimum of f lies in � � F� � 
 
 
 � Fd�� or f is unbounded from below
on �� and


ii� at most jDj��� 
�� � t
p�jDj� d � ��� pairs of Lij �s from D intersect over �	

For k � �� 	 	 	 � d � �� let F �
k be the halfspace in Rd�� parallel to the 
xd����axis�

obtained by extending the halfspace Fk into Rd��	 Thus� the polyhedron � is extended
into a polyhedral �cylinder� �o in Rd�� which contains the minimum of f 	 Furthermore�
the number of pairs of Lij �s intersecting �o is at most jDj���	 Consider the d� � linear
orders induced on the set of Lij �s by their xd�� values at the d � � vertices of � 
or at

in�nity as explained above�	 For j � �� 	 	 	 � d � � and k � �� 	 	 	 � jDj� denote by U j
k the

set of the k lowest hyperplanes relative to the j�th order	

��



Proposition ���� For any i and j 
� � i � j � d� �� and for every k 
k � �� 	 	 	 � jDj��
jU i

k � U j
k j � �jDj��� �

Proof� As in Proposition �	��

U i
k � U j

k � 
U i
k n U j

k� 	 
U j
k n U i

k�

so if� on the contrary�

jU i
k � U j

k j � �jDj��� �
then

jU i
k n U j

k j � jU j
k n U i

kj � �jDj��� �
Since all the intersections of members of U i

k nU j
k with members of U j

k nU i
k intersect �o�

we reach a contradiction	

We now consider d�� partitions of D into r � ���
�
d���
d���� intervals of length
� � �
d���
d���jDj���� for i � �� 	 	 	 � d��� a partition into intervals I i�� 	 	 	 � I ir relative
to the i�th order	

Proposition ���� For every k 
k � �� 	 	 	 � r��

I�k � I�k � 
 
 
 � Id��k �� � �

Proof� We have

jU i
k � U j

k j � �jDj��� and Ijk � U j
k� n U j

�k���� �

Since
I�k � I�k � 
 
 
 � Id��k �

�
I�k 	 I�k 	 
 
 
 	 Id��k

�
n �

i�j

�
I ik � Ijk

�
�

and
I ik � Ijk 
 
U i

k� � U j
k�� 	 
U i

�k���� � U j
�k����� �

it follows that���I�k � I�k � 
 
 
 � Id��k

��� � � �X
i�j

���U i
k� � U j

k�

����X
i�j

���U i
�k���� � U j

�k����
���

� � � �

�
d� �

�

�

 �jDj��� � � �

It follows that for each k 
k � �� 	 	 	 � r�� there exists a hyperplane L�
k � I�k �
 
 
�Id��k �

such that the members of M � fL�
�� 	 	 	 � L�

rg do not intersect in the cylinder �o	 These
hyperplanes partition �o into �prisms	�

��



Proposition ��	� There are at most 
�d � ��� pairs 
i� j� such that the prism bordered
by L�

k and L�
k�� is intersected by Lij �

Proof� The prism may be intersected only by hyperplanes in the set�

d���
j��

�
Ijk 	 Ijk��

�
	 �

i�j

�
U i
�k���� � U j

�k����

�
	 �

i�j

�
U i
�k���� � U j

�k����
�
�

whose cardinality is at most

�
d � ��� � �

�
d� �

�

�

 �jDj��� � 
�d � ��� �

We now �nd one prism that may be assumed to contain the minimum of f 	 In this

process we might �nd a hyperplane which contains the minimum	 We then divide the
prism into d� � �simplices� and restrict attention to one of them� which we now denote
by ��	

Proposition ��
� If �d�jDj��� � n���� then for every pair 
A�B� of disjoint sets of
hyperplanes Hk� such that jAj� jBj � �n���� there exists at least one Lij such that Hi � A

and Hj � B� and Lij does not intersect ���

Proof� We choose � � �
d � ��
d � ��jDj��� such that 
�d � ��� � �n���	 For A and
B that satisfy our conditions� there are at least n��� Lij �s in D such that Hi � A and

Hj � B	 On the other hand� �� is intersected by at most 
�d � ��� Lij�s	 Under the
assumption of the proposition� the latter is less than n���	

Thus� we will choose �� so that �d�jDj��� � n���	 On the other hand� jDj � n� c� � so
it su�ces that

�� �
�
��
�d�

� �
c��

�

We are thus led to the expression for � 
d� � t
p�n� d� as follows	 First� � 
�� � q���c���


where q � p�n��	 Next�

� 
d� �

�
� 
d � ��

�d�

� �
c��

�

It follows that

� 
d� �
q�

d

��������d�� Qd
k�� k

��d���k
�

where � � ��
c � �� 
not the � of Section ��	

�




��� Discarding constraints

After we have located the solution of our linear programming problem in a small simplex�
we can discard a large number of constraints as follows	 As in the previous sections� we
consider members of the three sets N�� N� and N� separately	 Suppose we are left with

a set N �
� 
 N� of n hyperplanes� and we have now found a �simplex� � in Rd��� which

is known to contain the solution� and over which at most 
p�n���d� pairs of hyperplanes
intersect	 We also know d linear orders over N �

� 
at �vertices� of �� such that if a
hyperplane H lies above another hyperplane H � in all these orders� then H lies above H �

over the entire set �	 For j � �� 	 	 	 � d and k � �� 	 	 	 � n� denote by U j
k the set of the k

lowest hyperplanes relative to the j�th order	

Proposition ���� For every k 
k � �� 	 	 	 � n�� the set

Sk �
�
i�j


U i
k � U j

k �

contains at most d
d � ��n�� 
d� elements�

Proof� The proof is similar to that of Proposition �	�� each of sets U i
k �U j

k contains at
most �n�� 
d� elements	

Proposition ����� For k � n� d
d � ��n�� 
d��
Td
j��

�U j
k �� ��

Proof� The proof is similar to that of Proposition �	��

������
d�

j��

�U j
k

������ �
������
d�

j��

�U j
k

������� jSkj � n� k � d
d � ��n�� 
d� �

Proposition ����� If k � n � d
d � ��n�� 
d� and H � Td
j��

�U j
k � then over the simplex

�� the hyperplane H lies above at least n� d�
d� ��n�� 
d� hyperplanes�

Proof� The hyperplane H lies above every member of
Td
j�� U

j
k � but

������
d�

j��

U j
k

������ � n�
������
d�

j��

�U j
k

������ � n� d�
d� ��n�� 
d��

��



Corollary ����� The number of planes can be reduced from n to no more than d�
d �
��n�� 
d� in one phase where 
d� ��	variable linear programs are solved in parallel� each
with a linear number of processors�

Theorem ����� For any 
xed d� the linear programming problem with d variables and
n inequalities can be solved with n processors in O

log log n�d� time�

Proof� Denote

C � C
d� �
�

�����cd�
d ��
�

It follows from what we have proven that the value of n can be reduced in one iteration
to n�t
d�� where

t
d� � t
d� p�n� � C
d�
�
p

n

��d
�

After one iteration the new value of t � t
d� is t� � t���
d

� so after k iterations� t�k� �
t����

d�k 	

Remark ����� We note that the algorithm has to start with a constant number of it�
erations that reduce the number of constraints by discarding constant proportions until
we get t � �� i�e�� if initially n � p � m� we need to reduce n until n � mC��d

	
In terms of d� the constant proportion is O
��d

�
�� hence the constant number itera�

tions is O
� logC
d��d
�
�� i�e�� O
�d

�
d log d�	 Then� the variable number of iterations is

O
log log n�
log
� � ���� i�e�� O

c � ��d log log n�	

�� The problem of processor allocation

To describe our computational model� �rst we recall Valiant�s comparison tree model used
for measuring the complexity of sorting� or selection problems	 We formulate it in a way
which is suitable for further generalizations	 Assume that we have an ordered set with n

abstract elements and n�� processors 
n is even�	 At each step each processor receives

two elements� compares them� and reports the result to a central processor	 The central
processor receives the results� and based on all the information received� decides which
comparison should be made and by whom during the next round of comparisons	 There

is no restriction on the computing ability of the central processor	 The sorting!selection
problem is solved in k rounds of comparison if after k rounds the central processor knows
the answer to the question	 For example� if a�� 	 	 	 � an are the elements of the ordered
set 
not necessarily ordered in this way�� then the computation may start by sending

a�i��� a�i� to processor i 
i � �� 	 	 	 � n� and after the �rst round of comparisons the
central processor may decide that processor � gets a
� a��� processor � gets a�� a�� etc	

��



The motivation of this model is that we want only to count the number of comparisons
and not the amount of computation necessary to decide which set of comparisons will be
made in the next round	

We may generalize this model for the solution of linear programming problems	 As�

sume that the coe�cients of the constraints in the problem are elements of an abstract
ordered �eld	 Each constraint contains a constant number of these abstract elements as
coe�cients	 At the beginning� the coe�cients of each constraint are stored at a single
processor	 Di�erent constraints are stored at di�erent processors	 We assume also that

at the beginning of each step each processor holds a constant number of these abstract
elements	 During a single step� the processor may perform a constant number of arith�
metic operations on them� compare the resulting elements� and report the results of the
comparisons to the central processor	 The central processor� using the reported results

of the comparisons� redistributes the elements among the processors and decides which
arithmetic operations and comparisons are done in the next step	 
The central proces�
sor never gets the abstract elements themselves� only the results of the comparisons	�

Again� this model measures only the number of arithmetic operations and comparisons
necessary for the solution of the linear programming problem and not the amount of
computation necessary to decide which arithmetic operations and comparisons must be
performed	 
We will give later a more realistic model which measures this as well	� We

get a clearer picture if we separate the arithmetic operations and the comparisons� that
is� we assume that in each round either only arithmetic operations or only comparisons
are performed	 This way we can measure separately both the number of arithmetic
operations and comparisons required for a solution	

Our result in this computational model is that the d�dimensional linear programming
problem can be solved in a way that the number of rounds where we perform only arith�
metic operations is O

log log n�d�� and the number of rounds where only comparisons
are performed is O

log log n�d���	

To be able to measure the amount of computation needed to decide which arithmetic
operations or comparisons to perform� we will use a CRCW�PRAM machine	 We will
not� however� describe every step of our computation in this model	 We will assume that

the selection steps are done in Valiant�s comparison tree model	 Our algorithm in the
CRCW model described below can be performed in O

log log n�d�c� steps where c is an
absolute constant	

The CRCW�PRAM model that we use in this paper consists of processors that com�

municate with each other according to the following rules	 If there are m processors� then
the processors are numbered from � to m	 The number assigned to a processor will be
called its address	 Each processor has a constant number of registers� which may contain
positive integers not greater than m	 In each step processors may 
simultaneously� read

the contents of the �rst register of any processor	 We assume that when processor i reads
the contents of the �rst register of processor j� then the number j is contained in the

��



second register of processor i	 Alternatively the processors may try simultaneously to
write into the �rst register of any processor	 
If more than one processor attempts to
write in the same register the one with the smallest address succeeds	� These kinds of
steps will be the read!write steps of the processors	 Between these steps the processors

can perform a constant number of arithmetic operations on the contents of their own
registers	

To handle the real numbers given in the constraints of the linear programming prob�
lem� we assume that each processor also has a constant number of registers each con�

taining a real number	 We consider real numbers here as elements of an abstract ordered
�eld� so the processors may only perform the arithmetic operation on them and may
compare them� but the binary bits of the real numbers are not directly available for the
processors	 We assume that the same rules of reading and writing are valid for these

type of registers as for the ones containing integers	 Between two read!write steps each
processor is allowed to perform a constant number of operations on the real numbers
contained in its registers	 We now describe how can we handle certain speci�c problems
in this model	

Expander graphs� The expander graphs that we use were constructed by Gabber and
Galil and are described in ���	 If n � m�� then the vertices of the graph are ordered pairs
of positive integers 
i� j� where � � i� j � m	 The neighbors of the vertex 
i� j� can be
computed in a constant number of arithmetic operations modulo m starting from the

numbers i� j	 We will represent such a graph in the following way	 Each vertex will be
associated with a processor and the neighbors of that vertex will be listed in the registers
of the processor	 Therefore� if the number of vertices is not greater than the number of
processors� this expander graph can be computed in a constant number of steps on our

CRCW�PRAM machine	

Power of a graph� For certain steps of the algorithm we will need a family of graphs
where the maximum degree is not bounded by a constant	 In the following we may
assume that graphs may have multiple edges	 This makes their representation easier in

our model and it is suitable also for our applications	 The graphs will be represented in
the following way	 If the maximum degree is d then each vertex v will be associated with
a set Tv of processors of size d	 
We assume that the addresses of these processors form
an interval of length d	� Each vertex v therefore has an address� the address of the �rst

processor in Tv	 The addresses of the neighbors are stored in the processors contained
in Tv 
the same address may occur several times�	 If G� and G� are graphs with the
same set of vertices� then their product G�G� is a graph where the edges between x and

y are de�ned in the following way� for each vertex z and each pair of edges e� f so that e
connects x and z� and f connects z and y there is a separate edge Ez�e�f connecting x and
y	 It is easy to see that if two graphs G�� G� are represented this way then in a constant
number of steps we may compute a representation of their product� provided that the

number of processors is large enough for the representation of the product	 Consequently�

��



if G is a graph then we may compute the representation of Gk in poly
log k� steps	 We
will always have k � log n 
where n is the total number of processors�� so we will have
that Gk can be always constructed in poly
log log n� steps	

Prime numbers� For certain steps of our algorithm we will need prime numbers	 If

we have n processors� all of these prime numbers are smaller that
p
n	 We may actually

compute all of the prime numbers up to
p
n in a constant number of steps in our model

in the following way	 We divide the processors into
p
n intervals� each of length

p
n	

The ith interval has to decide whether the number i is a prime or not	 Since there are

at least i processors in the interval� they can decide this in a constant number of steps�
the jth processor is checking whether j is a divisor of i	 After this we may assume that
if k � p

n� then the kth processor knows whether k is a prime or not� and if necessary
then other processors may read this information from its register	 If processor j needs

a prime from an interval I� contained in ���
p
n�� then each processor whose address is a

prime in this interval tries to write its address in the �rst register of processor i	 If there
is a prime in I then the smallest one will appear in the register of j	

All of the steps of the algorithm except the selection procedures can be imple�
mented on a CRCW�PRAM	 Apart from the speci�c problems mentioned above 
ex�
pander graphs� powers of graphs� primes� there is only one step� namely� discarding
constraints� whose implementation is not immediate	 We solved the linear programming

problem by discarding an increasing proportion of the remaining constraints	 In a typical
step of the iteration we assume that the remaining n constraints are stored in an array
of n cells R���� 	 	 	 � R�n�� and we discard at least n
����s� 
� � s � n� of them	 In order
to continue with the algorithm� we need the remaining n�s constraints to be stored in an

array whose size is essentially not larger than n�s	 More precisely� we need an algorithm
for the following problem�

Problem ���� Given an array R���� 	 	 	 � R�n� and a subset H � f�� �� 	 	 	 � ng such that
jHj � n�s� move the contents of each R�i� 
i � H� to some R�j
i�� so that j
i� � n�s���

and j
i� �� j
i�� for all i� i� � H 
i �� i��	

Proposition ���� For every 
xed � � �� there exists an algorithm for Problem ��� which

runs in O
log log n� time on an n	processor CRCW�PRAM�

Proposition �	� implies that wherever we originally reduced the number of constraints

from n to n�s� we will be able to reduce it on a CRCW�PRAM from n to n�s���	 This
does not a�ect the upper bounds given in the previous sections	

In the following we will assume that each processor has a register which may contain
a single element of a set A	 We will say that this element is handled by the processor	

We suppose that throughout the computation each element of A is handled by a single
processor 
which may be di�erent from step to step� and each processor handles at most

��



one element	 We also assume that the processors are ordered in some arbitrary way	
The rank of a processor is its position relative to the given ordering	 According to this
de�nition� if we say that we took the elements of A to the �rst k processors� then we
mean that after executing the algorithm� each element of A will be handled by a processor

whose rank is at most k� and distinct elements of A will be handled by distinct processors	

De�nition ���� For any 
 � � and any positive integers c� n� s� let "��c
n� s� denote the
following proposition� There exists an algorithm that runs in c time units� so that if there
are n processors and jAj � n�s� then after running the algorithm� the number of those

elements of A which are not handled by one of the 
rst n�s��� processors is smaller than
n�s����

Proposition ���� For every su�ciently small 
 � �� there exists a positive integer c

such that for all n and s� "��c
n� s� is true�

The proof will be given later	

Proposition ���� Proposition ��� implies Proposition ����

Proof� It su�ces to prove Proposition �	� for every su�ciently small � � �� since for
smaller ��s the statement of the proposition is stronger	 Given a su�ciently small � � ��
let 
 � ���	 Assuming Proposition �	� is true� "��c
n� s� is true	 So� there exists an
algorithm as explained in De�nition �	�	 When we iterate this algorithm� then after

each iteration the number of those elements of A which are not handled by one of
the �rst n�s��� processors decreases from n�t to n�t���	 After O
log log n� iterations�
every element of A will be at the place claimed in Proposition �	�	 Note at the �rst

step t � s	

Remark ���� It su�ces to prove Proposition �	� for every s � s�� where s� is an arbi�
trary constant	 Indeed� it is possible to simulate ns� processors with n processors in a
constant number of steps� so we may always assume that the number of processors is at
least s�jAj	

We use the following proposition in the proof of Proposition �	��

Proposition ��	� For every � � �� there exist �� � � and c � � such that for all positive
integers s� if we have s processors and jAj � s���� then in c steps we can move all of the
elements of A to the 
rst s���

�

processors�

��



Our goal is to show that Proposition �	� implies Proposition �	�	

Let � � � be any small constant	 
Later we will give an upper bound on �	� We now
assume that jAj � n�s� and the elements of A are stored at processors with rank not
greater than n	 For the sake of simplicity� we assume that s is an integer and n is divisible
by s� but the proof remains valid in general with minor modi�cations	 We partition the

set of processors into n�s intervals of length s	 Let A� be the set of all elements of A
which occur in an interval where the number of elements from A is less then s���	 It
follows from Proposition �	� that there exist �� � � and c � � such that for each interval

of this type we can move the elements of the interval to the �rst s���
�

processors of this
interval in time c	 In this way� all of the elements of A� can be taken to processors with
ranks smaller than n

s
s���

�

� ns��
�

	

Remark ��
� We note that in order to perform the described step 
with regard to
moving the elements of A��� we do not have to count the number of elements in the

intervals	 We simply attempt to apply the algorithm of Proposition �	�� and we succeed
in the intervals that contain the elements of A�	

Let X denote the set of the remaining intervals and let A�� denote the set of those elements
of A which are at processors belonging to an interval from X 
after we have performed

the steps based on Proposition �	�	� The set A�� may have essentially the same size as A	

For the next step of the algorithm� we need the following proposition which is a
consequence of the existence of explicitly constructible expander graphs�

Proposition ���� There exist a positive integer r� a �� 
 � 
�� �� and an algorithm that
constructs for any positive integers k and m� a symmetric nonnegative m�m matrix B
of integer entries such that�


i� The largest eigenvalue of r�kB is �� and the only eigenvector with this eigenvalue
is �p

m
e �where e � 
�� 	 	 	 � ��T ��


ii� All the other eigenvalues of r�kB lie in the interval ��� 
k��


iii� If k is su�ciently large relative to r and 
� and if v � 
v�� 	 	 	 � vm�T is a 
�� ��	vector
such that e 
 v � m�r�k� then kr�kBvk� � r��kkvk��

Proof� The results of Gabber and Galil ��� imply that there is an integer d � � and
there is exists an explicit construction 
for every m� of an m�m symmetric matrix D
with nonnegative integer entries such that�


i� d is an eigenvalue of D� and the only eigenvector with eigenvalue d is �p
m
e	


ii� All the eigenvalues of D lie between �d and d	

��



Let F � D�dI where I is the identity matrix	 We get the eigenvalues of F by adding
d to the eigenvalues of D	 If r � �d and 
��d is the second largest eigenvalue of F �
then it is easy to see that the matrix B � F

k is as stated in parts 
i� and 
ii� of the
proposition	 We will show that 
iii� is a consequence of the above	

Let v be a 
�� ���vector such that e 
 v � m�rk	 Denote by W the linear subspace

of all the vectors orthogonal to e	 Represent v as

v � �e�w

where w � W 	 Let v�� 	 	 	 �vm be orthogonal eigenvectors of r�kB� all orthogonal to e�
with eigenvalues ��� 	 	 	 � �m� respectively 
� � �i � 
k for i � �� 	 	 	 �m�� and represent
w � ��v

� � 
 
 
� �mv
m	 Obviously�

kr�kBvk � kr�kB�ek� kr�kBwk �

Now�

kr�kBwk �

					
mX
i��

�ir
�k
Bv

i

					 �

					
mX
i��

�i�iv
i

					
� 
k

					
mX
i��

�iv
i

					 � 
kkwk � 
kkvk �

Since
kr�kB�ek � k�ek � j�jpm �

it follows that

kr�kBvk � �
p
m � 
kkvk �

Now� v is a 
�� �� vector� so kvk� � e 
 v	 On the other hand� e 
w � �� so

kvk� � e 
 
�e� � �m

and we have
�
p
m � m����kvk� �

Consequently�

kr�kBvk � m����kvk� � 
kkvk � 
m����kvk� 
k�kvk �

Since v is a 
�� ���vector and e 
 v � m�r�k� we have kvk � 
mr��k����	 This implies
that

kr�kBvk � 
m����
mr��k���� � 
k�kvk � 
r�k � 
k�kvk � r��kkvk
if k is su�ciently large � where � � � depends only on 
 and r	

��



In the intervals of X there are at least s��� elements from A��	 We apply Proposition
�	� with m � n�s � jXj	 We pick k so that s��	 � rk � s���� this is possible since
s � s�	 We take a graph G on the vertex set X whose matrix is B	 This graph may
contain both loops and multiple edges	 We try to move the elements of A�� along the

edges	 More precisely� an element of A�� which is at a processor in an interval I will be
moved to a processor of an interval which is connected to I by an edge of the graph	
Distinct elements from the same interval I may move to distinct intervals	

Let h be the number of intervals which contain more than s��� elements from A��	 We

will later prove the following�

Proposition ����� It is possible to move the elements of A�� in a constant number of

steps so that the new arrangement has the following property� if K is the set of intervals
which contain more than s��� elements from A��� then jKj � s����h� where � is the
constant de
ned in Proposition ��
�

We �rst show that� assuming Proposition �	� is true� Proposition �	�� implies Proposition
�	�	

Proof of Proposition ���� Let A� be the set of those elements from A�� which are
in an interval belonging to K	 Let � � ���	 By proposition �	�� there exists � � �

such that
jA�j � jAjs������s��s � jAjs��� � jAjs���� �

So� if we pick � � 
 � ���� then all the elements of A� can be included among the
exceptional n�s��� elements of Proposition �	�	

All the remaining elements� i�e�� the elements of A�� nA�� are now in intervals where
the number of elements is smaller than s���	 Thus� applying again the algorithm based
on Proposition �	�� we put every element of A at the required place	 
We assume that

 � ���	� To complete the proof� we have to show that the elements of A�� can be

moved in the manner described	

Let E be the set of edges of the graph G on the vertex set X� associated with the
matrix B in proposition �	��	 Property 
i� of the matrix B implies that the degrees of
all the vertices are equal to � � rk	 We partition E into � ��factors and each interval

I into s�� classes of equal sizes	 We associate with each edge e � E� connecting the
intervals I� J � with a pair of classes Ie � I and Je � J 	 Using the partition of E into
��factors� we may de�ne the pairs 
Ie� Je� so that each class occurs in exactly one pair
associated with some edge e	 Let �e be a one�to�one correspondence between the sets

Ie and Je	 In each step we swap the contents of the processors x and �e
x� for all e � E

and x � Ie	 This can be done in a single step since each processor takes part in a single
swap	 The essential change is as follows	 If in a pair 
x� �e
x�� exactly one processor

contained an element of A� then this remains true but the element from A will be in

��



the other processor	 
If either both of them or none of them contained an element of
A� then this situation prevails	�

Originally� we had only intervals where the processors containing elements from
A�� had either density at least s�� or density �	 Suppose that after performing a step
described above� the set A�� will have density uI in the interval I 
� � uI � ��	 Let

w � 
wI�I�X be the vector consisting of the original densities� and let u � 
uI�I�X be
the vector of densities after one step has been performed	 Our de�nitions imply that
u � r�kBw	 Let v � 
vI�I�X be the �characteristic� vector of w� i�e��

vI �



� if wI �� �

� if wI � � 	

By the nonnegativity of B� u� v� and w� we have kuk � kr�kBvk	 To give an upper
bound on kuk� we want to use property 
iii�	 The condition �k is su�ciently large�

holds because of the assumptions rk � s��	 and s � s�	 Also�

X
vI � jKj � jAj�s��� � 
n�s��s��� � jXj�s��� �

Since m � jXj and r�k � s��� � s���� the requirements of 
iii� in Proposition �	� are

met	 According to the conclusion there� we have kuk � r��kkvk � r��kh���� where
h is the number of nonzero components of v	 On the other hand kuk � s��jKj���	
Therefore� s��jKj��� � r��kh���	 Since r � s��	� we conclude that jKj � s������h �
s����h 
here we assumed that � � �����	

We will need the following in the proof of Proposition �	�	

Proposition ����� There is a positive c such that for every integer s � �� if we have s
processors� s��	 � jAj� and the elements of A are at the 
rst s��� processors� then all the
elements of A can be moved to the 
rst s��� processors in c steps�

We will use the following well�known concepts in the proof	 If K is a �eld� then the
a�ne plane over K� K�K� consists of all the ordered pairs of elements of K	 A subset

L 
 K � K is a line if there exist a� b� c � K so that L � fhx� yijax � by � c � �g	
We say that two lines have the same direction if they are parallel� that is� they do not
intersect	 A direction is a maximal set of parallel lines	 Proof� Suppose p � s��� is
a prime	 
If p � s��� is not a prime then let p be an arbitrary prime between �

�
s���

and s���	� We associate with each of the �rst s��� processors a point in the a�ne plane
with p� elements	 There are p � s��� directions 
maximal sets of parallel lines� on the
plane but less than 
s��	�� � s��� pairs formed from the elements of A	 Therefore�
there is a direction so that each line of this direction contains at most one element

from A	 Since the number of processors is s� we can actually �nd such a direction in
a constant number of steps	 Indeed� we associate with each line e a processor Pe� and

�




with each pair of points hp�� p�i 
p� �� p��� a processor Qp��p�	 If both points p�� p�
contain an element of A� then the processor Q
p�� p�� attempts to write in the register
of processor Pe� where e is the line determined by the points p� and p�	 After this step�
each processor Pe knows whether the line e contains more than one element of A and

in the next step in will try in a similar way to transmit this information to processors
associated with directions	 Using the direction where each line contains at most one
point from A� we may easily move A to the �rst s��� processors	

Proof of Proposition ���� If �� �� and c are positive� then denote by #
�� ��� c� the
following statement� for all positive integers s� if the elements of A �jAj � s���� are
given on s processors� then in c steps we can move all the elements to the �rst s���

�

processors�

Proposition �	� is the following assertion�


�� � ��
��� � ��
�c � �� #
�� ��� c� �

Let $
�� be the statement�


��� � ��
�c � �� #
�� ��� c� �

We have to prove that for all � � 
�� ��� $
��	

We will present a strictly increasing continuous function f � 
�� �� � 
�� �� so that
for each � � 
�� �� we have� $
f
��� � $
��	 Moreover� we will give an �� � 
�� ��

with $
���	 The existence of these objects implies Proposition �	� since the properties
of the function f guarantee that for every � � � there is a positive integer i such that
f �i�
�� � ��� where f �i� is the ith iterate of f 	 Therefore 
using the fact that if � � 	�

then $
�� � $
	��� we have

$
��� � $
f �i�
��� � $
f �i���
��� � 
 
 
 � $
�� �

Now we prove $
��� with �� � ��
	 More precisely� we prove #
��
� ���� c� for some
c	 Assume that jAj � s���� � s��		 Let Z be a set of s��� elements	 We associate each
processor with an element of Z � Z	 Let

Y � fy � Z j 
�z � Z�
processor hy� zi stores an element of A�g �

We can actually �nd the elements of Y in a constant number of steps	 Note that Y is

represented as the set Y � fz�g for an arbitrary z� � Z	 Also� jY j � jAj � s��		 Let �A
be a new set 
disjoint from A� whose elements have to be handled by the processors	
Suppose that the elements of �A are at the processors belonging to Y 	 We may assume
that Z � fz�g are the �rst s��� processors� so the elements of �A are at the �rst s���

processors	 Applying Proposition �	��� we may move the elements of �A to the �rst

��



s��� processors	 We may also assume that at the end� each processor containing an
a � �A also contains the address of the processor where a was initially	 This implies

that coming back to the original set A� we may move simultaneously all the elements
of A inside the sets Z � fzg 
for each z � Z�� so that each element of A will move to
a processor hv� zi� where v is among the �rst s��� elements of Z	 Consequently� A is
on the �rst s��� processors� which concludes the proof of $
���	 Thus� we have reduced

the proof of Proposition �	� to the question of existence of a function f with properties
given in the following proposition	

Proposition ����� There is a strictly increasing continuous function f � 
�� �� � 
�� ��
such that for every � � 
�� ��� $
f
��� � $
���

For the proof of this proposition we will need the following�

Proposition ����� If � � � is su�ciently small� then for every � � �� there is a positive
c such that for all s� if jAj � s	 and the elements of A are on s processors� then they can
be moved in c steps to the 
rst s	�
 processors�

Remark ����� We will use the following consequence of the proof of $
���� if � � �
is su�ciently small and jAj � s	� then we can move jAj to the �rst s��� processors in a
constant number of steps	 Iterating this step� we get the following� for all 	 � �� if � � �
is su�ciently small� jAj � s	� and the set A is given on s processors� then we can move

A to the �rst s� processors in a constant number of steps�

Assume now that a su�ciently small 	 � � is �xed and � � � is su�ciently small with
respect to 		 According to the previous remark� we may assume that A is on the �rst
s� processors	 Let m � s�	 We now have the following situation� the elements of A

are given on m processors but we have m��� extra processors that we can use for the
computation	 Therefore� we can simulate an unlimited fan�in constant depth Boolean
circuit of size m��� with m inputs	 We associate the input nodes with the m processors	
The value of the input will be � if there is an element of A at the processor� and �

otherwise	 Using the following theorem 
see ����� we are able to count approximately the
number of elements of A in a constant number of steps�

Theorem ����� There exist positive c and d such that for all positive integers n and
a � n� there is an �explicitly constructed� unlimited fan	in Boolean circuit C with n

inputs� with depth d and of size at most nc� so that for each input sequence x� if jxj
denotes the number of ��s in the sequence� then we have the following�


i� If jxj � 
�� 
log n����a� then C
x� � �� and

��




ii� If jxj � 
� � 
log n����a� then C
x� � ��

We will also use the following easy proposition from ��� about mod p polynomials	

De�nition ����� Let p be a prime number and let Kp be a �eld with p elements	 Assume
that f is a polynomial of degree k with coe�cients in Kp	 We de�ne a map

hpf � Kp �Kp � Kp

as follows	 If hu� vi � Kp �Kp then hpf 
hu� vi� � u� f
v�	

Proposition ���	� If X 
 Kp�Kp and jXj � p�����k���� then there exists a polynomial

f of degree k with coe�cients in Kp� such that for all y � Kp�

jfx � Kp �Kp j hpf 
x� � ygj � k �

We use this proposition with k � �� and we assume that Kp�Kp is the set of processors�
and X is the subset of processors where the elements of A are sitting	 Proposition �	�� for
k � � implies that if jAj � p��� and the elements of A are located in the �rst p� processors�

then using p�� processors� we can move the elements of A to the �rst �p processors in
a constant number of steps	 Since we have enough processors� we may check all of the
polynomials of degree � simultaneously and �nd a polynomial f satisfying the conclusions

of the proposition	 Using this polynomial� we can move the points in A to the �rst �p
processors	 Iterating this step and using Remark �	��� we get the following�

Proposition ���
� If � � � is su�ciently small and jAj � s	� then using s processors�

the elements of A can be moved to the 
rst s�	 processors�

Proof of Proposition ����� Assume now that jAj � s	� where � � � is su�ciently

small	 According to Proposition �	�
� we may assume that A is already in the �rst
jAj� processors and we may continue in the following way� assume that p is a prime
with jAj � p � �jAj	 Since we are able to count approximately� we can �nd such a
prime in a constant number of steps	 
Since we can count approximately we can �nd

in a constant number of steps an interval which is contained in 
jAj� �jAj� and is of
length at least jAj��	 By the Prime Number Theorem� if jAj is su�ciently large� such
an interval always contains a prime	� We put the �rst p� processors on the a�ne plane

with p� elements	 There are only p� ordered pairs formed from the elements of A� and
there are p directions 
maximal set of parallel lines� on the plane	 Therefore� there
must be a direction so that the number of ordered pairs from A contained in the lines
of this direction is at most p	 Since � � � is su�ciently small� and A is on the �rst s�	

processors� we may actually �nd a direction 
using approximate counting� where the

��



number of ordered pairs is less than� say� �p	 Let a�� 	 	 	 � ap be the numbers of elements
of A on the lines with this direction	 We have

Pp
i�� a

�
i � �p	

Let � � � be su�ciently small	 First� we consider the lines with ai � p�	 According
to Proposition �	�
� within each line of this type all of the elements of A can be moved
to the �rst p�� processors	 Therefore� every element of A contained in a line of this

type can be moved to an array of size pp�� � �s	��� � s	���	

We claim that the number of elements of A on lines with ai � p� is at most p���	
Indeed� the minimum of

P� a�i 
where
P� stands for

P
ai
p�� subject to

P� ai � constant
is attained when all the ai�s are equal� and in this case we get the claimed result	

Thus� in one step we decreased the number of elements of A not in our array by a
factor of p�	 Continuing this process� in a constant number of steps we will have all
but s	�� elements of A in an array of the required size	 According to Proposition �	�
�
the remaining s	�� elements can be moved to an array of size s	� which completes the

proof of Proposition �	��	

Proof of Proposition ����� We �rst de�ne f 	 Let � � 
�� �� so that Proposition
�	�� holds for �	 For the remainder of the proof� we consider � as �xed	 Let f
�� �

�
� � �
� � ���	 Clearly� f
�� � 
�� �� for all � � 
�� ��	 Moreover� f is continuous and
strictly increasing in this interval	 Apart from these� we will need only the following
property of f � for all � � 
�� ���

� � �� 
� � ��
� � f
��� � � � ��� �

Indeed�

�� �� 
�� ��
� � f
��� � � � � � �
� � �
� � ���
�� ��

� � � � � �
� � ��
� � �� � �� ��� �

Suppose � � 
�� �� is �xed and $
f
���	 We wish to show that $
�� holds	 We divide
the set of s processors into intervals of size s��		 Let R be the set of all intervals of
this type and for all � � �� let S� 
 R be the set of those intervals where the number

of elements from A is at most 
s��	����	 $
f
��� implies that for each I � Sf���� the
elements of A can be moved to the �rst 
s��	����� processors in c� steps� where �� and
c� depend only on f
�� 
and so only on �	� Therefore� all of the elements of A contained

in intervals of Sf��� can be moved to the �rst s	
s��	����� � s������	��� processors in a
constant number of steps	 So� we have to consider only those elements of A that are
contained in processors outside Sf���	 
We �rst apply the algorithm described here to
all the intervals� and later we work only with those elements of A that are in intervals

where the algorithm did not work	�

Since each interval of R nSf� contains at least 
s��	���f��� elements of A and jAj �
s���� we have that jR nSf���j � s����s���	����f����	 This and the inequality proved after

��



the de�nition of f imply that jR nSf���j � s	�	
�� � 
s	���	�	 According to Proposition

�	��� using all of the s processors� we can construct a one�to�one mapping � of R nSf���
into the set of the �rst 
s	����	���� intervals of R	 Moving all the elements of A from an

interval I to the processors of the interval � 
I�� we are able to move all of the elements
of A to processors in the �rst 
s	����	���� intervals	 Thus� we have moved the elements
of A to the �rst s��	
s	����	���� �s���	���� processors� and so $
�� holds with �� � ����	
This completes the proof of Proposition �	�� which was the last step in the proof of

Proposition �	�

	

References

��� M� Ajtai� 	Approximate Counting with Uniform Constant Depth Circuits�
 in� Advances
in Computational Complexity Theory� DIMACS Series in Discrete Mathematics and Theo�
retical Computer Science� Vol� ��� Jin�Yi Cai� Ed�� Amer� Math� Soc�� �

�� pp� �����

��� M� Ajtai� J� Koml�os� W� L� Steiger� and E� Szemer�edi� 	Optimal parallel selection has
complexity O�log logN��
 J� Comp� Sys� Sci� �� ��
�
� ��������

��� N� Alon and N� Megiddo� 	Parallel linear programming in �xed dimension almost surely in
constant time�
 J� ACM �� ��

�� ��������

��� K� L� Clarkson� 	Linear programming in O�n� �d
�
� time�
 Information Processing Letters

�� ��
��� ������

��� X� Deng� 	An optimal parallel algorithm for linear programming in the plane�
 Information

Processing Letters �� ��

�� ��������

��� D� Dobkin� R� J� Lipton� and S� Reiss� 	Linear programming is log space hard for P�

Information Processing Letters � ��
�
� 
��
��

��� M� E� Dyer� 	Linear time algorithms for two� and three�variable linear programs�
 SIAM J�

Comput� �� ��
��� ������

��� M� E� Dyer� 	On a multidimensional search technique and its application to the Euclidean
one�center problem�
 SIAM J� Comput� �� ��
��� ��������

�
� O� Gabber and Z� Galil� 	Explicit Construction of Linear�Sized Superconcentrators

J� Comput� Sys� Sci� �� ��
��� ��������

���� N� Megiddo� 	Linear�time algorithms for linear programming in R� and related problems�

SIAM J� Comput� �� ��
��� ��
�����

��



���� N� Megiddo� 	Linear programming in linear time when the dimension is �xed�
 J� ACM

�� ��
��� ��������

���� N� Megiddo� 	Dynamic location problems�
 Annals of Operations Research � ��
��� ����
��
�

���� R� M� Tanner� 	Explicit concentrators from generalized N�gons�
 SIAM J� Alg� Disc� Meth�

� ��
��� �����
��

��


