Maximizing Concave Functions in Fixed
Dimension

Edith Cohen
Department of Computer Science, Stanford University, Stanford, CA 94305
and IBM Almaden Research Center.

Nimrod Megiddo
IBM Almaden Research Center, San Jose, CA 95120-6099
and School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

Abstract

In [3, 5, 2] the authors introduced a technique which enabled them to solve
the parametric minimum cycle problem with a fixed number of parameters in
strongly polynomial time. In the current paper! we present this technique as
a general tool. In order to allow for an independent reading of this paper, we
repeat some of the definitions and propositions given in [3, 5, 2]. Some proofs
are not repeated, however, and instead we supply the interested reader with
appropriate pointers.

Suppose Q C R is a convex set given as an intersection of k halfspaces, and let
g : Q — R be a concave function that is computable by a piecewise affine algo-
rithm (i.e., roughly, an algorithm that performs only multiplications by scalars,
additions, and comparisons of intermediate values which depend on the input).
Assume that such an algorithm A is given and the maximal number of op-
erations required by A on any input (i.e., point in Q) is 7. We show that
under these assumptions, for any fixed d, the function ¢ can be maximized in a
number of operations polynomial in £ and 7. We also present a general frame-
work for parametric extensions of problems where this technique can be used
to obtain strongly polynomial algorithms. Norton, Plotkin, and Tardos [12]
applied a similar scheme and presented additional applications. Keywords:
Complexity, concave-cost network flow, capacitated, global optimization, local
optimization.

1See [4, 2] for an earlier version.

1. Introduction

A convex optimization problem is a problem of minimizing a convex function g over
a convex set S C RY. Equivalently, we can consider maximizing a concave function.

We consider the problem of maximizing a concave function, where the dimension
of the space is fixed. We also assume that the function g is given by a piecewise affine
algorithm (see Definition 2.2) which evaluates it at any point.

The results of this paper can be extended easily to the case where the range of ¢
is R’ for any { > 1. We then define the notions of maximum and concavity of ¢ with
respect to the lexicographic order as follows. We say that a function ¢ : Q@ C R — R*
is concave with respect to the lexicographic order <. if for every a € [0,1] and
z,y € Q,

ag(®) + (1 = a)g(y) <iex glaz + (1 —a)y) .
Applications where the range of ¢ is R? were given in [6].

In Section 2. we define the problem. In Section 3. we introduce the subproblem of
hyperplane queries, which is essential for the design of our algorithm. In Section 4.
we discuss the multi-dimensional search technique which we utilize for improving our
time bounds. In Section 5. we introduce the optimization algorithm. In Sections 6.
and 7. we prove the correctness and analyze the time complexity of the algorithm. In
Section 8. we discuss applications of the technique introduced here to obtain strongly
polynomial time algorithms for parametric extensions of other problems.

2. Preliminaries

Let Ril denote the set of vectors A = (Al,...,)\d)T € R? such that \; = 1. For
A € Rt denote by A € R? the vector A = (A, 1). For a halfspace I, denote by dF
the boundary of F, i.e., F is a hyperplane.

Definition 2.1. For a finite set C C R, denote by L¢ : B! — R the minimum
envelope of the linear functions that correspond to the vectors in C, i.e.,

Le(A) = mine’ X .

ceC
Denote by L. : R? — R the function given by
Le(A) = Le(A)

The vectors in C C R*™! are called the pieces of g. For a piece ¢ € C and a vector
B € R such that ¢’ = g(B3), we say that ¢ is active at 3.

Definition 2.2. For a function ¢ : Q — R, where Q C R%:

(i) Denote by A, (or A, for brevity) the set of maximizers of g(A). The set A may
be empty.

(ii) An algorithm that computes the function ¢ (i.e., for A € Q returns the value
g(A) and otherwise stops or returns an arbitrary value) is called piecewise affine,
if the operations it performs on intermediate values that depend on the input
vector are restricted to additions, multiplications by constants, comparisons,
and copies.

(iii) For a piecewise affine algorithm A, denote by T'(A) and C(A) the maximum
number of operations and the maximum number of comparisons, respectively,
performed by A. We assume that this numbers are finite.

(iv) If g = Lo for some C C R, we say that ¢’ = Le, is a weak approzimation of
g, if the set of pieces of ¢’ is a subset of the set of pieces of ¢ (C' C C), and the
affine hulls aff A, and aff A, are equal. The function ¢’ = L¢s is a minimal weak
approximation of ¢, if there is no C” C € such that L.» is a weak approximation
of g.

Remark 2.3. Suppose that A is a piecewise affine algorithm. Consider the computa-
tion tree (i.e., the tree consisting of all possible computation paths) of A. Observe that
all the intermediate values along a computation path, including the final output, can
be expressed as linear functions (i.e., are of the form @A) of the input vector. These
linear functions can be easily computed and maintained during a single execution of
the algorithm. These linear functions map the input vectors whose computation path
coincides so far with that same path to the corresponding value. Moreover, the linear
function which corresponds to the final output at a single execution is a piece which
is active at the input vector.

Remark 2.4. Suppose ¢ : @ C R? — R is concave and computable by a piecewise
affine algorithm A. It is easy to see that there exists a finite set C C R*** such that
g coincides with L.

Definition 2.5. Suppose Q = F; N --- N F} is the intersection of k closed halfspaces
and g : Q@ — R, g = L, is concave and computable by a piecewise affine algorithm.
(i) For B8 € R?, denote
Qs=({F : BeaF}.

Denote by g5 : Q3 C R — R the function whose pieces are all the pieces of ¢
which are active at 3,

95(A) = min{c’ A : e’ B =g(8)} .

ceC

Note that gs = Lg where ¢’ = {¢ € C | 8 = ¢(B)}. See Figure 1 for an
example. Later, we describe an algorithm for evaluating ¢g.

(ii) For a given sequence of vectors 3, ...,3, € R, denote gg,..5, = ((- .- (g5,)5,) - - -,
Note that ¢g,..5, depends on the order of the j3;’s.

3

Figure 1: Examples of restrictions of ¢

(iii) Suppose an (-dimensional flat S C R, is represented as a set of solutions of a
linear system of equations. There exists an affine mapping M from R’ onto S,
which can be computed in O(d®) time. Denote Q° = {A € R* | M(X) € Q},
and define ¢° : Q% — R by ¢° = go M.

Proposition 2.6. Let A be a pieccewise affine algorithm for evaluating g : Q — R,
where @ C RY is given as the intersection of k halfspaces. By modifying A we can
obtain the following piecewise affine algorithms:

(i) For any given vector 3 € Q, we obtain an algorithm Ag for evaluating gz so
that T(Ag) = T(A) + dC(A) and C(Ag) = C(A).

(ii) For any (-dimensional flat S C R?, represented as the set of solutions of a
system of linear equations, we obtain an algorithm A° for evaluating ¢° so that

T(AS) = T(A) + O((d) and C(AS) = C(A).

Proof: Part ii is straightforward, since we can choose the algorithm A° to be a
composition of the appropriate affine mapping and A. We discuss the construction
of the algorithm Aj for part i. Consider an input vector A € Qg. Let € > 0 be
such that for all € (0 < € <€), B+ (XA —8) € Q, and the set of pieces of ¢
which are active at 8 + ¢/ (A — B) is equal to the set of pieces which are active at
B+ e(A — B). It is immediate to see that such an e always exists. It follows from
the definition that gg(X) is the value of A at the linear pieces of ¢ which are active
at B 4 ¢(A — B). The algorithm Az, when executed with an input A, follows the
computation path of A which corresponds to the input 3+ ¢e(A—3). The algorithm
computes the linear functions associated with the intermediate values of this path
(see Remark 2.3). Recall that the linear function which corresponds to the final

4

value is a piece of g which is active at 8 + ¢(A — B). Hence, the value of gg(A) is
obtained by substituting A in this linear function. In order to follow the desired run
of A, the algorithm Az mimics the work of A on additions and multiplications by
scalars, keeping track of linear functions rather than just numerical values. When
the run of A reaches a comparison (branching point), Az does as follows. Without
loss of generality we assume that the branching is according to the sign of the
linear function a’@. In order to decide what to do at a branching point, Az has
to determine the sign of a’z at the point € = 3 + ¢(A — 3). Since € is not given
explicitly, the decision cannot be made directly by substitution. The decision is
made as follows. The algorithm first computes o = aTé. If o # 0, then obviously
for any vector y, for sufficiently small number ¢ > 0 a®(3 + ey) has the same sign
as «. In particular this holds for y = A — 3 and the sign is detected. Otherwise, if
a =0, it follows that a?(8 + ¢(A — B)) = ea’ A. Hence a’ A has the same sign as
a’ (B + ¢(A — B)). It remains to compute the sign of a’ A and branch accordingly.
It is easy to verify that Aj evaluates the function gg for any vector A € Qg, and
performs the stated number of operations. y

Proposition 2.7. If B € A, then gs is a weak approximation of g.

Proof: See [5, 2] for a proof. y
The goal is to solve the following problem:

Problem 2.8. The input of this problem consists of a polyhedron Q@ = FyN---N £y,
given as the intersection of k closed halfspaces and a piecewise affine algorithm A for
evaluating a concave function ¢ : @ — R. Decide whether or not ¢ is bounded. If
so, then find a A™ € relint A. We refer to the following as the “optional” part of the
problem: If ¢g is bounded, then find a subset C of the set of pieces of ¢, such that L.
is a minimal weak approximation of ¢, and |C| < 2d.

The set C may be viewed as a certificate for the fact that the maximum of the function
g does not exceed g(A™). In the current paper we do not discuss the details of solving
the optional part of the problem. See [5, 2] for an existence proof and an algorithm
which finds such a set.

We propose an algorithm for Problem 2.8. In any fixed dimension d, the total
number of operations performed by this algorithm is bounded by a polynomial in T'(.A)
and k. The algorithm is based on solving instances of a subproblem, which we call
hyperplane query: For a given hyperplane Hy, decide on which side of Hy the function
g is either unbounded or attains its maximum. A procedure for hyperplane queries is
called an oracle. Obviously, an oracle can be utilized to perform a binary search over
the polyhedron Q. However, in order to attain an exact solution within time bounds
that depend only on d, T', and k, we use the oracle in a more sophisticated way.
The number of hyperplane queries needed by the algorithm, and hence the number
of oracle calls, is bounded by the number of comparisons performed by A. We later

discuss applying the multi-dimensional search technique, what allows us to do even
better. By exploiting the parallelism of A, the number of oracle calls can in some
cases be reduced to a polylogarithm of the number of hyperplane queries.

The function ¢ is a concave piecewise linear mapping. Concave functions have
the property that it can be effectively decided which side of a given hyperplane H
contains the maximum of the function. If the domain of ¢ does not intersect Hy, then
the answer is the side of Hy which contains the domain of g. Otherwise, the decision
can be made by considering a neighborhood of the maximum of the function relative
to Hy, searching for a direction of ascent from that point. This principle is explained
in detail in [11].

For a hyperplane Hy C R?, we wish to decide on which side of Hj the set relint A
lies. By solving a linear program with d variables and k+1 constraints, we determine
whether or not Hy N @ = 0, and if so, we determine which side of Hy contains Q. It
follows from [11] that this can be done in O(k) time. If Ho N Q # (), then the oracle
problem solves the original problem, when ¢ is restricted to Hy. If g is unbounded on
Hy the oracle reveals that. If A = (), or if relint A is either contained in Hy or extends
into both sides of Hy (i.e., Ho Nrelint A # (), then we find A € HyNrelint A and the

oracle will actually solve Problem 2.8.

Problem 2.9. Given are a set Q@ = Fy N --- N Fj, a piecewise affine algorithm A
which evaluates a concave function ¢ : @ — R, and a hyperplane Hy in R?. Do as
follows:

(i) It QN Hy = 0, recognize which of the two halfspaces determined by Hy contains
Q. Otherwise,

(ii) recognize whether or not ¢ is bounded on Hy. If it is, then

(iii) find A € Ho Nrelint A if such A exists, and solve Problem 2.8 relative to g.
Otherwise, if Hy Nrelint A = (), then

(iv) recognize which of the two halfspaces determined by Hy has either a nonempty
intersection with relint A, or has ¢ unbounded on it.

A procedure for solving Problem 2.9 will be called an oracle and the hyperplane H,
will be called the query hyperplane. Problem 2.8 is solved by running a modification
of the algorithm A, where additions and multiplications are replaced by vector op-
erations and comparisons are replaced by hyperplane queries. Problem 2.9 is solved
by three recursive calls to instances of Problem 2.8 of the form (A, Q) (AH. Qg),
where 3 € R, and H is a hyperplane (see Definitions 2.5 and 2.6). Note that these
algorithms compute, respectively, the functions ¢ : Qf — R, gé{ : QEI — R, where
QM and Qg are subsets of R4~'. Hence, the recursive calls are made to instances of
lower dimension.

In Section 5. we propose Algorithm 5.2 for Problem 2.8. The algorithm executes
calls to the oracle problem (Problem 2.9) relative to g. An algorithm for the oracle
problem is given in Section 3.. A call to the oracle is costly. Therefore, one wishes to
solve many hyperplane queries with a small number of oracle calls. In Section 4. we
discuss the multi-dimensional search technique (introduced in [11]).

3. Hyperplane queries

For a hyperplane H C R?, we solve Problem 2.9 for ¢ relative to H.

Theorem 3.1. Problem 2.9 can be reduced to the problem of solving three instances
of Problem 2.8 on functions defined on an intersection of at most k closed halfspaces
in RY. The time complexity of the additional computation is O(d>).

Proof: We solve Problem 2.8 with the function ¢”, where H = {X € R |a’ X = a}.
If ¢ is unbounded on H, then this fact is detected; otherwise, suppose A© g in
the relative interior of the set of maximizers of ¢g(A) subject to A € H, and we
get the collection C®). Let (0 = g()\(o)). We wish to recognize whether A is
also a relative interior point of the set of global maxima (i.e., relative to R?). If
not, then we wish to decide whether for all A* € R? such that g(A*) > g()\(o)),
necessarily a’ A* > «, or whether for all of them a”X™ < «a. These are the two
possible cases. Consider the function gy). We solve Problem 2.8 on two restrictions
of g0y to hyperplanes (see Proposition 2.6), where in one case it is restricted to
HY ={X|a" = a — 1}, and in the other to H=Y = {X | a”A = a + 1}. Note

that the domains Qi{é‘?(& € {—1,1}) are (d—1)-dimensional. Denote the respective

optimal values of gﬂg? by t®) (6 € {—=1,1}), and let C® be the respective minimal

weak approximations. Only one of the optimal values t1),#(=1) can be greater than
t©) . If this is the case, or if one of t() (=1 equals t(©) and the other is smaller,
then the side of the hyperplane that contains relint A is determined. Otherwise,
if both values are less than or both values are equal to (%), then #(©) is the global
optimal value. In the latter case A®) € relint A. It follows from Proposition 2.7
that the pieces of ¢ active in a minimal weak approximation have the value ¢ at
A, Thus, a minimal weak approximation of the function g\ 1s a minimal weak
approximation of g. It follows from analysis done in [5, 2] that by using O(d”)
operations we can construct a minimal weak approximation of gyw). Furthermore,
the number of pieces involved in a minimal weak approximation is at most 2d. y

As an example, consider an application of the algorithm described in the proof
to decide on which side of the hyperplane H = {2} the function g(A) = min{A/5 +
2,—4X 4+ 12,5} is maximized (see Figure 2). Note that maximizing a function f :
R — R on a hyperplane corresponds to evaluating it at a single point. Therefore, the
maximum value of g on H is 2.4. The algorithm considers the restriction g, = A/542,
and maximizes it on the hyperplanes H®) = {1} and H(=Y = {3}. The corresponding

Figure 2: Example: hyperplane query at H = {2}

maxima are t1) = 2.2 and +(=1) = 2.6, and hence, the algorithm concludes that the
maximizers of g are contained in the halfspace {A € R|A > 2}. Observe that this
conclusion could not have been made if the algorithm considered the values of g,
rather than the values of the restriction ¢,, at the hyperplanes {1} and {3}.

4. Employing multi-dimensional search

The definitions and propositions stated in this section appeared in [3, 5, 2]. They
are presented here to allow for an independent reading of this paper. For proofs,
the reader is referred to [3, 5, 2]. The multi-dimensional search problem was defined
and used in [11] for solving linear programming problems in fixed dimension. In this
section we employ it to achieve better time bounds.

Definition 4.1. We define a partial order on R?\ {0}, relative to a concave function
g:Q — R, where Q C R*! is a nonempty polyhedral set. For any pair of distinct
vectors ay,ay € R?, denote

H = H(ar,a2) = {A € B :alA = afA} .

If g is unbounded on H(ay, az) or if H(a1,az)Nrelint A # @, then we write a; <>j as.
Otherwise, g can be unbounded on at most one of the open halfspaces determined
by H, and also relint A can intersect at most one of these open halfspaces. If ¢ is
undefined on H (i.e., @ N H =), then Q is contained in one of these halfspaces.
We denote a; <, ay (respectively, a; >, az) if there exists a A € relint A such that
afd < al X (respectively, alA > al)), in which case the same holds for all these
A’s, or if g is unbounded on the halfspace determined by the inequality afA < al A
(respectively, al A < al'A). See Figure 3 for an example. We also use the notation
<p for a similar partial order relative to any set P.

y
A /
4y+4X+5 > 2y+5x+7

Q\ Qy+AX+5 < 2y+5x+7
| | o\ L o
—3/2 -1 1

Figure 3: An example where (4,4,5) <p (2,5,7)

Problem 4.2. Given are finite sets A;, ..., A, of nonzero vectors, where A; = {a’, ...
(aé € R?) and s = ¥ s;. We wish either to find a minimal element, with respect to
the partial order <,, in each of the sets A;, or (if we encounter two incomparable
elements) to reduce the problem to a lower dimension. More specifically, we need to
do either one of the following:

(i) Find a collection of closed halfspaces whose intersection P contains relint A,
and indices 1 <m; <s; (i =1,...,r) as follows. For every 1 < <r and every
1 <3 < s, 5 # my, we have aini <A aé and aini <p a;.

(i1) Find a hyperplane I such that either ¢ is unbounded on H or H Nrelint A # 0.

Proposition 4.3. Problem 4.2 can be solved using O(~(d — 1)logs) oracle calls plus
additional computation which can be performed in either

(i) O(~(d
(i) O(~(d

(v(d —1)slog s) sequential time.
The function ~(d) arises from the multi-dimensional search [11]. 1t follows from [1, 8]
that v(d) = 30(d%)

— 1)log®s) parallel time on O(s) processors, or
s

@)
@)

5. The algorithm

The algorithm described below solves Problem 2.8. It finds a vector A* € relint A,
unless ¢ is unbounded. It also returns a collection C of pieces of ¢ whose minimum
envelope L, is a minimal weak approximation of g. The number of vectors in C is at
most 2d.

Definition 5.1. For a piecewise affine algorithm A, we define the corresponding lifted
computation. The lifted computation is a run of the algorithm on a set of inputs.

9

,al,}

The computation is done symbolically on linear functions instead of on scalars. It
follows the path on the computation tree of A that corresponds to input vectors
which are in A. The additions and scalar multiplications are trivially generalized
to operations on linear functions. When a comparison is done between f{A and
ng, it is resolved according to the partial order <,. We compute the hyperplane
H(f,, f,) and solve Problem 2.9 (hyperplane query) relative to H. The hyperplane
query decides whether or not the vectors are comparable. If they are, it decides
whether £, < f,. If f; <>a f,, then the lifted computation halts since an oracle
call resulted in a solution to Problem 2.8. Otherwise, the resolved hyperplane query
tells us which of the halfspaces defined by H(f,, f,) contains the set relint A, and
the comparison is resolved.

Sets of independent comparisons performed by A correspond to sets of indepen-
dent hyperplane queries. Recall from Section 4. that a set of independent hyperplane
queries can be solved by performing a logarithmic number of “oracle” calls. The
lifted computation maintains a set H of closed halfspaces which is initially empty.
Whenever an oracle call is executed the resulting halfspace is added to H.

Algorithm 5.2. [Find a vector X € relint A]

Step 1. Run the lifted computation, collecting into H all the halfspaces resulting
from oracle calls where comparisons are resolved. If the computation halts,
then some comparison is not resolved but a global solution is found, so stop.
Otherwise, denote by m = (my,...,mq1)? € R™! the piece of ¢ that corre-
sponds to the computation path followed.

Step 2. Denote by P the intersection of the halfspaces in H.

(i) Compute A™ € relint PN Q. This amounts to a linear programming prob-
lem with d variables and |H| constraints, and hence it can be solved in
O(IH|) sequential time [11]. Note that the size of H is bounded by the

number of oracle calls.

(ii) If Ly is not constant on R?, that is, not all of my, mao, ..., mg equal zero,
then ¢ is unbounded. Otherwise,

(iii) consider g(A™) = mgq1. The function Ly is a weak approximation of g,

and P = A. Hence, A™ € relint A. Output A" and C = {m}.

6. Correctness

If an oracle call results in a solution during Step 1 of Algorithm 5.2, then correctness
follows by induction on the dimension. We now assume that no oracle call resulted in
a solution during Step 1. In this case, a collection H of closed halfspaces is obtained.
Recall that if an oracle call on a hyperplane H did not result in a solution, then the

10

halfspace F' returned has the following properties: (i) if the function ¢ is bounded
then A C F' but A ¢ H, (ii) if the function ¢ is unbounded, then it must be bounded
on the hyperplane H, and unbounded on the halfspace F'. Let P be the polyhedron
P = Npen F. 1t follows that if ¢ is bounded then P D A, and if ¢ is unbounded
then it must be bounded outside and on the boundary of P. Note that P must be of
full dimension (dim P = d), for if not, then it must be contained in one of the query
hyperplanes, which contradicts the previous statement.

Observe that for all pairs aq, as of vectors compared by the lifted computation,
one of the following must hold: either a; <j a; and a; <p a,, or a; <, a; and
ay; <p ai. The latter is obvious when we call the oracle to resolve each hyperplane
query, and it is easy to see that it still holds when we employ the multi-dimensional
search technique (see Problem 4.2 and Proposition 4.3) and solve these hyperplane
queries by a smaller number of oracle calls. Thus, the piece m (the maximizer) found
by the lifted computation must satisty m <, ¢ and hence m <p ¢ for all pieces ¢ of
g. Tt follows that g(A) = m* X for all A € P. Thus, g is unbounded if and only if
Lm, is not constant, and the correctness of step ii follows. To show the correctness
of step iii assume that Ly is constant, and thus g = mgyy for all A € P. Since
P D A we have P = A. It follows that A* € relintA, aff A = R?, and Limy 1s a

minimal weak approximation of g.

7. Complexity

Consider the algorithm A. Suppose that the C'(A) comparisons performed by A can
be divided into r phases, where C; independent comparisons are performed during
phase ¢ (¢ = 1,...,7). It follows from Proposition 4.3, that the lifted computation
can be implemented in such a way that it performs v(d)>./_; [log C;] oracle calls.
It follows from Theorem 3.1 that each oracle call involves three recursive calls to
instances of Problem 2.8 of lower dimension. The piecewise affine algorithms that
correspond to these instances have the same number of comparisons as A, divided
into phases in the same way, and O(d) times more operations. Thus, the total number
of operations needed for the lifted computation is

r

Ay (d)RT(A) (3 [log C1])" .

=1

The number of parallel phases needed in the above computation is bounded by
the product of the number of phases of the algorithm A with >7_, [log C;])%. If
the algorithm A is inherently sequential, then the total number of operations is

O(KT(A)C(A)).

11

8.

Parametric extensions of problems

The technique described in this paper was employed in [3, 5] to get algorithms for the

parametric extensions of the minimum cycle and the minimum cycle-mean problems.
This technique can be applied to a variety of other problems, where we consider
a strongly polynomial algorithm for a problem and obtain a strongly polynomial
algorithm for a parametric extension of the problem (when the number of parameters
is fixed). We state the conditions where this technique is applicable and present

applications.

Definition 8.1. [Parametric extensions]

(i)

(i)

(iii)

A problem S : P — R is a mapping from a set P of instances into the set of
real numbers. We say that S(P) is the solution of the problem for the instance
P € P. Suppose that every instance P € P has a size || P|| associated with it.
The size of an instance is not necessarily defined to be the number of bits in its
representation. It may be any natural parameter (for example, the number of
edges in a weighted graph).

Let A be an algorithm that computes S(P). Denote by T4(P) the number of
elementary operations the algorithm performs on the instance P. The algorithm
A is polynomial if T4(P) = O(p(]|P]|)) for some polynomial p(e).

A d-parametric extension P* = (M, Q) of P is defined as follows, where Q@ C R?
is a polyhedron given as an intersection of k halfspaces, and M : Q@ — P is a
mapping from points A € Q to instances of P. The extension P? corresponds
to a subset of instances {M(AX) | A € Q} C P. We refer to M(X) € P as
the instance of P induced by A. For an extension P? we define ¢ : Q — R
as a mapping from vectors A € Q to the solution of the corresponding induced
instance g(A) = S(M(X)). A solution of the parametric extension P is defined
as follows. Consider the maximum of g(A). If it is finite, a solution consists
of the maximum and a vector A € R? that belongs to the relative interior of
the set of vectors which maximize S. Formally, if @ is empty or if S(M(X)) is
unbounded on Q, these facts are recognized. Otherwise, a pair (m, A*) € Rx R%,
where m = maxyeg ¢g(A), and X* € relint{X | g(A) = m} is computed. We
denote T'= maxyeg TA(M(A)).

Theorem 8.2. Let S : P — R be a problem in the sense of Definition 8.1. Let
A be an algorithm that evaluates S, and let P* = (M, Q) (where |Q| = k) be a

corresponding parametric extension. We assume that

(i)
(i)

the function ¢ is concave,

the mapping M is computable by a piecewise affine algorithm An (see Defini-
tion 2.2) in less than T operations, and

12

(iii) the combined algorithm which computes an instance Ap(X) € P and applies A
to Apm(A), is piecewise affine.

Denote by C the maximum (over X € Q) number of comparisons performed by the
combined algorithm. Suppose the comparisons can be divided into r sets of sizes
Ciy...,C. (C =31, C;) such that the algorithm runs in r phases, where C; inde-
pendent comparisons are performed in phase 1.

Under these conditions, the d-parametric extension P? can be solved within

r

T (3 o Cﬂ)d

=1
operations, where 3(d) = 30(&),

Remark 8.3. In the above formulation we defined a problem as a mapping into the
set of real numbers S : P — R. The results generalize to cases where the range of
S'is R’ for £ > 1 and the notions of maximum and concavity of ¢ are defined with
respect to the lexicographic order as discussed in the introduction.

Below we present some applications of Theorem 8.2. Additional applications were

found by Norton, Plotkin, and Tardos [12].

Adding variables to LP’s with two variables per inequality. Linear program-
ming problems with at most two variables in each constraint and in the objective
function were shown to have a strongly polynomial time algorithm by Megiddo [10].
Lueker, Megiddo and Ramachandran [9] gave a polylogarithmic time parallel algo-
rithm for the problem which uses a quasipolynomial number of processors. The
best known time bounds for the problem were given in [7, 2]. Cosares, using nested
parametrization, extended Megiddo’s strong polynomiality result to allow objective
functions which have a fixed number of nonzero coefficients. This result can be fur-
ther extended to include the following. For a fixed d, we consider linear programming
problems as above, but we allow certain d additional variables to appear anywhere in
the constraints and in the objective function without being “counted.” This problem
is a d-parameter extension of the two variables per constraint problem, where the
“parameters” are the d additional variables. For each choice of values for the param-
eters we have a corresponding induced system with two variable per constraint. It is
easy to verify that the conditions of Theorem 8.2 hold. Hence, this class of problems
also has a strongly polynomial time algorithm, and a polylogarithmic time parallel
algorithm which uses a quasipolynomial number of processors.

Parametric flow problems. Theorem 8.2 was applied in [6] to generate strongly
polynomial algorithms for parametric flow problems with a fixed number of param-

13

eters and to some constrained flow problems with a fixed number of additional con-

straints. Complementing results showing the P-completeness of these problems when
the number of parameters is not fixed, were also given.

1]

2]

References

K. L. Clarkson. Linear programming in O(n x 3d2) time. Information Processing

Let., 22:21-27, 1986.

E. Cohen. Combinatorial Algorithms for Optimization Problems. PhD thesis,
Department of Computer Science, Stanford University, Stanford, Ca., 1991.

E. Cohen and N. Megiddo. Strongly polynomial and NC algorithms for detecting
cycles in dynamic graphs. In Proc. 21st Annual ACM Symposium on Theory of
Computing, pages 523-534. ACM, 1989.

E. Cohen and N. Megiddo. Maximizing concave functions in fixed dimension.
Technical Report RJ 7656 (71103), IBM Almaden Research Center, San Jose, CA
95120-6099, , August 1990.

E. Cohen and N. Megiddo. Strongly polynomial time and NC algorithms for
detecting cycles in periodic graphs. Technical Report RJ 7587 (70764), IBM
Almaden Research Center, San Jose, CA 95120-6099, , July 1990.

E. Cohen and N. Megiddo. Complexity analysis and algorithms for some flow
problems. In Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, pages
120-130. ACM-STAM, 1991.

E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two
variables per inequality. In Proc. 23rd Annual ACM Symposium on Theory of
Computing, pages 145-155. ACM, 1991.

M. E. Dyer. On a multidimensional search technique and its application to the

Euclidean one-center problem. SIAM J. Comput., 15:725-738, 1986.

G. S. Lueker, N. Megiddo, and V. Ramachandran. Linear programming with two
variables per inequality in poly log time. SIAM .J. Comput., 19(6):1000-1010,
1990.

[10] N. Megiddo. Towards a genuinely polynomial algorithm for linear programming.

SIAM J. Comput., 12:347-353, 1983.

[11] N. Megiddo. Linear programming in linear time when the dimension is fixed. J.

Assoc. Comput. Mach., 31:114-127, 1984.

14

[12] C. H. Norton, S. A. Plotkin, and E. Tardos. Using separation algorithms in fixed
dimension. In Proc. 1st ACM-SIAM Symposium on Discrete Algorithms, pages
377-387. ACM-SIAM, 1990.

15

