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Abstract� This paper studies the boundary behavior of some interior point algo�

rithms for linear programming� The algorithms considered are Karmarkar�s projective

rescaling algorithm� the linear rescaling algorithm which was proposed as a variation

on Karmarkar�s algorithm� and the logarithmic barrier technique� The study includes

both the continuous trajectories of the vector �elds induced by these algorithms and

also the discrete orbits� It is shown that� although the algorithms are de�ned on the

interior of the feasible polyhedron� they actually determine di�erentiable vector �elds

on the closed polyhedron� Conditions are given under which a vector �eld gives rise

to trajectories that each visit the neighborhoods of all the vertices of the Klee�Minty

cube� The linear rescaling algorithm satis�es these conditions� Thus� limits of such

trajectories� obtained when a starting point is pushed to the boundary� may have an

exponential number of breakpoints� It is shown that limits of projective rescaling

trajectories may have only a linear number of such breakpoints� It is however shown

that projective rescaling trajectories may visit the neighborhoods of linearly many

vertices� The behavior of the linear rescaling algorithm near vertices is analyzed� It

is shown that all the trajectories have a unique asymptotic direction of convergence

to the optimum�

� This work was done in part while the authors were members at the Mathematical

Sciences Research Institute� Berkeley� California�

y IBM Almaden Research Center� ��	 Harry Road� San Jose� California 
���	��	

� and

Tel Aviv University� Tel Aviv� Israel�

z IBM T� J� Watson Research Center� Box ��� Yorktown Heights� New York �	�
�

Partially supported by NSF Grants�

�



�� Introduction

Interest in interior point algorithms for linear programming was revived by the work of

Karmarkar �Kar��� In this paper we sometimes refer to Karmarkar�s algorithm also as the

projective rescaling algorithm� This re�ects the property that the algorithm moves in the

direction of the gradient of the objective function after a projective scaling transformation

has been applied� A variation on this algorithm� which was proposed in various forms by

many people �e�g�� �Bar� CaS� VMF��� is called the linear rescaling algorithm� re�ecting

the property that here a linear scaling transformation is applied before the gradient step

is taken� The projective and the linear rescaling algorithms were shown in �GMSTW� to

be related to the logarithmic barrier function technique using Newton�s method� In this

paper we study the behavior of all these algorithms� We consider both continuous and

discrete versions of the algorithms� Our main interest here is in the boundary behavior of

these algorithms� We study the di�erences among the di�erent algorithms through their

behavior near boundaries� We �rst introduce the algorithms and the notation to be used

later�

Interior point algorithms for linear programming usually update a point x� interior

to the feasible polyhedron P � by moving along a straight line in the direction of a vector

V �x� de�ned at x� The new point depends of course not only on the direction of V �x� but

also on the step size which is assigned at x� Thus� the new point can be represented in the

form

x� � x� ��x�V �x� �

where ��x� denotes a real number that determines the step size� The iteration formula

de�nes a transformation of the polyhedron P into itself� We are concerned with the

properties of this transformation� or the vector �eld itself� near the boundary of P � We

denote the boundary of P by �P � In this paper we usually consider the linear programming

problem in standard form�

�SF �

Minimize cTx

subject to Ax � b

x � 	
�

where A � Rm�n �m � n�� b � Rm and c� x � Rn�

�



�� The linear rescaling algorithm� Following the description of �VMF�� the

algorithm is stated with respect to the linear programming problem in the standard form�

Also� it is assumed that a point xo is known such that Axo � b and xo � 	� Given a point

x � Rn� we denote by D � D�x� a diagonal matrix of order n whose diagonal entries are

the components of x� We frequently denote D � Dx to emphasize the dependence on x�

Let x � Rn be any point such that Ax � b and x � 	� The algorithm assigns to the point

x a �search direction�� that is� a vector � �whose norm is not necessarily equal to �� which

is computed as follows� Consider a transformation of space

Tx � Rn � Rn

given by

Tx�y� � D��y �

In the transformed space� the direction � � Tx��� is obtained by projecting the vector

Dc orthogonally into the linear subspace f� � AD� � 	g� Thus� � is the solution of the
following least�squares problem�

Minimize kDc� �k�

subject to AD� � 	 �

Assuming A is of full rank� the solution is

�� �
�
I �DAT �AD�AT ���AD

�
Dc �

In the original space� the linear rescaling algorithm assigns to a point x the vector

�� � ���x� � D
�
I �DAT �AD�AT ���AD

�
Dc �

to de�ne a search direction� We note that since the problem is in the minimization form�

the new point has the form

x � ��x����x�

where ��x� is positive�

�� The projective rescaling algorithm� Following �Kar��� the algorithm is stated

with respect to the linear programming problem given in the following form ��Karmarkar�s
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standard form���

�KSF �

Minimize cTx

subject to Ax � 	

eTx � �

x � 	 �

where A � R�m����n �� � m � n�� x� c � Rn and e � ��� � � � � ��T � Rn� In the original

statement of the algorithm it was assumed that Ae � 	 so the point xo � �
n
e is interior

relative to the linear subspace fAx � 	g� We do not use this assumption in our analysis�
Also� it was assumed that the optimal value of the objective function is zero� but the

algorithm is also well�de�ned without this assumption� Let �A denote the matrix

�A �

�
A
eT

�
�

Let x � Rn be such that Ax � 	� eTx � �� and x � 	 and continue to denote D �

D�x� � diag�x�� The new point is computed as a function of x as follows� Consider a

transformation of space

Tx � Rn � Rn

given by

Tx�y� �
�

eTD��y
D��y �

Thus� Tx�x� �
�
n
e� In the transformed space� the direction �p is obtained by projecting

the vector Dc into the nullspace of the matrix

A �

�
AD
eT

�
�

Thus�

�p �
h
I �A

T
�AA

T
���A

i
Dc �

The nullspace of the matrix A equals the intersection of the nullspaces of the matrices AD

and eT � However� e is orthogonal to every row of AD since ADe � Ax � 	� This property

implies that �p can be obtained by projecting on the nullspace of AD and then projecting

the projection on the null space of eT �see Appendix C�� It follows that the search direction

in the transformed space is given by

�p �
h
I �A

T
�AA

T
���A

i
Dc �

�
I � �

n
eeT

� �
I �DAT �AD�AT ���AD

�
Dc �

�



The search direction �p in the original space is obtained as follows� The algorithm moves

in the transformed space from the point �
n
e to a point of the form

p �
�

n
e � �

k�pk�p �

where � is a certain positive constant� The step in the original space is thus given by the

vector u � T��x �p� � x� The inverse transformation is given by

T��x �p� �
�

eTDp
Dp �

Denoting

v �
�

k�pk�p �

we have

u �
D �

n
e�Dv

eT
�
D �

n
e�Dv

� � x �
�Dv � �xT v�x

�
n
� xT v

�

Let us ignore the size of the step� and consider just a vector �p in the �opposite� direction

of u�

�p � D�p � �xT �p�x � �D � xxT ��p �

Note that xT e � �� so we have

�D � xxT �

�
I � �

n
eeT

�
� D � �

n
xeT � xxT �

�

n
xxT eeT � D � xxT �

Thus� the algorithm assigns to the point x the vector

�p � �p�x� �
�
D � xxT

� �
I �DAT �AD�AT ���AD

�
Dc �

to de�ne the search direction� As in the case of the linear rescaling algorithm� the new

point has the form

x � ��x��p�x�

where ��x� is positive� Note that �p is well�de�ned even without the hypothesis that the

minimum of the objective function is equal to zero�

�� The barrier function technique� The logarithmic barrier technique considers

the nonlinear optimization problem

�SF ����

Minimize F��x� � cTx � �
X
j

lnxj

subject to Ax � b

x � 	

�



where � � 	 is a scalar� If x���� is an optimal solution for SF ���� and if x���� tends

to a point x� as � tends to zero� then it follows that x� is an optimal solution for the

linear programming problem �SF �� Consider the problem �SF ���� where � is �xed� As

explained in �GMSTW�� the Newton search direction v� at a point x is obtained by solving

the following quadratic optimization problem�

Minimize
�

�
vTr�F �x�v � �rF �x��T v

subject to Av � 	 �

where

rF �x� � c� �D��
x e

and

r�F �x� � �D��
x �

Let w� denote the vector of Lagrange multipliers� The vectors v� and w� must satisfy the

following system of equations

�
�D��

x AT

A O

��
v�
w�

�
�

�
c� �D��

x e
	

�
�

Let �� � D��
x �v�� Thus��

I DxA
T

ADx O

��
��
w�

�
�

�
Dxc� �e

	

�
�

It follows that

�� �
�
I �DxA

T �AD�
xA

T ���ADx

�
�Dxc� �e�

and

V��x� � �v� � Dx�� � Dx

�
I �DxA

T �AD�
xA

T ���ADx

�
�Dxc� �e�

is the vector �eld corresponding to the �xed value of �� It was noted in �GMSTW� that

���x� � lim
���

V��x� �

In this paper we study the boundary behavior of the above interior point algorithms

for linear programming� We study both the continuous trajectories of the vector �elds

induced by these algorithms and the discrete orbits of the algorithms� In section � we

�



show that� although the algorithms are de�ned on the interior of the feasible polyhedron�

the vector �elds actually extend continuously to the whole closed polyhedron� This is true

even when the problem is degenerate� In section � we provide conditions under which

a vector �eld gives rise to trajectories that visit the neighborhoods of all the vertices of

the Klee�Minty cube� The linear rescaling algorithm satis�es these conditions� Thus�

limits of such trajectories obtained when a starting point is pushed to the boundary� may

have an exponential number of breakpoints� It is shown that limits of projective rescaling

trajectories may have only a linear number of such breakpoints� It is however shown that

projective rescaling trajectories may visit the neighborhoods of linearly many vertices� In

sections � and � we consider the behavior of the linear rescaling trajectories near vertices�

We show that all the trajectories have a unique direction of convergence to the optimum�

This direction is given by the vector of the reciprocal values of the reduced costs of the

nonbasic variables at the vertex� In section � we prove the di�erentiability �over the

closed polytope� of the vector �eld underlying the logarithmic barrier technique with a

�xed parameter� assuming nondegeneracy� The linear rescaling algorithm is a special case�

In section � a similar result is proven for the projective rescaling vector �eld� Section

 analyzes the boundary behavior of the discrete linear rescaling algorithm� The unique

direction of convergence is proven for this case too� In section 
 the boundary behavior of

the discrete version of the projective rescaling algorithm is studied� The limiting behavior

is characterized in terms of reduced problems where the feasible domains are faces of the

given polyhedron� In appendix A we describe the behavior of the linear rescaling algorithm

on the unit hypercube� We show that each ascending sequence of adjacent vertices can

be approximated by a trajectory� In appendix B we consider the projective rescaling

trajectories on the unit simplex� We show that certain trajectories visit all the vertices�

Also� there are trajectories starting from the center and visiting the centers of linearly many

faces of the simplex� Appendix C proves a lemma on orthogonal projections� In appendices

D and E we present similar results on the barrier function technique in inequality form� In

appendix F we include an extension of section �� proving the di�erentiability of the linear

rescaling vector �eld on the closed feasible polyhedron� We also represent this derivative

in terms of projections on nullspaces�

�



�� Interior point algorithms continuously extend to the boundary

As seen in Section �� the core of the interior point algorithms under consideration is a

projection of a certain vector on a certain subspace� In this section we study the behavior

of the resulting vector as the current point of the algorithm tends to a boundary point�

Let A denote any �xed matrix of orderm�n� Let N � f�� � � � � ng and let N � I�� I�
be a partition of N �I��I� � 	�� Let Ai denote a submatrix of A consisting of the columns

of A with indices in Ii �i � �� ��� Similarly� for any n�vector v� let vi denote the subvectors

of v consisting of the components of v corresponding to the sets Ii �i � �� ��� Let D�v�

denote a diagonal matrix whose diagonal consists of the components of v� Let c denote

any �xed n�vector and let c� and c� denote its subvectors as de�ned above�

Given x� a step of the linear rescaling algorithm amounts to the evaluation of the

orthogonal projection of a vector D�x�c on a linear subspace L�x� � L�x�A� � fy �
AD�x�y � 	g� We are interested here in the behavior of this projection when x tends to a
limit point x� The interesting case is when some of the components of x are zero� Let I�

denote the set of indices j for which xj 
� 	� For simplicity of notation� we assume xj � 	
�j � I�� but this is not really necessary for the argument� If x is a feasible point then of

course this condition holds�

The orthogonal projection of D�x�c on L�x� is equal to the point in L�x� which is

closest to D�x�c� Thus� it is the solution of the following optimization problem �where the

decision variables are the components of y��

Minimize kD�x�c � yk�
subject to AD�x�y � 	 �

With the notation introduced above� the latter is equivalent to

Minimize kD�x��c� � y�k� � kD�x��c� � y�k�
subject to A�D�x��y� � A�D�x��y� � 	 �

Let us denote this projection by y�x�� and also let y��x� and y��x� denote the restrictions

to the sets of indices I� and I�� respectively� Obviously� if x tends to x then the point

D�x�c tends to the point D�x�c� The distance between x and y�x� is always less than or

equal to kxk since the origin is in the linear subspace� It follows that the point y�x� is
bounded while x tends to x� Since x� tends to zero� the vector A�D�x��y��x� also tends to





zero �since y��x� is bounded�� Observe that the point y��x� is the orthogonal projection

of the point D�x�c on the a�ne �at

��x� � fu � A�D�x��u � �A�D�x��y��x�g �

Consider the point�to�set mapping � that takes every x � Rn to the a�ne subspace

��x�� First� recall the de�nition of a continuous point�to�set mapping�

De�nition ���� Let � be a point�to�set mapping that takes points x � Rn

to subsets ��x� of Rm� The mapping � is continuous at x if for any sequence fxkg�
converging to a point x� the following is true

�i� for any convergent sequence fzkg� where zk � ��xk�� necessarily z � lim zk � ��x��
�ii� for any point z� � ��x�� there exists a sequence fzkg converging to z� where zk �
��xk��

Proposition ���� The mapping ��v� is continuous at x�

Proof� Let fxkg be any sequence converging to x� By assumption� x� � 	 and

x� � 	� Notice that ��x� � fu � A�D�x��u � 	g� Obviously� condition �i� is satis�ed
since A�D�xk� �y��x

k� tends to zero� In other words� the set  of all limits of sequences

fukg� such that uk � ��xk�� is contained in the subspace ��x�� It is easy to check that
 is a linear subspace� which is in a sense the limit of the a�ne subspaces ��xk�� The

dimension of  is the same as the common dimension of the all ��xk��s for k su�ciently

large� This dimension is obviously equal to jI�j � rank�A��� On the other hand� ��x� is

a linear subspace of the same dimension �since x� � 	�� It follows that ��x� �  and

this completes the proof�

Proposition ���� If x tends to x �where x� � 	 and x� � 	� then the point y��v�

tends to the projection of D�x��c� on the linear subspace ��x��

Proof� Given the interpretation of the orthogonal projection as the closest point�

the proof is immediate�






Corollary ���� The limit of the orthogonal projection of D�x�c on the subspace

fz � AD�x�z � 	g is equal to the orthogonal projection of D�x�c on the subspace fz �
AD�x�z � 	g�

Proof� This claim follows immediately since x� � 	�

The vector � � ��x� assigned by the linear rescaling algorithm to a point x can be

described as ��x� � D�x�y where y is the projection of the vector D�x�c on the subspace

fy � AD�x�y � 	g� Thus� we have the following proposition�

Proposition ���� Suppose x � Rn satis�es Ax � b� has positive components� and

tends to a point x such that x� � 	 and x� � 	� Then the vector ��x� of the linear

rescaling algorithm at x � 	 in the problem �SF � tends to the vector ��x�� assigned by

this algorithm at x� in the problem

Minimize cT� z

subject to A�z � b

z � 	 �

The argument for similar results about the projective rescaling algorithm and the

barrier function technique are essentially the same�

Proposition ���� Suppose x � Rn satis�es Ax � 	 and eTx � �� has positive

components� and tends to a point x such that x� � 	 and x� � 	� Then the vector �p�x�

assigned by the projective algorithm at a point x � 	 in the problem �KSF � tends to the

vector �p�x�� assigned by this algorithm at x� in the problem

Minimize cT� z

subject to A�z � 	

eT� z � �

z � 	 �

Proof� We have

�p � �p�x� �
�
D � xxT

�
y

�	



where y is the projection of D�x�c on the subspace fz � AD�x�z � 	g and the proof
follows easily�

Proposition ���� Suppose x � Rn satis�es Ax � b and has positive components�

and tends to a point x such that x� � 	 and x� � 	� Let � � 	 be �xed� Then the

vector V��x� assigned by the Newton logarithmic barrier function method at x � 	 in

the problem �SF ���� tends to the vector V��x�� assigned by this algorithm at x� in the

problem

Minimize cT� z � �
X
j�I�

ln zj

subject to A�z � b

z � 	

�

Proof� The vector V��x� assigned to x can be represented asD�x��y��y��� where y�
and y�� are the projections of D�x�c and �e� respectively� on the subspace fz � AD�x�z �
	g� The argument about the vector y� is the same as in Proposition ���� The argument
about the vector y�� is similar� The vector e is a sum e � e� � e�� of vectors where e�j � �

for j � I� and e��j � � for j � I�� The projection of the vector e�� on the subspace

fz � AD�x�z � 	g tends to zero and this establishes the proof�

��



�� Interior point algorithms and the Klee	Minty cube

Some variants of the simplex method require exponential numbers of pivot steps in

the worst case� The �rst examples of such behavior were provided by Klee and Minty

�KM�� The �tilted cube� described in their paper is a very useful construct which we also

use here�

The n�dimensional Klee�Minty cube in de�ned by the following inequalities�

�KM�
	 � x� � �� 	

	xj�� � xj � �� 	xj�� �j � �� � � � � n� �

where 	 is any positive number less than �
�
� The associated linear programming problem is

to maximize the value of xn subject to the set of inequalities �KM�� It can be veri�ed that

the maximum is attained at a unique point� namely� the vertex �	� 	�� � � � � 	n��� �� 	n��

If x is a vertex of the �KM� cube then obviously each xj equals either the lower or

the upper bound implied by the values of the other components of x� This suggests a

correspondence between vertices of the �KM� cube and vertices of the unit cube� Thus�

we use a �	� ���vector v � �v�� � � � � vn� to describe the vertex x of �KM� where x� �

�� � v��	 � v��� � 	�� and for every j � �� xj � �� � vj�	xj�� � vj�� � 	xj���� We

say that v is the characteristic vector of the vertex x� Some simplex variants visit all

the vertices of �KM� �or an analogous construct� in a nice order which can be described�

inductively� as follows� The case n � � is trivial �the two vertices are the numbers 	

and �� 	�� Let v�� � � � � vm be the sequence of characteristic vectors of the vertices of the

�n � ���dimensional �KM� cube in the order they are visited �m � �n���� Then� the �m

vertices of the n�dimensional �KM� cube ��vj � 	�� �vj � ��� j � �� � � � �m� are visited in the
following order�

�v�� 	�� �v�� 	�� � � � � �vm� 	�� �vm� ��� �vm��� �� � � � � �v�� �� �

Faces of the �KM� cube can be easily described by the characteristic vectors� Thus� a d�

dimensional face � is described by n� d equations of the form vj � ej � where ej � f	� �g�
We denote the relative interior of a face � by !�� It is interesting to note that every face

� has a unique point x���� where the value of xn is maximized over �� We call this point

the optimal point of ��

��



We shall later consider the vector �eld induced by the linear rescaling algorithm over

the �KM� cube� However� we �rst discuss the subject in a more general context� Let us

identify the linear programming problem

� �P �
Maximize cTx

subject to Ax � b

with the triple �A� b� c�� We are interested here in algorithms that can be described by

vector �elds as follows� The underlying vector �eld 
A is de�ned for quadruples �x�A� b� c�

where A � Rm�n� b � Rm and c� x � Rn� such that Ax � b� The vector �eld assigns

a vector y � 
A�x�A� b� c� � Rn such that A�x � y� � b� The vector �eld describes an

iterative algorithm de�ned by

xk�� � xk � 
A�x�A� b� c� �

We need our algorithms to be de�ned in a slightly more general context� First� the

algorithms extend to minimization problems in the obvious way that the direction assigned

in the �minimize cTx� problem is the same as the direction assigned in the �maximize

�cTx� problem� Also� we assume the algorithm is de�ned for a�ne objective functions

cTx � co and the vector �eld is independent of the constant co� Similarly� if an inequality

is given in a more general form�

dTx� � � gTx � � �

then the algorithm converts it into

�d� g�Tx � � � � �

The vector �eld 
A and the algorithm 
A will be referred to interchangeably� Concep�

tually� the discrete iterates of the algorithm approximate the solution curves of the vector

�eld 
A� We now state conditions on the algorithm 
A which are needed for establish�

ing �long� paths in the �KM� cube� The corresponding linear programming problem is

nondegenerate� Thus we need these conditions to hold only for nondegenerate problems�

�� Reversibility� The algorithm is called reversible if� when the objective function

vector is multiplied by ��� the direction of movement from x is reversed�


A�x�A� b��c�
k
A�x�A� b��c�k � �


A�x�A� b� c�

k
A�x�A� b� c�k �

��



In other words� the directions computed by the algorithm in the minimization and the

maximization problems �with the same data� are precisely opposed to each other�

�� Independence of the representation� First� this condition includes all the as�

sumptions listed above with respect to the extensions of the algorithm to problems in the

minimization form and inequalities in nonstandard form� In addition� we require the fol�

lowing� �i� The vector �eld is invariant under permutations of the set of inequalities� In

other words� if Q is a permutation matrix then


A�x�QA�Qb� c� � 
A�x�A� b� c� �

�ii� The vector �eld is invariant under �a�ne scaling automorphisms� in a sense as follows�

Consider an a�ne transformation of Rn�

T �x� � Mx � q �

where M is diagonal� Denoting the new variable y � T �x� �so x � M���y � q��� the

problem � �P � is transformed into

Maximize cTM��y

subject to AM��y � b�AM��q

Thus� the quadruple �x�A� b� c� is transformed into

�x��A�� b�� c�� � � Mx � q � AM�� � b�AM��q � M�T c � �

A translation "x maps to a translation "y � M"x �since y � "y � M�x �"x� � q��

Suppose the new problem �A�� b�� c�� is the same as �A� b� c� up to permutation of the set of

inequalities �that is� there exists a permutation matrix Q such that A� � QA and b� � Qb��

and up to changing the sense of the optimization from maximization to minimization or

vice versa� that is� c� is in the direction of �c� In this case our condition requires that
the direction assigned in the transformed problem to the transformed point be equal to

the transformed direction assigned to the original point in the original problem� In other

words��


A�x��A�� b�� c�� � M 
A�x�A� b� c� �

�� Continuity� The vector �eld 
A is continuous at every x such that Ax � b�

��



�� Invariance of faces� The vector 
A�x�A� b� c� is tangent to any face � of the feasible

polyhedron such that x � � and is equal to the vector �eld of the problem restricted to

the face� Note that this condition necessitates that 
A�x�A� b� c� � 	 if x is a vertex�

�� Convergence� For every bounded face � of the feasible polyhedron and every

xo � !�� the orbit induced by the the vector �eld 
A at x converges to a maximum of the

function cTx over ��

De�nition ���� A vector �eld 
A �or� equivalently� an algorithm subject to the

interpretation given above� that satis�es the conditions of reversibility� independence of

the representation� continuity� invariance and convergence� de�ned above �in nondegen�

erate problems�� will be called proper�

Note that by the reversibility assumption� the orbit induced at a point xo � !� �where

� is bounded� by a proper algorithm� converges at one end to a maximum point and at the

other end to a minimum point of the face �� Also� the restriction of a proper algorithm

to any face of the feasible polyhedron is itself a proper algorithm�

Lemma ���� If 
A is a proper algorithm then all the orbits induced by 
A on the

�KM� cube are symmetric with respect to the hyperplane

H � fx � Rn � xn �
�

�
g �

More precisely� if  is one such orbit then a point x � �x�� � � � � xn�T is on  if and only

if the point x � �x�� � � � � xn��� �� xn�T is on �

Proof� The given problem is

�P��
Maximize xn

	 � x� � �� 	
	xj�� � xj � �� 	xj�� �j � �� � � � � n� �

Consider the transformation of re�ection with respect to the hyperplane H� that is�

xn � �� xn �

Denote

x � �x�� � � � � xn��� �� xn�
T �

��



The a�ne transformation is given by the matrix

M �

�
BBBB	
�

�
�� �

�
��



CCCCA

and the vector q � �	� � � � � 	� ��T � The substitution xn � �� xn transforms the original

problem into the following�

�P��

Maximize �� xn
	 � x� � �� 	

	xj�� � xj � �� 	xj�� �j � �� � � � � n� ��
	xn�� � �� xn � �� 	xn�� �

which is equivalent to

�P��

Minimize xn
	 � x� � �� 	

	xj�� � xj � �� 	xj�� �j � �� � � � � n� ��
	xn�� � xn � �� 	xn�� �

The latter is simply the minimization problem with the same data as in �P��� Let 
Ai�x�

denote the direction assigned at any point point x in the problem �Pi�� �i � �� �� ��� By

the properties of independence of the representation and reversibility�


A��x� � M�� 
A��x� �

Also�


A��x� � 
A��x� �

By reversibility�


A��x� � �
A��x� �

Thus�


A��x� � �M�� 
A��x� �

Note that M�� �M so

�
A��x��j � ��
A��x��j �j � �� � � � � n� ��
�
A��x��n � �
A��x��n �

��



In particular� if xn �
�
�
then x � x and we get �
A��x��j � 	 for j � �� � � � � n � �� It

follows that the point sets of the orbits through x and x coincide� and also if time is

reversed in the upper half of the cube� then the orbit startingat x and the one starting

at x reach reach the hyperplane H at the same time� hitting it perpendicularly�

We are now ready to state a theorem on long paths�

Theorem ���� If 
A is a proper algorithm then for every � � 	� there exists an

orbit � which is induced by 
A on the �KM� cube� such that for every vertex v of the

cube� the distance between v and the orbit  is less than ��

Proof� We prove the theorem by induction on the dimension of the cube� The

theorem is trivial for n � �� Consider the general case n � �� Consider the restriction

of the �KM� problem to the �base� of the cube� that is� the face � characterized by

the equality xn � 	xn��� Thus� the problem of maximizing xn on � is equivalent to

the problem of maximizing xn�� on �� that is� the �KM� problem in dimension n� ��
It follows by the induction hypothesis that for every � there exists an orbit �� that lies

completely within the base �� such that the distance between any vertex of � and �

is less than �� Given � � 	� let y denote a point in � such that for every vertex v of

the base �� the distance between v and the orbit through y is less than �� If x is an

interior point of the �KM� cube which is su�ciently close to y then� by continuity� also

the distances between the orbit through x and all the vertices of the base are each less

than �� Moreover� by the symmetry proved in Lemma ���� also the point

x � �x�� � � � � xn��� �� xn�

has the property that the distances between the orbit through x and all the vertices of

the �ceiling� �that is� the face characterized by the equality xn � � � 	xn��� are each

less than �� However� these two orbits are actually the same by Lemma ��� and this

completes the proof�

It is easy to see that for � su�ciently small� the path �whose existence was proven

in Theorem ���� visits the ��neighborhoods of the vertices of the cube in ascending order

with respect to the n�th coordinate� so in a certain sense it approximates the behavior of

��



the simplex method� It is also interesting to note that not every ascending sequence of

adjacent vertices can be approximated by an orbit of the algorithm� The latter follows

from the symmetry property since the sequence of visited vertices of the base determines

the sequence of visited vertices of the ceiling� Interestingly� on the regular unit hypercube

every ascending sequence of adjacent vertices can be approximated by an orbit of the

algorithm� This is shown in Appendix A�

The linear rescaling algorithm was stated originally for problems in standard form�

For problems in the form � �P � we can do one of two things�

�i� We can introduce surplus variables

s � Ax � b

constrained to be nonnegative� We then eliminate the x variables� Assume without loss of

generality that

A �

�
B
N

�

where B � Rn�n is nonsingular and N � R�m�n��n� Represent s � �sB � sN � and b �

�bB � bN � accordingly� Thus�

x � B�� �bB � sB�

and the problem is

� �Ps�

Maximize cTB��sB

subject to NB��sB � sN � bN �NB��bB

s � 	 �

It can be veri�ed that if �x��A�� b�� c�� is obtained from �x�A� b� c� by a general a�ne trans�

formation as above� then both these problems have the same representation in the form

� �Ps��

�ii� We can develop an analogous algorithm� for problems in inequality form� based on

similar principles� This is included in the Appendix D� The search direction is then given

by the vector

v � v�x� �
�
ATD��

s A
���

c

where

Ds � Ds�x� � diag�A�x� b�� � � � � Amx� bm� �

�



We now prove that the algorithms outlined in �i� and �ii� above are actually the same�

Proposition ���� The vector v �
�
ATD��

s A
���

c is equal to the vector u assigned

at x by applying the a�ne rescaling algorithm in standard form to the corresponding

problem � �Ps��

Proof� Let DB and DN denote� respectively� the diagonal submatrices of D of

orders n � n and �m � n� � �m � n� corresponding to B and N � The direction "s in

the space of the s variables is obtained by projecting the vector �DBB
�T c� 	� � Rm

orthogonally into the nullspace of the matrix �NB��DB ��DN � � R�m�n��m� and then

multiplying the result by Ds� Thus "s � �"sB�"sN � is the solution of the following

problem

Minimize kDBB
�T c�D��

B "sBk� � kD��
N "sNk�

subject to NB��"sB � "sN � 	 �

This is equivalent to

Minimize kDBB
�T c�D��

B "sBk� � kD��
N NB��"sBk� �

Thus

�D��
B �DBB

�T c�D��
B "sB� � B�TNTD��

N NB��"sB � 	

or �
D��
B �B�TNTD��

N NB���"sB � B�T c �

Since

ATD��
s A � BTD��

B B � NTD��
N N �

it follows that

�ATD��
s A�B��"sB � c

which completes the proof�

Proposition ���� The linear rescaling algorithm� applied to problems � �P � is proper

in the sense of De�nition ����

�




Proof� In view of Proposition ���� we can rely on either form of the algorithm for

proving the required conditions� Reversibility is trivial to verify� Independence of the

representation follows from the fact that the vector s � Ax � b is invariant� thus�

�
�AM���TD��

s �AM���
���

�M�T c� �
�
M�TATD��

s AM�����M�T c

� M
�
ATD��

s A
���

c �

Continuity and invariance of faces were proven in Section �� Appendix D contains anal�

ogous proofs for inequality form� We now consider the convergence of linear rescaling

trajectories� First� note that the objective function is monotone increasing along trajec�

tories� Thus� all the accumulation points of a trajectory must have the same objective

function value� Moreover� if x is neither a vertex nor an optimal point� the objective

function strictly increases along any trajectory in a neighborhood of x� By continuity�

this implies that the only candidates for accumulation points are vertices of the feasible

polyhedron and optimal solutions� In sections � and � we analyze the behavior of the

trajectories near vertices �see also Appendix E�� It follows from our analysis that tra�

jectories cannot accumulate in nonoptimal vertices� It follows that if there is a unique

optimal solution� all the trajectories converge to it�

Interestingly� Theorem ��� does not apply to the projective rescaling algorithm� Two

requirements of De�nition ��� are not satis�ed� First� the reversibility requirement� Recall

that the algorithm has to be applied to the problem in the form �KSF � with the additional

requirement that the optimal value be equal to zero� The transformation that takes a

problem into this form when we wish to reverse the sense of the optimization causes a

change in the direction of search which is� in general� not the reverse direction� Second�

although the invariance of faces holds� convergence within a face is not necessarily to the

optimum of the face� unless the face contains the global optimum of the problem� The

reason is that the projective rescaling algorithm induces paths that converge within faces

to optima of a �reduced� potential function� More precisely� let

P � fx � Rn � Ax � 	 � eTx � � � x � 	g

denote the feasible polytope and for J � N � f�� � � � � ng let

�J � P � f x � Rn � xj � 	 � j 
� J g

�	



denote a face of P � Every nonempty face �J of P contains a center� namely� a point qJ

where the reduced potential function

�J �x� � jJ jcTx �
X
j�J

lnxj

is minimized over �J � If the minimum of cTx over �J is zero then paths through the

interior of �J converge to such a minimum of cTx� The latter lies on the relative boundary

of the face unless the linear function is constant on the face� If the minimum is not zero�

the point qJ is interior� A detailed discussion of these issues is given in section ��

We now consider the vector �eld V��x� given by the Newton logarithmic barrier func�

tion method with a �xed �� This vector �eld is initially de�ned for � � 	� This vector �eld

is obviously not proper since convergence is to the optimum of the nonlinear approximate

objective function rather than the given linear objective function� Recall that V��x� has

a limit as � tends to zero and� moreover� the direction of the limit Vo�x� coincides with

the direction assigned by the linear rescaling algorithm ���x� �see �GMSTW��� Thus� the

vector �eld Vo�x� is proper� It follows that although V��x� is not proper� it has �long�

paths if � is su�ciently small� More precisely�

Proposition ���� For every � � 	� there exists a �o � 	 such that for every �xed

�� 	 � � � �o� the vector �eld V��x� on the �KM� cube has solution paths that visit the

�	neighborhoods of all the vertices�

��



�� The behavior of the linear rescaling algorithm near vertices

Consider the linear programming problem in standard form �SF �� Let B denote

the square matrix of order m� consisting of the �rst m columns of A� We assume B is

nonsingular and B��b � 	� In other words� B is a nondegenerate feasible basis� Let N

denote the matrix of order m � �n �m� consisting of the last n �m columns of A� We

denote the restriction of any n�vector v to the �rstm coordinates by vB� and its restriction

to the last n�m coordinates by vN � Thus� the objects cB� cN � xB and xN are de�ned with

respect to the vectors c and x� Recall that by D � D�x� a diagonal matrix �of order n�

whose diagonal entries are the components of the vector x� Also� DB and DN are diagonal

matrices of orders m and n�m� respectively� corresponding to the vectors �B and �N �

Recall that in the transformed space� the direction � � Tx��� is the solution of the

following least�squares problem�

Minimize kDc� �k�

subject to AD� � 	 �

This is equivalent to

Minimize kDBcB � �Bk� � kDNcN � �Nk�

subject to BDB�B �NDN�N � 	 �

In the original space� � � D�� so the problem is

Minimize kDBcB �D��
B �Bk� � kDNcN �D��

N �Nk�

subject to B�B �N�N � 	 �

Eliminating �B by the substitution �B � �B��N�N � we obtain an equivalent problem�

Minimize kDBcB �D��
B B��N�Nk� � kDNcN �D��

N �Nk� �

A vector �N is an optimal solution for the latter if and only if the gradient of the objective

function vanishes� that is�

NTB�TD��
B

�
DBcB �D��

B B��N�N
��D��

N

�
DNcN �D��

N �N
�

� 	 �

Equivalently�

�
I �D�

NN
TB�TD��

B B��N
�
�N � D�

N �cN �NTB�T cB� �

��



We now consider points x in the neighborhood of the vertex v�B� determined by B�

that is� vj�B� � �B
��b�j for j � �� � � � �m� and vj�B� � 	 for j � m� �� � � � � n� Obviously�

if x tends to v�B� then xB tends to the positive vector B��b and xN tends to 	� Note that

the coe�cient matrix of the latter system is

I �D�
NN

TB�TD��
B B��N � I �O�kxNk��

so it tends to the identity matrix as x approaches v�B�� We thus have

Proposition ���� The nonbasic part of the search direction is

�N � D�
N �cN �NTB�T cB� �O�kxNk�� �

Notice that the vector

�cN � cN �NTB�T cB

is precisely the �reduced�cost� vector associated with the basis B�

We �rst provide some intuition about the behavior of trajectories near vertices based

on the description of the asymptotic vector �eld� More rigorous arguments will be given

later� Consider the orbit induced by the �asymptotic� vector �eld � at a point x in the

neighborhood of v�B�� The underlying di�erential equations are

!xj � ��cjx�j �j � m� �� � � � � n� �

The solution is obviously�

xj�t� �
�

�
xj���

� �cjt
�

Recall that xB�t� is determined by xN �t�� namely� xB�t� � B���b�NxN �t��� Notice that

v�B� is the unique optimal solution of the linear programming problem if and only if for

every j� j � m� �� � � � � n� �cj � 	� If this is the case then the trajectory x�t� converges to

v�B�� Moreover� as t tends to in�nity� the direction of xN �t� tends to the direction of the

vector �
�

�cm��
� � � � � �

�cn

�
�

Note that we obtain a unique asymptotic direction near a vertex corresponding to each

face containing the vertex�

��



�� More on the trajectories near vertices

It is convenient in this section to assume the vector �eld is real analytic even though

this is stronger than what is actually required� We now examine the behavior of the

solution curves of the equation

!x � �x� � o�kxk��

where x � Rn and we denote x� � �x��� � � � � x�n�T � It is convenient to express x in polar
coordinates� We start with a slightly more general problem and follow Gomory �G��

Let

F � Rn � Rn

be a real analytic vector �eld de�ned in the neighborhood of the origin� Consider the

di�erential equation

!x � F �x� �

Let

Sn�� � fx � Rn � kxk � �g

denote� as usual� the unit sphere in Rn� A nonzero vector x � Rn is represented in polar

coordinates by a pair ��� u� where � � ��x� � kxk and u � u�x� � �
�
x� Thus� the vector

x can be expressed as a product

x � �u

where � � R� and u � Rn with kuk � ��

Consider a solution path x � x�t� of the equation !x � F �x�� The polar coordinates of

a point along the path are also functions of t� so we denote in short � � ��t� and u � u�t��

We shall represent the equation !x � F �x� in polar coordinates� The polar coordinates

pairs ��� u� are of course points in R� � Sn��� We shall obtain an equivalent vector �eld

on a neighborhood of f	g � Sn�� relative to R� � Sn���

First�

��t� �
q
�x�t��T x�t�

��



so
d�

dt
�

xT !xp
xTx

� uTF �x� � uTF ��u� �

Also�

u�t� �
�

��t�
x�t�

so
du

dt
�

�

�
!x � �

��
d�

dt
x �

�

�

�
F ��u� � �uTF ��u�� u� �

Since F is real analytic� it follows that

F �x� �
�X
i��

Fi�x�

where for every i �i � 	� �� � � ��� Fi�x� is a homogeneous polynomial of degree i� In our
case�

F �x� � �x� � o�kxk��

where F is real analytic so F� and F� are identically zero� Whenever there exists an m � �
such that for every i � m� Fi is identically zero� we have

d�

dt
� uTF ��u� � uT

�X
i�m

Fi��u� � uT
�X
i�m

�iFi�u� �

Similarly�

du

dt
�

�

�

�
F ��u� � �uTF ��u�� u� �

�X
i�m

�i��
�
Fi�u� �

�
uTFi�u�

�
u
�
�

We have obtained a vector �eld which is well�de�ned in a neighborhood of f	g � Sn��

relative to R� � Sn��� In fact� if we divide by �m�� we still obtain a vector �eld on the

same neighborhood and the orbits of the new vector �eld are the same as those of the old

one �in R� � Sn���� Note that the sphere f	g � Sn�� is invariant in the sense that the

�ow induced by the �eld on the this sphere remains in the sphere� Thus� we may consider�

instead� the following equations�

d�

dt
� uTF ��u� � uT

�X
i�m

�i�m��Fi�u� �

and
du

dt
�

�X
i�m

�i�m
�
Fi�u��

�
uTFi�u�

�
u
�
�

��



As a vector �eld this can be written in the form

�V ��� u� �


uT

�X
i�m

�i�m��Fi�u� �
�X
i�m

�i�m
�
Fi�u� �

�
uTFi�u�

�
u
� �

�for � � 	� and

�V �	� u� �
�
	 � Fm�u��

�
uTFm�u�

�
u
�
�

The latter is just the projection of the homogeneous equation

!x � Fm�x�

into the unit sphere� The projections of the solution curves of the homogeneous equation

are solution curves as computed above� The derivative of �V at a point �	� u�� where

�V �	� u� � 	� is the following�

D �V �	� u� �

�
	 uTFm�u� 	

Fm���u��
�
uTFm���u�

�
u Du

�
Fm�u��

�
uTFm�u�

�
u
�


A �

We now return to our special case where m � � and

F��x� � �x� � ��x��� � � � � x�n�T

and will study the behavior of orbits on the sphere 	� Sn��� Consider the equation

!x � �x� �

that is�

!xi � �x�i �i � �� � � � � n� �

If xoi � 	 then by integration� the solution is

xi�t� �
�

t�Ci

then the ith component of the curve through xo is given by

xi�t� �
xoi

xoi t� �
�

If xoi � 	 then obviously

xi�t� � 	 �

��



Thus� for every i and j �� � i� j � n� if xoi � x
o
j � 	 then

lim
t��

xi�t�

xj�t�
� � �

These orbits project to orbits on the sphere�

We now study the zeros of the vector �eld

�V �	� u� �
�
	 � F��u��

�
uTF��u�

�
u
�
�
�
	 � �u� � �uTu��u � �

Thus� the solutions of the system

�V �	� u� � 	

u � Sn���

u � 	

are the nonnegative solutions of the system

�u�k �


nX
i��

u�i

�
uk � 	 �k � �� � � � � n� �

It can easily be veri�ed that a solution u of this system is characterized as follows� There

exists a j �� � j � n� such that j components of the vector u equal �p
j
while the rest of

the components are zero�

The forward or ��limit points of an orbit u�t� are those points uo such that there are

ti tending to in�nity and u�ti� tending to uo� Backward or ��limit points are de�ned by

letting ti tend to �� We see from the discussion above that the ��limit points of �V �	� u�

are precisely the �n � � zeros of �V �	� u��

We have

D �V �	� u� �

�
	 �uTu� 	

F��u��
�
uTF��u�

�
u Du

��u� � �uTu��u�


A �

To understand the stability properties of the zeros on the sphere� we calculate the eigen�

values of D �V �	� u�� Since it is lower triangular� the eigenvalues of D �V �	� u� are of two

��



kinds� �i� the number �uTu�� corresponding to �� and �ii� the eigenvalues of the matrix

Du

��u� � �uTu��u� �
�

�
BB	
��u� �

P
u�i � �u

�
� �u�u�� � � � �u�u�n

�u�u�� ��u� �
P

u�i � �u
�
� � � � �u�u�n

���
���

� � �
���

�unu�� �unu�� � � � ��un �
P

u�i � �u
�
n



CCA �

corresponding to u� The �rst eigenvalue is then

�uTu� � �
X

u�i �
�p
j
�

The other eigenvalues are those of the operator Du��u���
P

u�i �u� de�ned on the tangent

space to the sphere� Suppose that u � Sn�� is such that uk � � for all k such that uk 
� 	�
Then for every v tangent to the sphere at �	� u��

X
��u�i vi�u � ��

X
�uivi�u � 	 �

Thus for an eigenvector v

�Du
�V �v �

�
B	
� �p

j

� � �

� �p
j



CA v �

where the sign is positive if the corresponding component of u is zero�

Thus� Du
�V has a component repelling from each facet in which u lies� Each vertex of

Sn��� is a sources� Each zero of Du
�V that lies on an edge has one stable eigenvalue� Each

zero that lies on a two�dimensional face has two stable eigenvalues� and so on�

Proposition ���� The only �	 and �	limit points of the vector �eld �V �	� u� on Sn���

are the zeros�

Proof� The ��limits were considered above� Consider the ��limits and recall that

the ��limits of an orbit are connected� First� an ��limit point in the neighborhood of

a source must be the source itself� Next� if there is an ��limit on an edge the ��limit

must be the zero in the interior of the edge �or the orbit would tend to a vertex� and the

orbit must limit at the zero� Now we argue inductively on i that any ��limit point of an

�



orbit� contained in a neighborhood of some face of dimension less than or equal to i� is

one of the zeros in the union of such faces� Assuming the assertion for i� we now prove

it for i��� Given an ��limit in the interior of a face of dimension i��� either the point

is the zero and the orbit limits at the zero or the inverse orbit of the point tends to the

union of the faces of dimension less than or equal to i� The orbit itself then tends to the

union of these faces by the induction hypothesis� hence a contradiction� By backwards

invariance any ��limit in a small neighborhood of the union of the �i � ���dimensional

faces is is already in the union� This proves our claim�

For each zero u� of �V �	� u�� de�ne Wu�u�� as the set of those points u whose ��limit

is equal to u�� and de�ne W s�u�� as the set of those points u whose ��limit is equal to u��

Note that W s�u�� is the interior of the face in which u� lies� We now de�ne a pre�order

on the set of zeros of �V �	� u�� We write u� � u�� if there is a nonstationary orbit whose

��limit is u� and whose ��limit is u��� This pre�order has no cycles since the dimension

of the set W s�u�� is strictly increasing along a chain in the pre�order� For any �xed time

t� let ��t�u� denote the point on the orbit at time t� assuming it starts at u at time 	�

The transformation ��t is called the time t map of the �ow� For the proof of the following

proposition the reader is referred to to chapter � in �Sh��

Proposition ���� There is a time to � 	 and compact sets

	 �Mo �M� � � � � �M�n�� � Sn���

such that

�i� For every i� Mi is the closure of its interior�

�ii� The di
erence Mi nMi�� contains one zero� denoted zi� of �V �	� u��

�iii� The image ��to�Mi� is contained in the interior of the set Mi�

�iv� The intersection of the iterates ��qto�Mi� �that is� q applications of ���� for q � 	� is

equal to the union of the sets Wu�zj � over all j � i�

The construction described in Proposition ��� is called a �ltration� We are now ready

for the proof of the following proposition�

Proposition ���� Suppose

!x � V �x� � �x� � o�kxk��

�




is a real analytic vector �eld de�ned on a neighborhood of the origin in Rn� Suppose that

for every x � 	 and every i such that xi � 	� also �V �x��i � 	� Under these conditions�

there exists an � � 	 such that if xo � 	 and kxok � � then the solution curve ��t� �

�xo�t� of the equation !x � V �x� is de�ned for all nonnegative values of t� Moreover� as

t tends to in�nity� ��t� tends to the origin tangent to the line fx� � � � � � xng�

Proof� If x � 	 is su�ciently close to the origin then d�
dt

� 	� This implies that

�xo�t� is de�ned for all nonnegative t and �xo�t� � 	� Consider the vector �eld �V and

the corresponding ��xo�t�� The �ltration described above can be fattened to a �ltration

of a neighborhood of f	g�Sn��� in �	� t��Sn��� since d�
dt

� 	� Thus every point tends to

a zero� The stable sets of zeros in the boundary stay in the boundary since the boundary

is invariant� Thus the orbit of any interior point tends to the point �	� �p
n
e�� It does

so with a de�nite limiting direction �see �H� on C� linearization for contractions�� This

implies that the projected curve in the x�variable is tangent to the ray through e at the

origin�

Note that throughout this section we used di�erentiability only up to second order�

In the context of linear programming� Proposition ��� translates to the following�

Proposition ���� Given a nondegenerate linear programming problem in standard

form� suppose we express the linear rescaling search direction vector �eld �� in terms of

the nonbasic variables at the optimal vertex as in Proposition ���� Then any interior

solution curve is tangent to the vector

�
�

�cm��
� � � � � �

�cn

�

at the origin where the vector

��cm��� � � � � �cn�

is the reduced cost vector�

The discrete analog of this fact was observed experimentally by Earl Barnes� Sub�

sequent to this analysis Megiddo �Me�� found di�erent behavior for a class of di�erential

equations related to the barrier method�

�	



�� Di
erentiability of the Newton barrier function method

We continue to consider the problem in standard form �SF � and represent the new

point given by the algorithm at a point x�

x� � x� ��x�V �x� �

We say that the system �A� b� is nondegenerate if for every x such that Ax � b� the

submatrix of A� consisting of the columns with indices j for which xj 
� 	� has rank m�

The feasible polyhedron P is the set of all the solutions of the system fAx � b � x � 	g�
We denote the interior of P by !P �

Proposition ���� For a nondegenerate system �A� b�� the matrix �AD�
xA

T ���

constitutes a well	de�ned real analytic mapping from the a�ne �at Ax � b into Rm�m�

Proof� The mapping that takes a nonsingular matrix to its inverse is real analytic

by Cramer�s rule� Thus� we need only show that the matrixAD�
xA

T is invertible at x � P

even when xj � 	 for some j�s� Suppose� without loss of generality� that x�� � � � � xp 
� 	
and xp�� � � � � � xn � 	 �m � p � n�� Write A � �B�N�� where B � Rm�p and

N � Rm��n�p�� Let #x � �x�� � � � � xp�� Since

D�
x �

�
D�

	x O
O O

�
�

it follows that

AD�
xA

T � BD�
	xB

T

which is invertible since BDx has maximal rank by the nondegeneracy assumption�

Obviously�

�AD�
xA

T ��� � �BD�
	xB

T ��� �

This completes the proof�

We now recall that the Newton barrier vector �eld corresponding to the �xed value

of � is

V��x� � �v� � Dxr� � Dx

�
I �DxA

T �AD�
xA

T ���ADx

�
�Dxc� �e�

��



Proposition ���� For a nondegenerate system �A� b��

�i� The Newton barrier vector �eld V��x� is well	de�ned for every x � P and � � 	 and�

moreover� at every such point it is real analytic�

�ii� If x is on a face � of the polytope P then the vector V��x� is tangent to ��

�iii� If x is on a face � then V��x� coincides with the Newton barrier vector �eld �with

the same �� which is associated with the restricted problem on the face�

Minimize cTx

subject to x � � �

In particular� if x is a vertex then V��x� � 	�

Proof� Claim �i� is obvious in light of Proposition ��� and the formula for V�� For

claims �ii� and �iii�� suppose �without loss of generality�� as in the proof of Proposition

���� that x�� � � � � xp 
� 	 and xp�� � � � � � xn � 	 �m � p � n�� and let #x also be as

there� We have

ADx �

�
BD	x O
O O

�
�

Denote #c � �c�� � � � � cp�T and #e � �e�� � � � � ep�T � We now have

Dxc �

�
D	x#c
O

�

and

Dx�e �

�
D	x�#e
O

�
�

On the other hand�

AD�
xA

T � BD�
	xB

T �

Substituting the right�hand sides of these equalities into the formula for V� we prove �ii�

and �iii��

Remark ���� The nondegeneracy hypothesis implies that at a vertex x of the

polytope the matrix B is invertible� Thus

�
BD�

	xB
T
���

� B�TD��
	x B��

and the matrix

I �DxA
T �AD�

xA
T ���ADx

��



is the zero matrix�

We now compute the derivative of V� at a vertex x�

Lemma ���� Let

Mx � Dx

�
I �DxA

T �AD�
xA

T ���ADx

�
�

Then

M �
x�h� � Dh � �MxDhA

T �AD�
xA

T ���ADx �D�
xA

T �AD�
xA

T ���ADh�

Proof�

M �
x�h� � Dh

�
I �DxA

T �AD�
xA

T ���ADx

�
�Dx

��DhA
T �AD�

xA
T ���ADx � DxA

T �AD�
xA

T ���ADh

�
which� since DxDh � DhDx� equals

Dh � �DxDhA
T �AD�

xA
T ���ADx

� �D�
xA

T �AD�
xA

T ���ADxDhA
T �AD�

xA
T ���ADx �D�

xA
T �AD�

xA
T ���ADh

� Dh � �Dx

�
I �DxA

T �AD�
xA

T ���ADx

�
DhA

T �AD�
xA

T ���ADx

� D�
xA

T �AD�
xA

T ���ADh �

Proposition ���� At a vertex x�

V �
��x� � ��I �

Proof�

V �
� � �Mx�Dxc� �e��� �h� � M �

x�h��Dxc� �e� �MxDhc �

SinceMx � 	 �see Remark ����� and h is tangent to the polytope �so Ah � 	�� it follows

that
V �
x�h� � Dh�Dxc� �e� � D�

xA
T �AD�

xA
T ���ADh�Dxc� �e�

� � �h�MxDhc � ��h �

��



�� Di
erentiability of the projective rescaling vector �eld

In this section we develop results analogous to those of the preceding one� Thus�

we work in Karmarkar�s standard form �KSF �� We assume nondegeneracy of the ma�

trix A �not the entire matrix �A of the linear system of constraints�� The sense of the

nondegeneracy is that for every x in the a�ne �at

L � fAx � 	 � eTx � �g �

the submatrix of A� consisting of the columns with indices j for which xj 
� 	� has rank

m� The polyhedron P is the set of all the solutions of the system

fAx � 	 � eTx � � � x � 	g �

The following proposition is essentially the same as Proposition ����

Proposition ���� For a nondegenerate problem� the matrix �AD�
xA

T ��� constitutes

a well	de�ned real analytic mapping from the a�ne �at L into Rm�m�

Recall that

�p � �p�x� �
�
D � xxT

� �
I �DAT �AD�AT ���AD

�
Dc �

Analogously� we have

Proposition ���� For a nondegenerate problem �A� b��

�i� The direction �p is well	de�ned for every x � P and� moreover� at every such point

it is real analytic�

�ii� If x is on a face � of the polytope P then the vector �p is tangent to ��

�iii� If x is on a face � then �p�x� coincides with the vector �p which is associated with

the restricted problem on the face�

Minimize cTx

subject to x � � �

In particular� if x is a vertex then �p�x� � 	�

��



Remark ���� Recall that the vector �eld �p�x� is well�de�ned even without the

assumption that the optimal value of the linear objective function equals zero� Thus�

the �p vector for the restricted problem on the face is de�ned this way and the restricted

problem is not transformed into the form KSF with optimal value zero�

Let

� � � �x� �
�
I �DAT �AD�AT ���AD

�
Dc �

Thus�

�p � D� �x� � ��xT � �x�� x �

Notice the vector V��x� is well�de�ned even when � is negative� The following proposition

was �rst pointed out in �GMSTW��

Proposition ���� If the barrier parameter � is chosen as a function of the point x�

��x� � xT � �x� �

then

�p�x� � V��x��x� �

Proof� If ��x� � xT � �x� then

V��x� � D� �x� � �De � D� �x� � �x � �p�x� �

Proposition ���� For a nondegenerate problem� at any vertex x�

d�p�x�

dx
� ���x�I �

Proof� Since V��x� is di�erentiable in �x� ��� the vector V��x��x� is di�erentiable

and
d�p�x�

dx
�

�V

��

d�

dx
�

�V�
�x

�

��



Since V��x� is identically zero �as a function of �� at any vertex�

�V�
��

� 	

and
d�p
dx

�
�V�
�x

� ���x�I

by Proposition ����

��



�� The discrete version of the linear rescaling algorithm

In this section we consider a speci�c choice of a step size in the linear rescaling algo�

rithm �as in �Bar��� Given an interior point x� the algorithm determines a new point X��x�

as follows

X�x� � x � �
���x�

kD��
x ���x�k

where 	 � � � � is a constant� The choice of � guarantees that X�x� is in the interior of the

polytope �see �Bar��� It has been proven �Bar� VMF� that for nondegenerate problems�

for any interior point x� Xq�x� converges to the optimal solution� In this section we

study the asymptotic behavior and extensions to the boundary of this discrete algorithm�

Nondegeneracy in this section means �i� for every feasible solution x� the submatrix of the

matrix A� consisting of the columns corresponding to nonzero coordinates� is of rank m�

and �ii� every face of the feasible polyhedron has a unique optimum with respect to the

objective function vector c�

Lemma ���� Suppose the problem is nondegenerate� Let fxkg be a sequence of

interior points converging to a point x on the boundary of P � Let J denote the set of js

with xj 
� 	� Under these conditions� for every j 
� J � the ratio

���xk�j

�xkj �
�

converges to a �nite limit� In particular� for every j 
� J �

lim
k��

���xk�j

xkj
� 	 �

Proof� Recall that

���x� � D�
x

�
I �AT �AD�

xkA
T ���AD�

xk

�
c �

Thus�
���xk�j

�xkj �
�

�
�
c�AT �AD�

xkA
T ���AD�

xkc
�
j

and the lemma follows from the fact that the matrix �AD�
xk
AT ��� extends continuously

to the closed polytope�

��



Let�s denote

V��x� �
���x�

kD��
x ���x�k

�

Theorem ���� Suppose the problem is nondegenerate� Then�

�i� The vector �eld V��x� extends continuously to the boundary of the polytope and real

analytically at any point which is not a vertex�

�ii� On any face � of the polytope P � the vector �eld V� coincides with the vector �eld

associated with the restricted problem on the face �� In particular� V��x� is tangent to

each face that contains the point x and vanishes at vertices�

�iii� The iteration

x� � X�x� � x � � V��x�

extends continuously to the boundary of the polytope�

�iv� The iteration X takes any face of the polytope into itself and is in fact the iteration

of the problem restricted to the face�

�v� If x lies in the face � then� as q tends to in�nity� Xq�x� converges to the minimum

of the linear objective function relative to the face ��

Proof� By Lemma �� kD��
x ��k has the appropriate limiting value on any face�

Also� �� extends continuously to the closed polytope and vanishes only at vertices �see

Section ��� This establishes �i���iv� except at vertices� The value of the objective function

is

cT �X�x� � x� � � �

kD��
x ��k

����x��
T ���x� �

and this is negative provided x is not a vertex� Therefore� the only possible accumulation

points of iterates are vertices� The remaining claims will follow from local analysis of

the linear rescaling algorithm at vertices which is discussed below� It is convenient to

represent the points in terms of the nonbasic components at a nondegenerate vertex�

Let us also use N to denote the set of indices of nonbasic variables� If j � N � that is�

xj � 	 at the vertex then

�X�x��j � xj � �
�cjx�j �O�kxk��qP
i�N �cix

�
i �O�k xk��

�

Continuity at vertices follows from this formula� It is also clear that if x is in the relative

interior of a face � and the iterates converge to a vertex of � then all the �ci �i � N�

�



must be positive �assuming nondegeneracy�� Thus� the vertex is a minimum relative to

��

To study the asymptotic behavior of iterates near a nondegenerate optimal vertex�

we express the mapping X�x� in terms of the nonbasic variables alone� Recall that xN

denotes the restriction of the vector x to the nonbasic variables� For every j � N � we have

�XN �xN ��j � xj � �
�cjx�j �O�kxk��qP
i�N �cix

�
i �O�kxk��

�

Since the basic variables are a�ne functions of the nonbasic ones� we are reduced to

studying the asymptotic behavior of XN near the origin� We �rst change variables� Let

yi � �cixi

for i � N � and let y � �yi�i�N �

Proposition ���� The change of variables yi � �cixi conjugates XN to �XN where

for j � N � �
�XN �y�

�
j
� yj � � y�j

� �O�kyk��qP
i�N y�i �O�kyk��

in a neighborhood of the origin�

The mapping �XN is not di�erentiable at the origin� but its directional derivatives

along rays exist� As in the case of the vector �eld �see section ��� it is now convenient to

study �XN in �polar coordinates�� For convenience� assume without loss of generality that

N � f�� � � � � n�mg
so �XN is a mapping from a neighborhood U of the origin in Rn�m into Rn�m� A vector

y � Rn�m can be expressed as a product

y � �u

where � � 	 is a scalar and u � Rn�m is a unit vector� Of course� � is just kyk and if y 
� 	
then u � �

kyk y� If y � 	 then u � Sn�m��� � In these polar coordinates �XN is expressed as

W ��� u� � W���� u� �

�
k �XN ��u�k � �

k �XN ��u�k
�XN ��u�

�

�

�
�ku� ��� �O�����u�k � �

ku� ��� �O�����u�k
�
u� ��� �O�����u�

��

�




where u� � �u��� � � � � u�n�m�T and � is su�ciently small� Let

Z � R� � Sn�m�� � R� � Sn�m��

be de�ned by

Z��� u� �

�
�ku� �u�k � �

ku� �u�k
�
u� �u�

� �
�

Proposition ���� For any �� 	 � � � �� there is an r � 	 such that W� is de�ned

on �	� r� � Sn�m��� and

W�

�
�	� r�� Sn�m���

� � �	� r� � Sn�m��� �

Moreover� the function values and the derivatives coincide at �	� u�� that is� Z�	� u� �

W �	� u� and Z ��	� u� �W ��	� u��

Proof� All the assertions follow from the expression forW above and the chain rule

for di�erentiation�

The map Z seems simple as it maps rays to rays� The ray determined by a unit vector

u is contracted by the constant factor ku� �u�k� This contraction constant is minimized
at the unit vectors ei �i � �� � � � � n � m� and maximized at �p

n�me where its value is

�� �p
n�m � We will show that �	�

�p
n�me� is an attractor for both Z and W � However� we

do not know yet the precise domain of attraction of this point even for Z� Let

G � Sm��� � Sm���

be de�ned by

G�u� �
�

ku� �u�k �u� �u��

so G is just the second coordinate of Z�

It is not known whether every interior point of Sm��� tends to �p
n�me under the

iteration of G�

Proposition ����

Z �
�
	 �

�p
n�m

e

�
�


�� �p

n�m O

O
�
�� �p

n�m��

�
I

�

�	



and hence
�
	 � �p

n�m

�
is an attractor for both Z and W �

Proof�

Z �
�
	 �

�p
n�m

e

�
�

�
	��

�
	 � �p

n�me
�

O

O G�
�

�p
n�me

�


A

�


�� �p

n�m O

O G�
�

�p
n�me

� �

and

G��u�v �
�

ku� �u�k


�I � ��Du�v � ��I � ��Du�v�

T �u� �u��

ku� �u�k� �u� �u��

�
�

Thus� at �p
n�m with v tangent to Sn�m��� �

G��e��w� �
�
�� �p

n�m� �

�
w �

Proposition ���� There is a neighborhood U� of the origin in Rn�m
� and a neigh	

borhood U� � U� of the intersection of U� with the line

f�c�x� � � � � � �cn�mxn�mg

such that

�i� The set U� contains a de�nite angle at the origin�

�ii� For every x � U��

lim
q��

�cj �X
q
N �x��j

�ci �X
q

N �x��i
� �

for all i and j�

�iii� There exist constants K��K� � 	 such that

K�

�
�� �p

n�m

�q

� kXq

N �x�k � K�

�
�� �p

n�m

�q

for all x and q � 	�

��



Proof� We need only prove the comparable facts for �Xq
N �y� and a de�nite an�

gular wedge around the diagonal fy� � � � � � yn�mg� Let U� be a neighborhood of�
	� �p

n�me
�
consisting of points attracted to

�
	� �p

n�me
�
underW � that is� for v � U��

lim
q��W q�v� �

�
	�

�p
n�m

e

�
�

The set of points in Rn�m corresponding to U� contains an angular wedge about a small

piece of the line fy� � � � � � yn�mg� Moreover� since the contraction rates given by the
eigenvalues of W �

�
	� �p

n�me
�
are stronger along the sphere f	g � Sn�m�� than along

the line through �p
n�me� any orbit W

q�v� becomes tangent to the ray and convergence

to zero is at the largest rate along the ray� This type of argument can be found in

center�unstable manifold theory in �Sh��

Given a point x in the interior of the polytope and an optimal point x�� let

a��x� � lim sup
q��

�

q
log kXq�x� � x�k

be the asymptotic rate of convergence to the optimum� We have shown

Corollary ���� For a nondegenerate problem�

a� � log

�
�� �p

n�m

�

for a nonempty open set interior to the polytope�

E� Barnes has shown that

a� � log

�
�� �p

n�m

�

for any interior point x� It is still an open question whether

a� � log

�
�� �p

n�m

�

for all x interior to the polytope�

��



�� The discrete version of projective rescaling algorithm

In this section we analyze the boundary behavior of the discrete iteration of the pro�

jective rescaling algorithm� The linear programming problem is considered in Karmarkar�s

standard form �KSF ��

�KSF �

Minimize cTx

subject to Ax � 	

eTx � �

x � 	

where c� x � Rn� A � Rm�n and e � ��� � � � � ��T � Rn� Denote

 � f x � Rn � Ax � 	 g

S � f x � Rn � eTx � � � x � 	 g

and

P �  � S �

We denote the interior of the feasible domain by !P � that is�

!P � P � fx � Rn � x � 	g �

The algorithm assigns to any point x � !P a new point Y �x� de�ned as follows� Recall the

matrix A from Section � and the vector

�p�x� �
h
I �A

T
�AA

T
���A

i
Dxc �

For simplicity let us denote

��x� � �p�x� �

A unit vector� u�x�� in the direction of ��x� is given by

u�x� �
�

k��x�k��x� �

The underlying projective transformation at an interior point x is the following�

Tx�y� �
�

eTD��
x y

D��
x y �

��



Obviously� Tx�x� �
�
n
e� In the transformed space the algorithm moves from the point �

n
e

to the point

Y ��x� �
�

n
e� �ru�x�

where

r �
�p

n�n� ��
and � is a constant which was originally chosen as �

�
� In the source space the new point

Y �x� is equal to the inverse image of the point Y ��x� under the transformation Tx�

Y �x� �
�

eTDxY ��x�
DxY

��x� �

For the sake of simplicity we replace r � ��
p
n�n� �� by r � ��n and call the resulting

vector Y �x� � Y��x�� It follows that

Y �x� �
Dx

�
�
n
e� �

nk��x�k��x�
�

eTDx

�
�
n
e� �

nk��x�k��x�
�

�
Dx

�
e� �

k��x�k��x�
�

eTDx

�
e � �

k��x�k��x�
� �

In this section we assume nondegeneracy in the following sense� For any feasible point

x� the submatrix of A� consisting of the columns with indices j such that xj � 	� has rank

m� We also denote by � �x� the orthogonal projection of the vector Dxc into the nullspace

of the matrix ADx� that is�

� �x� �
�
I �DxA

T �AD�
xA

T ���ADx

�
Dxc �

Lemma ���� Suppose fx�g is a sequence of interior points converging to a boundary

point xo � �P � Let J denote the set of indices j such that xoj 
� 	 �J 
� N�� Under these

conditions� if the problem is nondegenerate� then

lim
���

�� �x���j � 	

for every j 
� J and� moreover� the limit

lim
���

�� �x� ��j
x�j

��



exists for every j 
� J �

Proof� First� note that by the non�degeneracy assumption the matrix
�
AD�

x�A
T
���

tends to the matrix
�
AD�

xoA
T
���

as 	 tends to in�nity� Now� we have

� �x�� � Dx�

h
I �AT

�
AD�

x�A
T
���

AD�
x�

i
c

so
�� �x���j

x�j
�
�h
I �AT

�
AD�

x�A
T
���

AD�
x�

i
c
�
j
�

The latter tends to �h
I �AT

�
AD�

xoA
T
���

AD�
xo

i
c
�
j
�

Corollary ���� Suppose the problem is nondegenerate and the optimal objective

function value equals zero� Under these conditions� if x � P is such that cTx � 	 then

��x� 
� 	 and hence the mapping Y �x� is smooth at x�

Proof� Suppose x is a feasible point such that ��x� � 	� Recall that ��x� is the

orthogonal projection of the vector Dxc into the nullspace of A� This implies that ��x� is

also the orthogonal projection of the vector Dxc� cT x
n
e into the nullspace of the matrix

ADx� Thus� there exists a vector v such that

Dxc� cTx

n
e � �ADx�

T v �

Suppose �rst that x � !P � In this case we have

c� cTx

n
D��
x e � AT v

and therefore both c and cT x
n
D��
x e induce the same linear functional on P � The vector

D��
x e is positive which contradicts the assumption that the optimal value is 	� Now

suppose that x is a boundary point and let J denote the set of j�s such that xj � 	� For

every j 
� J we have

���x��j �

�
�cTx

n
e

�
j

� �cTx

n

� 	 �

��



Lemma ���� The vector e is orthogonal to ��x��

Proof� Obviously� the vector e is orthogonal to the vector Dxc � cT x
n
e� Since

Ax � 	� the vector e is also in the nullspace of the matrix ADx� This implies our claim�

For every J � N � f�� � � � � ng� let us denote

LJ � f x � Rn � xj � 	 for j 
� J g �

Thus� LJ is a linear subspaces of dimension jJ j� The set J also determines a face of the
polytope�

�J � LJ � P �

Let eJ denote the vector consisting of ��s in the positions corresponding to J and 	�s in all

the other positions� We are interested in restrictions of the linear programming problem

to faces of the polytope P � Speci�cally� the restricted problem corresponding to the set J

is the following�
Minimize cTx

subject to x � �J �

This restricted problem gives rise to a new vector �eld �J �x� on the face �J by ignoring

the vanishing coordinates �that is� those with indices not in J�� Thus� �J �x� � LJ � The �

vector for the restricted problem is the same as the � vector for the original by Proposition

��� and section ��

�J�x� � � �x� � cTx

jJ j e
NnJ �

��x� � � �x� � cTx

n
eN

and

��x� � �J�x� � cTx

�
�

jJ j �
�

n

�
eJ � cTx

n
eNnJ

and these vectors are mutually orthogonal since eJ is orthogonal to �J �x� by Lemma 
��

and eJ and �J �x� lie in LJ which is orthogonal to eNnJ � So we have

��



Lemma ����

k��x�k� � k�J�x�k� �

�
�

jJ j �
�

n

�
�cTx�� �

Lemma ����

Dx��x� � Dx�J�x� � cTx

�
�

jJ j �
�

n

�
x�

Lemma ���� If the problem �KSF � has a unique minimum then for a nonoptimal

point x�

�i� k��x�k � cTx

�ii� k��x�k � k�J �x�k � �cTx� and
�iii� k��x�k � k�J�x�k � �

�

�
�

n�jJj � �
n

�
cTx�

Proof� Inequality �i� implies inequality �ii� by Lemma 
��� The equality of Lemma


�� divided by the inequality �ii� implies inequality �iii�� Inequality �i� was proved in

�Blu� and we provide here another proof� We have

�Dxc�
T

�
�

n
e� �

nk��x�k��x�
�

� 	 �

Now� ��x� equals the projection of the vector Dxc into the intersection of the nullspaces

of the matrix ADx and the vector eT � Thus

�Dxc�
T �

nk��x�k��x� �
���x��T ��x�

nk��x�k �
k��x�k�
nk��x�k �

This implies the claim at interior points x� By continuity the claim �i� holds on the

closed polytope and hence �ii� and �iii� follow�

Suppose still that the problem has a unique optimal solution� Consider the vector

DxY
��x� �

�

n
x� �

nk��x�k Dx��x� �

Obviously� for any constant M 
� 	�

DxY
��x�

eTDxY ��x�
�

MDxY
��x�

eTMDxY ��x�
�

��



It follows from Lemma 
�� that there is a certain constant M such that

MDxY
��x� � x � �

k��x�k � �cTx
�

�
jJj � �

n

�Dx�J �x� �

For � � �
�
� it follows from part �iii� of Lemma 
�� that

k��x�k � �cTx

�
�

jJ j �
�

n

�
� k�J �x�k �

�
�

�
� �

�
cTx

�
�

jJ j �
�

n

�
� k�J �x�k �

It thus follows that the point MDxY
��x� lies on the line segment between x and x �

�

k�J �x�k��x� and thus Y �x� lies on the line segment between x and YJ �x�� where YJ �x� is

the point assigned by the algorithm when the problem is restricted to the face �J �

Let us denote by Y q�x� the transformation resulting from q iterations of Y � that is�

Y ��x� � Y �x� and Y q���x� � Y �Y q�x���

Given a face �J that does not contain the global optimum� let A� denote the submatrix

of A consisting of the columns j such that j � J � and similarly let c�� x� and e� denote the

corresponding subvectors of c� x and e� respectively� The problem �KSF � restricted to the

face �J is the following�

�KSFJ �

Minimize �c��Tx�

subject to A�x� � 	

�e��Tx� � �

x� � 	 �

The vector ��x� de�ned above for problem �KSF � is well�de�ned for the problem �KSFJ ��

where we denote it by �J�x�� We associate with the face �J a reduced potential function

�J �x� � jJ j ln cTx �
X
j�J

lnxj �

de�ned only for interior points of the face� We denote the interior of the face �J by !�J �

Theorem ���� Suppose the linear programming problem �KSF � is nondegenerate

and the optimal objective function value is 	� Under these conditions

�i� The transformation Y �x� extends continuously to the boundary of P � leaving each

�



face invariant�

�ii� If x lies on a face �J then Y �x� lies on the line segment between x and the point

YJ �x� which is assigned by the algorithm when the problem is restricted to the face �J �

�iii� For every x � P � the limit ��x� � limq�� Y q�x� exists� Moreover� if �J is the

smallest face that contains x then ��x� is precisely the minimum of the reduced potential

function with respect to the face �J �

�iv� The mapping Y �x� is smooth at every x � P except� perhaps� at the optimal vertex

of �KSF ��

�v� Every nonoptimal vertex is a local repeller�

Proof� The continuity of Y �x� at the optimal vertex follows from the convergence

of Karmarkar�s algorithm� It remains to analyze the vertex behavior and the iterates

Y q�x�� Let x be a nonoptimal vertex� Let

��x� �
�

k��x�k � �xT��x�
�

Since eTx � �� it follows by the Cauchy�Schwartz inequality that jxT��x�j � k��x�k so
��x� is well�de�ned� Moreover� by Corollary 
��� ��x� is positive and di�erentiable away

from the optimal vertex� Thus�

Y �x� � x� ��x��p�x� �

Consider the derivative dY
dx
� Since �p�x� � 	 at any vertex� we have

dY �x�

dx
� I � d��x�

dx
�p�x� � ��x�

d�p�x�

dx
� I � ��x�

d�p�x�

dx
�

By Proposition ���� for any vertex x�

d�p�x�

dx
� V �

��x� � ���x�I �

By Lemma 
� below� ��x� � 	 at a vertex� Thus�

dY �x�

dx
� �� � ��x���x��I

and hence x is a repeller �a source� see �Sh���

Lemma ���� If x � P is such that �p�x� � 	 then ��x� � xT � �x� � 	 with equality

holding only at the optimal vertex�

�




Proof� We have

Dx� �x� � ��x�x �

If xj � 	 then by Lemma 
�� also �� �x��j � 	� Thus� all the nonzero components of

� �x� have the same sign as ��x�� By Lemma 
���

	 � eT ��x� � eT � �x� � cTx

so eT � �x� � cTx � 	 and hence ��x� � 	�

We now return to an analysis of the iterates Y q�x�� In the following lemma we consider

faces of the polytope P which do not contain the optimal vertex�

Lemma ���� The zeros of the vector �eld �J �x� in !�J are zeros of the gradient

vector �eld of the reduced potential function �J �x� in !�J �

Proof� As in Corollary 
��� �J�x� � 	 if and only if the vector

c� � �c��Tx�

jJ j D��
x� e

�

is orthogonal to the nullspace of A�� The gradient of the reduced potential function is

r
�
	jJ j ln�c��Tx� �X

j�J
lnxj



A �

jJ j
�c��Tx�

c� �D��
x� e

�

so the gradient is zero if this vector is orthogonal to �J � Since the two vectors are

multiples of each other they are simultaneously orthogonal to �J �

Now it is not hard to see �as in �Kar��� that when �J�x� 
� 	� the potential function
evaluated at YJ �x� is strictly less that its value at x and the same for any point on the

line segment between x and YJ�x�� This is true because Karmarkar�s proof is valid for all

constants strictly between 	 and � and these points generate the line segment� Suppose

x � !�J where �J does not contain the minimizing vertex� so cTx � 	 on �J � The function

�J �Y
q
J �x�� decreases in value and by compactness the sequence fY q

J �x�g has limit points
in !�J � Any limit point must be a zero of �J for if qi � and Y qi

J �x� � xo and �J�xo� 
� 	
then �J �Y �xo�� � �J �xo�� For qi su�ciently large �J �Y

qi��
J �x�� � �J �xo�� but then the

�	



subsequent iterates of Y q
J �x� �q � qi� cannot return to a small neighborhood of xo where

� takes on values greater than �J �Y
qi��
J �x��� Since �J has only one critical point in !�J �

any x in !�J tends to this point� If �J contains the minimizing vertex then !�J has no

critical points of �J and by a similar argument as above Y
q

J �x� tends to the minimizing

vertex as q tends to in�nity�

��



Appendix A� The linear rescaling algorithm applied to the hypercube

Consider the general linear programming problem on the unit cube

Maximize
nX
j

cjxj

subject to 	 � xj � � �j � �� � � � � n� �

Let c � �c�� � � � � cn� 	� � � � � 	�T � R�n� The standard form of the problem is to maximize

cTx �x � R�n� subject to Ax � e� where the underlying matrix is

A �

�
	� �

�� �
� � �

� �



A

and e � ��� � � � � �� � Rn� Let xj � � � xj �j � �� � � � � n� and let us restrict attention to
vectors of the form x � �x�� � � � � xn� x�� � � � � xn�T � R�n� We denote byD a diagonal matrix

of order �n whose diagonal entries are x�� � � � � xn� x�� � � � � xn� The vector �eld associated
with the linear rescaling algorithm assigns to a point x the vector

���x� � D�c�D�AT �AD�AT ���AD�c �

Now�

AD�AT �

�
B	
x�� � x��

� � �

x�n � x�n



CA

and

AD�c �

�
x��c�

x�� � x��
� � � � � x�ncn

x�n � x�n

�T

�

It follows that

D�AT �AD�AT ���AD�c �

�

�
x��c�

x�� � x��
� � � � � x�ncn

x�n � x�n
�
x��x

�
�c�

x�� � x��
� � � � � x�nx

�
ncn

x�n � x�n

�T
�

We now have the expression for the vector �eld�

����x��j �


x�j �

x�j

x�j � x�j

�
cj �

x�jx
�
jcj

x�j � x�j
�j � �� � � � � n� �

��



It interesting to examine the orbits in this vector �eld� Fortunately� the underlying

di�erential equations are separable� For every j �j � �� � � � � n��

!xj �
x�jx

�
jcj

x�j � x�j
�

It follows that
!xj

��� xj ��
�

!xj
x�j

� cj �

The solution is given implicitly by

�

�� xj �t�
� �

xj �t�
� cjt � Cj

where

Cj �
�

�� xj�	�
� �

xj�	�
�

It follows that for every j �j � �� � � � � n� the function xj � xj �t� is monotone increasing

with xj ��� � 	 and xj �� � �� Suppose� for simplicity� that c � ��� � � � � ��T � It is
easy to verify that for every � � 	� if Ci � Cj �

�
�
then there exists a time t such that

xi�t� � ��� while xj �t� � �� Consider any permutation �i�� � � � � in� of the indices ��� � � � � n��
For simplicity of notation� let us assume though that �i�� � � � � in� � ��� � � � � n�� Suppose we
choose the initial point x�	� to be of the form

xo � xo��� � ��� ��� � � � � �n�T

where � � 	� For every � � 	� there exists a � � 	 such that the orbit through the

point xo��� visits the vertices �	� � � � � 	�T � ��� 	� � � � � 	�T � ��� �� 	� � � � � 	�T �� � ����� � � � � ��T in

this order� Note that there is a one�to�one correspondence between such permutations of

the set of indices and ascending paths of vertices of the hypercube� Thus� the following is

true�

Proposition A��� For any linear programming problem on the unit hypercube�

every ascending path of adjacent vertices can be approximated by an orbit in the vector

�eld induced by linear rescaling algorithm�

��



Appendix B� Projective rescaling trajectories on the unit simplex

We consider linear programming problems on the unit simplex "� that is� problems

of the form

�S�

Minimize cTx

subject to eTx � �

x � 	

where e � ��� � � � � ��T � c� x � Rn� Furthermore� to simplify the statement of the projective

rescaling algorithm� we restrict attention to those problems in which the optimal value of

the objective function problems is zero� Let x be any interior point� that is� x � Rn� x � 	

and eTx � � and let

D � Dx � diag�x�� � � � � xn� �

Obviously� De � x�

The projection of any vector v � Rn on the subspace fz � eT z � 	g is equal to

v � �

n
�eT v�e �

The search direction is derived as follows� The interior point x determines a projective

transformation Tx de�ned by

Tx�y� �
�

eTD��y
D��y �

Thus� Tx�x� �
�
n
e� The search direction in the image space is computed by projecting the

vector Dc on the subspace fz � eT z � 	g� This projection equals

Dc � �

n
�eTDc�e

and also

Dc � �

n
�cTx�e �

Thus� in the image space the algorithm moves from the point �
n
e to a point of the form

�

n
e� t

�
Dc� �

n
�cTx�e

�
�

��



where t � 	 is a certain scalar� The inverse image of such a point is equal to

�
n
x � t�D�c� �

n
�cTx�x�

�
n
� t�eTD�c� �

n
�cTx��

�

The movement is in the direction of the di�erence between the latter and x which is

proportional to

�D�c� �eTD�c�x �

In other words�

Proposition B��� The search is from x in the direction that takes away from the

point

�x� �
�

eTD�
xc
D�
xc �

A useful interpretation of the search direction is as follows� Imagine the vertices of

the simplex �that is� the unit vectors e�� � � � � en� are repelling� Suppose the force at x that
pushes away from ej is proportional to x�j cj � Then the direction of the resultant of these

forces is the search direction at x� In particular� if c � e� � ��� 	� � � � � 	�T then for every x
�x � 	� eTx � ��� the movement at x is away from the point e�� This means that all the

trajectories are straight lines� namely� starting at an interior point x� we move along the

line determined by x and e�� away from e�� until we hit the face where the �rst coordinate

vanishes� The following proposition generalizes this observation�

Proposition B��� Suppose the objective function c has the form

c � �c�� � � � � ck� 	� � � � � 	�T

where c�� � � � � ck � 	 �k � n�� Let xo be an interior point of the simplex� Under these

conditions� the trajectory induced by c� starting at xo� has the following properties�

�i� For every i� j � k� for any x along the path�

xi
xj

�
xoi
xoj

and� in particular� the path hits the point

�Pn

i�k�� x
o
i

�
	� � � � � 	� xok��� � � � � xon

�T
�

��



�ii� The projection of the path on the set of the �rst k coordinates is the same as the

projection on the �rst k coordinates of the path starting at �xo�� � � � � xok�
Pn

i�k�� x
o
i �
T

where the problem is
Minimize c�x� � � � �� ckxk

subject to x� � � � �xk�� � �

xi � 	 �

Proof� It is easy to verify the claims by looking at the di�erential equations

de�ning the path�

!xi � xi � cix
�
iPk

j�� cjx
�
j

�i � �� � � � � k�

!xi � xi �i � k � �� � � � � n� �

Let us denote by zk an n�vector in the unit simplex� consisting of 	�s in the �rst k

positions followed by equal coordinates in the last n� k positions� Thus�

z� �
�

n
��� �� �� � � � � ��T �

z� �
�

n� ��	� �� �� � � � � ��
T �

z� �
�

n� ��	� 	� �� � � � � ��
T �

and so on� The next proposition asserts that there exist objective functions that induce on

the simplex trajectories that visit the neighborhoods of all the points zi� �i � 	� �� � � � � n����

Proposition B��� For any � � 	� there exists an objective function vector c

�ci � 	� i � �� � � � � n � �� cn � 	�� such that in the problem �S�� the trajectory starting

at the center z� visits the �	neighborhoods of the points z�� � � � � zn�� and then hits the

optimal point zn�� � en�

Proof� Let � � 	 be any number� Consider �rst the problem �S� with the objective

function vector

c� � e� � ��� 	� � � � � 	�T �

��



With this vector� starting at z�� the trajectory hits the point z�� Let us now consider

an objective function vector of the form

c� � ��� �� 	� � � � � 	�T �

where � � 	� With the vector c�� starting at z�� the trajectory hits the point z��

However� by continuity� there exists an �� such that the trajectory will also visit the

��neighborhood of z�� provided � � ��� Let us now set � � �� where 	 � �� � ��� so

c� � ��� ��� 	� � � � � 	�T �

Suppose� by induction� we have de�ned

ck � ��� ��� ��� � � � � �k� 	� � � � � 	�T

�k � n � �� as an objective function vector such that with ck� the trajectory starting

at z�� visits the ��neighborhoods of the points z�� � � � � zk and then hits the point zk���
Consider now an objective function vector of the form

ck�� � ��� ��� � � � � �k� �� 	� � � � � 	�T �

where � � 	� With the vector ck��� starting at z�� the trajectory hits the point zk�

However� by continuity� there exists an �k�� such that the trajectory will also visit the

��neighborhoods of the points z�� z�� � � � � zk��� provided � � �k��� We now set � � �k��

where 	 � �k�� � �k��� so

ck�� � ��� ��� � � � � �k��� 	� � � � � 	�T �

Our proposition follows with k � n� ��

Corollary B��� For every � � 	� there exist an objective function vector c and an

interior point of the simplex� x� such that the projective rescaling trajectory induced by

c� starting at x� visits the �	neighborhoods of all the vertices of the simplex�

Proof� First� for any � � 	� consider a projective scaling transformation� T� de�ned

by

T��y� �
�Pn

i�� �
iyi

�
�y�� �

�y�� � � � � �nyn
�T

�

��



Every face of the unit simplex is invariant under T�� It is easy to verify that when �

tends to zero� the point zi tends to the vertex ei�� �i � 	� �� � � � � n� ��� It follows from
Proposition B�� that for every � there exist objective functions inducing trajectories that

visit the neighborhoods of the points T��zi� �i � 	� �� � � � � n�� This implies our claim�

It is easy to see that the arguments used in this appendix actually su�ce for proving

a stronger result�

Proposition B��� Let P � Rn be any polyhedral set and suppose x � P is

any nondegenerate vertex� Under these conditions� there exist n pairwise distinct points

x�� � � � � xn � P such that for every � � 	� there exists an objective function vector c that

satis�es the following�

�i� the vertex x maximizes the function cTx over P � and

�ii� the projective rescaling trajectory through x� visits the �	neighborhoods of all the

points x�� � � � � xn�

�



Appendix C� A lemma on orthogonal projections

Lemma C��� Let A � Rm��n and B � Rm��n be matrices such that ATB � 	� Un	

der these conditions� the orthogonal projection of any vector v � Rn on the intersection

of the nullspaces of A and B can be obtained as follows� First� project v orthogonally

into the nullspace of B� and then project this projection orthogonally into the nullspace

of A�

Proof� Without loss of generality� assume A and B are of full rank� Let

C �

�
A
B

�
�

Since ATB � 	� it follows that

CCT �

�
AAT 	
	 BBT

�
�

Also� since AAT and BBT are nonsingular �even positive�de�nite�� CCT is nonsingular�

The orthogonal projection of v into the nullspace of C is given by

�I � CT �CCT ���C�v �

It follows that

CT �CCT ���C � AT �AAT ���A�BT �BBT ���B �

On the other hand� the sequence of projections stated in the lemma results in the vector

�I �AT �AAT ���A��I �BT �BBT ���B�v �

The lemma now follows since ABT � 	�

�




Appendix D� On the general barrier method in inequality form

In this appendix we consider a more general barrier function technique� where the

barrier function is not necessarily the logarithm function� We also work here with the

linear programming problem in the inequality form

Minimize cTx

subject to Ax � b

where A � Rm�n is of full rank� We assume the feasible domain is of full dimension� The

barrier function method works with a related function

f�x� � cTx � �

mX
i��

g�Aix� bi�

where Ai denotes the i�th row of the matrix A� � is a positive parameter which is driven by

the algorithm to zero� and g��� is a convex function over the positive reals such that g���

tends to in�nity as � tends to zero� The common choice� which was discussed throughout

this paper� is g��� � � ln ��

The Newton barrier function technique amounts to taking a Newton step with respect

to the problem of minimizing f�x�� followed by an update of the value of �� Let x be a

point such that Ax � b and let D�
x denote a diagonal matrix of order m�

D�
x � diag �g��A�x� b��� � � � � g��Amx� bm�� �

It is easy to check that the gradient of f�x� is

rf�x� � c� �ATD�
xe

where e � ��� � � � � ��T � Rm� Let

D��
x � diag �g���A�x� b��� � � � � g���Amx � bm�� �

The Hessian matrix is thus

Hf �x� � �ATD��
xA �

The direction given by Newton�s method is the same as the direction of the vector

v � H��
f rf �

�
ATD��

xA
���

�c� �ATD�
xe� �

�	



So far we have not speci�ed the choice and update rule of �� Consider �rst the case

where � is taken at its limit� that is� we set � to zero after the Newton direction has been

computed� In other words�

v � �ATD��
xA�

��c �

Remark D��� We note that with g��� � � ln � this choice of � yields the analogue
of the linear rescaling method for the problem in inequality form �see also �GMSTW���

The latter can be seen as follows� Given an interior point x� consider the ellipsoid

E �

�
y �

mX
i��

�
Aiy � bi
Aix� bi

� �
��

� �
�

�

In other words�

E � fy � kD��
x �Ay � b�� ek � �g �

The direction v corresponds to moving towards the minimum of the function cTy over

E� Thus� consider the following optimization problem with respect to v�

Minimize cT �x � v�

subject to kD��
x �A�x � v� � b� � ek � � �

Since D��
x �Ax � b� � e� it follows that this problem is equivalent to

Minimize cTv

subject to kD��
x Avk � � �

However� we are interested only in the direction of the vector v� so we can write the

following set of equations for the optimality conditions�

�ATD��
x A�v � c �

This implies our claim that the choice � � 	 yields the analogue of the linear rescaling

algorithm� Notice how the linear rescaling algorithm is simpli�ed when the problem is

posed in the inequality form rather than the standard form�

We now return to general barrier functions g and consider the limiting behavior of

the direction

v � v�x� � �ATD��
xA�

��c

��



as the point x approaches the boundary of the feasible domain� Recall that the matrix

A is assumed to be of full rank and the diagonal entries of D��
x are positive� The vector

v � v�x� is the solution of the system

�ATD��
xA�v � c �

An equivalent system is obtained by de�ning w � D��
xAv�

�D��
x�
��w �Av � 	

ATw � c
�

Let R � R�x� denote the following diagonal matrix�

R � diag


�p

g���A�x� b��
� � � � � �p

g���Amx � bm�

�
�

The equations that determine v and w are the optimality conditions of the problem

�O�x��
Minimize kRwk�

subject to ATw � c �

For an interior point x� the optimal solution is unique� w � w�x�� The optimization

problem �O�x�� is well�de�ned but the solution is not necessarily unique� Suppose x tends

to a boundary point x� Let�s assume that the function g��� that underlies the barrier

method is convex� twice di�erentiable continuously� and g����� tends to in�nity as � tends

to zero� Since g���	� � � the matrix R tends to a �nite limit R �with some diagonal

entries equal to zero�� which we denote by R�x�� Assume� without loss of generality� that

for i � �� � � � � �� Aix � bi� whereas for i � � � �� � � � �m� Aix � bi� Let us rewrite the

optimization problem in the form

Minimize kR�w�k� �kR�w�k�
subject to AT

� w
� � AT

� w
� � c �

where the indices � and � correspond to the �rst � and the last m� � rows of A� respec�

tively� and describe submatrices accordingly� Denote the optimal value of the optimization

problem �O�x�� by f�x��

Proposition D���

lim
x�x

f�x� � f�x� �

��



Proof� First� for any w such that ATw � c�

f�x� � kR�x�wk� �

and hence

lim sup
x�x

f�x� � kR�x�wk� �

Let w be an optimal solution for �O�x��� It follows that for

lim sup
x�x

f�x� � kR�x�wk� � f�x� �

Second�

f�x� � kR��x�w��x�k� � kR��x�w��x�k� � kR��x�w��x�k� �

It follows that

lim inf
x�x

f�x� � lim sup
x�x

kR��x�w��x�k�

and kR��x�w��x�k is bounded in a neighborhood of x� since f�x� is� This implies that
w��x� is bounded in a neighborhood of x� Now� let w� be any accumulation point of

w��x� as x tends to x� Obviously�

lim sup
x�x

kR��x�w��x�k� � kR��x�w�k� � kR�x�wk� � f�x� �

This �nally implies our claim�

Proposition D��� The vector R�x�w�x� converges as x tends to x�

Proof� Let L denote the set of all vectors w� � R� for which there exists a vector

w� � Rm�� such that

AT
� w

� � AT
� w

� � c �

Let us denote by w��x� the unique solution of the following optimization problem �in

terms of w���

�O��x��
Minimize kR��x�w�k�

subject to w� � L �

Since R��x� � 	�

f�x� � kR��x�w��x�k� �

��



On the other hand� for any x we have w��x� � L� so

kR��x�w��x�k� � kR��x�w��x�k� � f�x� �

Since R�x� tends to R�x��

lim inf
x�x

kR��x�w��x�k� � f�x�

and

lim inf
x�x

kR��x�w��x�k� � f�x� �

This implies that kR��x�w��x�k� tends to zero� so R��x�w��x� converges to zero� More�

over� it now follows that kR��x�w��x�k� converges� and its limit is necessarily equal
to f�x�� Any accumulation point of w��x� �as x tends to x� is an optimal solution to

�O��x��� However� the latter has a unique optimal solution� It �nally follows that w��x�

converges to w��x�� This completes the proof�

The behavior of the direction of v�x� as x approaches a boundary point is summarized

in the following theorem�

Theorem D��� Suppose the function g��� is convex� twice di
erentiable continu	

ously� and g����� tends to in�nity as � tends to zero� Under these conditions� the vector

�eld v � v�x� extends continuously to the boundary of the feasible domain� Moreover�

the direction of v�x� tends to a direction parallel to any face � as x approaches ��

Proof� In Proposition D�� we showed that� as x tends to x� the vector Rw tends

to a vector of minimum norm relative to R� Thus� �D��
x�
��w also tends to a �nite limit�

and Av tends to the same�Since A is of full rank� v converges to a limit� Moreover� for

every i such that Aix � bi� �D��
x�
��
ii wi tends to zero so� necessarily� Aiv tends to zero�

Obviously� this means that the direction of v tends to a direction parallel to the face

that contains the point x in its interior�

Theorem D�� generalizes to any �xed value of �� The direction v is given in general

by the equation

�ATD��
xA�v � c� �AT d�x �

where d�x � D�
xe� Let

u � D��
xAv � �d�x �

��



We now have an equivalent system

�D��
x�
���u� �d�x� �Av � 	
ATu � c �

With R denoting the same matrix as above� the equations that determine v and u are

precisely the optimality conditions of the problem

Minimize
�

�
kRuk� � �

�
�D��

x�
��d�x

�T
u

subject to ATu � c
�

We �rst observe the following�

Proposition D��� Suppose g��� is a real	valued function satisfying the following

conditions�

�i� g��� is di
erentiable in an open interval �	� a��

�ii� g��� tends to in�nity as � tends to zero�

�iii� The derivative g���� is monotone�

Under these conditions� the ratio g���
g����

tends to zero with ��

Proof� Since g� is monotone� g� tends to � at 	� Thus� g is monotone decreasing�

and hence invertible� in a neighborhood of 	� For y near 	� let y� denote the smallest

value such that g�y�� � �
�
g�y�� Obviously� y� � y� Since g is convex and di�erentiable�

�

�
g�y� � g�y�� g�y�� � g��y��y � y�� �

Thus�

��y � y�� �
g�y�

g��y�
� 	 �

It su�ces to show that y � y� tends to 	 with y� Now pick xo and de�ne xi �	 � xi �
xi��� by

g�xi� � �g�xi���

for i � �� Obviously� the sequence fxig is monotone decreasing and converges to 	� so
xi�� � xi tends to 	� If y lies between xi and xi�� then y� lies between xi�� and xi���

It follows that

y� � y � xi�� � xi �

which tends to 	�

��



The asymptotic behavior of the direction of v in the general case is summarized as

follows�

Theorem D��� Suppose the function g��� is convex� twice di
erentiable con	

tinuously� and g����� tends monotonically to in�nity as � tends to zero� Under these

conditions� the vector �eld

v � v�x� � �ATD��
xA�

���c� �AT d�x�

�where � is �xed� extends continuously to the boundary of the feasible domain� Moreover�

the direction of v�x� tends to a direction parallel to any face � as x approaches ��

Proof� By Proposition D�� and our assumptions about the underlying function

g���� the vector d � �D��
x�
��d�x tends to a �nite limit and� moreover� if Aix� bi tends to

zero then also di tends to zero� As in the proof of Proposition D��� it follows that here

the vector Ru approaches a �nite limit and hence the vector

Av � R�u� �d

approaches a �nite limit� Moreover� it also follows that the direction of v tends to be

parallel to the face as before�

��



Appendix E� The behavior of the barrier method in inequality form near vertices

Let us now consider the behavior of the generalNewton barrier algorithm �for problems

in inequality form� in the neighborhood of a nondegenerate vertex� Let V denote any

nondegenerate vertex of the feasible polyhedron and suppose� without loss of generality�

that the �rst n constraints are tight at V � Let B denote the �n � n��submatrix of A

consisting of the �rst n rows� Thus� B is nonsingular� Also� let N denote the submatrix

consisting of the other m � n rows of A� Let D�
B � D

��
B� D

�
N and D��

N denote the square

submatrices of D�
x and D��

x corresponding to the indices of B and N as suggested by the

notation� Obviously�

ATD��
xA � BTD��

BB � NTD��
NN �

When the point x tends to the vertex V � the diagonal entries of D��
B tend to in�nity while

those of D��
N tend to some �nite limits� It follows that

�ATD��
xA�

�� �
�
I �

�
BTD��

BB
���

NTD��
NN

��� �
BTD��

BB
���

�
�
I � B���D��

B�
��B�TNTD��

NN
���

B���D��
B�

��B�T

so �ATD��
xA�

�� is asymptotically equal to B���D��
B�

��B�T �

Consider the approximate �eld in the neighborhood of the vertex V � The underlying

di�erential equation of the approximate �eld is the following�

!x � �B���D��
B�

��B�T
�
c� �ATD� �p

n�m
e

�
�

We gain more insight if we change variables as follows� Let

s � Bx � bB �

The problem in terms of s is

Minimize cTB��s

subject to AB�� � b �AB��bB �

Let �c � B�T c� Also� note that !s � B !x� It follows that di�erential equation in terms of s

is the following�

!s � ��D��
B�

���c� ��D��
B�

��B�TATD�e �

��



Note that

B�TAT � � I B�TNT �

so

!s � ��D��
B�

�� ��c� �B�TNTD�
Ne
�� ��D��

B�
��D�

Be �

Under our assumptions about the function g� the dominant term in the latter is

���D��
B�

��D�
Be �

Interestingly� when g��� � � ln��� this has a very simple form�

��D��
B�

��D�
Be � s �

This shows that for any �xed � � 	� if x is su�ciently close to the vertex V then x is

repelled from V �

�



Appendix F� Di
erentiability of the linear rescaling vector �eld

In this appendix we prove the di�erentiability of the linear rescaling vector �eld on the

entire feasible region� Thus� we have here another proof of the continuity already proven

in section �� We use the same notation as in section ��

We consider points x in

P � fx � Ax � b � x � 	g �

where the problem is to maximize cTx� Suppose the point x tends to x� Denote N �

f�� � � � � ng� Let I� denote the set of indices i such that xi � 	 and let I� � N n I�� Let Ai�

i � �� �� denote the submatrix of A consisting of the columns with indices in Ii� Let R�

and R� denote the subspaces of Rn corresponding to the sets I�� I�� Also� for any n�vector

x denote by xi a subvector corresponding to Ii�

We use the following notation�

E � fy � Ay � 	g� this is a �xed subspace in Rn

c � The objecive function vector� this is a �xed vector in Rn

E� � E � R�� this is a �xed subspace in Rn

F � The orthogonal complement of E� in E� also �xed

�x � The orthogonal projection of Dxc into D��
x E� extended continuously to P � varies with

x

Fx � The orthogonal complement of D��
x E� in D��

x E�

�Fx � The orthogonal projection of Dxv into Fx�

We wish to show that Dx�x is di�erentiable as a function of the point x even at bound�

ary points x of P � We will show below that Dx�Fx is di�erentiable with zero derivative on

the boundary� and that �Fx tends to zero as x tends to x�

Proposition F��� For every K � 	� there exists a neighborhood NK of x such that

for all interior points x � NK and u � D��
x F � ku�k � Kku�k�

Proof� Since E � R� � E�� we have F � R� � 	� Thus� the angle between any

vector in F and any vector in R� is bounded away from zero� In other words� there

�




exists a constant C � 	 such that for u � �u�� u�� � F �

Cku�k � ku�k

�with equality holding at u� � u� � 	�� It follows that for every x � 	�

kD��
x u�k � C

minfxj � j � I�g
maxfxj � j � I�gkD

��
x u�k

and

lim
x�x

kD��
x u�k

kD��
x u�k �  �

�Note that minfxj � j � I�g tends to a positive limit whereas maxfxj � j � I�g tends to
zero�� This implies our claim�

Proposition F��� Given K � 	� let NK be a neighborhood of x satisfying the

condition of Proposition F��� Let x � NK be an interior point� let w � �w�� w�� � D��
x F �

and let u be a unit vector in D��
x E�� Under these conditions�

uTw � kw�k � �p
K� � �

kwk �

Proof� Since u� � 	� we have

uTw � �u��Tw� � kw�k �

By Proposition F���

kwk� � kw�k� � kw�k� � �K� � ��kw�k�

and this complete the proof�

For any �at M � Rn and any w � Rn� let $�w�M� denote the orthogonal projection

of w into M �

Proposition F��� Given K � 	� let NK be a neighborhood of x as in Proposition

F��� Let � denote the dimension of F�� Under these conditions� for every w � D��
x F �

k$�w�D��
x E��k �

r
�

K� � �
kwk

�	



and

k$�w�Fx�k �
r
�� �

K� � �
kwk �

Proof� Let fu�� � � � � u�g be an orthonormal basis of D��
x E�� Then� by Proposition

F���

k$�w�D��
x E��k� �

�X
i��

�wTui�� � �

K� � �
kwk� �

Recall that Fx is the orthogonal complement of D��
x E� in D��

x E� so

k$�w�D��
x E��k� � k$�w�Fx�k� � kwk�

since w � D��
x F � This implies the rest of the claim�

Proposition F��� Under the conditions of Proposition F��� for every f � �f�� f�� �
Fx�

kf�k � K

� �
p
�
kf�k �

Proof� There is a point e � e�f� � D��
x E� such that f � e�f� � D��

x F � Thus by

Proposition F��

Kkf� � e�f�k � kf�k

and since f and e�f� are orthogonal� Proposition F�� gives

ke�f�k �
r

�

K� � �
kf � e�f�k �

r
�

K� � �

r
K� � �

K�
kf�k �

Proposition F��� The orthgonal projection $�Dxc�Fx� tends to zero as x tends to

x�

Proof� Let ff�� � � � � fsg be an orthonormal basis of Fx� We represent the subvectors
of f i corresponding to the sets I� and I� by f �i	�� and f �i	��� respectively� We have for

every i

�Dxc�
T f i � � �Dx�c

��Tf �i	�� � �Dx�c
��Tf �i	�� �

��



By Proposition F��� there exists constants Kx and Cx� both tending to zero as x tends

to x� such that

kf �i	��k � Kxkf �i	��k

and

kf �i	��k � Cx �

We now use the Cauchy�Schwartz inequality to estimate

�Dx�c
��T f �i	�� � �Dx�c

��T f �i	�� � kx�k� kc�k kf �i	��k � kx�k� kc�k kf �i	��k
� kx�k� kc�k Cx � kx�k� kc�k kf �i	��k �

Thus� �Dxc�Tf i tends to 	 as x tends to x and

�Fx �
X
i

�
�Dxv�

T f i
�
f i

tends to zero�

Let �D��

x E�
denote the orthogonal projection of Dxc on D��

x E�� Then �D��

x E�
is real

analytic in a neighborhood of x� Thus the vector

�x � �Fx � �
D
��

x E�

extends continuously to the boundary point x with �Fx � 	� Note that at a boundary

point x� �x is the orthogonal projection of Dx�c
� into Dx�E�� Now�

Dx�x � Dx�Fx �Dx�D��

x
E�

and

Dx�Fx � Dx��Fx� � Dx��Fx� �

From the proof of Proposition F�� and Proposition F���

�F
x�

� cp
�� �

minfxj � j � I�g
maxfxj � j � I�g�Fx�

and �Fx� tends to zero� so

Dx�Fx � maxfxj � j � I�g
C minfxj � j � I�gk�Fx�kmaxfxj � j � I�g�

p
���� � maxfxj � j � I�gk�F

x�
k �

��



Since
maxfxj 
j�I�g

kxk is bounded and k�Fx�k tends to zero we have
kDx�Fxk
kxk tending to zero

as x tends to x� We �nally have

Theorem F��� Dx�x is di
erentiable at x and Dx�Fx has zero derivative at x�

Proof� The computation above applies to every face in which x lies� to prove that

Dx�Fx has zero derivative at x�

Remark F��� Having proven the di�erentiability� we can now give an explicit

expression for the derivative� Let�s denote

U � U�x� � Dx�x � Rn

and let U ��x� � Rn�n denote the derivative� If x is interior the the vector U is determined

by the following set of equations in U and W �

D��
x U�x� �ATW �x� � c
AU�x� � 	

�

Di�erentiation gives

D��
x U ��x� �ATW ��x� � �D��

x DU�x�

AU ��x� � 	
�

The interpretation of this system is that the j�th column of U ��x� is equal to Dx times

the orthogonal projection of the j�th column of the matrix M � �D��
x DU�x� into the

nullspace of the matrix ADx� However� sinceM is diagonal� the j�th column of U � turns

out to be the orthogonal projection of
Uj�x�

x�
j

ej into that nullspace� Interpretations can

be developed for higher order derivatives using the same idea�

��
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