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Abstract

In ��� �� �� the authors introduced a technique which enabled them to solve
the parametric minimum cycle problem with a �xed number of parameters in
strongly polynomial time� In the current paper� we present this technique as
a general tool� In order to allow for an independent reading of this paper� we
repeat some of the de�nitions and propositions given in ��� �� ��� Some proofs
are not repeated� however� and instead we supply the interested reader with
appropriate pointers�

Suppose Q � Rd is a convex set given as an intersection of k halfspaces� and let

g � Q � R be a concave function that is computable by a piecewise a	ne algo


rithm �i�e�� roughly� an algorithm that performs only multiplications by scalars�

additions� and comparisons of intermediate values which depend on the input��

Assume that such an algorithm A is given and the maximal number of op


erations required by A on any input �i�e�� point in Q� is T � We show that

under these assumptions� for any �xed d� the function g can be maximized in a

number of operations polynomial in k and T � We also present a general frame


work for parametric extensions of problems where this technique can be used

to obtain strongly polynomial algorithms� Norton� Plotkin� and Tardos �
��

applied a similar scheme and presented additional applications� Keywords�

Complexity� concave
cost network �ow� capacitated� global optimization� local

optimization�

�See ��� �� for an earlier version�
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�� Introduction

A convex optimization problem is a problem of minimizing a convex function g over
a convex set S � Rd� Equivalently� we can consider maximizing a concave function�

We consider the problem of maximizing a concave function� where the dimension
of the space is �xed� We also assume that the function g is given by a piecewise a�ne
algorithm �see De�nition ���� which evaluates it at any point�

The results of this paper can be extended easily to the case where the range of g
is R� for any � � �� We then de�ne the notions of maximum and concavity of g with
respect to the lexicographic order as follows� We say that a function g � Q � Rd � R�

is concave with respect to the lexicographic order �lex if for every � � 	
� �� and
x�y � Q�

�g�x� � �� � ��g�y� �lex g��x� �� � ��y� �

Applications where the range of g is R� were given in 	
��
In Section �� we de�ne the problem� In Section �� we introduce the subproblem of

hyperplane queries� which is essential for the design of our algorithm� In Section ��
we discuss the multi�dimensional search technique which we utilize for improving our
time bounds� In Section �� we introduce the optimization algorithm� In Sections 
�
and �� we prove the correctness and analyze the time complexity of the algorithm� In
Section �� we discuss applications of the technique introduced here to obtain strongly
polynomial time algorithms for parametric extensions of other problems�

�� Preliminaries

Let Rd
� denote the set of vectors � � ���� � � � � �d�T � Rd such that �d � �� For

� � Rd��� denote by � � Rd
� the vector � � ��� ��� For a halfspace F � denote by �F

the boundary of F � i�e�� �F is a hyperplane�

De�nition ���� For a �nite set C � Rd��� denote by LC � Rd�� � R the minimum
envelope of the linear functions that correspond to the vectors in C� i�e��

LC��� � min
c�C

cT� �

Denote by LC � R
d � R the function given by

LC��� � LC��� �

The vectors in C � Rd�� are called the pieces of g� For a piece c � C and a vector
� � Rd such that cT� � g���� we say that c is active at ��

De�nition ���� For a function g � Q� R� where Q � Rd�

�i� Denote by �g �or �� for brevity� the set of maximizers of g���� The set � may
be empty�
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�ii� An algorithm that computes the function g �i�e�� for � � Q returns the value
g��� and otherwise stops or returns an arbitrary value� is called piecewise a�ne�
if the operations it performs on intermediate values that depend on the input
vector are restricted to additions� multiplications by constants� comparisons�
and copies�

�iii� For a piecewise a�ne algorithm A� denote by T �A� and C�A� the maximum
number of operations and the maximum number of comparisons� respectively�
performed by A� We assume that this numbers are �nite�

�iv� If g � LC for some C � Rd��� we say that g� � LC� is a weak approximation of
g� if the set of pieces of g� is a subset of the set of pieces of g �C � � C�� and the
a�ne hulls a� �g and a� �g� are equal� The function g� � LC� is a minimal weak
approximation of g� if there is no C�� � C � such that LC�� is a weak approximation
of g�

Remark ���� Suppose that A is a piecewise a�ne algorithm� Consider the computa�
tion tree �i�e�� the tree consisting of all possible computation paths� ofA� Observe that
all the intermediate values along a computation path� including the �nal output� can
be expressed as linear functions �i�e�� are of the form aT�� of the input vector� These
linear functions can be easily computed and maintained during a single execution of
the algorithm� These linear functions map the input vectors whose computation path
coincides so far with that same path to the corresponding value� Moreover� the linear
function which corresponds to the �nal output at a single execution is a piece which
is active at the input vector�

Remark ���� Suppose g � Q � Rd � R is concave and computable by a piecewise
a�ne algorithm A� It is easy to see that there exists a �nite set C � Rd�� such that
g coincides with LC�

De�nition ���� Suppose Q � F� � � � � � Fk is the intersection of k closed halfspaces
and g � Q � R� g � LC� is concave and computable by a piecewise a�ne algorithm�

�i� For � � Rd� denote
Q� �

�
fFi � � � �Fig �

Denote by g� � Q� � Rd � R the function whose pieces are all the pieces of g
which are active at ��

g���� � min
c�C

fcT� � cT� � g���g �

Note that g� � LC� where C � � fc � C j cT� � g���g� See Figure � for an
example� Later� we describe an algorithm for evaluating g��

�ii� For a given sequence of vectors ��� � � � ��� � Rd� denote g������� � ��� � � �g������ � � �����
Note that g������� depends on the order of the �i�s�
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�iii� Suppose an ��dimensional �at S � Rd� is represented as a set of solutions of a
linear system of equations� There exists an a�ne mapping M from R� onto S�
which can be computed in O�d�� time� Denote QS � f� � R� j M��� � Qg�
and de�ne gS � QS � R by gS � g 	M �

Proposition ���� Let A be a piecewise a�ne algorithm for evaluating g � Q � R�
where Q � Rd is given as the intersection of k halfspaces� By modifying A we can
obtain the following piecewise a�ne algorithms�

�i� For any given vector � � Q� we obtain an algorithm A� for evaluating g� so
that T �A�� � T �A� � dC�A� and C�A�� � C�A��

�ii� For any �	dimensional 
at S � Rd� represented as the set of solutions of a
system of linear equations� we obtain an algorithm AS for evaluating gS so that
T �AS� � T �A� �O��d� and C�AS� � C�A��

Proof� Part ii is straightforward� since we can choose the algorithm AS to be a
composition of the appropriate a�ne mapping and A� We discuss the construction
of the algorithm A� for part i� Consider an input vector � � Q�� Let � � 
 be
such that for all �� �
 	 �� � ��� � � ���� � �� � Q� and the set of pieces of g
which are active at � � ���� � �� is equal to the set of pieces which are active at
� � ���� ��� It is immediate to see that such an � always exists� It follows from
the de�nition that g���� is the value of � at the linear pieces of g which are active
at � � ��� � ��� The algorithm A�� when executed with an input �� follows the
computation path of A which corresponds to the input ��������� The algorithm
computes the linear functions associated with the intermediate values of this path
�see Remark ����� Recall that the linear function which corresponds to the �nal
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value is a piece of g which is active at � � ��� � ��� Hence� the value of g���� is
obtained by substituting � in this linear function� In order to follow the desired run
of A� the algorithm A� mimics the work of A on additions and multiplications by
scalars� keeping track of linear functions rather than just numerical values� When
the run of A reaches a comparison �branching point�� A� does as follows� Without
loss of generality we assume that the branching is according to the sign of the
linear function aTx� In order to decide what to do at a branching point� A� has
to determine the sign of aTx at the point x � � � ��� � ��� Since � is not given
explicitly� the decision cannot be made directly by substitution� The decision is
made as follows� The algorithm �rst computes � � aT�� If � 
� 
� then obviously
for any vector y� for su�ciently small number � � 
 aT �� � �y� has the same sign
as �� In particular this holds for y � �� � and the sign is detected� Otherwise� if
� � 
� it follows that aT �� � ���� ��� � �aT�� Hence aT� has the same sign as

aT �� � ���� ���� It remains to compute the sign of aT� and branch accordingly�
It is easy to verify that A� evaluates the function g� for any vector � � Q�� and
performs the stated number of operations�

Proposition ���� If � � �g then g� is a weak approximation of g�

Proof� See 	�� �� for a proof�

The goal is to solve the following problem�

Problem ��	� The input of this problem consists of a polyhedron Q � F��� � � �Fk�
given as the intersection of k closed halfspaces and a piecewise a�ne algorithm A for
evaluating a concave function g � Q � R� Decide whether or not g is bounded� If
so� then �nd a �� � rel int�� We refer to the following as the �optional� part of the
problem� If g is bounded� then �nd a subset C of the set of pieces of g� such that LC
is a minimal weak approximation of g� and jCj � �d�

The set C may be viewed as a certi�cate for the fact that the maximumof the function
g does not exceed g����� In the current paper we do not discuss the details of solving
the optional part of the problem� See 	�� �� for an existence proof and an algorithm
which �nds such a set�

We propose an algorithm for Problem ���� In any �xed dimension d� the total
number of operations performed by this algorithm is bounded by a polynomial in T �A�
and k� The algorithm is based on solving instances of a subproblem� which we call
hyperplane query� For a given hyperplane H�� decide on which side of H� the function
g is either unbounded or attains its maximum� A procedure for hyperplane queries is
called an oracle� Obviously� an oracle can be utilized to perform a binary search over
the polyhedron Q� However� in order to attain an exact solution within time bounds
that depend only on d� T � and k� we use the oracle in a more sophisticated way�
The number of hyperplane queries needed by the algorithm� and hence the number
of oracle calls� is bounded by the number of comparisons performed by A� We later

�



discuss applying the multi�dimensional search technique� what allows us to do even
better� By exploiting the parallelism of A� the number of oracle calls can in some
cases be reduced to a polylogarithm of the number of hyperplane queries�

The function g is a concave piecewise linear mapping� Concave functions have
the property that it can be e�ectively decided which side of a given hyperplane H�

contains the maximum of the function� If the domain of g does not intersect H�� then
the answer is the side of H� which contains the domain of g� Otherwise� the decision
can be made by considering a neighborhood of the maximum of the function relative
to H�� searching for a direction of ascent from that point� This principle is explained
in detail in 	����

For a hyperplane H� � Rd� we wish to decide on which side of H� the set rel int�
lies� By solving a linear program with d variables and k�� constraints� we determine
whether or not H� � Q � �� and if so� we determine which side of H� contains Q� It
follows from 	��� that this can be done in O�k� time� If H� � Q 
� �� then the oracle
problem solves the original problem� when g is restricted to H�� If g is unbounded on
H� the oracle reveals that� If � � �� or if rel int� is either contained in H� or extends
into both sides of H� �i�e�� H� � rel int� 
� ��� then we �nd � � H� � rel int� and the
oracle will actually solve Problem ����

Problem ��
� Given are a set Q � F� � � � � � Fk� a piecewise a�ne algorithm A
which evaluates a concave function g � Q � R� and a hyperplane H� in Rd� Do as
follows�

�i� If Q�H� � �� recognize which of the two halfspaces determined by H� contains
Q� Otherwise�

�ii� recognize whether or not g is bounded on H�� If it is� then

�iii� �nd � � H� � rel int� if such � exists� and solve Problem ��� relative to g�
Otherwise� if H� � rel int� � �� then

�iv� recognize which of the two halfspaces determined by H� has either a nonempty
intersection with rel int�� or has g unbounded on it�

A procedure for solving Problem ��� will be called an oracle and the hyperplane H�

will be called the query hyperplane� Problem ��� is solved by running a modi�cation
of the algorithm A� where additions and multiplications are replaced by vector op�
erations and comparisons are replaced by hyperplane queries� Problem ��� is solved
by three recursive calls to instances of Problem ��� of the form �AH�QH�� �AH

� �Q
H
� ��

where � � Rd� and H is a hyperplane �see De�nitions ��� and ��
�� Note that these
algorithms compute� respectively� the functions gH � QH � R� gH� � QH

� � R� where
QH and QH

� are subsets of Rd��� Hence� the recursive calls are made to instances of
lower dimension�






In Section �� we propose Algorithm ��� for Problem ���� The algorithm executes
calls to the oracle problem �Problem ���� relative to g� An algorithm for the oracle
problem is given in Section ��� A call to the oracle is costly� Therefore� one wishes to
solve many hyperplane queries with a small number of oracle calls� In Section �� we
discuss the multi�dimensional search technique �introduced in 	�����

�� Hyperplane queries

For a hyperplane H � Rd� we solve Problem ��� for g relative to H�

Theorem ���� Problem ��� can be reduced to the problem of solving three instances
of Problem ��� on functions de�ned on an intersection of at most k closed halfspaces
in Rd��� The time complexity of the additional computation is O�d���

Proof� We solve Problem ��� with the function gH � whereH � f� � Rd j aT� � �g�
If g is unbounded on H� then this fact is detected� otherwise� suppose ���� is in
the relative interior of the set of maximizers of g��� subject to � � H� and we
get the collection C���� Let t��� � g������� We wish to recognize whether ���� is
also a relative interior point of the set of global maxima �i�e�� relative to Rd�� If
not� then we wish to decide whether for all �� � Rd such that g���� � g�������
necessarily aT��� � �� or whether for all of them aT��� 	 �� These are the two
possible cases� Consider the function g����� We solve Problem ��� on two restrictions
of g���� to hyperplanes �see Proposition ��
�� where in one case it is restricted to
H��� � f� j aT� � � � �g� and in the other to H���� � f� j aT� � �� �g� Note

that the domainsQH���

����
�
 � f��� �g� are �d����dimensional� Denote the respective

optimal values of gH
���

����
by t��� �
 � f��� �g�� and let C� be the respective minimal

weak approximations� Only one of the optimal values t���� t���� can be greater than
t���� If this is the case� or if one of t���� t���� equals t��� and the other is smaller�
then the side of the hyperplane that contains rel int� is determined� Otherwise�
if both values are less than or both values are equal to t���� then t��� is the global
optimal value� In the latter case ���� � rel int�� It follows from Proposition ���
that the pieces of g active in a minimal weak approximation have the value t��� at
����� Thus� a minimal weak approximation of the function g���� is a minimal weak
approximation of g� It follows from analysis done in 	�� �� that by using O�d��
operations we can construct a minimal weak approximation of g����� Furthermore�
the number of pieces involved in a minimal weak approximation is at most �d�

As an example� consider an application of the algorithm described in the proof
to decide on which side of the hyperplane H � f�g the function g��� � minf��� �
����� � ����g is maximized �see Figure ��� Note that maximizing a function f �
R� R on a hyperplane corresponds to evaluating it at a single point� Therefore� the
maximumvalue of g on H is ���� The algorithm considers the restriction g� � ������
and maximizes it on the hyperplanesH��� � f�g and H���� � f�g� The corresponding
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Figure �� Example� hyperplane query at H � f�g

maxima are t��� � ��� and t���� � ��
� and hence� the algorithm concludes that the
maximizers of g are contained in the halfspace f� � Rj� � �g� Observe that this
conclusion could not have been made if the algorithm considered the values of g�
rather than the values of the restriction g�� at the hyperplanes f�g and f�g�

�� Employing multi�dimensional search

The de�nitions and propositions stated in this section appeared in 	�� �� ��� They
are presented here to allow for an independent reading of this paper� For proofs�
the reader is referred to 	�� �� ��� The multi�dimensional search problem was de�ned
and used in 	��� for solving linear programming problems in �xed dimension� In this
section we employ it to achieve better time bounds�

De�nition ���� We de�ne a partial order on Rd nf�g� relative to a concave function
g � Q � R� where Q � Rd�� is a nonempty polyhedral set� For any pair of distinct
vectors a��a� � Rd� denote

H � H�a��a�� � f� � Rd�� � aT�� � aT��g �

If g is unbounded onH�a��a�� or ifH�a��a���rel int� 
� �� then we write a� 	�� a��
Otherwise� g can be unbounded on at most one of the open halfspaces determined
by H� and also rel int� can intersect at most one of these open halfspaces� If g is
unde�ned on H �i�e�� Q � H � ��� then Q is contained in one of these halfspaces�
We denote a� 	� a� �respectively� a� �� a�� if there exists a � � rel int� such that
aT�� 	 aT�� �respectively� aT�� � aT���� in which case the same holds for all these
��s� or if g is unbounded on the halfspace determined by the inequality aT�� 	 aT� �

�respectively� aT� � 	 aT� ��� See Figure � for an example� We also use the notation
	P for a similar partial order relative to any set P �
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Figure �� An example where ��� �� �� 	� ��� �� ��

Problem ���� Given are �nite setsA�� � � � � Ar of nonzero vectors� whereAi � fai�� � � � �a
i
si
g

�aij � Rd� and s �
P
si� We wish either to �nd a minimal element� with respect to

the partial order 	�� in each of the sets Ai� or �if we encounter two incomparable
elements� to reduce the problem to a lower dimension� More speci�cally� we need to
do either one of the following�

�i� Find a collection of closed halfspaces whose intersection P contains rel int��
and indices � � mi � si �i � �� � � � � r� as follows� For every � � i � r and every
� � j � si� j 
� mi� we have aimi

	� a
i
j and a

i
mi

	P a
i
j�

�ii� Find a hyperplane H such that either g is unbounded on H or H � rel int� 
� ��

Proposition ���� Problem ��� can be solved using O���d� �� log s� oracle calls plus
additional computation which can be performed in either

�i� O���d � �� log� s� parallel time on O�s� processors� or

�ii� O���d � ��s log s� sequential time�

The function ��d� arises from the multi	dimensional search ����� It follows from ��� ��
that ��d� � �O�d

���

�� The algorithm

The algorithm described below solves Problem ���� It �nds a vector �� � rel int��
unless g is unbounded� It also returns a collection C of pieces of g whose minimum
envelope LC is a minimal weak approximation of g� The number of vectors in C is at
most �d�

De�nition ���� For a piecewise a�ne algorithmA� we de�ne the corresponding lifted
computation� The lifted computation is a run of the algorithm on a set of inputs�
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The computation is done symbolically on linear functions instead of on scalars� It
follows the path on the computation tree of A that corresponds to input vectors
which are in �� The additions and scalar multiplications are trivially generalized
to operations on linear functions� When a comparison is done between fT

� � and
fT
��� it is resolved according to the partial order 	�� We compute the hyperplane

H�f ��f�� and solve Problem ��� �hyperplane query� relative to H� The hyperplane
query decides whether or not the vectors are comparable� If they are� it decides
whether f � 	� f �� If f � 	�� f �� then the lifted computation halts since an oracle
call resulted in a solution to Problem ���� Otherwise� the resolved hyperplane query
tells us which of the halfspaces de�ned by H�f ��f �� contains the set rel int�� and
the comparison is resolved�

Sets of independent comparisons performed by A correspond to sets of indepen�
dent hyperplane queries� Recall from Section �� that a set of independent hyperplane
queries can be solved by performing a logarithmic number of �oracle� calls� The
lifted computation maintains a set H of closed halfspaces which is initially empty�
Whenever an oracle call is executed the resulting halfspace is added to H�

Algorithm ���� 	Find a vector � � rel int�g�

Step �� Run the lifted computation� collecting into H all the halfspaces resulting
from oracle calls where comparisons are resolved� If the computation halts�
then some comparison is not resolved but a global solution is found� so stop�
Otherwise� denote by m � �m�� � � � �md���T � Rd�� the piece of g that corre�
sponds to the computation path followed�

Step �� Denote by P the intersection of the halfspaces in H�

�i� Compute �� � rel intP �Q� This amounts to a linear programming prob�
lem with d variables and jHj constraints� and hence it can be solved in
O�jHj� sequential time 	���� Note that the size of H is bounded by the
number of oracle calls�

�ii� If Lfmg is not constant on R
d� that is� not all of m��m�� � � � �md equal zero�

then g is unbounded� Otherwise�

�iii� consider g���� � md��� The function Lfmg is a weak approximation of g�
and P � �� Hence� �� � rel int�� Output �� and C � fmg�

�� Correctness

If an oracle call results in a solution during Step � of Algorithm ���� then correctness
follows by induction on the dimension� We now assume that no oracle call resulted in
a solution during Step �� In this case� a collection H of closed halfspaces is obtained�
Recall that if an oracle call on a hyperplane H did not result in a solution� then the
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halfspace F returned has the following properties� �i� if the function g is bounded
then � � F but � 
� H� �ii� if the function g is unbounded� then it must be bounded
on the hyperplane H� and unbounded on the halfspace F � Let P be the polyhedron
P �

T
F�H F � It follows that if g is bounded then P � �� and if g is unbounded

then it must be bounded outside and on the boundary of P � Note that P must be of
full dimension �dimP � d�� for if not� then it must be contained in one of the query
hyperplanes� which contradicts the previous statement�

Observe that for all pairs a��a� of vectors compared by the lifted computation�
one of the following must hold� either a� 	� a� and a� 	P a�� or a� 	� a� and
a� 	P a�� The latter is obvious when we call the oracle to resolve each hyperplane
query� and it is easy to see that it still holds when we employ the multi�dimensional
search technique �see Problem ��� and Proposition ���� and solve these hyperplane
queries by a smaller number of oracle calls� Thus� the piecem �the maximizer� found
by the lifted computation must satisfy m 	� c and hence m 	P c for all pieces c of
g� It follows that g��� � mT� for all � � P � Thus� g is unbounded if and only if
Lfmg is not constant� and the correctness of step ii follows� To show the correctness
of step iii assume that Lfmg is constant� and thus g � md�� for all � � P � Since
P 
 � we have P � �� It follows that �� � rel int�� a� � � Rd� and Lfmg is a
minimal weak approximation of g�

�� Complexity

Consider the algorithm A� Suppose that the C�A� comparisons performed by A can
be divided into r phases� where Ci independent comparisons are performed during
phase i �i � �� � � � � r�� It follows from Proposition ���� that the lifted computation
can be implemented in such a way that it performs ��d�

Pr
i��dlogCie oracle calls�

It follows from Theorem ��� that each oracle call involves three recursive calls to
instances of Problem ��� of lower dimension� The piecewise a�ne algorithms that
correspond to these instances have the same number of comparisons as A� divided
into phases in the same way� and O�d� times more operations� Thus� the total number
of operations needed for the lifted computation is

d���d�kT �A��
rX
i��

dlogCie�
d �

The number of parallel phases needed in the above computation is bounded by
the product of the number of phases of the algorithm A with

Pr
i��dlogCie�

d� If
the algorithm A is inherently sequential� then the total number of operations is
O�kT �A�C�A�d��
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�� Parametric extensions of problems

The technique described in this paper was employed in 	�� �� to get algorithms for the
parametric extensions of the minimum cycle and the minimum cycle�mean problems�
This technique can be applied to a variety of other problems� where we consider
a strongly polynomial algorithm for a problem and obtain a strongly polynomial
algorithm for a parametric extension of the problem �when the number of parameters
is �xed�� We state the conditions where this technique is applicable and present
applications�

De�nition 	��� 	Parametric extensions�

�i� A problem S � P � R is a mapping from a set P of instances into the set of
real numbers� We say that S�P � is the solution of the problem for the instance
P � P� Suppose that every instance P � P has a size kPk associated with it�
The size of an instance is not necessarily de�ned to be the number of bits in its
representation� It may be any natural parameter �for example� the number of
edges in a weighted graph��

�ii� Let A be an algorithm that computes S�P �� Denote by TA�P � the number of
elementary operations the algorithm performs on the instance P � The algorithm
A is polynomial if TA�P � � O�p�kPk�� for some polynomial p����

�iii� A d�parametric extension P d � �M�Q� of P is de�ned as follows� whereQ � Rd

is a polyhedron given as an intersection of k halfspaces� and M � Q � P is a
mapping from points � � Q to instances of P� The extension P d corresponds
to a subset of instances fM��� j � � Qg � P� We refer to M��� � P as
the instance of P induced by �� For an extension P d� we de�ne g � Q � R
as a mapping from vectors � � Q to the solution of the corresponding induced
instance g��� � S�M����� A solution of the parametric extension P d is de�ned
as follows� Consider the maximum of g���� If it is �nite� a solution consists
of the maximum and a vector � � Rd that belongs to the relative interior of
the set of vectors which maximize S� Formally� if Q is empty or if S�M���� is
unbounded onQ� these facts are recognized� Otherwise� a pair �m���� � R�Rd�
where m � max��Q g���� and �

� � rel intf� j g��� � mg is computed� We
denote T � max��Q TA�M�����

Theorem 	��� Let S � P � R be a problem in the sense of De�nition ���� Let
A be an algorithm that evaluates S� and let P d � �M�Q� �where jQj � k� be a
corresponding parametric extension� We assume that

�i� the function g is concave�

�ii� the mapping M is computable by a piecewise a�ne algorithm AM �see De�ni	
tion ���� in less than T operations� and

��



�iii� the combined algorithm which computes an instance AM��� � P and applies A
to AM���� is piecewise a�ne�

Denote by C the maximum �over � � Q� number of comparisons performed by the
combined algorithm� Suppose the comparisons can be divided into r sets of sizes
C�� � � � � Cr �C �

Pr
i��Ci� such that the algorithm runs in r phases� where Ci inde	

pendent comparisons are performed in phase i�

Under these conditions� the d	parametric extension P d can be solved within

��d�kT

�
rX

i��

dlogCie

�d

operations� where ��d� � �O�d
���

Remark 	��� In the above formulation we de�ned a problem as a mapping into the
set of real numbers S � P � R� The results generalize to cases where the range of
S is R� for � � � and the notions of maximum and concavity of g are de�ned with
respect to the lexicographic order as discussed in the introduction�

Below we present some applications of Theorem ���� Additional applications were
found by Norton� Plotkin� and Tardos 	����

Adding variables to LP�s with two variables per inequality� Linear program�
ming problems with at most two variables in each constraint and in the objective
function were shown to have a strongly polynomial time algorithm by Megiddo 	�
��
Lueker� Megiddo and Ramachandran 	�� gave a polylogarithmic time parallel algo�
rithm for the problem which uses a quasipolynomial number of processors� The
best known time bounds for the problem were given in 	�� ��� Cosares� using nested
parametrization� extended Megiddo�s strong polynomiality result to allow objective
functions which have a �xed number of nonzero coe�cients� This result can be fur�
ther extended to include the following� For a �xed d� we consider linear programming
problems as above� but we allow certain d additional variables to appear anywhere in
the constraints and in the objective function without being �counted�� This problem
is a d�parameter extension of the two variables per constraint problem� where the
�parameters� are the d additional variables� For each choice of values for the param�
eters we have a corresponding induced system with two variable per constraint� It is
easy to verify that the conditions of Theorem ��� hold� Hence� this class of problems
also has a strongly polynomial time algorithm� and a polylogarithmic time parallel
algorithm which uses a quasipolynomial number of processors�

Parametric 
ow problems� Theorem ��� was applied in 	
� to generate strongly
polynomial algorithms for parametric �ow problems with a �xed number of param�

��



eters and to some constrained �ow problems with a �xed number of additional con�
straints� Complementing results showing the P�completeness of these problems when
the number of parameters is not �xed� were also given�
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