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Linear programming is one of the most successful disciplines within the field of oper-
ations research. In its standard form, the linear programming problem calls for finding
nonnegative x1,...,2, so as to maximize a linear function }-7_, ¢;x; subject to a system
of linear equations:

apy + -+ apr, = by

Am1T1 F o+ Gy = by,

This problem can be stated in vector notation as

Maximize ¢’ @
subject to Ax =b
x>0

where A € R™*" is assumed to have linearly independent rows, and b € R™ and ¢, €
R"™. In fact, any problem of maximizing or minimizing a linear function subject to linear
equations and inequalities can be easily reduced to the standard form.

The dual problem of the linear programming problem in standard form is
Minimize b’y
subject to ATy > ¢ .

The former problem is then referred to as the primal. The duality theorem asserts that
(i) for any @ that satisfies the constraints of the primal and for any y that satisfies
the conditions of the dual, ¢’ < by, and (ii) if there exist such @ and y, then the
maximum of the primal equals the minimum of the dual. The duality theorem plays a
central role in the theory of linear programming.
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The linear programming model has been applied in a large number of areas including
military applications, transportation and distribution, scheduling, production and inven-
tory management, telecommunication, agriculture and more. Many problems simply lend
themselves to a linear programming solution but in many cases some ingenuity is required
for the modelling. Linear programming also has interesting theoretical applications in
combinatorial optimization and complexity theory.

The classical tool for solving the linear programming problem in practice is the class
of simplex algorithms proposed and developed by George Dantzig [13]. The method is
based on generating a sequence of bases. A basis is a nonsingular submatrix of A of
order m x m. The fundamental characteristic of the method is that at some point a basis
is reached which provides a solution to the problem. A suitable basis can certify either
that the problem has no solution at all or that it is unbounded; otherwise, a basis will
be reached which defines optimal solutions for both the primal and the dual problems.
Due to the problems of degeneracy, special care is needed to guarantee that the method
will not cycle. Bland [7] proved that the “least index” rules guarantees that.

Recently, methods of nonlinear programming methods have also become practical
tools for certain classes of linear programming problems.

The computational complexity of linear programming had puzzled researchers even
before the field of computational complexity started to develop. The question of find-
ing bounds on the diameter and height of polytopes (see [21]) is closely related to the
complexity of the simplex method.

Added text: Kalai and Kleitman [27] recently proved that the diameter of d-dimensional
polyhedron with n facets is bounded by n'°®29+1  Kalai [23] proved that the height of

such a polytope is bounded by n(d‘l'k;gz n)

Practitioners have noticed long ago that the simplex algorithms performed surprisingly
well. In particular, the number of iterations seemed linear in the number of rows m
and sublinear in the number of columns n in the standard form. Klee and Minty [26],
however, found examples where the number of iterations performed by certain variants
of the method was exponential.

The area of computational complexity was developed mainly during the 1970’s and 1980’s.
Within this field, the question of the complexity of linear programming was given a new
meaning. Complexity theorists were interested in the relation between the running time
measured in bit operations and the length L of the representation of the problem with
integer data in binary encoding. Khachiyan [25] was the first to show that the linear
programming problem was in the class P, that is, it could be solved in time polynomial
in the length of the binary encoding of the input. Khachiyan’s result was based on
the ellipsoid algorithm which had been first proposed by Shor [42] for general convex
programming. In the ellipsoid method the problem is reduce to finding a solution to a
system of strict inequalities Az > b whose set of solutions is bounded. It generates a



sequence of ellipsoids each of which is guaranteed to contain all the solutions. If a center
of any ellipsoid in this sequence is a solution, then it is discovered. Otherwise the process
stops when the volume of the current ellipsoid is too small to contain all the solutions if
there exist any, so the conclusion in this case is that there are no solutions. For survey on
the ellipsoid method see Bland, Goldfarb and Todd [8]. Grétschel, Lovasz and Schrijver
[20] developed a beautiful theory based on the ellipsoid algorithm and derived complexity
results with regard to many problems of combinatorial optimization.

Theorists were quite disappointed when it became clear that the ellipsoid algorithm was
not useful for solving linear programming problems in practice. The contrast between
the ellipsoid and the simplex methods gave an excellent example that theory could not
always be relied upon for predicting applicability. Variants of the simplex method, which
were proven to be exponential in the worst case, were very efficient in practice, while
the polynomial ellipsoid method was very inefficient. With this observation, researchers
became interested in analyzing the behavior of the simplex method from a more practical
point of view and at the same time were also searching for other methods of solving the
problem.

Breakthroughs in the analysis of the simplex method were made by Borgwardt (see [9]
for the original references) and Smale [43]. The former was the first to show that under
a certain probabilistic model of distribution of inputs, a certain variant of the method
runs in polynomial time. Subsequently, under a different model, a bound of O(m?) was

proven by Todd [46], Adler and Megiddo [2], and Adler, Karp and Shamir [1].

A new polynomial-time algorithm for linear programming was proposed by Karmarkar
[24] in 1984. His algorithm works on the problem in the form:

Minimize ¢’
subject to Ax =0

ele =1

x>0

where e = (1,...,1)T € R", assuming (without loss of generality) that the minimum
equals 0 and Ae = 0. Karmarkar’s algorithm generates a sequence of points in the inte-
rior of the domain defined by the constraints which converges to an optimal point. The
algorithm is based on repeated centering by a projective scaling transformation. Given
the current iterate ¥, the transformation maps any vector & € R" such that e’ =1
to a vector @’ € R", where 2 = (:1;]/:1;;“)/(1 + 3 @i/2F) (5 = 1,...,n). Karmarkar’s
projective scaling algorithm provided an improved upper bound on the complexity of
linear programming under the bit operations model. It runs in O(nl) iterations and
was reported to be very practical, but most of the computational experience was done
with a simplified version of it, called primal affine scaling. Here the scaling transforma-
tion is simply 2’ = :1;]/:1;;“ The primal affine scaling algorithm is not believed to run in
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polynomial time in the worst case. It was proposed by many people independently (e.g.,
Barnes [6], Vanderbei, Meketon and Freedman [48]) Later, however, it was discovered
that the same primal affine scaling algorithm was proposed by Dikin [14] in the 1960’s.
Gill, Murray, Saunders, Tomlin and Wright [17] established the connection between Kar-
markar’s algorithm and the classical logarithmic barrier function method of nonlinear
programming. Dual versions and primal-dual versions of the affine scaling method have
also been studied.

After the publication of Karmarkar’s algorithm, researchers developed many algorithms
inspired by different features of that algorithm and its analysis. Renegar [38] proposed a
path following algorithm which runs in O(v/nl) iterations. Renegar solves the problem
in the form of the dual. The path he follows consists of the minimizers of the functions

Fu(y)=b'y —p) log(ATy —c); ,

J

where > 0. This logarithmic barrier path is now referred to as the path of centers and
can be defined analogously in the space of the primal problem. It was studied by Fiacco
and McCormick [16] and more recently by Sonnevend [44].

Megiddo [37] proposed the primal-dual framework for following the central path, and
specific primal-dual path following algorithms were subsequently proposed by Kojima,
Mizuno and Yoshise [29] and by Adler and Monteiro [3].

Karmarkar used a “potential function” in his analysis and it was later realized that
algorithms could be developed by operating directly on this potential function. Gonzaga
[18] demonstrated that the problem could be solved in O(nL) iterations simply by doing
an affine scaling transformation and then searching the direction of the projected gradient
of the function

() = (n+/n)logela — Zlog T .

Added text: In [19] he also gave an algorithm which runs in a total number of O(n®L)
arithmetic operations.

Potential reduction in primal-dual space also yields an O(y/nL) iteration algorithm as
shown by Ye [49]. Vaidya [47] used fast matrix multiplication to further improve the
complexity of the interior point methods for linear programming. For a unified theory of
path following and potential reductin, see Kojima, Megiddo, Noma and Yoshise [28].

It is interesting, at least from a theoretical viewpoint, to settle the computational com-
plexity of linear programming under different models of computation. The polynomial-
time result holds only under the so-called logarithmic-cost model [4]. It is still an open
question whether or not a system of linear inequalities can be solved in a number of
arithmetic operations which is polynomially bounded by the dimensions of the system,
independently of the magnitudes of the coefficients. Megiddo [31] gave an algorithm for
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solving systems of m inequalities and n variables, with at most two variables per inequal-
ity (whereas the general case can be reduced to at most three variables per inequality),
which runs in a number arithmetic operations bounded by a polynomial in m and n.
Such an algorithm is said to run in strongly polynomial time. Improved algorithms for
this problem were recently proposed by Cohen and Megiddo [12],

Added text: and by Hochbaum and Naor [22].

The major result to date in the area of strongly polynomial algorithms is due to Tardos
[45]. She proposed a general linear programming algorithm whose number of operations
is independent of the magnitudes of coefficients in the objective function and the right-
hand side vectors, but depends on the coefficients in the matrix A. This implies that
many combinatorial optimization problems, including the minimum-cost flow problem,
can be solved in strongly polynomial time.

An interesting area of theoretical research in linear programming is the complexity of
solving n linear inequalities in a fixed number d of variables. Megiddo [32] proved that
this problem can be solved in linear time for any fixed d. The coefficient of proportionality
was doubly exponential, 22d, but this was later improved by Clarkson [10] and Dyer [15] to
3%, Even more surprisingly, Clarkson [11] proposed randomized algorithms which solve
this problem in expected linear time where the constant of proportionality is polynomial
in d, but there is an additive constant which is exponential in d.

Added text: Further improvements were very recently proposed by Kalai [23] and Sharir
and Welzl [41].

Seidel [40] gave a very simple randomized algorithm whose expected running time is
O(d!'n). Alon and Megiddo [5] developed a parallel randomized algorithm for this prob-
lem, based on Clarkson’s ideas, which runs with a linear number of processors almost
surely in constant time.

The book by Schrijver [39] is a good source for the general theory of linear programming.
For additional surveys see [34; 35]. In recent years articles on linear programming appear
in Mathematical Programming and Mathematics of Operations Research. Collections of
recent articles also appeared in [33; 36; 30].
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