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Linear programming is one of the most successful disciplines within the �eld of oper�
ations research� In its standard form� the linear programming problem calls for �nding
nonnegative x�� � � � � xn so as to maximize a linear function

Pn
j�� cjxj subject to a system

of linear equations�
a��x� � � � �� a�nxn � b�

���

am�x� � � � �� amnxn � bm �

This problem can be stated in vector notation as

Maximize cTx

subject to Ax � b

x � �

where A � Rm�n is assumed to have linearly independent rows� and b � Rm and c�x �
Rn� In fact� any problem of maximizing or minimizing a linear function subject to linear
equations and inequalities can be easily reduced to the standard form�

The dual problem of the linear programming problem in standard form is

Minimize bTy

subject to ATy � c �

The former problem is then referred to as the primal� The duality theorem asserts that
	i
 for any x that satis�es the constraints of the primal and for any y that satis�es

the conditions of the dual� cTx � bTy� and 	ii
 if there exist such x and y� then the
maximum of the primal equals the minimum of the dual� The duality theorem plays a
central role in the theory of linear programming�
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The linear programming model has been applied in a large number of areas including
military applications� transportation and distribution� scheduling� production and inven�
tory management� telecommunication� agriculture and more� Many problems simply lend
themselves to a linear programming solution but in many cases some ingenuity is required

for the modelling� Linear programming also has interesting theoretical applications in
combinatorial optimization and complexity theory�

The classical tool for solving the linear programming problem in practice is the class
of simplex algorithms proposed and developed by George Dantzig ���
� The method is
based on generating a sequence of bases� A basis is a nonsingular submatrix of A of

order m�m� The fundamental characteristic of the method is that at some point a basis
is reached which provides a solution to the problem� A suitable basis can certify either
that the problem has no solution at all or that it is unbounded� otherwise� a basis will
be reached which de�nes optimal solutions for both the primal and the dual problems�

Due to the problems of degeneracy� special care is needed to guarantee that the method
will not cycle� Bland ��
 proved that the �least index� rules guarantees that�

Recently� methods of nonlinear programming methods have also become practical
tools for certain classes of linear programming problems�

The computational complexity of linear programming had puzzled researchers even
before the �eld of computational complexity started to develop� The question of �nd�

ing bounds on the diameter and height of polytopes 	see ���

 is closely related to the
complexity of the simplex method�

Added text� Kalai and Kleitman ���
 recently proved that the diameter of d�dimensional
polyhedron with n facets is bounded by nlog� d��� Kalai ���
 proved that the height of

such a polytope is bounded by n
�
d�log

�
n

d

�
�

Practitioners have noticed long ago that the simplex algorithms performed surprisingly
well� In particular� the number of iterations seemed linear in the number of rows m

and sublinear in the number of columns n in the standard form� Klee and Minty ���
�
however� found examples where the number of iterations performed by certain variants

of the method was exponential�

The area of computational complexitywas developedmainly during the �����s and �����s�
Within this �eld� the question of the complexity of linear programming was given a new
meaning� Complexity theorists were interested in the relation between the running time
measured in bit operations and the length L of the representation of the problem with

integer data in binary encoding� Khachiyan ���
 was the �rst to show that the linear
programming problem was in the class P� that is� it could be solved in time polynomial
in the length of the binary encoding of the input� Khachiyan�s result was based on
the ellipsoid algorithm which had been �rst proposed by Shor ���
 for general convex

programming� In the ellipsoid method the problem is reduce to �nding a solution to a
system of strict inequalities Ax � b whose set of solutions is bounded� It generates a
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sequence of ellipsoids each of which is guaranteed to contain all the solutions� If a center
of any ellipsoid in this sequence is a solution� then it is discovered� Otherwise the process
stops when the volume of the current ellipsoid is too small to contain all the solutions if
there exist any� so the conclusion in this case is that there are no solutions� For survey on

the ellipsoid method see Bland� Goldfarb and Todd ��
� Gr�otschel� Lov�asz and Schrijver
���
 developed a beautiful theory based on the ellipsoid algorithm and derived complexity
results with regard to many problems of combinatorial optimization�

Theorists were quite disappointed when it became clear that the ellipsoid algorithm was
not useful for solving linear programming problems in practice� The contrast between
the ellipsoid and the simplex methods gave an excellent example that theory could not

always be relied upon for predicting applicability� Variants of the simplex method� which
were proven to be exponential in the worst case� were very e�cient in practice� while
the polynomial ellipsoid method was very ine�cient� With this observation� researchers
became interested in analyzing the behavior of the simplex method from a more practical

point of view and at the same time were also searching for other methods of solving the
problem�

Breakthroughs in the analysis of the simplex method were made by Borgwardt 	see ��


for the original references
 and Smale ���
� The former was the �rst to show that under
a certain probabilistic model of distribution of inputs� a certain variant of the method
runs in polynomial time� Subsequently� under a di�erent model� a bound of O	m�
 was

proven by Todd ���
� Adler and Megiddo ��
� and Adler� Karp and Shamir ��
�

A new polynomial�time algorithm for linear programming was proposed by Karmarkar
���
 in ����� His algorithm works on the problem in the form�

Minimize cTx

subject to Ax � �

eTx � �

x � �

where e � 	�� � � � � �
T � Rn� assuming 	without loss of generality
 that the minimum
equals � and Ae � �� Karmarkar�s algorithm generates a sequence of points in the inte�

rior of the domain de�ned by the constraints which converges to an optimal point� The
algorithm is based on repeated centering by a projective scaling transformation� Given
the current iterate xk� the transformation maps any vector x � Rn such that eTx � �
to a vector x� � Rn� where x�j � 	xj�xkj 
�	� �

P
i xi�x

k
i 
 	j � �� � � � � n
� Karmarkar�s

projective scaling algorithm provided an improved upper bound on the complexity of
linear programming under the bit operations model� It runs in O	nL
 iterations and
was reported to be very practical� but most of the computational experience was done

with a simpli�ed version of it� called primal a�ne scaling� Here the scaling transforma�
tion is simply x�j � xj�x

k
j � The primal a�ne scaling algorithm is not believed to run in
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polynomial time in the worst case� It was proposed by many people independently 	e�g��
Barnes ��
� Vanderbei� Meketon and Freedman ���

 Later� however� it was discovered
that the same primal a�ne scaling algorithm was proposed by Dikin ���
 in the �����s�
Gill� Murray� Saunders� Tomlin and Wright ���
 established the connection between Kar�

markar�s algorithm and the classical logarithmic barrier function method of nonlinear
programming� Dual versions and primal�dual versions of the a�ne scaling method have
also been studied�

After the publication of Karmarkar�s algorithm� researchers developed many algorithms

inspired by di�erent features of that algorithm and its analysis� Renegar ���
 proposed a
path following algorithm which runs in O	

p
nL
 iterations� Renegar solves the problem

in the form of the dual� The path he follows consists of the minimizers of the functions

F�	y
 � bTy � �
X
j

log	ATy � c
j �

where � � �� This logarithmic barrier path is now referred to as the path of centers and
can be de�ned analogously in the space of the primal problem� It was studied by Fiacco
and McCormick ���
 and more recently by Sonnevend ���
�

Megiddo ���
 proposed the primal�dual framework for following the central path� and
speci�c primal�dual path following algorithms were subsequently proposed by Kojima�
Mizuno and Yoshise ���
 and by Adler and Monteiro ��
�

Karmarkar used a �potential function� in his analysis and it was later realized that

algorithms could be developed by operating directly on this potential function� Gonzaga
���
 demonstrated that the problem could be solved in O	nL
 iterations simply by doing
an a�ne scaling transformation and then searching the direction of the projected gradient

of the function
�	x
 � 	n�

p
n
 log cTx�

X
j

log xj �

Added text� In ���
 he also gave an algorithm which runs in a total number of O	n�L

arithmetic operations�

Potential reduction in primal�dual space also yields an O	
p
nL
 iteration algorithm as

shown by Ye ���
� Vaidya ���
 used fast matrix multiplication to further improve the
complexity of the interior point methods for linear programming� For a uni�ed theory of
path following and potential reductin� see Kojima� Megiddo� Noma and Yoshise ���
�

It is interesting� at least from a theoretical viewpoint� to settle the computational com�
plexity of linear programming under di�erent models of computation� The polynomial�
time result holds only under the so�called logarithmic�cost model ��
� It is still an open
question whether or not a system of linear inequalities can be solved in a number of

arithmetic operations which is polynomially bounded by the dimensions of the system�
independently of the magnitudes of the coe�cients� Megiddo ���
 gave an algorithm for
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solving systems of m inequalities and n variables� with at most two variables per inequal�
ity 	whereas the general case can be reduced to at most three variables per inequality
�
which runs in a number arithmetic operations bounded by a polynomial in m and n�
Such an algorithm is said to run in strongly polynomial time� Improved algorithms for

this problem were recently proposed by Cohen and Megiddo ���
�

Added text� and by Hochbaum and Naor ���
�

The major result to date in the area of strongly polynomial algorithms is due to Tardos
���
� She proposed a general linear programming algorithm whose number of operations
is independent of the magnitudes of coe�cients in the objective function and the right�

hand side vectors� but depends on the coe�cients in the matrix A� This implies that
many combinatorial optimization problems� including the minimum�cost �ow problem�
can be solved in strongly polynomial time�

An interesting area of theoretical research in linear programming is the complexity of

solving n linear inequalities in a �xed number d of variables� Megiddo ���
 proved that
this problem can be solved in linear time for any �xed d� The coe�cient of proportionality
was doubly exponential� ��

d

� but this was later improved by Clarkson ���
 and Dyer ���
 to
�d

�

� Even more surprisingly� Clarkson ���
 proposed randomized algorithms which solve

this problem in expected linear time where the constant of proportionality is polynomial
in d� but there is an additive constant which is exponential in d�

Added text� Further improvements were very recently proposed by Kalai ���
 and Sharir
and Welzl ���
�

Seidel ���
 gave a very simple randomized algorithm whose expected running time is
O	d�n
� Alon and Megiddo ��
 developed a parallel randomized algorithm for this prob�
lem� based on Clarkson�s ideas� which runs with a linear number of processors almost
surely in constant time�

The book by Schrijver ���
 is a good source for the general theory of linear programming�
For additional surveys see ���� ��
� In recent years articles on linear programming appear
in Mathematical Programming and Mathematics of Operations Research� Collections of
recent articles also appeared in ���� ��� ��
�
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