
Extending NC and RNC Algorithms

Nimrod Megiddo�

A technique is presented by which NC and RNC algorithms for some prob�

lems can be extended into NC and RNC algorithms� respectively� that solve more

general parametric problems� The technique is demonstrated on explicit bounded

degree circuits� Applications include parametric extensions of the shortest path

and spanning tree problems and� in particular� the minimum ratio cycle problem�

showing all these problems are in NC�

�� Introduction

A parametric technique presented in ��� �� has been applied in the design of many serial

algorithms� It was shown in ��� that sometimes a good parallel algorithm for one problem
helps via this technique in the design of a serial algorithm for another problem� We show
here that essentially the same idea can be used to prove that if one problem can be
solved by a circuit of polynomial size and poly�log depth �that is� the problem is in the

class NC	� then a certain extension of the problem is also in NC� A similar result holds
for probabilistic circuits� that is� if a problem is in the class RNC� then so is a certain
extension of it�

The technique also sheds more light on the di
erences between strongly polynomial

time and polynomial time vis�a�vis parallel computation� A polynomial time algorithm
for a problem with numerical inputs is said to run in strongly polynomial time if the
number of arithmetic operations and comparisons is bounded by a polynomial in the

number of inputs and is independent of the magnitudes of the inputs� In the context
of sequential computation it seems that strongly polynomial time is merely an aesthetic
advantage� However� this is not so in the context of parallel computation� To explain
the di
erence� let us �rst introduce an example which is referred to several times in this

paper�

Consider a parametric version of the shortest path problem as follows� Suppose
the edges of a graph on n vertices have lengths dij � dij�t	 � aijt 
 bij �assuming

�The IBM Almaden Research Center� San Jose� California ����������� Mathematical Sciences Re�

search Institute� Berkeley� California� and Tel Aviv University� Tel Aviv� Israel�

�



aij � �	� where t represents time� Let t� denote the time at which the length ��t	 of the
shortest path� connecting two distinguished vertices� exceeds a given integral length L

�assuming� for simplicity ���	 � L	� Here� without knowing t� explicitly we can compare
it with a value t � t� by computing the length of the shortest path at time t�� Thus�

we can approximate t� using a binary search� Furthermore� if all the aij�s and bij�s are
rational then we can stop the search at a certain stage and compute t� directly� This
can be seen as follows� For simplicity� assume all the coe�cients are integers of absolute
value less than M � Then the binary search is for a positive rational number whose

numerator and denominator are bounded by L and nM � respectively� This implies that
O�log L
 logM 
 log n	 queries su�ce� Such an approach yields a polynomial algorithm
which is not strongly polynomial� The naive binary search is an �inherently sequential�
operation� It does not seem that this algorithm can be parallelized to run in less than

p��log n� log logL� log logM	 time with less than p��n� logL� logM	 processors� where p�
and p� are polynomials� However� we develop NC algorithms for problems of this kind�
These are usually NC algorithms in a strong sense that the number of processors does not

depend on the numerical values �provided we do not have to parallelize the execution of
the arithmetic operations	� These algorithms are also strongly polynomial as sequential
algorithms�

�� Preliminaries

We �nd it convenient to work with the model of computation of a circuit �that is� a
directed acyclic graph	 consisting of �arithmetic� gates �that is� gates that perform the
operations 
� �� � and �	 and comparators� linked by wires and joints� We call such
circuits arithmetic�

We say that input I of the circuit is involved in gate G �resp� wire w	 if there is a
path in the circuit leading from I into G �resp� w	� A set of inputs is involved in a gate
or a wire if at least one of the members of the set is involved in that gate or wire�

The input gates are usually fed with rational numbers but the basic idea of our
technique applies to computation over any ordered �eld� The extension of the algorithm

corresponds to feeding some of the input gates with linear functions of a single parameter�
and then searching for some well�de�ned value of the parameter�

A concrete example of a problem to which the technique applies is the parametric
shortest path problem discussed in Section �� Suppose the input gates of a circuit corre�

spond to edges of a graph� and they are fed with the lengths of these edges� The circuit
computes a shortest path between two designated vertices� Suppose the lengths of the
edges are monotone increasing with time and we would like to compute the time at which
the length of the shortest path exceeds a certain given level L� We will show that since

the shortest path problem can be solved by a polynomial size circuit of poly�log depth�
this parametric problem can also be solved by such a circuit�

�



Many algorithms in combinatorial optimization can be carried out without multipli�
cations or divisions� If a circuit has neither multiplication nor division gates then we can
parameterize the entire set of inputs� In general� we use the notion of a parameterizable
set of input gates de�ned as follows�

De�nition ���� A set S of inputs is parameterizable if it is not involved in any division
gate� and for every multiplication gate G there is a most one wire w going into G such

that S is involved in w�

The extension of the problem is in the sense that we can feed the members of a parame�
terizable set of inputs by linear functions of a parameter� and solve for the value of the

parameter at which a certain value of the output is attained� This extension uni�es many
optimization problems �see ��� and the references thereof	�

�� Extensions of NC algorithms

In this section we explain the extension operation� Consider an arithmetic circuit C with
a certain parameterizable set S of inputs� For each input gate Ii� let xi � xi�t	 � ait
 bi
denote some linear function �of an indeterminate t representing� say� time	 associated

with Ii� such that ai � � for IinotmemberofS� Suppose we feed each Ii with the value
xi�to	 where to is any value of t� the same for all i� Obviously� the number carried by any
wire can be described by a piecewise linear function of t�

The functions carried by the wires may in general have a large number of breakpoints�

so that simultaneous implementation of the circuit at all the values of t may require a
large number of gates� However� there are many applications where one is interested in
implementing the circuit at some well�de�ned value t � t� which is not given explicitly�
Furthermore� one is actually interested in computing t��

It is easy to operate on linear �rather than piecewise linear	 functions� Suppose G is

an ADD gate with inputs u and v and output w � u
 v� If u and v are linear functions
of t� u � at
 b� v � ct
 d� then it is trivial to replace the gate G by two ADD gates G�

and G� that add a
 c and b
 d� respectively� Similarly� if H multiplies u and z� where

z is a constant� then H can be replaced by two gates H� and H� that multiply a� z and
b� z respectively� The more interesting case is of course that of COMPARE gates�

A COMPARE gate receives two numbers as input� It then outputs the maximum and
minimumon two di
erent wires� We �rst explain the basic idea of the algorithm and then

show how to carry it out in a circuit� We use for a while the terminology of processors�
Suppose P processors attempt to run a parallel algorithm with numerical inputs which
are given as linear functions of t� Suppose t is involved in the algorithm only in additions�
subtractions� multiplications by constants� and comparisons� Also� suppose one of the

�



outputs of the algorithm� F � F �t	 is a monotone function of t� and the value of F �t�	
is known even though t� is not known� We would like to compute t� and all the other
outputs at t�� The extended algorithm maintains throughout the execution an interval
�t� �t� that is guaranteed to contain t�� The current values of all the �program variables�

are linear functions of t over the interval �t� �t�� When a processor has to compare two such
functions� the outcome may not be uniform on the entire interval �t� �t�� In such a case
the processor can at least compute a point t�� such that the outcome of the comparison
would be uniform over each of the intervals �t� t�� and �t�� �t�� Now� by setting t to t� and

running the original algorithm� one can tell whether t� � t�� t� � t� or t� � t�� If this is
done then the interval �t� �t� can be replaced by one of the intervals �t� t�� and �t�� �t�� and
the processor can continue� so that all the variables remain linear functions of t over the
revised interval� At the end all the outputs are linear functions of t� over some interval

that contains t�� so that t� and all the outputs at t� can be computed directly�

We now explain how to extend a circuit to carry out the idea of the preceding para�
graph� Assume we are given an arithmetic circuit C with a parameterizable set S of
input gates� Also� assume there exists an output gate whose value would be a monotone

function of t if the gates in S were fed with linear functions of t �and the other ones with
constants	� We specify how to replace each gate of C by some arithmetic circuit� First�
all the input and output gates that have to carry linear functions of t are each replaced
by a pair of gates� so that they can carry the two coe�cients of the function� Then ADD�

SUBTRACT and MULTIPLY gates are replaced by suitable circuits of �xed small size
that �respectively	 add or subtract linear functions of t� or multiply linear functions of t
by constants� DIVIDE gates stay as they are since they operate on constants� Also note

that� by assumption� MULTIPLY gates never multiply two linear functions of t� The
more interesting part of the construction is the case of COMPARE gates�

Let G be a COMPARE gate� that is� G has two numerical inputs� and it outputs
the same two numbers so that the maximum is carried by the right�hand wire and the

minimum by the left�hand one� We replace G by a circuit �G�C	 as follows� First� let
Cp denote a circuit� which is essentially the same as C except that it contains a �front�
end�� this amounts to two input gates per each input gate of C in the set S� and also
one more input gate� through which it receives a value of t� The circuit Cp receives as

inputs linear functions of t and a speci�c value of t� It then computes speci�c inputs
for the copy of C contained in it� The input gates of each copy of Cp are appropriately
linked to the input gates of the extended circuit �C �that is� two gates per input gate of the
original circuit which is in S	� To keep the fan�out bounded� this linkage is indirect� using

a standard binary tree structure� The circuit �G�C	 contains a copy of the circuit Cp�
Besides the inputs of Cp� it also has four other input gates through which it receives the
coe�cients of the linear functions of t it has to compare� The circuit �G�C	 �rst computes
the intersection point t� of the two linear functions it receives �the cases of parallel or

identical lines are trivial and hence omitted from our discussion	� This value t� is sent

�



to the copy of Cp contained in �G�C	 so that the problem is solved at t�� The resulting
value F �t�	 is compared with F �t�	 �which is given as input to the grand circuit	� Finally�
�G�C	 has four outputs carrying the coe�cients of the two input functions� now identi�ed
as the coe�cients of the maximum and the minimum �relative to function values at t�	�

Thus� in this construction each COMPARE gate solves the entire problem at some value
t�� which it �rst computes from its inputs� and then carries out one comparison and sends
the result�

The dimensions of the extended circuit are related to the original one as follows� Let
m and d denote the total number of gates and the depth of C� respectively� The extended

circuit �C is obtained by replacing each gate G of C by a circuit �G�C	 of size O�m	 and
depth O�d	� and also adding a communication network �that is� wires and joints	 of size
O�m�	 and depth O�logm	 for linking every �G�C	 to the inputs� Thus� the extended
circuit has size O�m�	 and depth O�d� 
 logm	� Hence� if C is an NC circuit then so is

the extended circuit� We can state the result as follows�

Theorem ���� Let C be an arithmetic circuit of size m and depth d� Suppose C has a
certain output gate whose result is a monotone function F �t	 of the parameter t if the

inputs �in a parameterizable set of input gates� are values of linear functions of t� Under
these conditions� there exists an arithmetic circuit of size O�m�	 and depth O�d�
logm	
that solves the equation F �t	 � L for any L�

Usually� a more e�cient extended circuit can be constructed� Obviously� it is not
necessary that each gate will have its own copy of the original circuit� As argued in ����
it can also be shown here that critical values produced by di
erent gates can be tested
in a binary search fashion� This would reduce the size of the circuit at the expense of

increasing its depth �which remains poly�log though	� The idea is as follows� We say
that gate G is at depth k if k is the length of the longest path connecting any input
to G� Let C�k	 and mk denote the set of all COMPARE gates of C at depth k and

the number of these gates� respectively �k � �� � � � � d	� It su�ces to use only O�logmk	
copies of C for all the gates in C�k	� These copies �connected in series	 can be used to
search for t� in a set of mk values� More precisely� let �C�k	 denote a circuit that receives
mk inputs� t�� � � � � t�mk �� and then outputs two values a� b � ft�� ���� tmk

�����g� such

that a � t� � b� and there is no t� such that a � t� � b� The circuit �C�k	 can be assumed
to have size O�m logmk	 and depth O�d logmk	 �these �gures include a sorter for the
inputs of �C�k		� Now� each COMPARE gate G at depth k is extended into a circuit
that computes a critical value tG� sends it to �C�k	� and then receives from �C�k	 the

outcome of the comparison between tG and t�� With this information� G can perform the
comparison for which it is responsible� The new construction has size O�m

P
k logmk	

and depth O�d
P

k logmk	� In any case we have the following theorem�

Theorem ���� Under the conditions of Theorem ���� there exists an arithmetic circuit
of size O�md logm	 and depth O�d� logm	 that does the same�

�



Depending on the relative importance of depth and size� one can construct hybrids of
the approaches that led to Theorems ��� and ���� so that even more e�cient circuits can
be designed for accomplishing the same task�

Theorems ��� and ��� can be used to show that many parametric versions of problems
in NC are also in NC� An interesting example is the minimum cost�to�time ratio cycle

in a network with edge�costs cij and edge�times �ij � �� The problem is to �nd a simple
cycle over which the ratio of total cost to total time is minimized relative to all simple
cycles� It is well known that this problem is equivalent to �nding the smallest t� for which

the network with edge�lengths dij�t	 � cij�t	� �ij�t	t contains a cycle of total length less
than or equal to zero� The problem of deciding whether a network has a cycle of total
nonpositive length is in NC� since it can be solved by the all�pair shortest path algorithm�
Thus we have

Corollary ���� The minimum ratio cycle problem is in NC�

Other applications are parametric versions of spanning tree problems� certain problems of
computational geometry� linear programming in bounded dimension� and specializations
of hard combinatorial optimization problems to trees �see the references of ��� for more

detail	�

�� Extensions of RNC algorithms

A probabilistic circuit is one that� besides the usual gates� also has gates that �toss

coins�� An RNC algorithm for a problem is a probabilistic circuit of polynomial size and
poly�log depth� where one of the output gates indicates �success� or �failure�� the circuit
computes the �correct� solution to the problem �and indicates success	 with probability
of at least �

�
� Obviously� if the problem is processed by the circuit k times independently�

the probability of �at least one	 success is at least �� ��k�

Consider an extension of such an RNC algorithm where each COMPARE gate G is
replaced by a copy of the original circuit C� as described in the preceding section� The
probability that all the copies of C succeed may be as small as ��m� if there are m copies

of C� If one copy fails then the entire circuit may fail� However� this is not a serious
problem� All we have to do is run each such copyK times� that is� use K copies instead of
one for each COMPARE gate� The gate succeeds if at least one of these copies succeeds�
Thus� the entire circuit succeeds with probability of at least �� � ��K	m� We choose K

so that this probability is at least �

�
� Obviously this results in depth O�Kd�	 and size

O�Km�	� It is easy to see that a suitable K is O�logm	 so the depth remains poly�log
and the size remains polynomial�

�



References

��� N� Megiddo� �Combinatorial optimization with rational objective functions�� Math�
ematics of Operations Research � �����	 ��������

��� N� Megiddo� �Applying parallel computation algorithms in the design of serial algo�
rithms�� Journal of the Association for Computing Machinery �� �����	 ��������

��

�


