
Using Fast Matrix Multiplication to Find Basic Solutions�

Peter A� Belingy and Nimrod Megiddoz

Februaray ����

Abstract� We consider the problem of �nding a basic solution to a system
of linear constraints �in standard form� given a non�basic solution to the system�
We show that the known arithmetic complexity bounds for this problem admit
considerable improvement� Our technique� which is similar in spirit to that used
by Vaidya to �nd the best complexity bounds for linear programming� is based
on reducing much of the computation involved to matrix multiplication� Conse�
quently� our complexity bounds in their most general form are a function of the
complexity of matrix multiplication� Using the best known algorithm for matrix
multiplication� we achieve a running time of O�m����n� arithmetic operations for
an m�n problem in standard form� Previously� the best bound was O�m�n� arith�
metic operations�

Key Words� Computational complexity� linear programming� basic solutions�
interior�point methods� fast matrix multiplication�

�� Introduction

Consider the standard�form system of linear constraints

Ax � b

x � � �

where A � �m�n is assumed to have linearly independent rows� b � �m� and x � �n�
A solution x of this system is said to be basic if the set of columns A�j with xj �� � is
linearly independent� Thus� a basic solution has at most m positive components�

�Research supported in part by ONR contract N���������C������
yDepartment of Industrial Engineering and Operations Research� University of California� Berkeley�

CA ��	��� and IBM Almaden Research Center� �
� Harry Road� San Jose� California �
��������
zIBM Almaden Research Center� �
� Harry Road� San Jose� California �
��������� and School of

Mathematical Sciences� Tel Aviv University� Tel Aviv� Israel�

�



The problem of �nding a basic solution given a non�basic one to arises frequently in
linear programming� especially in the context of interior�point methods� For simplicity�
we call this problem basis crashing�

We are interested in the arithmetic complexity of basis crashing� i�e�� the number
of elementary arithmetic operations needed to solve the problem as a function of its
dimension� 	See� e�g�� 
�� for detailed material on arithmetic complexity in general�


Previously� the best arithmetic complexity bound known for the m � n basis crashing
problem was O	m�n
 arithmetic operations� In this note we show that this bound admits
considerable improvement� Our technique� which is similar in spirit to that used by

Vaidya 
�� to improve the complexity bounds for linear programming� is based on reducing
much of the computation in basis crashing to matrix multiplication� Consequently� our
complexity bounds in their most general form are a function of the complexity of matrix
multiplication�

Denote by T 	k
 the number of arithmetic operations required to multiply two k � k

matrices� We show that the m � n problem can be solved in O	m
���

���n
 arithmetic

operations� where � is any scalar known to satisfy T 	k
 � O	k���
� Using the best known
algorithm for matrix multiplication� we achieve a running time of O	m����n
 arithmetic
operations for the m� n basis crashing problem�

In the remainder of the paper we adopt the following notation and terminology�
Matrices and vectors are denoted bold�faced� Ordinary capital letters are often used to
denote ordered sequences of indices with respect to matrices or vectors� Given a sequence

C � 	j�� � � � � jk
� we use AC to denote submatrix 
A�j� � � �A�jk �� where A�j is the j�th
column of A� Likewise� we use xC to denote the restriction of the vector x to the indices
in C� A sequence B is a basic sequence with respect to the matrix A if the submatrix

AB is 	square and
 nonsingular� This last matrix is called the basis corresponding to the
sequence B� Additionally� the matrix A is said to be in canonical form with respect to
the basic sequence B if AB is the identity matrix�

�� Standard algorithms

In this section we give a brief review of the theory and implementation of the existing
basis crashing algorithms�

The basis crashing problem can be viewed in geometric terms as the problem of �nding
the vertex of the polyhedron P � fx j Ax � b� x � �g given any point in P � This
problem admits a trivial recursive solution� Move in any bounded direction until hitting

a face of the positive orthant� The resulting point belongs to a polyhedron that can be
described in a lower dimension� This algorithm is equally simple algebraically�

The algebraic observation is that if the columns of A that correspond to positive
component of a given solution �x are linearly dependent� then we can �nd a vector z �� �

�



such that Az � �� and among the components of z� only the ones corresponding to these
columns may be nonzero� It follows that we can also �nd a scalar � such that the vector
�x � �x� �z is a solution to the given system and has at least one less positive component
than the given solution �x� The columns A�j such that �x � � can then be eliminated

from further consideration� yielding a smaller problem� Successive applications of this
procedure yield a basic solution as desired�

The algorithm outlined above is conveniently described and implemented using basic
sequences and canonical forms� Knowing the canonical form of the matrixA with respect
to a basic sequence makes it particularly easy to �nd a nonzero vector in the null space of

A� and hence a solution to the given system that has at one less positive component than
the given solution� Consider �rst an algorithm that solves the basis crashing problem
under the assumption that an initial basic sequence and basis inverse for the coe�cient
matrix are given as input� The algorithm admits a recursive description�

Algorithm ���� Given are the following� A � �m�n with linearly independent rows�
b � �m� a solution vector �x � � such that A�x � b� and a basic sequence B for A�

Step �� Select an index k �� B with �xk � ��

Step �� Compute the vector �A�k � A
��
B A�k� Let �Ajk denote the j�th entry of �A�k�

There are two cases to consider�

	i
 �A�k � �� Set � � �xk and �B � B�

	ii
 �A�k �� �� Set � � minf�� �xkg� where � � minf�xj�j �Ajkj � �Ajk � �g� Set
�B � B � fkg n f�g� where � � arg minf�xB�j��j �Ajkj � �Ajk � �g�

Step �� Form the n�vector �x as follows�

�xj �

���
��
�xj � � �Ajk if j � B
�xk � � if j � k
�xj otherwise�

Step �� Stop if �x has at most m positive components� Otherwise continue recursively
after updating the input with the solution �x and the basic sequence �B�

To establish the validity of the algorithm�s recursive description� it su�ces to show

that �B is a basic sequence for the matrix A and that �x is nonnegative and satis�es
A�x � b� That �B is a basic sequence for A follows immediately from the fact that �A�k

is necessarily nonzero in case 	ii
 	there is nothing to prove in case 	i

� That �x satis�es
A�x � b can be seen from the expansion

A	�x� �x
 � ��
X
j�B

A�j
�Ajk � �A�k � �	�AB

�Ajk �A�k


� �	�ABA
��
B A�k �A�k
 � �

�



Likewise� it straightforward to verify that the rules de�ning � ensure that �x is nonnega�
tive�

The total number of 	recursive
 iterations performed by the algorithm is at most
n�m� To see this� note that at the start of each iteration a single non�basic column with
positive coe�cient is selected for consideration� During the course of the iteration� either

the selected column is entered into the basis or the corresponding coe�cient is reduced
to zero 	or both
� The coe�cients of all other non�basic columns remain constant� and
the coe�cient of any column which leaves the basis is necessarily zero� It follows that
any column which has previously been selected for consideration or that has previously

been basic is either basic or non�basic with coe�cient zero through the remainder of the
computation� Such columns are e�ectively dropped from the problem�

The computational e�ort in Algorithm ��� clearly centers around the construction
of the canonical column �A�k � A

��
B A�k� There are at least two reasonable ways of

generating this columns in practice� The more familiar� perhaps� of these is a tableau�
based pivoting procedure similar to that of the simplex method� One begins with the
canonical form of A with respect to the initial sequence B� and uses Gauss�Jordan pivots
to explicitly maintain canonical form as the basic sequences change and as columns are

dropped from further consideration�

One can also envision an implicit scheme similar to the revised simplex method� Here
it is the inverse of the basis and not canonical form that is maintained at each iteration�
The canonical column is generated by multiplying the basis inverse by the appropriate

column from the original coe�cient matrix� The basis inverse itself can be maintained
explicitly through Gaussian elimination or implicitly as a product of elementary pivot
matrices� In the latter case it su�ces to store only the nonzero column of each pivot
matrix�

It easy to see that these approaches are essentially the same� and that they can
be implemented in O	m�n
 arithmetic operations� Moreover� the initialization step of
�nding a basic sequence B for A and computing A��

B can be done in O	m�n
 time by
	say
 using Gauss�Jordan pivots to reduce the left�hand side of the matrix 
A I � 	cf� 
��
�

Hence� we have the following bound on the complexity of the general problem�

Proposition ���� The m�n basis crashing problem can be solved in O	m�n
 arithmetic

operations�

�� Improvements using fast matrix multiplication

In this section we show that the asymptotic complexity bound for basis crashing given

in the last section admits a considerable improvement� Our technique is based on reduc�
ing much of the computation to matrix multiplication� and consequently our complexity

�



bounds in their most general form are a function of the complexity of matrix multipli�
cation� Using the best known algorithm for matrix multiplication� we achieve a running
time of O	m����n
 arithmetic operations�

During each iteration of the new algorithm� we work with a given basis and a small
number of additional non�basic columns� These non�basic columns 	and no others
 are

�rst brought into canonical form with respect to the basis� The resulting subproblem is
then solved and a new basic sequence identi�ed using the procedures described in the
last section� The main computational work in the algorithm is divided between that

used to bring each new set of columns into canonical form and that used to maintain
the canonical form as each of these columns is either added to the basis or dropped from
further consideration� Indeed� the number of columns considered in each iteration� and
hence the total number of iterations performed� will be chosen to balance the complexity

of these two tasks�

We consider �rst an algorithm that solves the basis crashing problem under the as�
sumption that an initial basic sequence and basis inverse for the coe�cient matrix are
given as input� Later we show that these initial objects can be found using much the

same procedure� The algorithm admits a recursive description�

Algorithm ���� Given are the following� A � �m�n with linearly independent rows�

b � �m� a solution vector �x � � such that A�x � b� a basic sequence B for A and the
associated basis inverse A��

B � and an integer r�

Step �� Select a sequence N of length r of indices j �� B with �xj � �� Form the product

A
��
B AN �

Step �� Let C � B � N � Using Algorithm ���� �nd a basic solution to the system
A
��
B ACz � A

��
B A�xC � taking �z � �xC as the initial solution� B as the initial basic

sequence� and A
��
B as the initial basis inverse� Let �z denote the basic solution

obtained in this way� and let �B denote the corresponding basic sequence� Set

�xj �

�
�zj if j � C

�xj otherwise�

Stop if �x has at most m positive components�

Step �� Calculate A��
�B
�

Step �� Continue recursively after updating the input with the solution �x� the basic

sequence �B� and the basis inverse A��
�B
�

Note that the solution vector produced during each 	recursive
 iteration has at least
r fewer positive components than that of the previous iteration� Hence� the algorithm

executes each step at most dn�m
r
e times�

�



We now turn to an analysis of the complexity of Algorithm ��� Ultimately� we shall
express this complexity solely in terms of the problem dimensions m and n� For the
moment� however� we allow additional dependence on the number of non�basic columns
considered in each iteration 	the parameter r
 and on the cost of matrix multiplication�

Later we shall choose a value for r which minimizes the complexity of the algorithm as a
function of m� n� and the cost of matrix multiplication� We then make use of some well�
known algorithms to bound the cost of matrix multiplication� Recall that T 	r
 denotes
the number of arithmetic operations required to multiply two r � r matrices�

Proposition ���� Given an initial basic sequence and basis inverse� Algorithm ��� can

be used to solve the m�n basis crashing problem in O
��
mr � m�T �r�

r�

�
	n�m


�
arithmetic

operations�

Before proving Proposition ���� we �rst recall two known facts concerning the cost of

matrix multiplication� Denote by V 	k
 the number of arithmetic operations required to
invert a k � k matrix�

Fact ���� T 	k
 � �	k�
�

Fact ���� T 	k
 � �	V 	k

� i�e�� T 	k
 � O	V 	k

 and V 	k
 � O	T 	k

�

See� e�g�� 
�� for proof of Fact ��� and 
�� for proof of Fact ����

Proof of Proposition ���� The dominant e�ort in step � of the algorithm is the

multiplication of the m � m matrix A��
B by the m� r matrix AN � We may assume�

without loss of generality� that r divides m� since otherwise the matrices can be padded
suitably with zeroes� Partitioning each of the matrices into blocks of size r � r� we
can create a new multiplication problem of dimension m

r
� m

r
and m

r
� � in which

each �element� is a block� This multiplication can be done using the ordinary row by
column procedure with m�

r�
multiplications of blocks and

�
m

r

� �
m

r
� �

�
additions of these

products� Using this procedure� the complexity of the step is O
�
m�

r�
T 	r


�
�

The dominant e�ort in step � is the solution of an m�	m�r
 basis crashing problem

in which an initial basic sequence and basis inverse are given� From the discussion in
section �� this can be done in O	mr�
 arithmetic operations�

Step � consists of the computation of A��
�B
� From the description of the algorithm�

we see that A �B di�ers from AB in � columns� for some � � r� In particular� we can
write

A �B � AB �UV
T �

where U is an m� � matrix consisting of the nonzero columns of A �B �AB� and V is
an m � � matrix consisting of appropriate columns of the identity matrix� Since A �B

�



is a rank � perturbation of AB� the well�known Sherman�Morrison�Woodbury formula
	see� e�g�� 
��
� gives a closed�form expression for A��

�B
in terms of A��

B � In particular�

A
��
�B
� A

��
B �A

��
B U 	I � V

T
A
��
B U
��V T

A
��
B �

where I is the � � � identity matrix� It is easy to verify that� since A��
B is known�

this formula can be evaluated using a constant number of the following operations�

	i
 multiplication of an m �m matrix by an m � � matrix 	and the transpose of this
operation
� 	ii
 multiplication of an m��matrix by an ��mmatrix� 	iii
 multiplication
of an � �m matrix by an � �m matrix� 	iv
 inversion of an �� � matrix� 	v
 addition
of � � � matrices� and 	vi
 addition of m�m matrices�

Obviously� the additions can be done in O	m�
 arithmetic operations� Likewise�
by Fact ���� the inversions can be done in O	T 	r

 arithmetic operations� We can
perform the multiplications using � � � blocks in the same 	or a very similar
 manner
as that described in the analysis of step �� The dominant multiplication term is then

O
�
m�T �r�

r�

�
� Hence� the complexity of step � is O

�
m�T �r�

r�

�
�

The proof of the proposition follows immediately by combining the bounds on the
complexity of each step given above and noting that� given an initial basic sequence
and basis inverse� the algorithm executes each step at most dn�m

r
e times�

We now consider the initialization problem of �nding a basis for an arbitrary m �
n matrix� Taking a clue from the initialization algorithms developed for the simplex
method� it is not surprising that this problem can be solved by applying a slight variant

of the main algorithm 	Algorithm ���
 to an arti�cial problem� In particular� given a
matrixA� we form the arti�cial matrix 
A I�� Beginning with the trivial basis composed
of the arti�cial columns� we maintain a basis for the arti�cial matrix� At each subsequent
iteration we attempt to increase the number of non�arti�cial columns in the basis by

bringing r non�basic and non�arti�cial columns into canonical form and then using Gauss�
Jordan reduction to pivot these columns into the basis� If an appropriate pivot selection
rule is followed� the �nal basis will contain no arti�cial columns�

Algorithm ���� Given are the following� A � �m�n with linearly independent rows� a
basic sequence B for 
A I� 	where I is the m�m identity matrix
� the associated basis
inverse 	
A I�
��B � an integer r� and a set of �previously considered� indices C�

Step �� Label the indices n� �� � � � � n�m �arti�cial�� Set C � 	�

Step �� Select a sequence N of length r from those indices that are not arti�cial and

are not in B � C� Form the set �C � C � N and the matrix �AN � 	
A I�
��B AN �

Step �� Apply the Gauss�Jordan pivoting procedure 	see� e�g�� 
��
 to reduce the left�

hand side of the matrix 
 �AN I�� updating the basic sequence appropriately as
columns of the identity matrix are found� and selecting each pivot element so that

�



an arti�cial index leaves the basic sequence whenever possible� Let �B denote the
�nal basic sequence obtained in this way� Stop if �B contains no arti�cial indices�

Step �� Calculate A��
�B
�

Step �� Continue from step � after updating the input with the basic sequence �B� the
basis inverse A��

�B
� and the set of previously considered indices �C�

Though their details di�er somewhat� Algorithms ��� and ��� share the same essential
features� Indeed� it is easy to see that the dominant computational work in each step is

the same for the two algorithms� Algorithm ���� however� may require n iterations 	as
opposed to n�m for Algorithm ���
 when applied to an m�n problem� Relying on these
observations and the arguments in Proposition ���� we immediately have the following
complexity bound�

Proposition ���� Algorithm ��� can be used to �nd a basic sequence for an m�n matrix

in O
��
mr � m�T �r�

r�

�
n
�
arithmetic operations�

The combination of Algorithms ��� and ��� gives a procedure for solving the general
basis crashing problem� Our main result on the complexity of this problem follows�

Theorem ���� If we know how to multiply two k � k matrices in O	k���
 arithmetic

operations� then we can solve the m� n basis crashing problem in O	m
���

���n
 arithmetic

operations�

Proof� Taking note of Propositions ��� and ���� we see that by combining Algorithms

��� and ���� we can construct an algorithm that solves the basis crashing problem in
O
��
mr � m�T �r�

r�

�
n
�
arithmetic operations� Since r is a parameter of this algorithm�

we are free to choose its value in a manner which minimizes the complexity bound�
Clearly we should choose r so that the terms mr and m�T �r�

r�
are as equal as possible�

To see how this can be done� it helpful to view the complexity in an alternative manner�

For any � such that satis�es T 	k
 � O	k���
� the algorithm runs in O	mr�m�r���


arithmetic operations� Setting r � dm
�

��� e then gives O	m
������

��� � m
���

��� 
 time� But

since � is necessarily an upper bound on �� this last expression is O	m
���

��� n
� as claimed�

Since it is known that two k � k matrices can be multiplied in O	k����
 arithmetic
operations 
��� we have the following as a trivial corollary�

Corollary ��	� The m�n basis crashing problem can be solved in O	m����n
 arithmetic

operations�

Finally� we note that it is has been conjectured that for every � � � there exists an
algorithm that multiplies two k � k matrices in O	k���
 arithmetic operations� If this

conjecture holds� our complexity results for basis crashing approach O	m��	n
 arithmetic
operations�

�



References


�� A� V� Aho� J� E� Hopcroft� and J� D� Ullman� The Design and Analysis of Computer

Algorithms� Addison�Wesley� Reading� MA� �����


�� D� Coppersmith and S� Winograd� �Matrix multiplication via arithmetic progres�
sions�� Journal of Symbolic Computation 
 	����
 ��������


�� G� Golub and C� Van Loan� Matrix Computations� The Johns Hopkins University
Press� Baltimore� �����


�� W� Marlow� Mathematics for Operations Research� John Wiley � Sons� New York�
�����


�� N� Megiddo� �On �nding primal� and dual�optimal bases�� ORSA Journal of Com�

puting � 	����
 ������

�� V� Pan� How to multiply natrices faster	� Lecture Notes in Computer Science

Vol� ���� Springer�Verlag� Berlin� �����

�� P� Vaidya� �Speeding�up linear programming using fast matrix multiplication�� in�

Proceedings of the �
th Annual IEEE Symposium on Foundations of Computer Sci�

ence� IEEE Computer Society Press� Los Angeles� ����� pp� ��������

�� S� Winograd� Arithmetic Complexity of Computations� SIAM� Philadelphia� �����

�� S� Winograd� �Algebraic complexity theory�� in� Handbook of Theoretical Computer

Science� Volume A� J� van Leeuwen� ed�� MIT Press� Cambridge� MA� ����� pp�
��������

�


