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Abstract� This paper studies the complexity of some approximate solutions

of linear programming problems with real coe�cients�

�� Introduction

The general linear programming problem is to maximize a linear function over a set
de�ned by linear inequalities and equations� There are many equivalent ways to represent
instances of the linear programming problem� For example� consider the symmetric
form	

�Sym�A� b� c��

Maximize cTx

subject to Ax � b

x � � �

The dual is then
Minimize bTy

subject to ATy � c

y � � �

Intuitively� two representations are equivalent if there is an easy way to transform so

lutions of one to solutions of the other and vice versa� We �rst mention some of the

well
known equivalences� First� any set of linear inequalities and linear equations can be
reduced to a set of linear equations with nonnegativity constraints or to a set of inequality
and nonnegativity constraints� Also� any linear programming problem can be reduced
to a linear programming problem with a nonempty set of solutions by using arti�cial

variables� Moreover� any linear programming problem can be reduced to a problem of
�nding a solution to a system of linear inequalities �by combining the constraints of
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the primal and dual and adding the inequality cTx � bTy� or else concluding that the
system has no solution� By the duality theorem� if we put the problem in the combined

primal
dual form� every problem can be reduced to a problem which is either infeasible
or feasible and bounded �but not unbounded�� It is interesting to note that over any
ordered �eld� every linear programming problemcan be reduced to one which is both
feasible and bounded� This is done as follows� Suppose the problem is given in the

symmetric form Sym�A� b� c�� Consider the following	

Minimize cTx� bTy � t

subject to Ax� te � b

ATy � te � c

cTx� bTy � �

x�y� t � � �

where e denotes a vector of ��s� It is easy to verify that the optimal value of the latter
is zero if and only if the former has an optimal solution� In this case the latter provides

optimal solutions for the former and its dual�

The equivalences mentioned above are valid as long as exact computation is feasible�

In practice one usually works with �nite precision and hence obtains results which are
only 
approximately true�� However� the meaning of the last sentence depends on the
particular representation of the practical problem� Indeed� a good approximate solution
for one representation of the problemmay transform into a very bad approximate solution

for another 
equivalent� representation of the same problem�

When two people talk about approximate solutions� they often think of di�erent

notions of approximation� It is quite likely though that they refer to one of the following	

�i� A feasible point �i�e�� one which satis�es all the constraints in the exact sense� and

is close in a certain metric to an optimal point�
�ii� A feasible solution whose objective function value is close to the optimal value�
�iii� A point� not necessarily feasible� close to an optimal solution�
�iv� A point which approximately satis�es every constraint� and whose objective func


tion value is close to the optimal value�
�v� A point close to the feasible domain� whose objective function value is close to the

optimal value �called the 
weak optimization problem� in �����
�vi� A basis where the simplex algorithm �using exact arithmetic� terminates� but the

numerical values of variables are only approximate�
�vii� A basis where the simplex algorithm terminates due to a prescribed tolerance�

The choice of the right de�nition depends very much on the practical situation� In
fact� practical considerations dictate which constraints must be satis�ed and which may
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be approximately satis�ed� In other words� the tolerance may be di�erent for di�erent
constraints�

It is not known whether the m� n linear programming problem with real data can
be solved in a polynomial number of arithmetic operations and comparisons in terms
of m and n� �We will refer to this notion of complexity as strongly polynomial time�

even though the usual de�nition of this concept requires also polynomial time in the
usual sense�� Thus� another natural question is whether for any � � �� any of the �

approximation problems can be solved in a polynomial number of operations in terms of

m�n and � log �� To deal with this question� we �rst have to de�ne what we mean by an

�
approximate� solution� In particular� such a de�nition should not make the second
question trivially equivalent to the �rst one� Consider� for example� the concept suggested
in �i� above� Thus� for the problem	 maximize cTx subject to Ax � b �assuming its

maximum V � exists� an �
approximate solution is a point x such that Ax � b and
cTx � V � � �� This de�nition is not satisfactory since it is not clear whether an �

approximation algorithm is required to decide the existence of an x such that Ax � b�
and the boundedness of the function cTx on the feasible domain� If indeed it is required

to decide these questions then in the worst
case sense this approximation problem is
trivially equivalent to the exact problem�

The consequences of the ellipsoid algorithm with respect to approximation problems
on convex sets are studied in ���� It is not clear whether these results can be applied

to achieve the type of results we seek here� The reason is that over the real numbers
it seems di�cult to obtain estimates of the radii of a circumscribing sphere and an
inscribed sphere� The main complexity result on convex minimization in ��� �Theorem
������� assumes the convex set is given with estimates of such radii� Our main interest

here is the question of what is a reasonable sense of approximation when the algorithm
fails to classify the instance correctly as feasible� unbounded� etc�

In Section � we give some preliminaries and discuss the di�culties involved in clas

sifying the problem� In Section � we discuss approximate solutions based on satisfying

a termination criterion within some tolerance� In Section � we discuss a notion of ap

proximation which is based on solving a perturbed instance exactly� Section � gives an
analysis of complexity for various notions of complexity�

�� Preliminaries

We pointed out in the introduction that the practical situation usually dictates the right
notion of approximate solution� For a theoretical discussion it is often convenient to
consider the problem in the symmetric form Sym�A� b� c� �see Section ��� Traditionally�
an exact algorithm for this problem �for example� the simplex method� is supposed to

provide the user with information as follows� It has to classify the problem into one of
the following three categories	
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�i� Infeasible �the domain X de�ned by Ax � b and x � � is empty��
�ii� Feasible and bounded �there exists a maximizer of cTx over X��
�iii� Feasible and unbounded �the function cTx is unbounded over X��

In case �ii� the algorithm has to provide an optimal solution� It may also be required
in case �iii� to provide a ray contained in X along which cTx tends to in�nity� A nice
property of the simplex method is that it also solves the dual problem	

Minimize bTy

subject to ATy � c

y � � �

Thus� besides providing such a ray in case �iii�� it also provides in case �ii� an optimal

solution to the dual� and in case �i� a 
certi�cate� in the form of a ray of a related
problem�

In fact� the �exact� simplex method always computes a basis which provides the re

quired information� Speci�cally� it provides a representation of the problem �by a suitable
linear transformation of the space� from which the classi�cation and the numerical values

of both the primal and the dual variables are transparent� Thus� the simplex method
classi�es problems into one of four categories �even though the commonly used variants
do not distinguish between IF and II�	

�i� FF	 primal feasible� dual feasible�
�ii� FI	 primal feasible� dual infeasible �that is� unbounded primal��
�iii� IF	 primal infeasible� dual feasible �here the dual is unbounded�� and

�iv� II	 primal infeasible� dual infeasible�

It is quite common to include this classi�cation in the requirements from an exact algo


rithm for the general linear programmingproblem� We refer to it later as the classi�cation
problem of linear programs�

An approximation algorithm should be expected sometimes to fail in classifying the
input into the categories FF� FI� IF and II� Interestingly� the existence of a strongly
polynomial algorithm for the classi�cation problem implies the existence of one for the

problem itself �see p� ��� in �����

So far we have discussed the subject of approximation under the assumption that the
result should be 
close� to the true one� However� a di�erent approach can sometimes
be useful� We may allow the algorithm to be totally wrong in a small number of cases�
This approach is appropriate when the output space of the algorithm is discrete and has

no natural metric associated with it� For example� consider the following trivial problem	
given two numbers �� �� recognize whether � � � or � � �� Suppose the comparison of
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� to � can be performed with arbitrary �nite precision� Thus� for any given � � �� we
can recognize either that

� � � � �

or that

� � � � � �

The algorithm reports � � � in the �rst case and � � � in the second one� Thus� the
algorithm gives the correct answer if

j� � �j � �

but may fail otherwise� The grey area is the set of pairs ��� �� such that j� � �j � ��

Of course� the smaller � the smaller the grey area� Thus� the measure of the grey area
re�ects the quality of the approximation�

The problem of the preceding paragraph can be cast as a linear programmingproblem	

Maximize x�

subject to �x� � x� � �x� �

Here the point ��� �� is feasible for any � and �� The problem is unbounded if and only if
� � �� This suggests that the grey area approach would be suitable for the classi�cation
problem of linear programs�

A general linear programming problem in standard form	

�SF �A� b� c��

Maximize cTx

subject to Ax � b

x � �

is determined by A � Rm�n� b � Rm and c � Rn� There is a one
to
one correspondence
between problems of order m � n and points of � � Rmn�m�n � The classi�cation cor


responds to a partition of � into four sets	 FF� FI� IF and II as discussed above� For
example� IF is the set of triples �A� b� c� that determine infeasible primal problems whose
dual problems are feasible �and hence unbounded��

Let �� denote the union of the boundaries of these four sets� Obviously� an approx


imation algorithm �for the classi�cation problem� may fail if the input �A� b� c� is close
to ��� For example� if an instance is close to the common boundary of FF and FI� but
far from the boundaries of IF and II� then an approximation algorithm is expected to
recognize that the problem is feasible� but is expected to fail in deciding whether it is

bounded� Interestingly� there are more 
pathological� cases� In fact� the intersection of
all four boundaries� which we denote by ��� is not empty� Thus� given an instance close
to the intersection of the four boundaries� an approximation algorithm may not be able
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to recognize anything in terms of the above classi�cation� This observation is obvious
in view of the invariance of the classi�cation under multiplication of columns and rows
by positive scalars� Thus� the neighborhood of the origin is obviously pathological in
this sense� The di�culties with the origin can be avoided by scaling rows and columns�

However� it is easy to construct other examples with similar characteristics�

Proposition ���� The instance

���

Maximize x� � x�

subject to x� � x� � ��

�x� � x� � ��

x�� x� � � �

belongs to ���

Proof� It is easy to see that ��� itself is in IF� Using small perturbations� one can move
from ��� to instances in any of the other three classes� More precisely� if only c� is
slightly increased then we can get instances in II� If only A�� is slightly decreased then
we get instances in FF� Finally� if only A�� is slightly increased then an instance in FI

is obtained�

We note that most of the numerical di�culties with solving linear programming prob


lems are due the fact that many such problems are ill
posed� It is well
known in numerical
analysis �see� e�g�� ���� that near
singularities in the matrix A can cause problems� How

ever� in this paper we also discuss intrinsic aspects of approximate solutions which arise
even when exact arithmetic is used� For example� if one is interested only in an approx


imate solution� what should be a good termination criterion� Becasue of such questions
we have to deal with perturbations of the vectors b and c and not only of the matrix A�

Due to the classi�cation aspect of the problem� we clearly cannot always measure
the quality of the approximation by the distance between the exact solution and the

approximate one �neither in terms of the solution vector nor in terms of the objective
function value�� Thus a di�erent approach to approximation may be proposed for a
general situation� where there is some natural metric on the input space� but there does
not seem to exist one for the output space� The following de�nition is similar to backward

analysis of errors in numerical analysis ����

De�nition ���� Let M � �S� d� be a metric space and let f be a mapping from S into

some set T which does not necessarily have any metric associated with it� A mapping
g 	 S � T is called an ��approximation to f if for every x � S� there exists an x� � S

such that d�x�x�� � � and g�x� � f�x���
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In linear programming the output space �including the classi�cation� does have a
metric structure� Besides the classi�cation information� there are also numerical values
associated with the variables� One might propose for the linear programming problem
the following approach to approximation by posing the following problem	

Problem ���� Given the problem SF �A� b� c� and � � �� name a class S � fFF�FI� IF� IIg
and assign numerical values to the variables so that the following condition is satis�ed	

there exists an instance �A�� b�� c�� in S for which the numerical values are correct within
an error of �� such that k�A� b� c�� �A�� b�� c��k� � ��

The approach represented by Problem ��� takes care of pathological cases where

some other approaches fail� Consider� for comparison� a di�erent notion of approximate
solution of systems of inequalities re�ected in the following problem	

Problem ���� GivenA� b and � � �� either give an x such that Ax � b��e or conclude
that there is no x such that Ax � b� �e�

The approach represented by Problem ��� seems to be a natural generalization of the
obvious approximate comparison of two real numbers� Its weakness is apparent in the
following example� Consider the problem

�x� � x� � ��

�x� � x� � �� �

If � � � then� obviously� for every � � � the system

x� � x� � �� � �

�x� � x� � �� � �

is infeasible� However� for any � �� � the system is feasible for every �� Thus� in order
to solve Problem ��� we have to know whether � � �� This example can easily be
generalized so that in order to solve Problem ��� one has to know whether a certain
matrix is singular� The latter involves some numerical di�culties in practice�

The weakness of the concept of Problem ��� is that it considers perturbations of
the given problem only in a limited and quite arbitrary way� In Problem ��� we allow
perturbations in all directions� We note that for certain classes of linear programming
problems �e�g�� the min
cost �ow problem� certain coe�cients have the values � or �

throughout the class� In such cases we would allow only perturbations within the subject
class� Thus� if the concept represented by Problem ��� were to apply to a min
cost �ow
problem SF �A� b� c� then we would require that A� � A�
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�� Tolerance�based approximation

In this section we discuss the issue of approximation as it arises in the context of the
simplex method� There are two ways to look at the question� First� imagine we run

the simplex algorithm using exact arithmetic but have to compute only 
�
approximate�
solutions� Thus� rather than running the algorithm to the end� we seek to apply some
stopping rule that guarantees our output to be �
approximate� The interesting problem
is of course to devise such stopping rules for various concepts of approximation� Another

way to look at the question is to realize that on a machine we usually have numerical
errors and thus we almost always have to specify some 
tolerance� within which we accept
our results� It is important to know the implications of using a certain tolerance with
regard to the results�

Consider the problem SF �A� b� c�� In the Appendix we review some properties
of basic solutions and how the simplex method uses them �see the Appendix for the
notation��

In practice� one usually works with some 
tolerance� � � �� so that any number a � �

is accepted as nonpositive and any a � �� is accepted as nonnegative� This suggests
another approach to approximation� which may be called the 
tolerance� approach	

De�nition ���� A basic solution x � x�B� � �xB�xN � �where xB � B��b and xN �
�� is optimal with tolerance � for SF �A� b� c� if for every j�

xj � �� and cj � cTBB
��Aj � � �

Obviously� such a solution is not necessarily feasible� It is only 
approximately feasible�
in the sense that the equality constraints are satis�ed while the nonnegativity constraints
are approximately satis�ed� Analogously� the dual vector y�B� is approximately feasible

in the dual problem� Moreover� the vectors x�B� and y�B� satisfy the complementary
slackness condition	

xj�y
TAj � cj� � �

which is necessary for optimality� This implies that both vectors yield the same objective

function value in their respective problem	

cTx � cTB��b � yTb �

Note that the problem may also be feasible and unbounded but still an optimal solution
with tolerance � may exist� One can also de�ne a notion of an unbounded ray with
tolerance ��
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�� Perturbation�based approximation

It is interesting to observe that from a solution that is optimal with small tolerance we
can easily obtain an exact solution to an instance which is close to the given one� More
precisely� we have the following proposition�

Proposition ���� Suppose x � x�B� is a basic solution which is optimal with tolerance
�� Let x� be de�ned by x�j � xj � � for j associated with B and xj � � otherwise� Also�
let c� be de�ned by c�j � cj for j associated with B and c�j � cj � � otherwise� and

let b� � b � �Be� Under these conditions� x� is an optimal solution for the problem
SF �A� b�� c��� and y � B�TcB is optimal for its dual problem�

Proof� We have

x�B � B��b� � xB � �e � � �

ATy � c�

and x� and y satisfy the complementary slackness conditions in SF �A� b�� c���

In simpler words� we have

Corollary ���� If x is optimal with tolerance � for SF �A� b� c� then there exist b� and
c� and an optimal solution x� for SF �A� b�� c�� such that

kx� � xk� � kc� � ck� � � �

and
kb� � bk� � minf�kAk��mT�g

where kAk� is the usual operator norm� corrsponding to the vector supremum norm k�k�
T is the maximum absolute value of any entry in A and m is the number of rows of A�

A analogous proposition can be proven with respect to the unbounded case	

Proposition ���� Suppose x � x�B� is a basic solution such that

xj � ��
and for some k not associated with B�

ck � cTBB
��Ak

and

B��Ak � ��e �

Let c� be the same as c except that c�k � ck � �cTBe� and let b� � b � �Be� Also let A�

be the same as A except that A�

k � Ak � �Be� Under these conditions� the problem
SF �A�� b�� c�� is unbounded�
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Proof� In the new problem the basis B certi�es unboundedness since

B��b� � � �

c�k � �c��TBB
��A�

k

and
B��A�

k � � �

Corollary ���� If SF �A� b� c� is concluded within tolerance � to be unbounded� then

there exist A�� b� and c� such that SF �A�� b�� c�� is unbounded�

kA� �Ak� � �kAk�
�where kA� �Ak� is the operator norm corresponding to the vector norm k � k��

kb� � bk� � �kAk� �

and

kc� � ck� � �kck� �

�� Complexity questions

We start this section with yet another variant of an approximation problem� Again� we

consider approximation concepts which avoid the di�culties involved in the classi�cation
problem� Suppose the exact problem is given in the dual form	

�DF �A� b� c��
Minimize cTx

subject to Ax � b

where the output has to be one of the following	

�i� a point x� which minimizes cTx subject to Ax � b�
�ii� a point x� and a scalar t� � � which minimize the value of t subject to Ax� te � b

�in which case the problem is infeasible�� or
�iii� vectors x and u such that Ax � b� cTu � � and Au � � �in which case the

problem is unbounded��

The above motivates the de�nition of the following approximation problem	

Problem ���� Denote the optimal value of a given problemDF �A� b� c� by V � �allowing

V � � 	
� and let t� denote the minimum of t subject to Ax� te � b� Given a number
� � �� output one of the following	
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�i� a point x such that cTx � V � � � and Ax � b� �e�

�ii� a point x and a scalar t� �� � t � t� � � such that Ax� te � b� �e� or

�iii� vectors x and u such that Ax � b� �e� cTu � � and Au � ��e �

It is interesting to look at the question of the existence of an algorithm for the
approximation problem� where the number of operations is expressed in terms of � as
well�

Proposition ���� Over any ordered �eld� if Problem ��� can be solved in f�m�n� ��
�eld operations �including comparisons� then it can be solved in g�m�n� � O�f�m�n� ���
operations�

Proof� Suppose A is an algorithm for Problem ��� which runs in f�m�n� �� �eld

operations� Given A� b� c and � � �� let

�A � ���A � �b � ���b � �c � ���c �

The instance DF � �A� �b� �c� is equivalent to DF �A� b� c�� Moreover� a valid output for

DF � �A� �b� �c� with precision � � � is also a valid output for DF �A� b� c� with the pre

scribed precision ��

Corollary ���� If there exists a polynomial f�m�n� �� such that Problem ��� with rational
data can be solved in f�m�n� �� arithmetic operations� then the exact problem with rational
data can be solved in a polynomial number of operations�

Proof� For a problem with rational data it is easy to determine a value � such that an
exact solution can be computed from a solution of Problem ��� in a polynomial number
of operations� Thus� the problem can be scaled so that � � � su�ces for determining

an exact solution�

In view of Proposition ��� it is reasonable to ask whether Problem ��� can be solved in
a polynomial number of operations in terms of m� n and log R

�
� where R � R�A� b� c� � �

is some quantity such that for any positive scalar �

R��A� �b� �c� � �R�A� b� c�

�e�g�� R equals the maximum absolute value of any input coe�cients�� Consider �rst the

feasibility problem	

�FB�A� b��

Minimize t

subject to Ax� te � b

t � �� �

and the associated approximation problem	
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Problem ���� Given FB�A� b� and � � �� �nd x and t such that Ax � te � b and
t � t� � � �where t� is the minimum of FB�A� b���

Before stating the next proposition� recall that the set of solutions of the system Ax � b

is bounded for every b if and only the rows of A span the space Rn in nonnegative linear
combinations�

Proposition ���� If Problem ��	 is given with real data such that the rows of A span the
space Rn in nonnegative linear combinations� then it can be solved in polynomial number
of arithmetic operations in terms of m�n and

	 � log

�
bmax � �

�

�

�assuming bmax� the maximal bi� is positive��

Proof� The point x� � �� t� � bmax � � is in the interior of the feasible domain of

FB�A� b�� By our assumption� the set of optimal solutions of FB�A� b� is bounded�
Several interior point algorithms are now known �e�g�� ��� ���� which can start from
any interior point and reduce the value of the objective function to a value not greater
than t� � � in a polynomial number of iterations in terms m�n and 	� where each

iteration takes a polynomial number of operations in terms of m and n�

An obvious consequence of Proposition ��� is the following	

Corollary ��	� Suppose the rows of A spanned the whole Rn in nonnegative linear com�
binations� It takes a polynomial number of operations in terms of m�n and 	 to ei�

ther compute a vector x such that Ax � b or conclude that there is no x such that
Ax � b� �e�

Proof� Run any of the polynomial interior point algorithms for a number of iterations
which guarantees that t � t�� �� As soon as t becomes nonpositive� stop �the current
x is feasible�� If at the end t is still positive then t� � �� and hence there is no x such
that Ax� �e � b�

Another consequence with respect to optimal solutions with tolerance can be stated
conveniently when the problem is in the symmetric form Sym�A� b� c�	

Maximize cTx

subject to Ax � b

x � � �
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whose dual is
Minimize bTy

subject to ATy � c

y � � �

Recall that by the duality theorem� a feasible solution x is optimal if and only if there
exists a dual feasible solution y such that cTx � bTy� On the other hand� cTx � bTy

for any pair of feasible x and y� This suggests the following approximation problem	

Problem ��
� Given A� b� c and � � �� either �nd a pair of vectors x�y such that

Ax � b� �e

ATy � c� �e

bTy � cTx � �

x � ��e� y � ��e
or conclude that Sym�A� b� c� does not have an optimal solution�

The notion of approximation presented in Problem ��� is very close to the one used
in practice� where optimality criteria are applied without knowledge of proximity to the
value of an optimal solution�

Note that Problem ��� is trivial if c � � � b� Thus� assume


 � maxf�bmin� cmaxg � �

and denote

	� � log
�

 � �

�

�
�

Proposition ���� Suppose the rows of the matrix�
�������

� AT

�A �

cT �bT
I �

� I

�
������	

span the space Rm�n in nonnegative linear combinations� Problem ��
 can be solved in a
polynomial number of operations in terms of m�n and 	��

Proof� Consider the problem

Minimize t

subject to Ax� te � b

ATy � te � c

bTy � cTx� t � �

x� te� y � te � � �

��



Starting at t � 
 � �� x � � and y � �� run a number of iterations which guarantees
t � t� � �� This number is polynomial in m�n and 	�� and 	� is trivial to compute� If
t � � then the current x and y solve Problem ���� Otherwise� t� � � and Sym�A� b� c�
does not have an optimal solution�

Note that a solution of Problem ��� does not guarantee that cTx is close to the optimal
value V � when the latter exists� It seems much more di�cult to solve the approximation
problem in the latter sense� This di�culty can be explained by considering the following

practical question which arises when one applies the simplex method to the problem in
standard form SF �A� b� c�� Suppose x and y satisfy	

Ax � b

x � ��e
ATy � c� �e

cTx � bTy �

Assuming the problem has an optimum whose value is V �� we are interested in �nding

what should be the value of � in order to ensure that

cTx � V � � � �

To answer the question� suppose x� is an optimal solution and we get

cTx � bTy � yTAx� � cTx� � �eTx� �

Thus� we have to estimate the quantity eTx��

As is known from the analysis of the ellipsoid algorithm� the coordinates of a basic
solution x� can be bounded as follows� First� x� satis�es an equation Bx� � b� where

B is a nonsingular square submatrix of A� Thus�

x�i �
det�Bi�

det�B�

where Bi is the matrix obtained from B by substituting b for the i�th column� The
known analyses do not use this relationship between Bi and B� In the case of integer
coe�cients an obvious lower bound on the absolute value of a nonzero determinant is
�� Thus� a lower bound can also be obtained in the case of rational coe�cients� It is

not known whether over the reals the following problem can be solved in a polynomial
number of arithmetic operations and comparisons	

Problem ���� Given a real matrixA � Rm�n� compute a positive � such that for every
nonsingular submatrix B � Rm�m of A� jdet�B�j � ��

��



An tight upper bound on the absolute value of a determinant in terms of the maximum
value M of any entry can be obtained over the reals as follows� Suppose the columns of
B are v�� � � � �vm� Obviously�

jdet�B�j � kv�k � � � kvmk � �
p
m M�m �

At least for values of m for which there exist Hadamard matrices �i�e�� matrices of or

thogonal columns consisting of 	��s�� there exist matrices with determinant �

p
m M�m�

Without exploiting the relationship between Bi and B the only claim we can prove
is that

x�i �
�
p
m M�m

��A�

where ��A� is any positive lower bound on the absolute value of the determinant of any
nonsingular m � m submatrix of A� We note in passing that in the case of integral
coe�cients the bounds on x�i cannot be improved dramatically� For example� if

B �

�
�������

�
�M �

�M �M �
���

���
� � � � � �

�M �M � � � �M �

�
������	

and b � �M� � � � �M�T then x�m �
Pm
i��M

i� Also� if

B �

�
�������

M M M � � � M

�� M M � � � M

�� M � � � M
� � �

� � �
���

�� M

�
������	

and b � ��� �� � � � � ��T then x�m � �
M�M���m�� �

Recall that to guarantee an �
approximation in terms of the function value� we have

to choose � such that
� � �

eTx�

hence we get the estimate

� � � ��A�

m�
p
m T �m

�

Another estimate can be derived by

eTx� � p
m kx�k �

p
m kB��bk �

p
m kbkq

�min�BB
T �

��



where �min denotes the least eigenvalue� Thus� what we would need is a lower bound
on the least eigenvalue of any matrix of the form BBT where B is a basis� Note that
our estimates depend on properties of an optimal basis rather one which supports the
approximate solution� So� the optimal basis may be ill
conditioned� this fact being un


known to the user� and the terminal basis well
conditioned and satisfying the optimality
conditions within tolerance�

Obviously� if any ��A� is known then we can solve the �
approximation problem in

a polynomial number of operations in terms of m�n and � log �� However� in general
� is not known� It is interesting to note that for a practical solution of problems with
thousands of variables� even with a sparse and well
structured problem with small integral
coe�cients� the required � may be too small to be practical� It is not clear that an

approximate solution based on tolerance has a value close to the optimal� In fact� the
value may be far from the optimum even though the duality gap is very small� since the
vectors x and y are only approximately feasible�

The following example illustrates the di�culties described above� Suppose we solve

a problem in standard form and the representation using the current basis is	

Maximize �cNxN

subject to xB � �NxN � e

xB�xN � � �

where �N � Rm��n�m� contains the following m�m submatrix	

B� �

�
�������

�
�� �

�� �
� � � � � �

�� �

�
������	

Suppose further that the coordinates of �cN are negative except those corresponding to the

columns of B� which are all equal to zero except the last one which equals ������ Suppose
m � ����� which is quite common in practice� Assuming ����� is considered nonpositive
within tolerance� the solution x � e is accepted as optimal� with an objective function
value of �� However� the basis B� determines a feasible solution x where xB�

i
� �i�� and

the objective function value is greater then ������ Note that the current basis B is very
well
conditioned� Moreover� the underlying matrix is very sparse and well
structured�

Appendix

We review some known characteristics of the simplex method for problems in standard
form SF �A� b� c�� Suppose� for simplicity� we run only 
phase II� of the algorithm i�e��

��



we start from a basic feasible solution and attempt to �nd an optimal one or conclude
that the problem is unbounded� �It is well known that if a problem in standard form
has a feasible solution then it has a basic feasible one� the 
phase I� problem of �nding
a basic feasible solution� or concluding that none exists� can be formulated as a problem

in standard form with a known basic feasible solution�� Assuming exact arithmetic� the
algorithm then terminates with a feasible basis� The termination criterion is stated in
terms of signs of certain entries of the 
tableau�� As common� let B � Rm�m denote
the nonsingular submatrix of A whose columns constitute the current basis� and let N

denote the matrix consisting of the other columns� Let xB and cB denote the restrictions
of the vectors x and c� respectively� to the indices corresponding to the columns of B�
Let xN and cN denote the complementary restrictions of the vectors� The 
tableau� is
essentially a representation of the problem in an equivalent form	

Maximize �cTN � cTBB
��N �xN

subject to xB �B��NxN � B��b

xB � � � xN � � �

Given a basis B� the corresponding basic primal solution x � x�B� is given by

xB � B��b � xN � � �

The basic dual vector y � y�B� associated with B is given by the equation

yTB � cTB �

The dual problem is	
Minimize yTb

subject to yTA � cT �

Thus� y�B� is feasible in the dual problem if and only if

cTN � cTBB
��N �

in which case y is optimal for the dual�

Assuming the algorithm �namely� the primal simplex method� works with exact arith

metic� for every B occurring in the process�

B��b � � �

The algorithm terminates in one of the following cases	

�i� cTN � cTBB
��N � in which case B is optimal� or

�ii� there exists a columnN j such that cj � cTBB
��N j and B

��N j � �� in which case
the problem is unbounded�

In either case the basis B is said to be terminal� The termination criterion applies to
signs of certain entries in the tableau�

��
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